Relativistic Cosmology Revisited
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity
Ancient deforestation revisited.
Hughes, J Donald
2011-01-01
The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.
Revisiting Cosmological parameter estimation
Prasad, Jayanti
2014-01-01
Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...
Cosmologies of the ancient Mediterranean world
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-06-01
Full Text Available Cosmology is concerned with the order of the universe and seeks to provide an account, not only of that order, but also of the mind or reason behind it. In antiquity, the cosmos was usually understood religiously, such that the cosmologies of the ancient Mediterranean world were either religious in nature or constituted a reaction to a religiously conceived understanding of the structures of the universe. The oldest form in which ancient cosmologies occur is myth, which, owing to its elasticity as a form, enabled them to be appropriated, adapted and used by different groups. In addition, different cosmologies co-existed within the same ancient culture, each having an authoritative status. This article provides an introductory overview of these cosmological myths and argues that a comparative approach is the most fruitful way to study them. Emphasis is given to certain prominent cosmological topics, including theogony (the genesis of the divine or the relationship of the divine to the cosmos, cosmogony (the genesis of the cosmos, and anthropogony (the origin of humans within the cosmos. Although these myths vary greatly in terms of content and how they envision the origin of the cosmos, many of them depict death as part of the structure of the universe.Kosmologie het te doen met die orde van die heelal en wil rekenskap gee van hierdie orde en ook van die bewussyn daaragter. In die antieke tyd is die kosmos gewoonlik godsdienstig verstaan, met die gevolg dat die kosmologieë van die antieke Mediterreense wêreld óf ’n godsdienstige aard gehad het óf bestaan het uit ’n reaksie op ’n godsdienstig-geskepte begrip van die strukture van die heelal. Mites was die oudste vorm waarin antieke kosmologieë voorkom wat vanweë hulle plooibaarheid dit bewerk het dat hierdie kosmologieë deur verskillende groepe toegeëien, aangepas en gebruik kon word. Hierbenewens het verskillende kosmologieë in die antieke kultuur langs mekaar bestaan – elkeen
The Cosmological Lithium Problem Revisited
Bertulani, C A; Shubhchintak,
2016-01-01
After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.
The cosmological lithium problem revisited
Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak
2016-07-01
After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.
Did I Say Cosmology? On Modern Cosmologies and Ancient World-views
Iwaniszewski, S.
2009-08-01
The modern cosmology that emerged from observational astronomy in 16th century Europe meant a radical break-away from earlier conceptions of the world. While all ancient and nonwestern worldviews usually describe a multidimensional reality in which diverse environmental, economic, sociopolitical and ideological factors intersect, modern cosmologies espouse the vision of a radically different universe which is completely dehumanized, ethically indifferent and universally valid. Despite these differences cosmology and worldview tend to be used interchangeably to depict ancient and nonwestern worldviews.Any correspondences which can be found between different parts of ancient and/or nonwestern worldviews and modern cosmologies tend to transfer modern conceptions to the premodern world. Ignoring ancient cultural contexts, we risk imposing modern cosmological concepts on past worldview categories. While we have to describe ancient astronomies in our own terms, our ultimate goal is to understand them on their own terms.
Ancient Origins of a Modern Anthropic Cosmological Argument
Cirkovic, M M
2003-01-01
Ancient origins of a modern anthropic argument against cosmologies involving infinite series of past events are considered. It is shown that this argument - which in modern times has been put forward by distinguished cosmologists like Paul C. W. Davies and Frank J. Tipler - originates in pre-Socratic times and is implicitly present in the cyclical cosmology of Empedocles. There are traces of the same line of reasoning throughout the ancient history of ideas, and the case of a provocative statement of Thucydides is briefly analyzed. Moreover, the anthropic argument has been fully formulated in the epic of Lucretius, confirming it as the summit of ancient cosmology. This is not only of historical significance but presents an important topic for the philosophy of cosmology provided some of the contemporary inflationary models, particularly Linde's chaotic inflation, turn out to be correct.
Ancient Cosmology, superfine structure of the Universe and Anthropological Principle
Arakelyan, Hrant; Vardanyan, Susan
2015-07-01
The modern cosmology by its spirit, conception of the Big Bang is closer to the ancient cosmology, than to the cosmological paradigm of the XIX century. Repeating the speculations of the ancients, but using at the same time subtle mathematical methods and relying on the steadily accumulating empirical material, the modern theory tends to a quantitative description of nature, in which increasing role are playing the numerical ratios between the physical constants. The detailed analysis of the influence of the numerical values -- of physical quantities on the physical state of the universe revealed amazing relations called fine and hyperfine tuning. In order to explain, why the observable universe comes to be a certain set of interrelated fundamental parameters, in fact a speculative anthropic principle was proposed, which focuses on the fact of the existence of sentient beings.
The Gowdy T3 Cosmologies revisited
Hern, S D
1998-01-01
We have examined and repeated earlier numerical calculations of Berger and Moncrief for the evolution of unpolarized Gowdy T3 cosmological models. Our calculations do not always agree with theirs, and we come to the opposite conclusion: these models do not appear to develop velocity term dominated behaviour.
Revisiting cosmological bounds on sterile neutrinos
Vincent, Aaron C; Hernandez, Pilar; Lattanzi, Massimiliano; Mena, Olga
2014-01-01
We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to overclosure, seen as a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter $R_{CMB}$ and the sound horizon $r_s$ from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the ...
$C$-field cosmological models: revisited
Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H
2015-01-01
We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...
NEC violation in mimetic cosmology revisited
Directory of Open Access Journals (Sweden)
Anna Ijjas
2016-09-01
Full Text Available In the context of Einstein gravity, if the null energy condition (NEC is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples. Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.
NEC violation in mimetic cosmology revisited
Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.
2016-09-01
In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.
Revisiting cosmological bounds on sterile neutrinos
Vincent, Aaron C.; Fernández Martínez, Enrique; Hernández, Pilar; Mena, Olga; Lattanzi, Massimiliano
2015-04-01
We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter RCMB and the sound horizon rs from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin2θ lesssim 0.026 (ms/eV)-2.
Classical stochastic approach to cosmology revisited
Indian Academy of Sciences (India)
Moncy V John; C Sivakumar; K Babu Joseph
2003-01-01
The classical stochastic model of cosmology recently developed by us is reconsidered. In that approach the parameter deﬁned by the equation of state = wρ was taken to be ﬂuctuating with mean zero and we compared the theoretical probability distribution function (PDF) for the Hubble parameter with observational data corresponding to a universe with matter and vacuum energy. Even though qualitative agreement between the two was obtained, an attempt is herein made to introduce a more realistic assumption for the mean ofwand use it for the calculations. In the present theory the mean values of both and are taken to be nonzero. The theoretical and observational PDFs are compared for different epochs and values of the Hubble parameter. The corresponding values of the diffusion constant obtained are approximately constant. We use the scatter in the observed redshift-magnitude data of Type Ia supernova to place limits on the stochastic variation in expansion rate and consequently, on the stochastic variation of the equation of state.
NEC violation in mimetic cosmology revisited
Ijjas, Anna; Steinhardt, Paul J
2016-01-01
In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this paper, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. ...
Comment on "The Gowdy $T^3$ Cosmologies Revisited"
Berger, B K; Moncrief, V; Berger, Beverly K.; Garfinkle, David; Moncrief, Vincent
1997-01-01
A standard and reasonable definition of asymptotic velocity term dominance (AVTD) shows that the numerical study by Hern and Stewart (gr-qc/9708038) confirms previous results that generic Gowdy cosmologies on $T^3 \\times R$ have an AVTD singularity.
Ancient mtDNA sequences from the First Australians revisited.
Heupink, Tim H; Subramanian, Sankar; Wright, Joanne L; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D; Willerslev, Eske; Lambert, David M
2016-06-21
The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537-542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the "Out of Africa" model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055
Pikichyan, H. V.
2015-07-01
Employing the cosmologic concepts and astronomical symbols, the features of the ancient subjective approach of the achievement or perception of the knowledge and its systematic delivery ways are presented. In particular, the ancient systems of the natural medical science and the art of astrology are discussed, whereas the relations of the five cosmological elements, three dynamical agents, nine luminaries and twelve zodiac signs are applied. It is pointed out some misunderstandings encountered in the contemporary interpretation on the evaluation of ancient systems of the knowledge.
Revisiting the modified Starobinsky model with cosmological constant
Pelinson, Ana
2009-01-01
The Starobinsky model is a natural inflationary scenario in which inflation arises due to quantum effects of the massless matter fields. A modified version of the Starobinsky (MSt) model takes the masses of matter fields and the cosmological constant, $\\Lambda$, into account. The equations of motion become much more complicated however approximate analytic and numeric solutions are possible. In the MSt model, inflation starts due to the supersymmetric (SUSY) particle content of the underlying theory and the transition to the radiation dominated epoch occurs due to the relatively heavy s-particles decoupling. For $\\Lambda=0$ the inflationary solution is stable until the last stage, just before decoupling. In the present paper we generalize this result for $\\Lambda\
Cosmological constraints from thermal Sunyaev Zeldovich power spectrum revisited
Horowitz, Benjamin
2016-01-01
Thermal Sunyaev-Zeldovich (tSZ) power spectrum is one of the most sensitive methods to constrain cosmological parameters, scaling as the amplitude $\\sigma_8^8$. It is determined by the integral over the halo mass function multiplied by the total pressure content of clusters, and further convolved by the cluster gas pressure profile. It has been shown that various feedback effects can change significantly the pressure profile, strongly affecting the tSZ power spectrum at high $l$. Energetics arguments and SZ-halo mass scaling relations suggest feedback is unlikely to significantly change the total pressure content, making low $l$ tSZ power spectrum more robust against feedback effects. Furthermore, the separation between the cosmic infrared background (CIB) and tSZ is more reliable at low $l$. Low $l$ modes are however probing very small volumes, giving rise to very large non-gaussian sampling variance errors. By computing the trispectrum contribution we identify $90
International Nuclear Information System (INIS)
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
The End of the Age Problem, And The Case For A Cosmological Constant Revisited
Krauss, L M
1998-01-01
The lower limit on the age of the universe derived from globular cluster dating techniques, which previously strongly motivated a non-zero cosmological constant, has now been dramatically reduced, allowing consistency for a flat matter dominated universe with a Hubble Constant, $H_0 \\le 66 km s^{-1} Mpc^{-1}$. The case for an open universe versus a flat universe with non-zero cosmological constant is reanalyzed in this context, incorporating not only the new age data, but also updates on baryon abundance constraints, and large scale structure arguments. For the first time, the allowed parameter space for the density of non-relativistic matter appears larger for an open universe than for a flat universe with cosmological constant, while a flat universe with zero cosmological constant remains strongly disfavored. Several other preliminary observations suggest a non-zero cosmological constant, but a definitive determination awaits refined measurements of $q_0$, and small scale anisotropies of the Cosmic Microwav...
The Contribution of the Cosmological Constant to the Relativistic Bending of Light Revisited
Rindler, Wolfgang
2007-01-01
We study the effect of the cosmological constant $\\Lambda$ on the bending of light by a concentrated spherically symmetric mass. Contrarily to previous claims, we show that when the Schwarzschild-de Sitter geometry is taken into account, $\\Lambda$ does indeed contribute to the bending.
Heaven and Earth in Ancient Greek Cosmology From Thales to Heraclides Ponticus
Couprie, Dirk L
2011-01-01
In Miletus, about 550 B.C., together with our world-picture cosmology was born. This book tells the story. In Part One the reader is introduced in the archaic world-picture of a flat earth with the cupola of the celestial vault onto which the celestial bodies are attached. One of the subjects treated in that context is the riddle of the tilted celestial axis. This part also contains an extensive chapter on archaic astronomical instruments. Part Two shows how Anaximander (610-547 B.C.) blew up this archaic world-picture and replaced it by a new one that is essentially still ours. He taught that the celestial bodies orbit at different distances and that the earth floats unsupported in space. This makes him the founding father of cosmology. Part Three discusses topics that completed the new picture described by Anaximander. Special attention is paid to the confrontation between Anaxagoras and Aristotle on the question whether the earth is flat or spherical, and on the battle between Aristotle and Heraclid...
Directory of Open Access Journals (Sweden)
Miao Miao
2012-02-01
Full Text Available Abstract Background Plasmodium vivax is the most widely distributed human malaria parasite outside of Africa, and its range extends well into the temperate zones. Previous studies provided evidence for vivax population differentiation, but temperate vivax parasites were not well represented in these analyses. Here we address this deficit by using complete mitochondrial (mt genome sequences to elucidate the broad genetic diversity and population structure of P. vivax from temperate regions in East and Southeast Asia. Results From the complete mtDNA sequences of 99 clinical samples collected in China, Myanmar and Korea, a total of 30 different haplotypes were identified from 26 polymorphic sites. Significant differentiation between different East and Southeast Asian parasite populations was observed except for the comparison between populations from Korea and southern China. Haplotype patterns and structure diversity analysis showed coexistence of two different groups in East Asia, which were genetically related to the Southeast Asian population and Myanmar population, respectively. The demographic history of P. vivax, examined using neutrality tests and mismatch distribution analyses, revealed population expansion events across the entire P. vivax range and the Myanmar population. Bayesian skyline analysis further supported the occurrence of ancient P. vivax population expansion. Conclusions This study provided further resolution of the population structure and evolution of P. vivax, especially in temperate/warm-temperate endemic areas of Asia. The results revealed divergence of the P. vivax populations in temperate regions of China and Korea from other populations. Multiple analyses confirmed ancient population expansion of this parasite. The extensive genetic diversity of the P. vivax populations is consistent with phenotypic plasticity of the parasites, which has implications for malaria control.
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Institute of Scientific and Technical Information of China (English)
Liu Jian
2011-01-01
@@ A CHINESE New Year painting exhibition has offered thousands of art lovers a traditional folk art feast in Beijing this past January and February.With the theme of "Door Gods," over 300 works of art were on display, representing various styles in China's different regions.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Chinese New Year painting exhibition reveals the beauty of folk art A CHINESE New Year painting exhibition has offered thousands of art lovers a traditional folk art feast in Beijing this past January and February.With the theme of "Door Gods," over 300 works of art were on display,representing various styles in China’s different regions. Woodcut prints,each a piece of special handmade folk art featuring auspicious subjects,are characterized by their concise lines, bright colors,and joyful scenes embodying people’s best wishes for the New Year.
Kankpeyeng, Benjamin W; Nkumbaan, Samuel N; Insoll, Timothy
2011-08-01
The ancient cultural tradition in the middle belt region of northern Ghana, with its stone circle and house mounds, contains varied material culture. The unique contextual arrangements of the material culture within the stone circle mounds and the diverse ceramic art forms, as well as their ethnographic analogues in West Africa, indicate the mounds' association with past shrines that have multiple functions, including curative purposes. The archaeology of the mounds and ethnographic associations related to past indigenous medical practices is reviewed and discussed. This paper will also consider how some of the figurines through which the Koma tradition has achieved 'fame' possibly functioned as physical representations of disease, perhaps underpinned by intentions of transference from afflicted to image. The notions of protection and healing are also examined with reference to the resorted and disarticulated human remains sometimes recovered from the sites.
Orban, Chris
2012-01-01
In setting up initial conditions for cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to the real-space clustering. As a stringent test of both approaches, I perform ensembles of simulations using power law models and exploit the self-similarity of these initial conditions to quantify the accuracy of the results. Originally proposed by Pen 1997 and implemented by Sirko 2005, I show that the real-space motivated approach, which allows the DC mode to vary, performs well in exhibiting the expected self-similar behavior in the mean xi(r) and P(k) and in both methods this behavior extends below the scale of the initial mean interparticle spacing. I also test the real-space method with simulations of a simplified, powerlaw model for baryon acoustic oscillations, again with success, and mindful of the need to generate mock catalogs using simulations I show extensive po...
DEFF Research Database (Denmark)
Willerslev, Eske; Cooper, Alan
2004-01-01
ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...
Will Quantum Cosmology Resurrect Chaotic Inflation Model?
Kim, Sang Pyo; Kim, Won
2016-07-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Mitochondrial phylogenomics of modern and ancient equids
DEFF Research Database (Denmark)
Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias;
2013-01-01
to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far...
Sturgeon, G; Hargest, R
2015-01-01
Objective The history of treatments for fistula-in-ano can be traced back to ancient times. Current treatment of transphincteric fistulae is controversial, with many options available. We reviewed the history of treatment using cutting setons and present our series of transphincteric fistulae in the light of the series in the literature. Design Literature review and case series. Setting Hospital based coloproctology service Participants 140 consecutive patients presenting with fistula-in-ano were included. Main Outcome Measures The literature pertaining to treatment of transphincteric fistula was reviewed, along with the outcome of various treatment methods for this condition. Data were collected for 140 consecutive patients presenting with fistula- in-ano were assessed for fistula healing, recurrence and complications. Results A total of 140 consecutive patients with fistula-in-ano were identified, of which 111 were cryptoglandular (79.3%). Eighty-one of these 111 were transphincteric (73.0%). At a median follow-up of 35 months (range, 2–83 months), 70 transphincteric fistulae had healed (86.4%), 10 were still undergoing treatment (12.3%) and one patient was lost to follow-up prior to treatment (1.2%). Two patients in this group required a stoma (2.5%), six patients developed recurrence (7.4%); three ‘true’ recurrences (3.7%). One (1.2%) developed a chronic fissure. There were no reported cases of incontinence. Conclusions The management of transphincteric fistula-in-ano is complex and controversial, for which no clear surgical procedure has gained acceptance as the gold standard. This study demonstrates that transphincteric fistulae can be successfully treated using cutting setons. A high healing rate (86.4%), low recurrence rate (7.4%) and a low complication rate (3.7%) are shown, which compares favourably with published rates over a long follow-up. PMID:26152674
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Evers, Virginia
This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…
The Cosmology of Edgar Allan Poe
Cappi, Alberto
2011-06-01
Eureka is a ``prose poem'' published in 1848, where Edgar Allan Poe presents his original cosmology. While starting from metaphysical assumptions, Poe develops an evolving Newtonian model of the Universe which has many and non casual analogies with modern cosmology. Poe was well informed about astronomical and physical discoveries, and he was influenced by both contemporary science and ancient ideas. For these reasons, Eureka is a unique synthesis of metaphysics, art and science.
Three Studies in Epicurean Cosmology
Bakker, F.A.
2010-01-01
This dissertation consists of three studies dealing with various aspects of Epicurean cosmology. The first study discusses the Epicurean practice of explaining astronomical and meteorological phenomena by multiple alternative theories. The second study compares the meteorological accounts of Epicurus and Lucretius with other ancient meteorologies as regards the scope and order of their subject matter. The third one examines the claim that Epicurus and Lucretius held the earth to be flat.
Cosmology understanding the evolution of the universe
2015-01-01
Bridging astronomy and physics, cosmology seeks to examine the nature of the universe as a whole. Scientific investigation of cosmology began in ancient times and progressed rapidly after the Scientific Revolution, which produced the discovery of gravity and the heliocentric model of Copernicus. This volume examines the historical developments in the field of cosmology, the evidence supporting the Big Bang theory, and the future implications of dark matter and an expanding universe. Readers will also be introduced to the various thinkers who helped advance study of this endlessly fascinating f
Belinski, V
2009-01-01
The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.
Lesgourges, J.
2013-08-01
We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.
The cosmology of the Divine Comedy
Gangui, Alejandro
2008-01-01
Since the time of ancient civilizations, cosmology had a privileged place within the various artistic and literary manifestations. The Divine Comedy by Dante Alighieri, one of the masterpieces in literature and thought of the Western World, is organized on the image of the cosmos of the XIII century, which is analyzed in this article.
Energy Technology Data Exchange (ETDEWEB)
Wesson, P.S.
1979-10-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)
Large scale geometry and evolution of a universe with radiation pressure and cosmological constant
Coquereaux, Robert; Coquereaux, Robert; Grossmann, Alex
2000-01-01
In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedmann-Lemaitre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse the behaviour of redshifts in such models and the description of ``very large scale geometrical features'' when analysed by distant observers.
Montani, Giovanni
1. Historical picture. 1.1. The concept of universe through the centuries. 1.2. The XIX century knowledge. 1.3. Birth of scientific cosmology. 1.4. The genesis of the hot big bang model. 1.5. Guidelines to the literature -- 2. Fundamental tools. 2.1. Einstein equations. 2.2. Matter fields. 2.3. Hamiltonian formulation of the dynamics. 2.4. Synchronous reference system. 2.5. Tetradic formalism. 2.6. Gauge-like formulation of GR. 2.7. Singularity theorems. 2.8. Guidelines to the literature -- 3. The structure and dynamics of the isotropic universe. 3.1. The RW geometry. 3.2. The FRW cosmology. 3.3. Dissipative cosmologies. 3.4. Inhomogeneous fluctuations in the universe. 3.5. General relativistic perturbation theory. 3.6. The Lemaitre-Tolmann-Bondi spherical solution. 3.7. Guidelines to the literature -- 4. Features of the observed universe. 4.1. Current status: The concordance model. 4.2. The large-scale structure. 4.3. The acceleration of the universe. 4.4. The cosmic microwave background. 4.5. Guidelines to the literature -- 5. The theory of inflation. 5.1. The shortcomings of the standard cosmology. 5.2. The inflationary paradigm. 5.3. Presence of a self-interacting scalar field. 5.4. Inflationary dynamics. 5.5. Solution to the shortcomings of the standard cosmology. 5.6. General features. 5.7. Possible explanations for the present acceleration of the universe. 5.8. Guidelines to the literature -- 6. Inhomogeneous quasi-isotropic cosmologies. 6.1. Quasi-isotropic solution. 6.2. The presence of ultrarelativistic matter. 6.3. The role of a massless scalar field. 6.4. The role of an electromagnetic field. 6.5. Quasi-isotropic inflation. 6.6. Quasi-isotropic viscous solution. 6.7. Guidelines to the literature -- 7. Homogeneous universes. 7.1. Homogeneous cosmological models. 7.2. Kasner solution. 7.3. The dynamics of the Bianchi models. 7.4. Bianchi types VIII and IX models. 7.5. Dynamical systems approach. 7.6. Multidimensional homogeneous universes. 7.7. Guidelines
Narimani, Ali; Scott, Douglas
2011-01-01
Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...
DEFF Research Database (Denmark)
Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;
2015-01-01
, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...
DEFF Research Database (Denmark)
Ho, Simon Y W; Gilbert, M Thomas P
2010-01-01
the technical challenges that face researchers in the field. We catalogue the diverse sequencing methods and source materials used to obtain ancient mitogenomic sequences, summarise the associated genetic and phylogenetic studies that have been conducted, and evaluate the future prospects of the field....
Enqvist, K
2012-01-01
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
Neves, J C S
2015-01-01
In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?
Kirillov, A A
2015-01-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
Kirillov, A. A.; Savelova, E. P.
2016-05-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
Chen, Pisin
2014-01-01
Recent years have seen tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena re...
Capozziello, S; Fatibene, L; Ferraris, M; Garruto, S
2016-01-01
We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.
Institute of Scientific and Technical Information of China (English)
刘艳华
2013-01-01
"Shuowen Jiezi"contained in building word what is reflected both ancient Chinese vocabulary system, it contains the ancients in the social life, thoughts and the understanding of the universe and life and cultural information. To sort through the construction and analysis of ancient China, the concept of the universe contains these buildings in words and aesthetic culture consciousness.%《说文解字》中所包含的建筑词既是上古汉语词汇系统的反映，同时也蕴含着古人在社会生活、思想观念及对宇宙人生的认识等文化方面的信息。通过对建筑词进行整理并分析，从中探讨这些建筑词中所蕴含的中国古人的宇宙观念及审美文化意识。
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H
2012-01-01
We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
Swamy, Ashwin Balegar
This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.
Cosmology with a time dependent cosmological constant
International Nuclear Information System (INIS)
In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)
Hinterbichler, Kurt; Levy, Aaron; Matas, Andrew
2011-01-01
The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. For a broad range of initial conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum by the present epoch, as assumed in the local analysis of spherically-symmetric solutions and tests of gravity. For the simplest form of the potential, the energy scale is too small for the symmetron to act as dark energy, hence we must add a cosmological constant to drive late-time cosmic acceler...
Agarwal, Nishant; Khoury, Justin; Trodden, Mark
2009-01-01
We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...
Newtonian cosmology - Problems of cosmological didactics
Energy Technology Data Exchange (ETDEWEB)
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
Cosmological Perturbations and the Weinberg Theorem
Akhshik, Mohammad; Jazayeri, Sadra
2015-01-01
The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.
Negative Energy Cosmology and the Cosmological Constant
Prokopec, Tomislav
2011-01-01
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
Vankov, A
1998-01-01
The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.
Cosmology with bulk viscosity and the gravitino problem
Buoninfante, L
2016-01-01
The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow to avoid the late abundance of gravitinos. In particular, we found that for a particular choice of the parameters characterizing the cosmological model, the gravitino abundance turns out to be independent on the reheating temperature.
Cosmology and particle physics
International Nuclear Information System (INIS)
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
Nojiri, S; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...
The angular momentum of baryons and dark matter halos revisited
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole....
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Particle physics and cosmology
International Nuclear Information System (INIS)
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Indian Academy of Sciences (India)
Tarun Sandeep
2004-10-01
Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.
Apps for Ancient Civilizations
Thompson, Stephanie
2011-01-01
This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…
Connecting Philosophy of Ancient Egyptians to Modern Thinking
Directory of Open Access Journals (Sweden)
Aminuddin Hassan
2012-01-01
Full Text Available Problem statement: Associating any knowledge from ancient Egyptians to modern civilization and thinking was important and had its own value. The process of understanding knowledge related to ancient Egyptians is actually based on the nature of philosophical thought. Approach: In the discussion of ancient Egypt philosophy, it is important to look at it from the perspectives of the four branches of philosophy; metaphysics, epistemology, axiology and logic. Metaphysics has two elements, which are ontology and cosmology. Arguments in ontology explain why most activities of people from the ancient Egypt involved agriculture and how they perceived their lives in the midst of this activity, this includes the concept of human creator; treatment to man and woman; and Egyptians Gods and Goddesses. In addition, cosmology analyses the universe; everything inside and out of it, as well as what makes them stay and move. Results: Whereas, epistemology refers to how ancient Egyptians appreciated the existence of knowledge among them by considering the sources, types, categories and importance of particular knowledge that was gained in different ways. Besides, the aspects of axiology are also discussed here, especially in the ancient Egypts hieroglyphics. This writing discusses the level of aesthetical value posed by all these Egyptians, even at the time of about 3000 B.C. They could discuss to form pictographic as their written language. This activity lasted for thousands of years. Conclusion: Last but not the least, logic is another aspect that can be used in the discussion across metaphysics, epistemology and also axiology, for instance, the thinking of the philosophy behind Egyptians life. This writing relates the philosophy of ancient Egypt with the life of the modern world, not only in Egypt, but also in another part of the world, which exist from the impact of the philosophy of ancient Egypt. Modern views of Egyptians thinking are often vastly based
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
Signature Change in Noncommutative FRW Cosmology by GUP
Ghaneh, T; Motavalli, H
2012-01-01
We first revisit the issue of continuous signature transition from Euclidean to Lorentzian metrics in a cosmological model described by FRW metric minimally coupled with a self interacting massive scalar field. Then, using a noncommutative phase space of dynamical variables deformed by Generalized Uncertainty Principle (GUP) we show that the signature transition occurs even for a model described by FRW metric minimally coupled with a free massless scalar field accompanied by a cosmological constant. This indicates that signature transition might have been simply occurred at early universe just by a free massless scalar field and GUP, without resorting to massive scalar field having a complicate potential. We also study the quantum cosmology of the model and obtain a solution of Wheeler-DeWitt equation which shows a good correspondence with the classical path.
Conspiratorial cosmology - the case against the Universe
Rachen, Jörg P
2013-01-01
Based on the cosmological results of the Planck Mission, we show that all parameters describing our Universe within the \\Lambda CDM model can be constructed from a small set of numbers known from conspiracy theory. Our finding is confirmed by recent data from high energy particle physics. This clearly demonstrates that our Universe is a plot initiated an unknown interest group or lodge. We analyse possible scenarios for this conspiracy, and conclude that the belief in the existence of our Universe is an illusion, as previously assumed by ancient philosophers, 20th century science fiction authors and contemporary film makers.
Cosmological models and stability
Andersson, Lars
2013-01-01
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiri Bicak at this conference Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed...
Cosmology and particle physics
International Nuclear Information System (INIS)
This paper comprises the contents of four lectures in which the author illustrates the two-way nature of the interplay between the fields of cosmology and particle physics by focusing on several specifics: a review of the standard cosmology, concentrating on primordial nucleosynthesis; baryogenesis; monopoles; and the case in which a very early first-order phase transition associated with spontaneous symmetry breaking has the potential to explain some very fundamental cosmological facts
Dolgov, A.D.(Novosibirsk State University, Novosibirsk, 630090, Russia)
2002-01-01
Cosmological implications of neutrinos are reviewed. The following subjects are discussed at a different level of scrutiny: cosmological limits on neutrino mass, neutrinos and primordial nucleosynthesis, cosmological constraints on unstable neutrinos, lepton asymmetry of the universe, impact of neutrinos on cosmic microwave radiation, neutrinos and the large scale structure of the universe, neutrino oscillations in the early universe, baryo/lepto-genesis and neutrinos, neutrinos and high ener...
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Sanders, R. H.
2005-01-01
I review various ideas on MOND cosmology and structure formation beginning with non-relativistic models in analogy with Newtonian cosmology. I discuss relativistic MOND cosmology in the context of Bekenstein's theory and propose an alternative biscalar effective theory of MOND in which the acceleration parameter is identified with the cosmic time derivative of a matter coupling scalar field. Cosmic CDM appears in this theory as scalar field oscillations of the auxiliary "coupling strength" fi...
Lopez-Corredoira, Martin
2008-01-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the "snowball effect" or "groupthink". We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
Grand unified models and cosmology
Jeannerot, Rachel
2006-01-01
The cosmological consequences of particle physics grand unified theories (GUTs) are studied. Cosmological models are implemented in realistic particle physics models. Models consistent from both particle physics and cosmological considerations are selected. (...)
General relativistic 'screening' in cosmological simulations
Hahn, Oliver
2016-01-01
We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential $\\psi$ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for $\\psi$ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of $\\psi$ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic 'screening' scale $\\ell$ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a ...
Ancient and Medieval Earth in Armenia
Farmanyan, S. V.
2015-07-01
Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.
Astroparticle physics and cosmology
International Nuclear Information System (INIS)
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey
2010-01-01
Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.
Ancient astronomy an encyclopedia of cosmologies and myth
Ruggles, Clive
2005-01-01
Long before astronomy was a science, humans used the stars to mark time, navigate, organize planting and dramatize myths. This encyclopaedia draws on archaeological evidence and oral traditions to reveal how prehistoric humans perceived the skies and celestial phenomena.
Kehagias, Alex
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...
Cosmology and particle physics
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Ryden, Barbara
2002-01-01
Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.
Verde, L
2013-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
Zhao, Wen
2016-01-01
The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...
Barrow, Robin
1982-01-01
Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.
Magnetogenesis in bouncing cosmology
Qian, Peng; Easson, Damien A; Guo, Zong-Kuan
2016-01-01
We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed
Sekhar, J. A.; Mantri, A. S.; Yamjala, S.; Saha, Sabyasachi; Balamuralikrishnan, R.; Rao, P. Rama
2015-12-01
This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral `clusters' within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.
Fat Gravitons, the Cosmological Constant and Sub-millimeter Tests
Sundrum, Raman
2004-01-01
We revisit the proposal that the resolution of the Cosmological Constant Problem involves a sub-millimeter breakdown of the point-particle approximation for gravitons. No fundamental description of such a breakdown, which simultaneously preserves the point-particle nature of matter particles, is yet known. However, basic aspects of the self-consistency of the idea, such as preservation of the macroscopic Equivalence Principle while satisfying quantum naturalness of the cosmological constant, are addressed in this paper within a Soft Graviton Effective Theory. It builds on Weinberg's analysis of soft graviton couplings and standard heavy particle effective theory, and minimally encompasses the experimental regime of soft gravity coupled to hard matter. A qualitatively distinct signature for short-distance tests of gravity is discussed, bounded by naturalness to appear above approximately 20 microns.
Cosmological Ohm's law and dynamics of non-minimal electromagnetism
Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.
2013-01-01
The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeable conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.
Cosmological Ohm's law and dynamics of non-minimal electromagnetism
Hollenstein, Lukas; Urban, Federico R
2012-01-01
The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm's law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizable conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios.
Inhomogeneous Anisotropic Cosmology
Kleban, Matthew
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that ${\\it arbitrarily}$ inhomogeneous and anisotropic cosmologies with "flat" (including toroidal) and "open" (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potenti...
Baryogenesis and cosmological antimatter
Dolgov, A D
2009-01-01
Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.
International Nuclear Information System (INIS)
This chapter presents lectures on big-bang cosmology; contents of the universe (especially neutrinos); matterantimatter asymmetry; and mysteries in the sky. Discusses dynamic equations of cosmology; the relation to Hubble parameters; simple solutions; the global structure of the universe (fixed cosmic time); global structure (dynamics); red-shift; observational handles on closure questions; notable events in universal history; neutrino decoupling; density of the neutrino gas; the mass limit on cosmologically stable neutrinos; nucleosynthesis; neutrino stability; neutrino mass and galaxy formation; evidence for asymmetry; requirements for a theory of asymmetry; a simple scenario (drift and decay); microscopics; thermalization; horizons; background radiation; a large entropy; monopoles; and a cosmological constant. Presents discussions featuring D'Hoker, Wilczek, Teller and others
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Solomon, Adam R
2015-01-01
The accelerating expansion of the Universe poses a major challenge to our understanding of fundamental physics. One promising avenue is to modify general relativity and obtain a new description of the gravitational force. Because gravitation dominates the other forces mostly on large scales, cosmological probes provide an ideal testing ground for theories of gravity. In this thesis, we describe two complementary approaches to the problem of testing gravity using cosmology. In the first part, we discuss the cosmological solutions of massive gravity and its generalisation to a bimetric theory. These theories describe a graviton with a small mass, and can potentially explain the late-time acceleration in a technically-natural way. We describe these self-accelerating solutions and investigate the cosmological perturbations in depth, beginning with an investigation of their linear stability, followed by the construction of a method for solving these perturbations in the quasistatic limit. This allows the predictio...
Building Cosmological Frozen Stars
Kastor, David
2016-01-01
Janis-Newman-Winicour (JNW) spacetimes generalize the Schwarzschild solution to include a massless scalar field. Although suffering from naked singularities, they share the `frozen star' features of Schwarzschild black holes. Cosmological versions of the JNW spacetimes were discovered some time ago by Husain, Martinez and Nunez and by Fonarev. Unlike Schwarzschild-deSitter black holes, these solutions are dynamical, and the scarcity of exact solutions for dynamical black holes in cosmological backgrounds motivates their further study. Here we show how the cosmological JNW spacetimes can be built, starting from simpler, static, higher dimensional, vacuum `JNW brane' solutions via two different generalized dimensional reduction schemes that together cover the full range of JNW parameter space. Cosmological versions of a BPS limit of charged dilaton black holes are also known. JNW spacetimes represent a different limiting case of the charged, dilaton black hole family. We expect that understanding this second da...
Cosmological Ontology and Epistemology
Page, Don N
2014-01-01
In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.
Testing Fractional Action Cosmology
Shchigolev, V K
2015-01-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Holland, Jonathan
2014-01-01
A new approach to cosmology and space-time is developed, which emphasizes the description of the matter degrees of freedom of Einstein's theory of gravity by a family of K\\"ahler-Einstein Fano manifolds.
Cosmological Probes for Supersymmetry
Khlopov, Maxim
2015-01-01
The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Energy Technology Data Exchange (ETDEWEB)
Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2004-12-07
For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.
Testing fractional action cosmology
Shchigolev, V. K.
2016-08-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Gibbons, Gary W
2013-01-01
In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the p...
The Gate of Heaven: Revisiting Roman Mithraic Cosmology
Assasi, R.
2016-01-01
The definition and origins of Roman Mithraism remain highly problematic and controversial among modern scholars. The majority of research on Roman Mithraism focuses on interpreting the physical evidence because no considerable written narratives or theology from the religion survive. The most important Mithraic artifact is a repeated bull-slaying scene, which leaves no doubt that this figure conveys the core divine message of the cult. There is also another important Mithraic character that seems to be as important as the bull-slayer. This figure is a lion-headed man entwined by a snake. The author suggests that these figures represent the north ecliptic pole and argues for the importance of this astronomical reference in the Mithraic iconography and mythology. The author also demonstrates the possible relation of his proposed astrological model to the geocentric understanding of the axial precession around the ecliptic pole, where the Roman bull-slaying Mithras could be visualized in the form of a Mithraic constellation. This astrological model also is proposed to be the architectural design concept of Roman Mithraeum. The author also points to the core Christian symbols as possible contemporaneous parallels or derivatives of the Mithraic iconography and theology.
Statistical Inference in Cosmology
Sellentin, Elena
2016-01-01
Analysis of cosmic data is the only way to determine whether General Relativity is the law of gravity also on the largest scales in our Universe. The current standard model of cosmology, ΛCDM, is based on General Relativity, and fits all currently available data flawlessly. However, theoretical dissatisfaction with ΛCDM exists: cosmological data probe gravitational interactions, and ΛCDM fits the data only because it introduces two components of startling gravitional behavio...
Magnetohydrodynamics and Plasma Cosmology
Kleidis, K; Papadopoulos, D B; Vlahos, L
2005-01-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
Testing cosmological supersymmetry breaking
Kabat, D; Kabat, Daniel; Rajaraman, Arvind
2001-01-01
Banks has proposed a relation between the scale of supersymmetry breaking and the cosmological constant in de Sitter space. His proposal has a natural extension to a general FRW cosmology, in which the supersymmetry breaking scale is related to the Hubble parameter. We study one consequence of such a relation, namely that coupling constants change as the universe evolves. We find that the most straightforward extension of Banks' proposal is disfavored by experimental bounds on variation of the fine structure constant.
Accelerating Cosmologies from Compactification
Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.
2003-01-01
A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.
Cosmological phase transitions
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Chicago Univ., IL (United States)
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B.
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented,...
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Esotericism Ancient and Modern
Frazer, Michael
2006-01-01
Leo Strauss presents at least two distinct accounts of the idea that the authors in the political-philosophical canon have often masked their true teachings. A weaker account of esotericism, dependent on the contingent fact of persecution, is attributed to the moderns, while a stronger account, stemming from a necessary conflict between philosophy and society, is attributed to the ancients. Although most interpreters agree that Strauss here sides with the ancients, this view fails to consider...
String cosmology versus standard and inflationary cosmology
Gasperini, M
2000-01-01
This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Seasonal dating of Sappho's 'Midnight Poem' revisited
Cuntz, Manfred; Gurdemir, Levent; George, Martin
2016-04-01
Sappho was a Greek lyric poet who composed a significant array of pristine poetry. Although much of it has been lost, her reputation has endured thanks to numerous surviving fragments. One of her contributions includes the so-called 'Midnight Poem', which contains a line about the Pleiades, setting sometime before midnight, and supposedly observed from the island of Lesbos. This poem also refers to the setting of the Moon. Sappho's Midnight Poem thus represents a prime example of where ancient poetry and astronomy merge, and it also offers the possibility of seasonal dating. Previously, Herschberg and Mebius (1990) estimated that the poem was composed in late winter/early spring, a time frame that is not unusual for lyrics of an amorous nature. The aim of our paper is to revisit this earlier finding by using modern-day software. Our study confirms Herschberg and Mebius' result, but also conveys further information.
Exploring Bouncing Cosmologies with Cosmological Surveys
Cai, Yi-Fu
2014-01-01
In light of the recent observational data coming from the sky we have two significant directions in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary $\\Lambda$CDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. In this article we present two representative paradigms of very early universe physics. The first is the so-called new matter (or matter-ekpyro...
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Modern Cosmology: Assumptions and Limits
Hwang, Jai-Chan
2012-06-01
Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, ``philosophy, in one of its functions, is the critic of cosmologies.'' (Whitehead 1925).
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most
Thermal Tachyacoustic Cosmology
Agarwal, Abhineet
2014-01-01
An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Evolving Horava Cosmological Horizons
Fathi, Mohsen
2016-01-01
Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Horava universe. Based on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the peculiarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW cosmological models of a Horava universe to investigate the conditions under which the extra parameters of the theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological apparent horizons.
Perfect Quantum Cosmological Bounce
Gielen, Steffen; Turok, Neil
2016-07-01
We study quantum cosmology with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. Focusing initially on the collective coordinates (minisuperspace) associated with homogeneous, isotropic backgrounds, we are able to perform the quantum gravity path integral exactly. The evolution describes a "perfect bounce", in which the Universe passes smoothly through the singularity. We extend the analysis to spatially flat, anisotropic universes, treated exactly, and to generic inhomogeneous, anisotropic perturbations treated at linear and nonlinear order. This picture provides a natural, unitary description of quantum mechanical evolution across a cosmological bounce. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths.
Supernovae as cosmological probes
Nielsen, Jeppe Trost
2015-01-01
The cosmological standard model at present is widely accepted as containing mainly things we do not understand. In particular the appearance of a Cosmological Constant, or dark energy, is puzzling. This was first inferred from the Hubble diagram of a low number of Type Ia supernovae, and later corroborated by complementary cosmological probes. Today, a much larger collection of supernovae is available, and here I perform a rigorous statistical analysis of this dataset. Taking into account how the supernovae are calibrated to be standard candles, we run into some subtleties in the analysis. To our surprise, this new dataset - about an order of bigger than the size of the original dataset - shows, under standard assumptions, only mild evidence of an accelerated universe.
General relativity and cosmology
Bucher, Martin
2015-01-01
This year marks the hundredth anniversary of Einstein's 1915 landmark paper "Die Feldgleichungen der Gravitation" in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This contribution, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book "One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.
Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.
2004-01-01
For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.
Cosmological Perturbations in Antigravity
Oltean, Marius
2014-01-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity", during each successive transition from a Big Crunch to a Big Bang. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, its cosmological solutions are stable at the perturbative level.
Tartaglia, Angelo
2015-01-01
Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...
Testing Foundations of Modern Cosmology
Institute of Scientific and Technical Information of China (English)
ZHANG Pengjie
2011-01-01
1. Introduction Our understanding of the universe has been greatly advanced over the last two decades and a standard cosmology paradigm is now well established. Standard cosmology is based upon the cosmological principle that our universe is statistically homogeneous and isotropic. It is also based upon general relativity with a non-zero cosmological constant. In such a framework, our universe is composed of about 4% ordinary matter （baryonic matter）,
Brane cosmology in teleparallel gravity
Atazadeh, K
2014-01-01
We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
The Cosmological Mass Function
Monaco, P
1997-01-01
This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.
2011-01-01
The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.
Non equilibrium relativistic cosmology
International Nuclear Information System (INIS)
A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author)
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
International Nuclear Information System (INIS)
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with kobs=0 and Ωobstclas approx. 1020tPlanck approx. 10-23s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
Measuring Neutrinos with Cosmology
Knox, Lloyd
2016-03-01
Along with a thermal distribution of photons, we expect a thermal distribution of neutrinos to have been produced in the big bang. Although direct detection of the cosmic neutrino background (CNB) is extremely difficult, if not impossible, there is much we are learning indirectly about the CNB from its gravitational influences. I will review constraints from cosmic microwave background observations on the energy density in the CNB, present a recent detection of supersonic evolution of density perturbations in the CNB, and discuss constraints on neutrino masses from cosmological observables. I will also look toward what we can expect from future cosmological surveys, such as CMB-S4.
[Psychiatry in ancient Mexico].
Calderón Narváez, G
1992-12-01
Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described. PMID:1341125
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, Gheorghe
2009-01-01
This paper is the second in a series revisiting the (effect of) Faraday rotation. We formulate and prove the thermodynamic limit for the transverse electric conductivity of Bloch electrons, as well as for the Verdet constant. The main mathematical tool is a regularized magnetic and geometric...
A Hydrostatic Paradox Revisited
Ganci, Salvatore
2012-01-01
This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…
Indian Academy of Sciences (India)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Supersymmetric inflationary cosmology
International Nuclear Information System (INIS)
An action is presented, within the framework of supergravity unification, which satisfies all experimental and cosmological constraints. In intermediate scale, around 1010 - 1011 GeV, arises from a critical examination of inflation, supersymmetry breaking, fermion masses, proton decay, baryogenesis, and electroweak breaking - including neutrino oscillations and CP violation. Careful consideration is given to some relevant calculations. 86 refs., 10 figs., 5 tabs
Ekpyrotic and Cyclic Cosmology
Lehners, Jean-Luc
2008-01-01
Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/rho >> 1 (where P is the average pressure and rho the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, thei...
Primack, Joel R.
1999-01-01
The cosmological parameters that I will emphasize are the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the age of the universe $t_0$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\
The Cosmological Parameters 2014
Lahav, Ofer
2014-01-01
This is a review article for The Review of Particle Physics 2014 (aka the Particle Data Book). It forms a compact review of knowledge of the cosmological parameters at the beginning of 2014. Topics included are Parametrizing the Universe; Extensions to the standard model; Probes; Bringing observations together; Outlook for the future.
P. McFadden; K. Skenderis
2010-01-01
We propose a holographic description of four-dimensional single-scalar inflationary universes, and show how cosmological observables, such as the primordial power spectrum, are encoded in the correlation functions of a three-dimensional quantum field theory (QFT). The holographic description correct
Cosmology with vector distortion
Jimenez, Jose Beltran
2016-01-01
We consider an extension of Weyl geometry with the most general connection linearly determined by a vector field. We discuss some of the geometrical properties within this framework and then we construct gravitational theories leading to an interesting class of vector-tensor theories with cosmological applications.
Energy Technology Data Exchange (ETDEWEB)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
Relativistic cosmology; Cosmologia Relativista
Energy Technology Data Exchange (ETDEWEB)
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Cosmological interrelations in nature.
Błaszkiewicz, L. P.
1996-06-01
Modern cosmology came into existence in the 20-th century when Albert Einstein introduced the static Universe model (1917), and when Edwin Hubble published the observations of spectra of galaxies together with the Dopplerian redshift interpretations (1929). These observational data were in accordance with the hypotheses of Alexander Friedman.
Cosmological dynamical systems
Leon, Genly
2014-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Bisha Eugena
2015-01-01
Since in ancient times, in all human cultures, children transfered from biological parents to parents that want them to create family, for political alliances, for inheritance, for a future marriage, or to care for elderly parents. The practice of adoption was fairly common in different places and periods. Adoption is mention on Bible and Quran. Greeks, Romans, Egyptians and Babylonians had adoption systems.
Digital Repository Service at National Institute of Oceanography (India)
Tripati, S.
which plied between Kalinga and south east Asian countries. Nanda Raja, is said to have attacked Kalinga with the intention of getting access to the sea for the landlocked Kingdom of Magadha (Bihar). The ancient texa Artha Sastra (3rd-4th century B...
Printing Ancient Terracotta Warriors
Gadecki, Victoria L.
2010-01-01
Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…
Creative Ventures: Ancient Civilizations.
Stark, Rebecca
The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…
Ancient Egyptian surgical heritage.
Saber, Aly
2010-12-01
Egyptian medicine influenced the medicine of neighboring cultures, including the culture of ancient Greece. From Greece, its influence spread onward, thereby affecting Western civilization significantly. The oldest extant Egyptian medical texts are six papyri: The Edwin Smith Surgical Papyrus and the Ebers Medical Papyrus are famous. PMID:21208098
Turk, Laraine D.
"Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major course…
Ancient Egypt: Personal Perspectives.
Wolinski, Arelene
This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…
Institute of Scientific and Technical Information of China (English)
WANGTONG
2004-01-01
LIJIANG is a small city onthe Yunnan-Guizhou Plateau in southern Chinawith an 800-year history.Word of its ancient language and music, and unique natural scenery has spread over the decades, and Lijiang is now known throughout the world. It was added
Some epistemic questions of cosmology
Grujic, Petar V
2007-01-01
We discuss a number of fundamental aspects of modern cosmological concepts, from the phenomenological, observational, theoretical and epistemic points of view. We argue that the modern cosmology, despite a great advent, in particular in the observational sector, is yet to solve important problems, posed already by the classical times. In particular the stress is put on discerning the scientific features of modern cosmological paradigms from the more speculative ones, with the latter immersed in some aspects deeply into mythological world picture. We finally discuss the principal paradigms, which are present in the modern cosmological studies and evaluate their epistemic merits. KEY WORDS: cosmology, epistemology, methodology, mythology, philosophy of science
Thermodynamics properties of tachyon cosmology with non-minimal coupling to matter
Farajollahi, H; Abolghasemi, M
2016-01-01
Recently, we have investigated the dynamics of the universe in tachyon cosmology with non-minimal coupling to matter \\cite{faraj}-\\cite{faraj3}. In particular, for the interacting holographic dark energy (IHDE), the model is studied in \\cite{Ravanpak}. In the current work, a significant observational program has been conducted to unveil the model's thermodynamic properties. Our result shows that the IHDE version of our model better fits the observational data than $\\Lambda$CDM model. The first and generalized second thermodynamics laws for the universe enveloped by cosmological apparent and event horizon are revisited. From the results, both first and generalized second laws, constrained by the observational data, are satisfied on cosmological apparent horizon.In addition, the total entropy is verified with the observation only if the horizon of the universe is taken as apparent horizon. Then, due to validity of generalized second law, the current cosmic acceleration is also predicted.
Digital Repository Service at National Institute of Oceanography (India)
Iyer, S.D.; Mukhopadhyay, R.
ancient faults of the Indian Shield. To synthesize our understanding in this direction, and to address related problems, a national seminar on the ‘Structure and tectonics of the Indian plate’ was held recently in Chandigarh....
Quantum cosmology - science of Genesis
International Nuclear Information System (INIS)
Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)
International Nuclear Information System (INIS)
This year's Nobel prize is welcome recognition for cosmology. Back in the 1960s, according to Paul Davies' new book The Goldilocks Enigma (see 'Seeking anthropic answers' in this issue), cynics used to quip that there is 'speculation, speculation squared - and cosmology'. Anyone trying to understand the origin and fate of the universe was, in other words, dealing with questions that were simply impractical - or even impossible - to answer. But that has all changed with the development of new telescopes, satellites and data-processing techniques - to the extent that cosmology is now generally viewed as a perfectly acceptable branch of science. If anyone was in any doubt of cosmology's new status, the Royal Swedish Academy of Sciences last month gave the subject welcome recognition with the award of this year's Nobel prize to John Mather and George Smoot (see pp6-7; print version only). The pair were the driving force behind the COBE satellite that in 1992 produced the now famous image of the cosmic microwave background. The mission's data almost certainly proved that the universe started with a Big Bang, while tiny fluctuations in the temperature signal between different parts of the sky were shown to be the seeds of the stars and galaxies we see today. These results are regarded by many as the start of a new era of 'precision cosmology'. But for cosmologists, the job is far from over. There are still massive holes in our understanding of the cosmos, notably the nature of dark matter and dark energy, which together account for over 95% of the total universe. Indeed, some regard dark energy and matter as just ad hoc assumptions needed to fit the data. (Hypothetical particles called 'axions' are one possible contender for dark matter (see pp20-23; print version only), but don't bet your house on it.) Some physicists even think it makes more sense to adjust Newtonian gravity rather than invoke dark matter. But the notion that cosmology is in crisis, as argued by some
International Nuclear Information System (INIS)
We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds
Remembered Experiences and Revisit Intentions
DEFF Research Database (Denmark)
Barnes, Stuart; Mattsson, Jan; Sørensen, Flemming
2016-01-01
path modelling, we examine the impact of positive affect tourist experiences on the development of revisit intentions. We find that longer-term remembered experiences have the strongest impact on revisit intentions, more so than predicted or immediate memory after an event. We also find that remembered...
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro;
2008-01-01
We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem.......We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...
Gibson, C H
1999-01-01
A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...
Reverse cholesterol transport revisited
Institute of Scientific and Technical Information of China (English)
Astrid; E; van; der; Velde
2010-01-01
Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.
Chiodi, Filippo; Andreotti, Bruno; Claudin, Philippe
2012-01-01
The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relati...
Oxidative phosphorylation revisited
DEFF Research Database (Denmark)
Nath, Sunil; Villadsen, John
2015-01-01
The fundamentals of oxidative phosphorylation and photophosphorylation are revisited. New experimental data on the involvement of succinate and malate anions respectively in oxidative phosphorylation and photophosphorylation are presented. These new data offer a novel molecular mechanistic...... are proton‐dicarboxylic acid anion cotransporters and not simply electrogenic proton translocators. These results necessitate revision of previous theories of biological energy transduction, coupling, and ATP synthesis. The novel molecular mechanism is extended to cover ATP synthesis in prokaryotes...
Gupta, Patrick Das
2014-01-01
The Indo-aryans of ancient India observed stars and constellations for ascertaining auspicious times for sacrificial rites ordained by vedas. It is but natural that they would have recounted in the vedic texts about comets. In Rigveda ($\\sim $ 1700 - 1500 BC) and Atharvaveda ($\\sim $ 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Varahamihira in 550 AD and Ballala Sena ($\\sim $ 1100 - 1200 AD) have described a large number of comets recorded by ancient seers such as Parashara, Vriddha Garga, Narada, Garga, etc. In this article, I conjecture that an episode narrated in Mahabharata of a radiant king, Nahusha, ruling the heavens, and later turning into a serpent after he had kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.
Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.
2015-01-01
Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298
Rich, James
2009-01-01
The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...
The Cosmological Memory Effect
Tolish, Alexander
2016-01-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.
Integrable Cosmological Potentials
Sokolov, V V
2016-01-01
The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.
Steinhardt, Paul Joseph
1995-01-01
Observational tests during the next decade may determine if the evolution of the Universe can be understood from fundamental physical principles, or if special initial conditions, coincidences, and new, untestable physical laws must be invoked. The inflationary model of the Universe is an important example of a predictive cosmological theory based on physical principles. In this talk, we discuss the distinctive fingerprint that inflation leaves on the cosmic microwave background anisotropy. We then suggest a series of five milestone experimental tests of the microwave background which could determine the validity of the inflationary hypothesis within the next decade. The paper is a Review based on a Plenary talk given at the Snowmass Workshop on Particle Astrophysics and Cosmology, 1995 It will appear in the Proceedings edited by E. Kolb and R.Peccei. Software package for computing filter functions and band power estimates available thru world-wide-web at http://dept.physics.upenn.edu/~www/as tro-cosmo/ .
Holography from quantum cosmology
Rashki, M
2014-01-01
The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed Friedmann-Lema\\^itre-Robertson-Walker (FLRW) cosmological model. We show that the phase space average for the surface of the apparent horizon is quantized in units of the Planck's surface, and that the total entropy of the universe is also quantized. Taking into account these two concepts, it is shown that 't Hooft conjecture on the cosmological holographic principle (CHP) in radiation and dust dominated quantum universes is satisfied as a manifestation of quantization. This suggests that the entire universe (not only inside the apparent horizon) can be seen as a two-dimensional information structure encoded on the apparent horizon.
Cosmological magnetic field survival
Barrow, John D
2011-01-01
It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generi...
Kadota, K; Kadota, Kenji; Stewart, Ewan D.
2003-01-01
We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.
Tsamis, N. C.; Woodard, R. P.
2016-08-01
We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.
Bojowald, Martin
2015-01-01
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity: De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting "microscopic" degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Gariazzo, Stefano
2016-01-01
In this Thesis I discuss several recent results obtained using the CMB spectra measured by Planck and several other cosmological probes. Extensions of the $\\Lambda$CDM model are studied, including the presence of an additional sterile neutrino (motivated by the short-baseline oscillation anomalies) and of a thermal axion. The degeneracies of the cosmological effects of these particles with the power spectrum of primordial perturbations are tested. We also show that the power spectrum of initial scalar perturbations can be degenerate with the presence of primordial non-Gaussianities, thus affecting the constraints on the non-Gaussianity parameter $f_{NL}$. Finally, an effective interaction between dark energy and dark matter is studied.
An Improved Cosmological Model
Tsamis, N C
2016-01-01
We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.
Cosmology: The search for the order of the universe
International Nuclear Information System (INIS)
Cosmology is fast becoming a ''hot'' topic among physicists and astronomers, but few ''outsiders'' really understand what it's all about. This book discusses metaphysics and sheds an informative, nontechnical light on the roots of the universe and the mysteries that surround it. Focusing on the speculative nature of the sciences, the author brings together religion, theology, philosophy, and astronomy to provide a broad spectrum of theories and ideas that have evolved from the early cosmologies of the Babylonians, Egyptians, the Chinese, the Greeks, the Romans, and other ancients. Highlighted is the work of men like Copernicus, Kepler, Galileo, and Newton and the importance they played in the historical progression of discoveries. The author also examines theories on the origin of galaxies, stars, and the solar system - the sun, asteroids, comets, meteoroids, and planets - and presents the latest evidence on how they were formed
Inside the cosmic mind archetypal astrology and the new cosmology
Wyss, Phoebe
2014-01-01
Phoebe Wyss, an experienced astrologer, here examines all aspects of astrology in the light of the emerging worldview known as archetypal cosmology.She sets out by exploring the classical roots of astrology in sources of wisdom found in the ancient Egyptian mysteries. She then follows the tradition to modern times through C.G. Jung''s ideas on the nature of the psyche. She also discovers that the claims of astrology are entirely compatible with new cosmological thinking as envisioned by post-modern physics and chaos theory.In the second part of the book, she proposes that the mathematical basis of astrology and the components of astrological charts are both archetypal and cosmic in scope. She argues that the twelve astrological archetypes make up a single cosmic mind', whose patterns are imprinted on all our individual minds.Finally, she exemplifies this radical approach to astrology through an interpretation of the chart of William Blake.
Brane cosmological evolution in a bulk with cosmological constant
Binetruy, Pierre; Deffayet, Cedric; Ellwanger, Ulrich; Langlois, David
1999-01-01
We consider the cosmology of a ``3-brane universe'' in a five dimensional (bulk) space-time with a cosmological constant. We show that Einstein's equations admit a first integral, analogous to the first Friedmann equation, which governs the evolution of the metric in the brane, whatever the time evolution of the metric along the fifth dimension. We thus obtain the cosmological evolution in the brane for any equation of state describing the matter in the brane, without needing the dependence o...
International Nuclear Information System (INIS)
The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented
The cosmological singularity problem
Craps, Ben
2010-01-01
Despite impressive phenomenological successes, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Depending on the model, one would like to understand how appropriate initial conditions were selected at the big bang singularity, or how a pre-existing contracting universe underwent a big crunch/big bang transition, if such transitions are possible at all. In this talk, after an introduction to these questions, an attempt is described to st...
Đurić Drago
2011-01-01
In this paper it will be presented polemics about kalam cosmological argument developed in medieval islamic theology and philosophy. Main moments of that polemics was presented for a centuries earlier in Philoponus criticism of Aristotle’s thesis that the world is eternal, and of impossibilty of actual infinity. Philoponus accepts the thesis that actual infinity is impossible, but he thinks that, exactly because of that, world cannot be eternal. Namely, according to Philoponus, somethin...
Statistical Methods in Cosmology
Verde, L.
2010-03-01
The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.
Inertia in Friedmann cosmologies
Energy Technology Data Exchange (ETDEWEB)
Teuber, J.; Hjorth, P.G.
1987-02-11
Assuming the validity of Mach's principle, we present a formalism allowing the calculation of inertial reaction forces having the mass distribution of an entire Friedmann model as their source. In this scheme, the density parameter characterizing the Friedmann model appears in Newton's second law which in this form can be regarded as a statement about cosmology. We discuss a possible observational consequence and its relation to variable-G theories.
The fractal cosmological model
Rozgacheva, I. K.; Agapov, A. A.
2011-01-01
The fractal cosmological model which accounts for observable fractal properties of the Universe's large-scale structure is constructed. In this framework these properties are consequences of the rotary symmetry of charged scalar meson matter field (complex field). They may be explained through a conception of the Universe as an assembly of self-similar space-time domains. We have found the scale invariant solutions of Einstein's equation and Lagrange's field equation. For the solution the spa...
Particle Physics and Cosmology
Pralavorio, P
2015-01-01
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent systematic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by "natural" theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.
Cosmological perturbations in antigravity
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
The screening Horndeski cosmologies
Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.
2016-06-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
Gelmini, Graciela B
1996-01-01
Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...
A varying-α brane world cosmology
International Nuclear Information System (INIS)
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)
Physics, cosmology and astronomy, 1300 - 1700: tension and accommodation.
Unguru, S.
The present volume has its origins in a spring 1984 international workshop, held in Tel-Aviv, Israel. It deals with the interrelationships between physics, cosmology and astronomy between 1300 and 1700, with the tensions between the subjects and with the resolution of that tension in the new science which came to supplant medieval philosophy. It also covers the ancient background and includes chapters on Islamic and Jewish contributions, as well as on optics, science and religion, natural philosophy and mathematics, and science and political power.
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
Loop Quantum Cosmology Gravitational Baryogenesis
Odintsov, S D
2016-01-01
Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Scientific Realism and Primordial Cosmology
Azhar, Feraz
2016-01-01
We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...
Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G
2014-01-01
The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say
Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G
2014-01-01
The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say
Quintessential Maldacena-Maoz Cosmologies
McInnes, Brett
2004-01-01
Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quin...
Brane and Nonisotropic Bianchi Cosmology
Naboulsi, R
2003-01-01
In this letter, we use Einstein field equations in the presence of gravitino cosmological density derived in a previous paper [1] to study a spatially honogenous, nonisotropic cosmological model, in particular the Bianchi IV model. We find a axisymmetric Universe, free of singularity in the past, asymptotically flat as time grows, and admit the presence of gravitino mass as missing energy and positive cosmological constant as Lambda > 3m^2.
Inflation and the cosmological constant
Directory of Open Access Journals (Sweden)
FENG Chaojun
2014-08-01
Full Text Available By assuming the cosmological “constant” is no longer a constant during the inflation epoch,it is found that the cosmological constant fine-tuning problem is solved.In the meanwhile,inflation models could predict a large tensor-to-scalar ratio,correct power spectral index and a larger running of it.Furthermore,the e-folding number is large enough to overcome the horizon,flatness problems in the Big Bang cosmology.
An introduction to modern cosmology
Liddle, Andrew
2015-01-01
An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation
$\\Psi$-Epistemic Quantum Cosmology?
Evans, Peter W; Thébault, Karim P Y
2016-01-01
This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a $\\Psi$-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity, upon causally-symmetric local hidden variable theories, and upon a dynamical origin for the cosmological arrow of time. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.
Dance in Ancient Greek Culture
Spalva, Rita
2015-01-01
The greatness and harmony of ancient Greece has had an impact upon the development of the Western European culture to this day. The ancient Greek culture has influenced contemporary literature genres and systems of philosophy, principles of architecture, sculpture and drama and has formed basis for such sciences as astronomy and mathematics. The art of ancient Greece with its penchant for beauty and clarity has been the example of the humanity’s search for an aesthetic ideal. Despite only bei...
DEFF Research Database (Denmark)
Climate, and human responses to it, have a strongly interconnected relationship. This when climate change occurs, the result of either natural or human causes, societies should react and adapt to these. But do they? If so, what is the nature of that change, and are the responses positive...... or negative for the long-term survival of social groups? In this volume, scholars from diverse disciplines including archaeology, geology and climate sciences explore scientific and material evidence for climate changes in the past, their causes, their effects on ancient societies and how those societies...
Dantzig, Tobias
2006-01-01
More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led
Sparavigna, Amelia Carolina
2011-01-01
It is commonly believed that the ancient Romans were the first to create and use concrete. This is not true, as we can easily learn from the Latin literature itself. For sure, Romans were able to prepare high-quality hydraulic cements, comparable with the modern Portland cements. In this paper, we will see that the use of concrete is quite older, ranging back to the Homeric times. For instance, it was used for the floors of some courts and galleries of the Mycenaean palace at Tiryns
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Varying Fine-Structure Constant and the Cosmological Constant Problem
Fujii, Y
2003-01-01
We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time-variability of the fine- structure constant $\\alpha$. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non- Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.
Varying Fine-Structure Constant and the Cosmological Constant Problem
Fujii, Yasunori
We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.
Krishnan, Chethan; Raju, Avinash; Roy, Shubho; Thakur, Somyadip
2014-02-01
We construct cosmological solutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3.
Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi
1990-01-01
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.
Constraining entropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Koivisto, Tomi S. [Institute for Theoretical Physics and the Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zumalacárregui, Miguel, E-mail: t.s.koivisto@uu.nl, E-mail: d.f.mota@astro.uio.no, E-mail: miguelzuma@icc.ub.edu [Institute of Cosmos Sciences (ICC-IEEC), University of Barcelona, Marti i Franques 1, E-08028 Barcelona (Spain)
2011-02-01
It has been recently proposed that the interpretation of gravity as an emergent, entropic phenomenon might have nontrivial implications to cosmology. Here several such approaches are investigated and the underlying assumptions that must be made in order to constrain them by the BBN, SneIa, BAO and CMB data are clarified. Present models of inflation or dark energy are ruled out by the data. Constraints are derived on phenomenological parameterizations of modified Friedmann equations and some features of entropic scenarios regarding the growth of perturbations, the no-go theorem for entropic inflation and the possible violation of the Bekenstein bound for the entropy of the Universe are discussed and clarified.
Choi, Kiwoon; Chun, Eung Jin; Kim, Hang Bae
1998-01-01
In string/M-theory with a large compactification radius, some axion-like moduli can be much lighter than the gravitino. Generic moduli in gauge-mediated supersymmetry breaking models also have a mass far below the weak scale. Motivated by these, we examine the cosmological implications of light moduli for the mass range from the weak scale to an extremely small scale of order 10^{-26} eV, and obtain an upper bound on the initial moduli misalignment for both cases with and without a late entro...
Wright, Rosemary
1995-01-01
The popularity of Stephen Hawking's work has put cosmology back in the public eye. The question of how the universe began, and why it hangs together, still puzzles scientists. Their puzzlement began two and a half thousand years ago when Greek philosophers first 'looked up at the sky and formed a theory of everything.' Though their solutions are little credited today, the questions remain fresh.The early Greek thinkers struggled to come to terms with and explain the totality of their surroundings; to identitify an original substance from which the universe was compounded; and to reconcil
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Fagundes, Helio V
2008-01-01
This paper deals with two aspects of relativistic cosmologies with closed (compact and boundless) spatial sections. These spacetimes are based on the theory of General Relativity, and admit a foliation into space sections, which are spacelike hypersurfaces satisfying the postulate of the closure of space: each is a 3-dimensional closed Riemannian manifold. The discussed topics are: (1) A comparison, previously obtained, between Thurston's geometries and Bianchi-Kantowski-Sachs metrics for such 3-manifolds is here clarified and developed. (2) Some implications of global inhomogeneity for locally homogeneous 3-spaces of constant curvature are analyzed from an observational viewpoint.
Turner, Michael S.; Wilczek, Frank
1991-01-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 to the -6th eV. This bound can be evaded if the universe underwent inflation after PQ-symmetry breaking and if the observable universe happens to be a region where the initial axion angle was atypically small. Consideration of fluctuations induced during inflation severely constrains the latter alternative is shown.
Cosmology from quantum potential
Energy Technology Data Exchange (ETDEWEB)
Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt); Das, Saurya, E-mail: saurya.das@uleth.c [Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)
2015-02-04
It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann equations from the QRE, and show that this also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe.
V cosmological models in f (R, T) modified gravity with Λ (T) by using generation technique
Ahmed, Nasr; Pradhan, Anirudh; Fekry, M.; Alamri, Sultan Z.
2016-06-01
A new class of cosmological models in f (R, T) modified theories of gravity proposed by Harko et al. (2011), where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T, has been investigated for a specific choice of f (R, T) =f1 (R) +f2 (T) by generation of new solutions. Motivated by recent work of Pradhan et al. (2015) we have revisited the recent work of Ahmed and Pradhan (2014) by using a generation technique, it is shown that f (R, T) modified field equations are solvable for any arbitrary cosmic scale function. A class of new solutions for particular forms of cosmic scale functions have been investigated. In the present study we consider the cosmological constant Λ as a function of the trace of the stress energy-momentum-tensor, and dub such a model " Λ (T) gravity" where we specified a certain form of Λ (T) . Such models may exhibit better equability with the cosmological observations. The cosmological constant Λ is found to be a positive decreasing function of time which is supported by results from recent supernovae Ia observations. Expressions for Hubble's parameter in terms of redshift, luminosity distance redshift, distance modulus redshift and jerk parameter are derived and their significances are described in detail. The physical and geometric properties of the cosmological models are also discussed.
Reframing in dentistry: revisited.
Nuvvula, Sivakumar; Kamatham, Rekalakshmi; Challa, Ramasubbareddy; Asokan, Sharath
2013-01-01
The successful practice of dentistry involves a good combination of technical skills and soft skills. Soft skills or communication skills are not taught extensively in dental schools and it can be challenging to learn and at times in treating dental patients. Guiding the child's behavior in the dental operatory is one of the preliminary steps to be taken by the pediatric dentist and one who can successfully modify the behavior can definitely pave the way for a life time comprehensive oral care. This article is an attempt to revisit a simple behavior guidance technique, reframing and explain the possible psychological perspectives behind it for better use in the clinical practice. PMID:24021326
Osano, Bob
2016-01-01
In this article we revisit the significance of the often debated structural similarity between the equations of electromagnetism and fluid dynamics. Although the matching of the two sets of equations has successfully been done for non-dissipative forms of the equations, little has been done for cases where the dissipative terms are non-negligible. We consider the consequence of non-negligible viscosity and diffusivity, and how the fine-tuning of these parameters could allow fluid dynamics to be used to indirectly study certain properties of magnetic fields.
Interaction between Physics and Cosmology
Panchapakesan, N.
2005-01-01
Recent results indicate the presence of a cosmological constant (or related dark energy) in the universe. It has been conjectured recently that the interaction parameters of physical theories may be dependant on the size parameter of the universe, related to the cosmological constant. We investigate whether such effects will help in explaining baryogenesis in early universe. They do seem to succeed.
Anisotropic 'hairs' in string cosmology
Kunze, Kerstin E.; Durrer, Ruth
1999-01-01
In this letter we investigate whether the isotropy problem is naturally solved in inflationary cosmologies inspired by string theory, so called pre-big-bang cosmologies. We find that, in contrast to what happens in the more common 'potential inflation' models, initial anisotropies do not decay during pre-big-bang inflation.
Neutrino physics and precision cosmology
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.
Introduction to gravity and cosmology
International Nuclear Information System (INIS)
Relativity principles, equivalence principles, and the general covariance principle are introduced. Curved space analysis via tensor calculus and absolute differential calculus is outlined. Einstein's equations are presented. The Schwarzschild solution; tests of general relativity; and black holes are discussed. Application of general relativity to cosmology is considered. The Standard Model of cosmology and its extensions are reviewed
Neutrino physics and precision cosmology
DEFF Research Database (Denmark)
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....
Cosmological effects of nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Vignettes in Gravitation and Cosmology
Sriramkumar, L
2012-01-01
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
Exploring Ancient Skies A Survey of Ancient and Cultural Astronomy
Kelley, David H
2011-01-01
Exploring Ancient Skies brings together the methods of archaeology and the insights of modern astronomy to explore the science of astronomy as it was practiced in various cultures prior to the invention of the telescope. The book reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World (particularly Mesoamerica), putting the ancient astronomical materials into their archaeological and cultural contexts. The authors begin with an overview of the field and proceed to essential aspects of naked-eye astronomy, followed by an examination of specific cultures. The book concludes by taking into account the purposes of ancient astronomy: astrology, navigation, calendar regulation, and (not least) the understanding of our place and role in the universe. Skies are recreated to display critical events as they would have appeared to ancient observers—events such as the supernova of 1054 A.D., the "lion horoscope," and the Star of Bethlehem. Explori...
On Hamiltonian formulation of cosmologies
Indian Academy of Sciences (India)
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
More problems for Newtonian cosmology
Wallace, David
2016-01-01
I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp.22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.
Higher dimensional loop quantum cosmology
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
Generalized Galileon cosmology
De Felice, Antonio
2010-01-01
We study the cosmology of a generalized Galileon field $\\phi$ with five covariant Lagrangians in which $\\phi$ is replaced by general scalar functions $f_i(\\phi)$ ($i=1, \\cdots, 5$). For these theories, the equations of motion remain at second-order in time derivatives. We restrict the functional forms of $f_i (\\phi)$ from the demand to obtain de Sitter solutions responsible for dark energy. There are two possible choices for power-law functions $f_i(\\phi)$, depending on whether the coupling $F(\\phi)$ with the Ricci scalar $R$ is independent of $\\phi$ or depends on $\\phi$. The former corresponds to the covariant Galileon theory that respects the Galilean symmetry in the Minkowski space-time. For generalized Galileon theories we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar and tensor perturbations as well as the condition for the stability of de Sitter solutions. We also carry out detailed analytic and numerical study for the cosmological dynamics of the c...
The Cosmological Time Function
Andersson, L; Howard, R
1998-01-01
Let $(M,g)$ be a time oriented Lorentzian manifold and $d$ the Lorentzian distance on $M$. The function $\\tau(q):=\\sup_{p< q} d(p,q)$ is the cosmological time function of $M$, where as usual $p< q$ means that $p$ is in the causal past of $q$. This function is called regular iff $\\tau(q) < \\infty$ for all $q$ and also $\\tau \\to 0$ along every past inextendible causal curve. If the cosmological time function $\\tau$ of a space time $(M,g)$ is regular it has several pleasant consequences: (1) It forces $(M,g)$ to be globally hyperbolic, (2) every point of $(M,g)$ can be connected to the initial singularity by a rest curve (i.e., a timelike geodesic ray that maximizes the distance to the singularity), (3) the function $\\tau$ is a time function in the usual sense, in particular (4) $\\tau$ is continuous, in fact locally Lipschitz and the second derivatives of $\\tau$ exist almost everywhere.
Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Moffat, J W
2016-01-01
An alternative to the postulate of dark energy required to explain the accelerated expansion of the universe is to adopt an inhomogeneous cosmological model to explain the supernovae data without dark energy. We adopt a void cosmology model, based on the inhomogeneous Lema\\^{i}tre-Tolman-Bondi solution of Einstein's field equations. The model can resolve observational anomalies in the $\\Lambda CDM$ model, such as the discrepancy between the locally measured value of the Hubble constant, $H_0=73.24\\pm 1.74\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$, and the $H_0=66.93\\pm 0.62\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$ determined by the Planck satellite data and the $\\Lambda CDM$ model, and the lithium $^{7}{\\rm Li}$ problem, which is a $5\\sigma$ mismatch between the theoretical prediction for the $^{7}{\\rm Li}$ from big bang nucleosynthesis and the value that we observe locally today at $z=0$. The void model can also resolve the tension between the number of massive clusters derived from the Sunyaev-Zel'dovich eff...
FLRW viscous cosmological models
Khadekar, G S; Meng, X -H
2016-01-01
In this paper we solve Friedmann equations by considering a universal media as a non-perfect fluid with bulk viscosity and is described by a general "gamma law" equation of state of the form $p= (\\gamma -1) \\rho + \\Lambda(t)$, where the adiabatic parameter $\\gamma$ varies with scale factor $R$ of the metric and $\\Lambda$ is the time dependent cosmological constant. A unified description of the early evolution of the universe is presented by assuming the bulk viscosity and cosmological parameter in a linear combination of two terms of the form: $\\Lambda(t)=\\Lambda_{0} + \\Lambda_{1}\\frac{\\dot{R}}{R}$ and $\\zeta = \\zeta_{0} + \\zeta_{1} \\frac{\\dot{R}}{R}$, where $\\Lambda_{0},\\;\\Lambda_{1},\\, \\zeta_{0}$ and $ \\zeta_{1}$ are constants, in which an inflationary phase is followed by the radiation dominated phase. For this general gamma law equation of state, an entirely integrable dynamical equation to the scale factor $R$ is obtained along with its exact solutions. In this framework we demonstrate that the model can...
Cosmological Simulations using GCMHD+
Barnes, David J; Wu, Kinwah
2011-01-01
Radio observations of galaxy clusters show that the intra cluster medium is permeated by \\mu G magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamic (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamic code GCD+. The results of 1, 2 and 3 dimensional tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 10^-11 G is amplified by a factor of 10^3 durin...
Cosmological simulations using GCMHD+
Barnes, David J.; Kawata, Daisuke; Wu, Kinwah
2012-03-01
Radio observations of galaxy clusters show that the intracluster medium is permeated by ? magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood, and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamics (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamics code GCD+. The results of 1D, 2D and 3D tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 3.5 × 10-11 G is amplified by a factor of 103 during the formation of the cluster. The results show good agreement with the profiles found in other magnetic cluster simulations of similar resolution.
The screening Horndeski cosmologies
Starobinsky, Alexei A; Volkov, Mikhail S
2016-01-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a $\\Lambda$-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the $\\Lambda$-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the $\\Lambda$-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing "the emergence of time". Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyze the dynamical stability of these solutions and find that all of them are...
Szydlowski, Marek; Borowiec, Andrzej; Wojnar, Aneta
2015-01-01
We investigate modified gravity cosmological model $f(R)=R+\\gamma R^2$ in Palatini formalism. We consider the universe filled with the Chaplygin gas and baryonic matter. The dynamics is reduced to the 2D sewn dynamical system of a Newtonian type. For this aim we use dynamical system theory. We classify all evolutional paths in the model as well as trajectories in the phase space. We demonstrate that the presence of a degenerate freeze singularity (glued freeze type singularities) is a generic feature of early evolution of the universe. We point out that a degenerate type III of singularity can be considered as an endogenous model of inflation between the matter dominating epoch and the dark energy phase. We also investigate cosmological models with negative $\\gamma$. It is demonstrated that $\\gamma$ equal zero is a bifurcation parameter and dynamics qualitatively changes in comparison to positive $\\gamma$. Instead of the big bang the sudden singularity appears and there is a generic class of bouncing solution...
Indian cosmogonies and cosmologies
Directory of Open Access Journals (Sweden)
Pajin Dušan
2011-01-01
Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.
Authenticity in ancient DNA studies
DEFF Research Database (Denmark)
Gilbert, M Thomas P; Willerslev, Eske
2006-01-01
Ancient DNA studies represent a powerful tool that can be used to obtain genetic insights into the past. However, despite the publication of large numbers of apparently successful ancient DNA studies, a number of problems exist with the field that are often ignored. Therefore, questions exist as ...
Cosmology in the book of Revelation
Directory of Open Access Journals (Sweden)
Gert J.C. Jordaan
2013-11-01
Full Text Available The cosmology of the book of Revelation mainly involves God’s restored reign over the created universe (κόσμος. Throughout the book, the κόσμοςis depicted according to its constituent parts, namely heaven, seaand earth. At first sight, this threefold description seems to stem from the ancient Jewish and mythological three-storied cosmological view of ‘up-above’, ‘here-below’ and ‘down-under’. However, this correspondence proves to be only superficial. Heaven is used by John not as much in spatial sense as in temporal sense: as symbolic reference to a divine point above time and history. Heavenis also a qualitative reference to a situation of complete obedient worship to God. Earthin John’s visions is mostly used as metaphor for sinful mankind under the rule of Satan. Yet, the earth remains part of God’s creation under his divine authority, and even becomes a refuge for the church in this dispensation. The seain Revelation, when not denoting a physical space, is often equated by scholars to the abyss or the underworld. However, in Revelation the sea is mostly used as metaphor for the basic evil from which the beast originates and of everything immoral and impure. The last chapters of Revelation reveal that in the eschaton heaven, seaand earthwill all be part of the new creation − renewed to the point where God’s reign is restored and acknowledged above all doubt throughout the κόσμος.
Tamil merchant in ancient Mesopotamia.
Directory of Open Access Journals (Sweden)
Malliya Gounder Palanichamy
Full Text Available Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study representing all major populations of India. Our results although suggest that south India (Tamil Nadu and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.
Tamil merchant in ancient Mesopotamia.
Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping
2014-01-01
Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580
Deng, Kehui
Timekeeping was essential in the agricultural society of ancient China. The use of sundials for timekeeping was associated with the use of the gnomon, which had its origin in remote antiquity. This chapter studies three sundials (guiyi 晷仪) from the Qin and Han dynasties, the shorter shadow plane sundial (duanying ping yi 短影平仪) invented by Yuan Chong in the Sui Dynasty, and the sundial chart (guiyingtu 晷影图) invented by Zeng Minxing in the Southern Song dynasty. This chapter also introduces Guo Shoujing's hemispherical sundial (yang yi 仰仪). A circular stone sundial discovered at the Small Wild Goose Pagoda in Xi'an is also mentioned. It is dated from the Sui and Tang dynasties. A brief survey of sundials from the Qing dynasty shows various types of sundials.
Cosmological constant and curved 5D geometry
Ito, M
2002-01-01
We study the value of cosmological constant in de Sitter brane embedded in five dimensions with positive, vanishing and negative bulk cosmological constant. In the case of negative bulk cosmological constant, we show that not zero but tiny four-dimensional cosmological constant can be realized by tiny deviation from bulk curvature of the Randall-Sundrum model.
A varying-e brane world cosmology
International Nuclear Information System (INIS)
We study a varying electric charge brane world cosmology in the RS2 model obtained from a varying-speed-of-light brane world cosmology by redefining the system of units. We elaborate conditions under which the flatness problem and the cosmological constant problem can be resolved by such cosmological model (author)
Estimating Cosmological Parameter Covariance
Taylor, Andy
2014-01-01
We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...
Arkani-Hamed, Nima
2015-01-01
We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the correlation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.
Cosmological Structure Formation
Primack, Joel R
2015-01-01
LCDM is remarkably successful in predicting the cosmic microwave background and large-scale structure, and LCDM parameters have been determined with only mild tensions between different types of observations. Hydrodynamical simulations starting from cosmological initial conditions are increasingly able to capture the complex interactions between dark matter and baryonic matter in galaxy formation. Simulations with relatively low resolution now succeed in describing the overall galaxy population. For example, the EAGLE simulation in volumes up to 100 cubic Mpc reproduces the observed local galaxy mass function nearly as well as semi-analytic models. It once seemed that galaxies are pretty smooth, that they generally grow in size as they evolve, and that they are a combination of disks and spheroids. But recent HST observations combined with high-resolution hydrodynamic simulations are showing that most star-forming galaxies are very clumpy; that galaxies often undergo compaction which reduces their radius and ...
Developments in inflationary cosmology
Indian Academy of Sciences (India)
Arjun Berera
2009-01-01
This talk presents some recent work that has been done in inflationary cosmology. First a brief review is given of the inflation scenario and its basic models. After that, one of the main problems in developing inflationary models has been the requirement of a very flat inflation potential. In solving this problem, supersymmetry has played a major role, and the reasons will be discussed and a specific example of the SUSY hybrid model will be examined. Some problems introduced by SUSY such as the and gravitino problems will then be discussed. Then in a different direction, the quintessential inflation model will be examined as a proposal where a single scalar field plays the role of both the inflaton at early time and the dark energy field later. The final topic covered is developments in understanding dissipation and particle production processes during the inflationary phase.
Chew, Geoffrey F
2008-01-01
Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.
Exploring Cosmology with Supernovae
DEFF Research Database (Denmark)
Li, Xue
The most intriguing aspect of studying supernovae associated with gamma-ray bursts (GRB-SNe) is the fact that they are accompanied by the most energetic events in the universe: gamma-ray bursts (GRBs). GRBs are extremely bright, which makes a swift trigger of observation on them. Therefore, a sup...... of a cluster of galaxies. We also theoretically deduce time delay. The second Section is dedicated to SN. Progenitor models of different types of SNe are investigated. SNe Ia and their application as standard candles are discussed.......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...
Ferrara, S; Sagnotti, A
2016-01-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S.Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word "Supersymmetry" (replacing the earlier "Supergauges" drawn from String Theory). He also introduced the basic concept of "Superspace" and the notion of "Goldstone Fermion"(Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the rol...
Cosmologies with Energy Exchange
Barrow, J D; Barrow, John D.
2006-01-01
We provide a simple mathematical description of the exchange of energy between two fluids in an expanding Friedmann universe with zero spatial curvature. The evolution can be reduced to a single non-linear differential equation which we solve in physically relevant cases and provide an analysis of all the possible evolutions. Particular power-law solutions exist for the expansion scale factor and are attractors at late times under particular conditions. We show how a number of problems studied in the literature, such as cosmological vacuum energy decay, particle annihilation, and the evolution of a population of evaporating black holes, correspond to simple particular cases of our model. In all cases we can determine the effects of the energy transfer on the expansion scale factor. We also consider the situation in the presence of anti-decaying fluids and so called phantom fluids which violate the dominant energy conditions.
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Averaging anisotropic cosmologies
International Nuclear Information System (INIS)
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
Mavromatos, Nikolaos E
2007-01-01
In these Lectures I review possible constraints on particle physics models, obtained by means of combining the results of collider measurements with astrophysical data. I emphasize the theoretical-model dependence of these results. I discuss supersymmetric dark matter constraints at colliders (mainly LHC) in various theoretical contexts: the standard Cosmological-Constant-Cold-Dark-Matter (Lambda-CDM) model, (super)string-inspired ones and non-equilibrium relaxation dark energy models. I then investigate the capability of LHC measurements in asserting whether supersymmetric matter (if discovered) constitutes part, or all, of the astrophysical dark matter. I also discuss prospects for improving the constraints in future precision facilities, such as the International Linear Collider.
Discrete Newtonian Cosmology: Perturbations
Ellis, George F R
2014-01-01
In a previous paper [arXiv:1308.1852] we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lema\\^{i}tre-Robertson-Walker cosmological models of General Relativity Theory, provided the distribution of particles obeys the central configuration equation. In this paper we show one can obtain perturbed such Newtonian solutions that give the same linearised structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zeldovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.
Inflationary Cosmologies from Compactification?
Wohlfarth, M N R
2004-01-01
We consider the compactification of (d+n)-dimensional pure gravity and of superstring/M-theory on an n-dimensional internal space to a d-dimensional FLRW cosmology, with spatial curvature k=-1,0,+1, in Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, not to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times.
Tsagas, C G
2001-01-01
The vector nature of magnetic fields and the general relativistic geometrical interpretation of gravity lead to a unique coupling between magnetism and spacetime curvature, by effectively transferring the field properties into the spacetime itself. The key magnetic property appears to be the tension of the field lines. Combined with geometry, the magnetic tension triggers a range of rather unexpected effects with profound implications. The field suppresses or boosts density fluctuations depending on the strength of the curvature deformation. It can act as an effective cosmological constant or mimic a time-decaying quintessence. Moreover, even weak magnetic fields become key players when the curvature is strong. For instance, a seed field could halt the accelerated phase in certain inflationary models. The magnetic tension also damps gravity waves and shows an intriguing tendency to smooth out spatial curvature distortions. We describe the nature and the range of these effects and discuss their potential impli...
Cosmology with Superluminous Supernovae
Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon
2015-01-01
We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...
Cosmological quantum entanglement
Martin-Martinez, Eduardo
2012-01-01
We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this trans...
Wilson, Robert W
2008-01-01
Observation of the CMB is central to observational cosmology, and the Antarctic Plateau is an exceptionally good site for this work. The first attempt at CMB observations from the Plateau was an expedition to the South Pole in December 1986 by the Radio Physics Research group at Bell Laboratories. Sky noise and opacity were measured. The results were sufficiently encouraging that in the Austral summer of 1988-1989, three CMB groups participated in the "Cucumber" campaign, where a temporary site dedicated to CMB anisotropy measurements was set up 2 km from South Pole Station. Winter-time observations became possible with the establishment in 1990 of the Center for Astrophysical Research in Antarctica (CARA), a National Science Foundation Science and Technology Center. CARA developed year-round observing facilities in the "Dark Sector", a section of Amundsen-Scott South Pole Station dedicated to astronomical observations. CARA scientists fielded several astronomical instruments: AST/RO, SPIREX, White Dish, Pyth...
Cosmological and supernova neutrinos
Energy Technology Data Exchange (ETDEWEB)
Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)
2014-06-24
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Parmenides, Cosmology and Sufficient Reason.
Gregory, A. D.
2014-01-01
Why Parmenides had a cosmology is a perennial puzzle, if, as the ‘truth’ part of his poem appears to claim, what exists is one, undifferentiated, timeless and unchanging.1 Indeed, not only does the cosmological part of the poem tell us how the cosmos is arranged, it also tells us how the cosmos, humans and animals all came into being. Although more of the truth has survived, the cosmology originally made up some 2/3 to 3/4 of the poem.2 The poem claims it will give the ‘complete ordering’ and...
Cosmological perturbations in massive bigravity
Energy Technology Data Exchange (ETDEWEB)
Lagos, Macarena; Ferreira, Pedro G., E-mail: m.lagos13@imperial.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk [Astrophysics, University of Oxford, DWB, Keble road, Oxford OX1 3RH (United Kingdom)
2014-12-01
We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Philosophical aspects of modern cosmology
Zinkernagel, Henrik
2014-01-01
This paper is a short introduction to a special issue on philosophy of cosmology, published in the May 2014 issue of Studies in History and Philosophy of Modern Physics. I briefly introduce the philosophy of cosmology, and then provide a short outline of the contents of the papers in the special issue. The contributors are George Ellis, Dominico Giulini, Marc Lachi\\`eze-Rey, Helge Kragh, Jeremy Butterfield, Jean-Christophe Hamilton, Mart\\'in L\\'opez-Corredoira, Brigitte Falkenburg, Robert Brandenberger and Chris Smeenk. I conclude with a few remarks on the relationship between aesthetics and cosmology.
Quantum Weyl invariance and cosmology
Directory of Open Access Journals (Sweden)
Atish Dabholkar
2016-09-01
Full Text Available Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Quantum cosmology near two dimensions
Bautista, Teresa; Dabholkar, Atish
2016-08-01
We consider a Weyl-invariant formulation of gravity with a cosmological constant in d -dimensional spacetime and show that near two dimensions the classical action reduces to the timelike Liouville action. We show that the renormalized cosmological term leads to a nonlocal quantum momentum tensor which satisfies the Ward identities in a nontrivial way. The resulting evolution equations for an isotropic, homogeneous universe lead to slowly decaying vacuum energy and power-law expansion. We outline the implications for the cosmological constant problem, inflation, and dark energy.
Cosmology from start to finish.
Bennett, Charles L
2006-04-27
Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?
Quantum Weyl invariance and cosmology
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Cosmological deceleration and peculiar motion
Teuber, Jan
A closed formula for the rate of change of redshift for a single freely moving cosmological source is presented, and inferences to be drawn from a positive or null measurement of this quantity are discussed. The formula is applied to situations where the resulting effects might be observable, including the study of low-redshift objects to examine kinematic explanations of their redshifts, and the study of intermediate-redshift objects to provide tests of the cosmological hypothesis itself. Changes of high redshifts may give information about the cosmological parameters.
Time-varying cosmological term
Socorro, J.; D'oleire, M.; Pimentel, Luis O.
2015-11-01
We present the case of time-varying cosmological term using the Lagrangian formalism characterized by a scalar field ϕ with standard kinetic energy and arbitrary potential V(ϕ). This model is applied to Friedmann-Robertson-Walker (FRW)cosmology. Exact solutions of the field equations are obtained by a special ansats to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.
Observational constraints on cosmological superstrings
Sazhina, Olga S
2016-01-01
From the theoretical point of view and not being in contradiction with current observational data, the cosmic strings may have fundamentally different origin and are characterized by wide range of energies. The paper is devoted to the search for possible cosmological observational tests on superstring theory, among them to the identification of observational characteristics to distinguish between cosmological superstring of different types. In the brane-world scenario with an assumption of creation of cosmological superstrings it was obtained the lower limit on the superstring tension as function of its deficit angle.
Astronomy and its role in ancient Mesoamerica
Šprajc, Ivan
2011-06-01
The observation of the sky had an important rôle among the Maya, Aztecs and other prehispanic peoples of Mesoamerica. Their familiarity with the regularities of the apparent motion of the Sun, the Moon and bright planets is attested in a large amount of astronomical data contained in codices and monumental hieroglyphic inscriptions, as well as in their sophisticated calendrical system. On the other hand, the study of architectural alignments has disclosed that civic and ceremonial buildings were largely oriented on astronomical grounds, mostly to sunrises and sunsets on certain dates, allowing the use of observational calendars that facilitated a proper scheduling of agricultural and the associated ritual activities in the yearly cycle. Both accurate knowledge and other astronomically-derived concepts reveal that the significance attributed to certain celestial events by the ancient Mesoamericans can be explained in terms of the relationship of these phenomena with specific environmental and cultural facts, such as seasonal climatic changes and subsistence strategies. It was particularly due to its practical utility that astronomy, intertwined with religious ideas and practices, had such an important place in the worldview and, consequently, in the cosmologically substantiated political ideology of Mesoamerican societies
A New Cosmological Paradigm the Cosmological Constant and Dark Matter
Krauss, L M
1998-01-01
The Standard Cosmological Model of the 1980's is no more. I describe the definitive evidence that the density of matter is insufficient to result in a flat universe, as well as the mounting evidence that the cosmological constant is not zero. I finally discuss the implications of these results for particle physics and direct searches for non-baryonic dark matter, and demonstrate that the new news is good news.
Dynamics and chaos in the unified scalar field cosmology II - in a box
Acquaviva, Giovanni
2016-01-01
We revisit the global dynamics of unified dark matter cosmological models and analyze it in a new dynamical system setting. In particular, by defining a suitable set of variables we obtain a bounded variable space, a feature that allows a better control of the critical elements of the system. First, we give a comprehensive cosmological interpretation of the critical points. Then, we turn our focus on particular representative trajectories with physically motivated initial conditions studied in the first paper of the series, and we discuss how the scale factor relates to the equation of state parameter. We review and complement these results in the light of the new variable approach by discussing the issue whether the system is chaotic or not.
Cosmological applications in Kaluza-Klein theory
Institute of Scientific and Technical Information of China (English)
M. I. Wanas; Gamal G. L. Nashed; A. A. Nowaya
2012-01-01
The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology.These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t.We use Taylor's expansion of cosmological function,△(t),up to the first order of the time t.The cosmological parameters are calculated and some cosmological problems are discussed.
Schmidt, Alexandre G. M.; Paiva, Milena M.
2012-03-01
We revisit the quantum two-person duel. In this problem, both Alice and Bob each possess a spin-1/2 particle which models dead and alive states for each player. We review the Abbott and Flitney result—now considering non-zero α1 and α2 in order to decide if it is better for Alice to shoot or not the second time—and we also consider a duel where players do not necessarily start alive. This simple assumption allows us to explore several interesting special cases, namely how a dead player can win the duel shooting just once, or how can Bob revive Alice after one shot, and the better strategy for Alice—being either alive or in a superposition of alive and dead states—fighting a dead opponent.
DEFF Research Database (Denmark)
Grønbæk, Kaj; Whitehead, Jim; De Bra, Paul;
2002-01-01
It has been 15 years since the original presentation by Frank Halasz at Hypertext'87 on seven issues for the next generation of hypertext systems. These issues are: Search and Query Composites Virtual Structures Computation in/over hypertext network Versioning Collaborative Work Extensibility...... and Tailorability Since that time, these issues have formed the nucleus of multiple research agendas within the Hypertext community. Befitting this direction-setting role, the issues have been revisited several times, by Halasz in his 1991 Hypertext keynote talk, and by Randy Trigg in his 1996 Hypertext keynote...... five years later. Additionally, over the intervening 15 years, many research systems have addressed the original seven issues, and new research avenues have opened up. The goal of this panel is to begin the process of developing a new set of seven issues for the next generation of hypertext system...
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro;
2012-01-01
, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...... for finding optimal strategies in such games. The existence of a linear time comparison-based algorithm remains an open problem.......Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them...
Reframing in dentistry: Revisited
Directory of Open Access Journals (Sweden)
Sivakumar Nuvvula
2013-01-01
Full Text Available The successful practice of dentistry involves a good combination of technical skills and soft skills. Soft skills or communication skills are not taught extensively in dental schools and it can be challenging to learn and at times in treating dental patients. Guiding the child′s behavior in the dental operatory is one of the preliminary steps to be taken by the pediatric dentist and one who can successfully modify the behavior can definitely pave the way for a life time comprehensive oral care. This article is an attempt to revisit a simple behavior guidance technique, reframing and explain the possible psychological perspectives behind it for better use in the clinical practice.
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2004-01-01
The derivation of the life quality index (LQI) is revisited for a revision. This revision takes into account the unpaid but necessary work time needed to stay alive in clean and healthy conditions to be fit for effective wealth producing work and to enjoyable free time. Dimension analysis...... at birth should not vary between countries. Finally the distributional assumptions are relaxed as compared to the assumptions made in an earlier work by the author. These assumptions concern the calculation of the life expectancy change due to the removal of an accident source. Moreover a simple public...... consistency problems with the standard power function expression of the LQI are pointed out. It is emphasized that the combination coefficient in the convex differential combination between the relative differential of the gross domestic product per capita and the relative differential of the expected life...
Firewall Configuration Errors Revisited
Wool, Avishai
2009-01-01
The first quantitative evaluation of the quality of corporate firewall configurations appeared in 2004, based on Check Point FireWall-1 rule-sets. In general that survey indicated that corporate firewalls were often enforcing poorly written rule-sets, containing many mistakes. The goal of this work is to revisit the first survey. The current study is much larger. Moreover, for the first time, the study includes configurations from two major vendors. The study also introduce a novel "Firewall Complexity" (FC) measure, that applies to both types of firewalls. The findings of the current study indeed validate the 2004 study's main observations: firewalls are (still) poorly configured, and a rule-set's complexity is (still) positively correlated with the number of detected risk items. Thus we can conclude that, for well-configured firewalls, ``small is (still) beautiful''. However, unlike the 2004 study, we see no significant indication that later software versions have fewer errors (for both vendors).
Chiodi, Filippo; Claudin, Philippe
2012-01-01
The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relation does not present any maximum of the growth rate when the sediment transport is assumed to be locally saturated. The analysis therefore reveals the fundamental importance of the relaxation of sediment transport towards equilibrium as it it is responsible for the stabilisation of small wavelength modes. This dynamical mechanism is characterised by the saturation number, defined as the ratio of the saturation length to the water depth Lsat/H. This dimensionless number controls the transition from ripples (transverse patte...
Logistics Innovation Process Revisited
DEFF Research Database (Denmark)
Gammelgaard, Britta; Su, Shong-Iee Ivan; Yang, Su-Lan
2011-01-01
that was triggered by the practical needs of new ways of handling material flows of a hospital. This approach made it possible to revisit theory on logistics innovation process. Findings – Apart from the tangible benefits reported to the case hospital, five findings can be extracted from this study: the logistics...... on internal stakeholders as on external relationships; and logistics innovation process may start out as a dialectic, conflict ridden process and end up in a well-ordered goal-oriented teleological process. Research limitations/implications – In general, the study contributes to the knowledge base...... on an existing model by methodological triangulation in order to learn more about the qualities of actual processes and their implications for theory and practice....
Revisiting the Lambert's Problem
Izzo, Dario
2014-01-01
The orbital boundary value problem, also known as Lambert Problem, is revisited. Building upon Lancaster and Blanchard approach, new relations are revealed and a new variable representing all problem classes, under L-similarity, is used to express the time of flight equation. In the new variable, the time of flight curves have two oblique asymptotes and they mostly appear to be conveniently approximated by piecewise continuous lines. We use and invert such a simple approximation to provide an efficient initial guess to an Householder iterative method that is then able to converge, for the single revoltuion case, in only two iterations. The resulting algorithm is compared to Gooding's procedure revealing to be numerically as accurate, while having a smaller computational complexity.
Klein's double discontinuity revisited
DEFF Research Database (Denmark)
Winsløw, Carl; Grønbæk, Niels
2014-01-01
Much effort and research has been invested into understanding and bridging the ‘gaps’ which many students experience in terms of contents and expectations as they begin university studies with a heavy component of mathematics, typically in the form of calculus courses. We have several studies...... of bridging measures, success rates and many other aspects of these “entrance transition” problems. In this paper, we consider the inverse transition, experienced by university students as they revisit core parts of high school mathematics (in particular, calculus) after completing the undergraduate...... mathematics courses which are mandatory to become a high school teacher of mathematics. To what extent does the “advanced” experience enable them to approach the high school calculus in a deeper and more autonomous way ? To what extent can “capstone” courses support such an approach ? How could it be hindered...
Did the ancient Egyptians migrate to ancient Nigeria?
Jock M. Agai
2014-01-01
Literatures concerning the history of West African peoples published from 1900 to 1970 debate�the possible migrations of the Egyptians into West Africa. Writers like Samuel Johnson and�Lucas Olumide believe that the ancient Egyptians penetrated through ancient Nigeria but Leo�Frobenius and Geoffrey Parrinder frowned at this opinion. Using the works of these early�20th century writers of West African history together with a Yoruba legend which teaches�about the origin of their earliest ancesto...
Reduced modified Chaplygin gas cosmology
Lu, Jianbo; Geng, Danhua; Xu, Lixin; Wu, Yabo; Liu, Molin
2015-02-01
In this paper, we study cosmologies containing the reduced modified Chaplygin gas (RMCG) fluid which is reduced from the modified Chaplygin gas p = Aρ - Bρ -α for the value of α = -1 /2. In this special case, dark cosmological models can be realized for different values of model parameter A. We investigate the viabilities of these dark cosmological models by discussing the evolutions of cosmological quantities and using the currently available cosmic observations. It is shown that the special RMCG model ( A = 0 or A = 1) which unifies the dark matter and dark energy should be abandoned. For A = 1 /3, RMCG which unifies the dark energy and dark radiation is the favorite model according to the objective Akaike information criteria. In the case of A , RMCG can achieve the features of the dynamical quintessence and phantom models, where the evolution of the universe is not sensitive to the variation of model parameters.
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Quintessential Maldacena-Maoz cosmologies
International Nuclear Information System (INIS)
Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quintessence instead of Yang-Mills fields, thereby demonstrating that these cosmologies do not depend on a special choice of matter to split the Euclidean boundary. We conclude that if our Universe is fundamentally anti-de Sitter-like [with the current acceleration being only temporary], then this may force us to confront the holography of spaces with a connected bulk but a disconnected boundary. (author)
Adelic Universe and Cosmological Constant
Makhaldiani, Nugzar
2003-01-01
In the quantum adelic field (string) theory models, vacuum energy -- cosmological constant vanish. The other (alternative ?) mechanism is given by supersymmetric theories. Some observations on prime numbers, zeta -- function and fine structure constant are also considered.
MOND cosmology from entropic force
International Nuclear Information System (INIS)
We derive the MOND cosmology which is uniquely corresponding to the original MOND at galaxy scales via entropic gravity method. It inherits the key merit of MOND, that is, it reduces the baryonic matter and non-baryonic dark matter into baryonic matter only. For the first time we obtain the critical parameter in MOND, i.e., the transition acceleration ac at cosmological scale. We thus solve the long-standing coincidence problem ac∼cH0. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need baryonic matter to describe both dark matter and dark energy in standard cosmology.
Precision cosmology and the landscape
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael
2006-10-01
After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.
Heavy ion collisions and cosmology
Floerchinger, Stefan
2015-01-01
There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.
Cosmological Inflation: A Personal Perspective
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Three Studies in Epicurean Cosmology
Bakker, F.A.
2010-01-01
This dissertation consists of three studies dealing with various aspects of Epicurean cosmology. The first study discusses the Epicurean practice of explaining astronomical and meteorological phenomena by multiple alternative theories. The second study compares the meteorological accounts of Epicuru
Precision cosmology and the landscape
International Nuclear Information System (INIS)
After reviewing the cosmological constant problem--why is Lambda not huge?--I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments
Bimetric gravity is cosmologically viable
Directory of Open Access Journals (Sweden)
Yashar Akrami
2015-09-01
Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
Cosmological Magnetic Fields vs. CMB
Kahniashvili, Tina
2004-01-01
I present a short review of the effects of a cosmological magnetic field on the CMB temperature and polarization anisotropies. Various possibilities for constraining the magnetic field amplitude are discussed.
[Ancient Egyptian Odontology].
Berghult, B
1999-01-01
In ancient Egypt during the reign of Pharaoh Djoser, circa 2650 BC, the Step Pyramid was constructed by Imhotep. He was later worshiped as the God of Medicine. One of his contemporaries was the powerful writer Hesy who is reproduced on a panel showing a rebus of a swallow, a tusk and an arrow. He is therefore looked upon as being the first depicted odontologist. The art of writing begun in Egypt in about 3100 BC and the medical texts we know from different papyri were copied with hieratic signs around 1900-1100 BC. One of the most famous is the Papyrus Ebers. It was purchased by professor Ebers on a research travel to Luxor in 1873. Two years later a beautiful facsimile in color was published and the best translation came in 1958 in German. The text includes 870 remedies and some of them are related to teeth and oral troubles like pain in the mouth, gingivitis, periodontitis and cavities in the teeth. The most common oral pain was probably pulpitis caused by extreme attrition due to the high consumption of bread contaminated with soil and/or quern minerals. Another text is the Papyrus Edwin Smith with four surgical cases of dental interest. The "toothworms" that were presumed to bring about decayed teeth have not been identified in the medical texts. It was not until 1889 W.D. Miller presented a scientific explanation that cavities were caused by bacteria. In spite of extensive research only a few evidence of prosthetic and invasive treatments have been found and these dental artifacts have probably been made post mortem. Some of the 150 identified doctors were associated with treatments of disorders of the mouth. The stele of Seneb from Sa'is during the 26th dynasty of Psamtik, 664-525 BC, shows a young man who probably was a dental healer well known to Pharaoh and his court. Clement of Alexandria mentions circa 200 AD that the written knowledge of the old Egyptians was gathered in 42 collections of papyri. Number 37-42 contained the medical writings. The
Conformal Transformations and Accelerated Cosmologies
Crooks, James L.; Frampton, Paul H.
2006-01-01
A cosmological theory that predicts a late-time accelerated attractor with a constant dark matter to dark energy ratio can be said to solve the Coincidence Problem. Such cosmologies are naturally generated in the context of non-standard gravity theories under conformal transformation because of the resulting couplings between scalar fields and matter. The present work examines four classes of these transformed theories and finds that only a small subset--those with a single scalar field--are ...
TASI Lectures on Cosmological Perturbations
Lesgourgues, Julien
2013-01-01
We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.
Neutrinos in astrophysics and cosmology
Balantekin, A. B.
2016-06-01
Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.
Thermodynamics of cosmological matter creation
Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.
1988-01-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of...
Cosmological stability of quantum compactification
Energy Technology Data Exchange (ETDEWEB)
Gleiser, M.
1987-02-01
We discuss the cosmological stability of higher dimensional models that feature internal manifolds given by the product of two spheres. In particular, we consider the case when the total number of dimensions is even. After we obtain the vacuum energy coming from one-loop fluctuations of scalars and spin-1/2 fermions, we show how a realistic cosmological scenario can arise by balancing the quantum energy with monopole-like contributions. 10 refs., 1 fig.
Neutrinos in Astrophysics and Cosmology
Balantekin, A B
2016-01-01
Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.
Roberts, Alex
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
Testing cosmology with galaxy clusters
DEFF Research Database (Denmark)
Rapetti Serra, David Angelo
2011-01-01
PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory and cosmo......PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory...... and cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes......, Princeton) Nima Arkani-Hamed (IAS, Princeton) Alan Barr (University of Oxford) Cliff Burgess (Perimeter/McMaster University) Paolo Creminelli (ICTP, Trieste) George Efstathiou (Kavli/IoA, Cambridge) Val Gibson (Cavendish, Cambridge) Sean Hartnoll (Stanford University) Shamit Kachru (Stanford University...
Ancient Astronomical Monuments of Athens
Theodossiou, E.; Manimanis, V. N.
2010-07-01
In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.
Aylesworth, Grant R.
Although there is little doubt that the ancient Maya of Mesoamerica laid their cities out based, in part, on astronomical considerations, the proliferation of "cosmograms" in contemporary scholarly discourse has complicated matters for the acceptance of rigorous archaeoastronomical research.
Energy Technology Data Exchange (ETDEWEB)
Shafi, Qaisar [Univ. of Delaware, Newark, DE (United States); Barr, Steven [Univ. of Delaware, Newark, DE (United States); Gaisser, Thomas [Univ. of Delaware, Newark, DE (United States); Stanev, Todor [Univ. of Delaware, Newark, DE (United States)
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his
Reconstructing ancient genomes and epigenomes
DEFF Research Database (Denmark)
Orlando, Ludovic Antoine Alexandre; Gilbert, M. Thomas P.; Willerslev, Eske
2015-01-01
DNA studies have now progressed to whole-genome sequencing for an increasing number of ancient individuals and extinct species, as well as to epigenomic characterization. Such advances have enabled the sequencing of specimens of up to 1 million years old, which, owing to their extensive DNA damage and...... contamination, were previously not amenable to genetic analyses. In this Review, we discuss these varied technical challenges and solutions for sequencing ancient genomes and epigenomes....
Orthopedic surgery in ancient Egypt
Blomstedt, Patric
2014-01-01
Background — Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. Methods — I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentra...
Sahni, Varun
2016-07-01
The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.
Quantum cosmological metroland model
Energy Technology Data Exchange (ETDEWEB)
Anderson, Edward [DAMTP, Cambridge (United Kingdom); Franzen, Anne, E-mail: ea212@cam.ac.u, E-mail: a.t.franzen@uu.n [Spinoza Institute, Utrecht (Netherlands)
2010-02-21
Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naive Schroedinger and records theory timeless approaches).
Mannelli, L
2005-01-01
The main theme of this Thesis is the connection between Quantum Gravity and Cosmology. In the First Part (Chapters 1 to 5) I give an introduction to the Holographic Principle. The Second Part is a collection of my research work and it is articulated as follows. Chapter 7 is to an analysis of the renormalization properties of quantum field theories in de Sitter space. It is shown that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. In Chapter 8 I first present a complete quantum mechanical description of a flat FRW universe with equation of state p = ρ. Then I show a detailed correspondence with an heuristic picture of such a universe as a dense black hole fluid. In the end it is explained how features of the geometry are derived from purely quantum input. Chapter 9 studies the problem of infrared renormalization of particle masses in de Sitter space. It is shown, in a toy model in which the graviton is replaced with a minimally coupled massl...
Ferrara, S.; Kehagias, A.; Sagnotti, A.
2016-09-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S. Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word “Supersymmetry” (replacing the earlier “Supergauges” drawn from String Theory). He also introduced the basic concept of “Superspace” and the notion of “Goldstone Fermion” (Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the role of nilpotent superfields to describe a de Sitter phase of our Universe.
Verde, Licia; Pigozzo, Cassio; Heavens, Alan F; Jimenez, Raul
2016-01-01
We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the $\\Lambda$CDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95\\% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter $\\Omega_{\\rm MR} < 0.006$ and extra radiation parameterised as extra effective neutrino species $2.3 < N_{\\rm eff} < 3.2$ when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond $\\Lambda$CDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way ...
Cosmological Perturbations without Inflation
Melia, Fulvio
2016-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e., with an equation of state rho+3p=0, where rho and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands-Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the 1-10 degree fluctuations in the CMB correspond almost exactly to the Planck length at the time these modes were produced, firmly supporting the view that CMB observations may already be probing trans-Plancki...
Revisiting Cosmic No-Hair Theorem for Inflationary Settings
Maleknejad, A
2012-01-01
In this work we revisit Wald's cosmic no-hair theorem in the context of accelerating Bianchi cosmologies for a generic cosmic fluid with non-vanishing anisotropic stress tensor and when the fluid energy momentum tensor is of the form of a cosmological constant term plus a piece which does not respect strong or dominant energy conditions. Such a fluid is the one appearing in inflationary models. We show that for such a system anisotropy may grow, in contrast to the cosmic no-hair conjecture. In particular, for a generic inflationary model we show that there is an upper bound on the growth of anisotropy. For slow-roll inflationary models our analysis can be refined further and the upper bound is found to be of the order of slow-roll parameters. We examine our general discussions and our extension of Wald's theorem for three classes of slow-roll inflationary models, generic multi-scalar field driven models, anisotropic models involving U(1) gauge fields and the gauge-flation scenario.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
Did the ancient Egyptians migrate to ancient Nigeria?
Directory of Open Access Journals (Sweden)
Jock M. Agai
2014-01-01
Full Text Available Literatures concerning the history of West African peoples published from 1900 to 1970 debate�the possible migrations of the Egyptians into West Africa. Writers like Samuel Johnson and�Lucas Olumide believe that the ancient Egyptians penetrated through ancient Nigeria but Leo�Frobenius and Geoffrey Parrinder frowned at this opinion. Using the works of these early�20th century writers of West African history together with a Yoruba legend which teaches�about the origin of their earliest ancestor(s, this researcher investigates the theories that the�ancient Egyptians had contact with the ancient Nigerians and particularly with the Yorubas.Intradisciplinary and/or interdisciplinary implications: There is an existing ideology�amongst the Yorubas and other writers of Yoruba history that the original ancestors of�the Yorubas originated in ancient Egypt hence there was migration between Egypt and�Yorubaland. This researcher contends that even if there was migration between Egypt and�Nigeria, such migration did not take place during the predynastic and dynastic period as�speculated by some scholars. The subject is open for further research.
Zucker, M. H.
This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own
Cosmology with superluminous supernovae
Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.
2016-02-01
We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.
Cosmological solution of Machian gravity
Das, Santanu
2012-01-01
The standard model of cosmology predicts that more than 95% matter in the universe consists of dark components namely dark matter and dark energy. In spite of several attempts to measure these components, there is not a single direct observational evidence for these components till date. Hence, different alternate models of cosmology have been put forward by different authors. However, most of these models have their own problems. Therefore, in this paper, a new cosmological model has been proposed. This model is based on the Machian gravity model, which will be discussed in detail in a later paper. The model can provide an exactly similar cosmology as that of the standard cosmological model without demanding any ad-hoc dark matter or dark energy components. The paper shows that when the field equations from Machian gravity (a 5 dimensional model) are projected to the 4-dimensional space-time, some new mathematical terms arise in the equations that behave exactly like dark matter and dark energy. These mathem...
Parameterized Post-Newtonian Cosmology
Sanghai, Viraj A A
2016-01-01
Einstein's theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein's theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, ...
Cosmology with New Astrophysical Constants
Alfonso-Faus, Antonio
2008-01-01
It is shown that Einstein field equations give two solutions for cosmology. The first one is the standard well known representative of the present status of cosmology. We identify it with the local point of view of a flat Universe with the values for the cosmological omega parameters (k = 0, lambda = 2/3, m = 1/3). The second one is a new one that we identify with a cosmic point of view, as given by free photons, neutrinos, tachyons and gravity quanta. We apply a wave to particle technique to find the matter propagation equation. Then we prove that all gravitational radii are constant, regardless of the possible time variations of the physical properties like the speed of light c, the gravitational constant G or the mass m of fundamental particles. We find two cosmological constants, c^3 /G and mc, with the condition that the field equations be derived from the action principle. With this result, and the integration of the Bianchi identity, we prove the existence of the two solutions for cosmology. We then va...
Cosmology in Mr. Tompkins' Lifetime
Lindner, Rudi Paul
2016-01-01
Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.
Rugh, Svend E
2016-01-01
We provide a discussion of some main ideas in our project about the physical foundation of the time concept in cosmology. It is standard to point to the Planck scale (located at $\\sim 10^{-43}$ seconds after a fictitious "Big Bang" point) as a limit for how far back we may extrapolate the standard cosmological model. In our work we have suggested that there are several other (physically motivated) interesting limits -- located at least thirty orders of magnitude before the Planck time -- where the physical basis of the cosmological model and its time concept is progressively weakened. Some of these limits are connected to phase transitions in the early universe which gradually undermine the notion of 'standard clocks' widely employed in cosmology. Such considerations lead to a 'scale problem' for time which becomes particularly acute above the electroweak phase transition (before $\\sim 10^{-11}$ seconds). Other limits are due to problems of building up a cosmological reference frame, or even contemplating a s...
Revisiting energy efficiency fundamentals
Energy Technology Data Exchange (ETDEWEB)
Perez-Lombard, L.; Velazquez, D. [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Ortiz, J. [Building Research Establishment (BRE), Garston, Watford, WD25 9XX (United Kingdom)
2013-05-15
Energy efficiency is a central target for energy policy and a keystone to mitigate climate change and to achieve a sustainable development. Although great efforts have been carried out during the last four decades to investigate the issue, focusing into measuring energy efficiency, understanding its trends and impacts on energy consumption and to design effective energy efficiency policies, many energy efficiency-related concepts, some methodological problems for the construction of energy efficiency indicators (EEI) and even some of the energy efficiency potential gains are often ignored or misunderstood, causing no little confusion and controversy not only for laymen but even for specialists. This paper aims to revisit, analyse and discuss some efficiency fundamental topics that could improve understanding and critical judgement of efficiency stakeholders and that could help in avoiding unfounded judgements and misleading statements. Firstly, we address the problem of measuring energy efficiency both in qualitative and quantitative terms. Secondly, main methodological problems standing in the way of the construction of EEI are discussed, and a sequence of actions is proposed to tackle them in an ordered fashion. Finally, two key topics are discussed in detail: the links between energy efficiency and energy savings, and the border between energy efficiency improvement and renewable sources promotion.
Cats protecting birds revisited.
Fan, Meng; Kuang, Yang; Feng, Zhilan
2005-09-01
In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282-292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator's functional responses are derived based on the classical Holling's time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems. PMID:15998496
Lorentz violation naturalness revisited
Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano
2016-06-01
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.
Vacuum energy and the cosmological constant
Bass, Steven D
2015-01-01
The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus LHC results might hint at critical phenomena near the Planck scale.
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Concordance cosmology without dark energy
Rácz, Gábor; Beck, Róbert; Szapudi, István; Csabai, István
2016-01-01
According to the general relativistic Birkhoff's theorem, spherically symmetric regions in an isotropic universe behave like mini-universes with their own cosmological parameters. We estimate local expansion rates for a large number of such regions, and use the volume-averaged increment of the scale parameter at each time step in an otherwise standard cosmological $N$-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical backreaction calculation. We show that a volume-averaged simulation with the $\\Omega_m=1$ Einstein--de~Sitter setting in each region closely tracks the expansion and structure growth history of a $\\Lambda$CDM cosmology, and confirm the numerical results with analytic calculations as well. The very similar expansion history guarantees consistency with the concordance model and, due to the small but characte...
Wormholes and the cosmological constant
International Nuclear Information System (INIS)
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universes. Contact with the cold universes insures that the cosmological constant in the warm ones is zero. (orig.)
Macroscopically-Discrete Quantum Cosmology
Chew, Geoffrey F
2008-01-01
To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...
Timelike information broadcasting in cosmology
Blasco, Ana; Martin-Benito, Mercedes; Martin-Martinez, Eduardo
2015-01-01
We study the transmission of information and correlations through quantum fields in cosmological backgrounds. With this aim, we make use of quantum information tools to quantify the classical and quantum correlations induced by a quantum massless scalar field in two particle detectors, one located in the early universe (Alice's) and the other located at a later time (Bob's). In particular, we focus on two phenomena: a) the consequences on the transmission of information of the violations of the strong Huygens principle for quantum fields, and b) the analysis of the field vacuum correlations via correlation harvesting from Alice to Bob. We will study a standard cosmological model first and then assess whether these results also hold if we use other than the general relativistic dynamics. As a particular example, we will study the transmission of information through the Big Bounce, that replaces the Big Bang, in the effective dynamics of Loop Quantum Cosmology.
Timelike information broadcasting in cosmology
Blasco, Ana; Garay, Luis J.; Martín-Benito, Mercedes; Martín-Martínez, Eduardo
2016-01-01
We study the transmission of information and correlations through quantum fields in cosmological backgrounds. With this aim, we make use of quantum information tools to quantify the classical and quantum correlations induced by a quantum massless scalar field in two particle detectors, one located in the early universe (Alice's) and the other located at a later time (Bob's). In particular, we focus on two phenomena: (a) the consequences on the transmission of information of the violations of the strong Huygens principle for quantum fields, and (b) the analysis of the field vacuum correlations via correlation harvesting from Alice to Bob. We will study a standard cosmological model first and then assess whether these results also hold if we use other than the general relativistic dynamics. As a particular example, we will study the transmission of information through the big bounce, that replaces the big bang, in the effective dynamics of loop quantum cosmology.
Simulation techniques for cosmological simulations
Dolag, K; Schindler, S; Diaferio, A; Bykov, A M
2008-01-01
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.
Cosmological stealths with nonconformal couplings
Ayón-Beato, Eloy; Terrero-Escalante, César A
2016-01-01
In this paper the existence of a stealth field during the evolution of our Universe is studied. With this aim, in the framework of the FRW cosmology, the case of non-conformal non-minimal coupling between a stealth scalar field and gravity is studied. It is shown that de Sitter's are the only backgrounds allowing for a stealth field fully depending on the spacetime coordinates. This way, such a field is not consistent with the present cosmological picture. If the stealth is homogeneous, then its dynamics is restricted by the underlying cosmological evolution. It is shown that homogeneous stealths can coexist with the kind of matter used to describe the matter content of our Universe according to the $\\Lambda$CDM model.
Cosmological AMR MHD with Enzo
Energy Technology Data Exchange (ETDEWEB)
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Cosmological Aspects of Spontaneous Baryogenesis
De Simone, Andrea
2016-01-01
We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scal...
Ancient DNA in Greece. Problems and prospects
International Nuclear Information System (INIS)
The promise associated with early 'ancient DNA' results has not been translated into routine techniques of value to archaeologists. The reasons for this are partly technical - ancient DNA analysis is an extremely difficult technique - and partly practical - ancient DNA analysis is often an 'after thought' to an archaeological project. In this paper ancient human DNA analysis is briefly reviewed paying particular attention to specimens originating from Greek archaeological contexts. Problems commonly encountered during ancient DNA research are summarised and recommendations for future strategies in the application of ancient DNA in archaeology are proposed. (author)
Benjamin Franklin and Mesmerism, revisited.
McConkey, Kevin M; Perry, Campbell
2002-10-01
The authors revisit and update their previous historiographical note (McConkey & Perry, 1985) on Benjamin Franklin's involvement with and investigation of animal magnetism or mesmerism. They incorporate more recent literature and offer additional comment about Franklin's role in and views about mesmerism. Franklin had a higher degree of personal involvement with and a more detailed opinion of mesmerism than has been previously appreciated.
The "Mushroom Cloud" Demonstration Revisited
Panzarasa, Guido; Sparnacci, Katia
2013-01-01
A revisitation of the classical "mushroom cloud" demonstration is described. Instead of aniline and benzoyl peroxide, the proposed reaction involves household chemicals such as alpha-pinene (turpentine oil) and trichloroisocyanuric acid ("Trichlor") giving an impressive demonstration of oxidation and combustion reactions that…
Neutrinos in particle physics, astronomy, and cosmology
Xing, Zhi-Zhong
2011-01-01
""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi
How well do we understand cosmological recombination?
Wong, Wan Yan; Moss, Adam; Scott, Douglas
2007-01-01
The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. Uncertainty in the details of hydrogen and helium recombination could effectively increase the errors or bias the values of the cosmological parameters derived from the Planck satellite, for example. Here we modify the cosmological recombination code RECFAST by introducing one more parameter to reproduce the recent n...
Cosmological dark energy effects from entanglement
International Nuclear Information System (INIS)
The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.
Cosmological dark energy effects from entanglement
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM) (Mexico); Mancini, Stefano [Scuola di Scienze and Tecnologie, Università di Camerino, 62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli, 06123 Perugia (Italy)
2013-06-03
The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.
From Fractal Cosmography to Fractal Cosmology
Mittal, A. K.; Lohiya, Daksh
2001-01-01
Assuming a fractal distribution of matter in the universe, consequences that follow from the General Theory of Relativity and the Copernican Principle for fractal cosmology are examined. The change in perspective necessary to deal with a fractal universe is highlighted. An ansatz that provides a concrete application of the Conditional Cosmological Principle is provided. This fractal cosmology is obtained by arguments closely following those used in standard cosmology. The resulting model may ...
Bouncing cosmology inspired by regular black holes
Neves, J C S
2016-01-01
In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes an universe almost homogeneous only for large scales, such as our observable universe.
Origin of cosmological constant from Bulk manifold
International Nuclear Information System (INIS)
The problem about cosmological constant is a difficult and important problem, people even don't know what it is really originated from. In this letter, the authors show up a kind of origin of the cosmological constant from the viewpoint of some extra dimensional spaces, obtain different values of the cosmological constant under different circumstances, acquire the evolution function with time t. And we achieve a cosmological constant that may be fitted with modern astronomic observation. (authors)
Seeing darkness: the new cosmology
International Nuclear Information System (INIS)
We present some useful ways to visualize the nature of dark energy and the effects of the accelerating expansion on cosmological quantities. Expansion probes such as Type Ia supernovae distances and growth probes such as weak gravitational lensing and the evolution of large scale structure provide powerful tests in complementarity. We present a 'ladder' diagram, showing that in addition to dramatic improvements in precision, next generation probes will provide insight through an increasing ability to test assumptions of the cosmological framework, including gravity beyond general relativity
Constraining Lorentz violation with cosmology.
Zuntz, J A; Ferreira, P G; Zlosnik, T G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities. PMID:19113765
The Cosmology - Particle Physics Connection
Trodden, M
2006-01-01
Modern cosmology poses deep and unavoidable questions for fundamental physics. In this plenary talk, delivered in slightly different forms at the {\\it Particles and Nuclei International Conference} (PANIC05) in Santa Fe, in October 2005, and at the {\\it CMB and Physics of the Early Universe International Conference}, on the island of Ischia, Italy, in April 2006, I discuss the broad connections between cosmology and particle physics, focusing on physics at the TeV scale, accessible at the next and future generations of colliders
Cosmological evolution in exponential gravity
Energy Technology Data Exchange (ETDEWEB)
Bamba, Kazuharu; Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: bamba@phys.nthu.edu.tw, E-mail: geng@phys.nthu.edu.tw, E-mail: g9522545@oz.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)
2010-08-01
We explore the cosmological evolution in the exponential gravity f(R) = R+c{sub 1}(1−e{sup −c{sub 2}R}) (c{sub 1,2} = constant). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.
Cosmological evolution in exponential gravity
Bamba, Kazuharu; Lee, Chung-Chi
2010-01-01
We explore the cosmological evolution in the exponential gravity $f(R)=R +c_1 \\left(1-e^{- c_2 R} \\right)$ ($c_{1, 2} = \\mathrm{constant}$). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.
Quasar Structure and Cosmological Feedback
Elvis, M
2006-01-01
Feedback from quasars and AGNs is being invoked frequently in several cosmological settings. Currently, order of magnitude, or more, uncertainties in the structure of both the wind and the 'obscuring torus' make predictions highly uncertain. To make testable models of this 'cosmological feedback' it is essential to understand the detailed structure of AGNs sufficiently well to predict their properties for the whole quasar population, at all redshifts. Progress in both areas is rapid, and I describe the near-term prospects for reducing these uncertainties for 'slow' (non-relativistic) AGN winds and the obscuring torus.
The Higgs Portal and Cosmology
Energy Technology Data Exchange (ETDEWEB)
Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)
2016-04-18
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
Mirror QCD and Cosmological Constant
Pasechnik, Roman; Teryaev, Oleg
2016-01-01
An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can affect the cosmological evolution and help in resolving the Cosmological Constant problem. In this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum contribution to the ground state energy density of the universe by means of a positive contribution from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein--Yang-Mills equations of motion.
Cosmological science enabled by Planck
White, Martin
2006-01-01
Planck will be the first mission to map the entire cosmic microwave background (CMB) sky with mJy sensitivity and resolution better than 10'. The science enabled by such a mission spans many areas of astrophysics and cosmology. In particular it will lead to a revolution in our understanding of primary and secondary CMB anisotropies, the constraints on many key cosmological parameters will be improved by almost an order of magnitude (to sub-percent levels) and the shape and amplitude of the ma...
The Higgs Portal and Cosmology
Assamagan, Ketevi; Chou, John Paul; Curtin, David; Fedderke, Michael A; Gershtein, Yuri; He, Xiao-Gang; Klute, Markus; Kozaczuk, Jonathan; Kotwal, Ashutosh; Lowette, Steven; No, Jose Miguel; Plehn, Tilman; Qian, Jianming; Ramsey-Musolf, Michael; Safonov, Alexei; Shelton, Jessie; Spannowsky, Michael; Su, Shufang; Walker, Devin G E; Willocq, Stephane; Winslow, Peter
2016-01-01
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
Cosmological dynamics of extended chameleons
Tamanini, Nicola
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from $\\Lambda$CDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
MOND cosmology from entropic force
Zhang, Hongsheng; Li, Xin-Zhou
2011-01-01
We derive the MOND cosmology which is uniquely corresponding to the original MOND at galaxy scales via entropic gravity method. It inherits the key merit of MOND, that is, it reduces the baryonic matter and non-baryonic dark matter into baryonic matter only. For the first time we obtain the critical parameter in MOND, i.e., the transition acceleration $a_c$ at cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic ...
Viable cosmology in bimetric theory
De Felice, Antonio; Mukohyama, Shinji; Tanahashi, Norihiro; Tanaka, Takahiro
2014-01-01
We study cosmological perturbations in bimetric theory with two fluids each of which is coupled to one of the two metrics. Focusing on a healthy branch of background solutions, we clarify the stability of the cosmological perturbations. For this purpose, we extend the condition for the absence of the so-called Higuchi ghost, and show that the condition is guaranteed to be satisfied on the healthy branch. We also calculate the squared propagation speeds of perturbations and derive the conditions for the absence of the gradient instability. To avoid the gradient instability, we find that the model parameters are weakly constrained.
Cosmology in the plasma universe
International Nuclear Information System (INIS)
Space observations have opened the spectral regions of X-rays and γ-rays, which are produced by plasma processes. The Plasma Universe derived from observations in these regions is drastically different from the now generally accepted 'Visual Light Universe' based on visual light observations alone. Historically this transitions can be compared only to the transition from the geocentric to the heliocentric cosmology. The purpose of this paper is to discuss what criteria a cosmological theory must satisfy in order to be acceptable in the Plasma Universe. (author)
Quantum Cosmology for Tunneling Universes
Kim, Sang Pyo
2004-01-01
In a quantum cosmological model consisting of a Euclidean region and a Lorentzian region, Hartle-Hawking's no-bounary wave function, and Linde's wave function and Vilenkin's tunneling wave function are briefly described and compared with each other. We put a particular emphasis on semiclassical gravity from quantum cosmology and compare it with the conventional quantum field theory in curved spacetimes. Finally, we discuss the recent debate on catastrophic particle production in the tunneling universe between Rubakov and Vilenkin within the semiclassical gravity.
String Theory and Primordial Cosmology
Gasperini, Maurizio
String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the spacetime singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.
String theory and primordial cosmology
Gasperini, M
2014-01-01
String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher-dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the space-time singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.
Astronomical and Cosmological Aspects of Maya Architecture and Urbanism
Šprajc, I.
2009-08-01
Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.
Cosmology with decaying cosmological constant -- exact solutions and model testing
Szydlowski, Marek
2015-01-01
We study dynamics of $\\Lambda(t)$ cosmological models which are a natural generalization of the standard cosmological model (the $\\Lambda$CDM model). We consider a class of models: the ones with a prescribed form of $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$. This type of a $\\Lambda(t)$ parametrization is motivated by different cosmological approaches. To guarantee the covariance principle in general relativity we interpreted $\\Lambda(t)$ relation as $\\Lambda(\\phi(t))$, where $\\phi(t)$ is a scalar field with a self-interacting potential $V(\\phi)$. For the $\\Lambda(t)$ cosmology with a prescribed form of $\\Lambda(t)$ we have found the exact solution in the form of Bessel functions. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of $H(z)$ and the Alcock-Paczy{\\'n}ski test. In this context we formulate a simple criterion of variability of $\\Lambda$ with respect to $t$ in terms of variability of the jerk or ...
Cosmological models with running cosmological term and decaying dark matter
Szydlowski, Marek
2015-01-01
We are investigating dynamics of the generalized $\\Lambda$CDM model, which the $\\Lambda$ term is running with the cosmological time. We demonstrate that this model of $\\Lambda(t)$CDM cosmology can easily interpret in the interacting cosmology. Time, which is depended on $\\Lambda$ term, is emerging from the covariant theory of the scalar field $\\phi$ with the self-interacting potential $V(\\phi)$. On the example of the model $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$ we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: $\\rho_{\\text{dm}}\\propto a^{-3+\\delta(t)}$. We also present the idea of the testing $\\Lambda(t)$CDM model with dark energy and dark matter not as an isolated hypothesis but as integral part of the concordance cosmological model. At the $2\\sigma$ confidence level, we find $\\delta<0$, which is an evidence that the energy transfer from decaying dark matter is favored. This effect gives rise to lowering a mass of dark matter pa...
Lectures on particle physics and cosmology
International Nuclear Information System (INIS)
This paper compiles the lectures given in the 1985 ICTP High Energy Physics and Cosmology Workshop. The three topics discussed are: I) Generation of a Cosmological Baryon Asymmetry, II) Extra Dimensions and Cosmology, and III) The Sage of Cygnus X-3
Night blindness and ancient remedy
Directory of Open Access Journals (Sweden)
H.A. Hajar Al Binali
2014-01-01
Full Text Available The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A.
Directory of Open Access Journals (Sweden)
Louise Cilliers
2008-09-01
Full Text Available In spite of an array of effective antibiotics, tuberculosis is still very common in developing countries where overcrowding, malnutrition and poor hygienic conditions prevail. Over the past 30 years associated HIV infection has worsened the situation by increasing the infection rate and mortality of tuberculosis. Of those diseases caused by a single organism only HIV causes more deaths internationally than tuberculosis. The tubercle bacillus probably first infected man in Neolithic times, and then via infected cattle, but the causative Mycobacteriacea have been in existence for 300 million years. Droplet infection is the most common way of acquiring tuberculosis, although ingestion (e.g. of infected cows’ milk may occur. Tuberculosis probably originated in Africa. The earliest path gnomonic evidence of human tuberculosis in man was found in osteo-archaeological findings of bone tuberculosis (Pott’s disease of the spine in the skeleton of anEgyptian priest from the 21st Dynasty (approximately 1 000 BC. Suggestive but not conclusiveevidence of tuberculotic lesions had been found in even earlier skeletons from Egypt and Europe. Medical hieroglyphics from ancient Egypt are silent on the disease, which could be tuberculosis,as do early Indian and Chinese writings. The Old Testament refers to the disease schachapeth, translated as phthisis in the Greek Septuagint. Although the Bible is not specific about this condition, tuberculosis is still called schachapeth in modern Hebrew. In pre-Hippocratic Greece Homer did not mention phthisis, a word meaning non-specific wasting of the body. However. Alexander of Tralles (6th century BC seemed to narrow the concept down to a specific disease, and in the Hippocratic Corpus (5th-4th centuries BC phthisis can be recognised as tuberculosis. It was predominantly a respiratory disease commonly seen and considered to be caused by an imbalance of bodily humours. It was commonest in autumn, winter and spring
Understanding Malaria: Fighting an Ancient Scourge
Understanding Malaria Fighting an Ancient Scourge U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Allergy and Infectious Diseases Understanding Malaria Fighting an Ancient Scourge U.S. DEPARTMENT OF HEALTH ...
Phylogenetic estimation of timescales using ancient DNA
DEFF Research Database (Denmark)
Molak, Martyna; Lorenzen, Eline; Shapiro, Beth;
2013-01-01
In recent years, ancient DNA has increasingly been used for estimating molecular timescales, particularly in studies of substitution rates and demographic histories. Molecular clocks can be calibrated using temporal information from ancient DNA sequences. This information comes from the ages...
The eye and its diseases in Ancient Egypt
DEFF Research Database (Denmark)
Andersen, S. Ry
1997-01-01
Ophthalmology, History of ophthalmology, eyes in the Ancient Egypt, eye disease in Ancient Egypt, porotic hyperostosis, mummification......Ophthalmology, History of ophthalmology, eyes in the Ancient Egypt, eye disease in Ancient Egypt, porotic hyperostosis, mummification...
Braneworld cosmology and noncommutative inflation
Calcagni, Gianluca
2005-03-01
In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 propto rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their features analyzed in a number of ways and energy regimes. Finally, we establish dual relations between inflationary, cyclic/ekpyrotic and phantom cosmologies, as well as between scalar-driven and tachyon-driven cosmologies. The exact dualities relating the four-dimensional spectra are broken in favour of their braneworld counterparts. The dual solutions display new interesting features because of the modification of the effective Friedmann equation on the brane.
Cosmological constraints on neutrino oscillations
International Nuclear Information System (INIS)
Solar, atmospheric and terrestrial neutrino experiments have provided evidence for neutrino oscillations. These neutrino anomalies were successfully explained in terms of neutrino oscillations, the dominant channels being flavour neutrino oscillations. The role of sterile neutrinos and the active-sterile subdominant channels are being explored presently. Therefore, we discuss all cosmological effects of active-sterile neutrino oscillations on the early Universe evolution, and particularly the effects on the nucleosynthesis epoch. Numerical analysis of the cosmological production of He-4, Yp in the presence of νe ↔ νs, effective after νe decoupling from the equilibrium, was provided for the full neutrino oscillations parameter range. These neutrino oscillations lead always to an overproduction of He-4. We have obtained isohelium contours corresponding to different levels of He-4 overproduction, δYp/Yp, for initial population of the sterile state in the range 0 ≤ δNs ≤ 0.5. Cosmological constraints on oscillation parameters, obtained on the base of the calculated isohelium contours and Yp observational data, are discussed. We present the constraints corresponding toδNs = 0.0 and 0.5, and helium overproduction δYp/Yp = 3%. These cosmological constraints, being more stringent than the ones provided from the neutrino experimental data, provide valuable information for the impact of sterile neutrino in the neutrino anomalies and for the neutrino physics in general. (author)
Neutrino in Astrophysics and Cosmology
Dai, Zuxiang
2003-01-01
At first we introduce the Neutrino in the standard Model, then the Dirac and Majorana Masses. After introducing the See-Saw Mechanism, we discuss the neutrino oscillations and the neutrino in astrophysics and cosmology. We finish this paper with a brief summary of the neutrino experiments.
Geodesic Behaviour around Cosmological Milestones
Fernández-Jambrina, L
2009-01-01
In this paper we provide a thorough classification of Friedman-Lema\\^itre-Robertson-Walker (FLRW) cosmological models in terms of the strong or weak character of their singularities according to the usual definitions. The classification refers to a generalised Puiseux power expansion of the scale factor of the model around a singular event.
Unity of Cosmological Inflation Attractors
Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik
2015-01-01
Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Hyperbolic geometry of cosmological attractors
Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik
2015-01-01
Cosmological alpha attractors give a natural explanation for the spectral index n(s) of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial ro
The Unity of Cosmological Attractors
Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik
2015-01-01
Recently, several broad classes of inflationary models have been discovered whose cosmological predictions are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a non-minimal coupling to gravity. These models, which we will call $\\xi$-att
How Cosmology Became a Science.
Brush, Stephen G.
1992-01-01
Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)
Particle cosmology comes of age
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1987-12-01
The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs.
Sterile neutrino constraints from cosmology
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.;
2012-01-01
The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications...... of possible sterile neutrinos with O(eV)-masses for cosmology....
Particle cosmology comes of age
International Nuclear Information System (INIS)
The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs
Indian Academy of Sciences (India)
Sabine Kraml
2006-10-01
There is a strong and growing interplay between particle physics and cosmology. In this talk, I discuss some aspects of this interplay concerning dark matter candidates put forth by theories beyond the standard model. In explaining the requirements for collider tests of such dark matter candidates, I focus in particular on the case of the lightest neutralino in the MSSM.
Thermodynamics of cosmological matter creation.
Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P
1988-10-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the
Neutrinos in particle physics, astronomy and cosmology
International Nuclear Information System (INIS)
''Neutrinos in Particle Physics, Astronomy and Cosmology'' provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. This book is intended for researchers and graduate students in the fields of particle physics, particle astrophysics and cosmology. (orig.)
χVariable-speed-of-light cosmologies
International Nuclear Information System (INIS)
Variable-speed-of-light (VSL) cosmologies are currently attracting much interest as a possible alternative to cosmological inflation. We discuss the fundamental geometrodynamic aspects of VSL cosmologies, and provide several alternative implementations. These implementations provide a large class of VSL cosmologies that pass the zeroth-order consistency tests of being compatible with both classical Einstein gravity and low-energy particle physics. While they solve the 'kinematic' puzzles as well as inflation does, VSL cosmologies typically do not solve the flatness problem since in their purest form no violation of the strong energy condition occurs. Nevertheless, these models are easy to unify with inflation
Cosmological model favored by the holographic principle
Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena
2016-03-01
We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.
Institute of Scientific and Technical Information of China (English)
GE JIANXIONG
2010-01-01
@@ The famous painting,Along the River During Qingming Festival,impresses visitors at the China Pavilion not iust because of the animated figures in the electronic version of the painting but because it shows a prosperous view of Kaifeng,capital of the Northern Song Dynasty (960-1127).It also showcases the wisdom of city planning in ancient China.
Hobson, Allan
2013-12-01
Revision of Freud's theory requires a new way of seeking dream meaning. With the idea of elaborative encoding, Sue Llewellyn has provided a method of dream interpretation that takes into account both modern sleep science and the ancient art of memory. Her synthesis is elegant and compelling. But is her hypothesis testable? PMID:24304762
Zuskin, Eugenija; Lipozencić, Jasna; Pucarin-Cvetković, Jasna; Mustajbegović, Jadranka; Schachter, Neil; Mucić-Pucić, Branka; Neralić-Meniga, Inja
2008-01-01
Different aspects of medicine and/or healing in several societies are presented. In the ancient times as well as today medicine has been closely related to magic, science and religion. Various ancient societies and cultures had developed different views of medicine. It was believed that a human being has two bodies: a visible body that belongs to the earth and an invisible body of heaven. In the earliest prehistoric days, a different kind of medicine was practiced in countries such as Egypt, Greece, Rome, Mesopotamia, India, Tibet, China, and others. In those countries, "medicine people" practiced medicine from the magic to modern physical practices. Medicine was magical and mythological, and diseases were attributed mostly to the supernatural forces. The foundation of modern medicine can be traced back to ancient Greeks. Tibetan culture, for instance, even today, combines spiritual and practical medicine. Chinese medicine developed as a concept of yin and yang, acupuncture and acupressure, and it has even been used in the modern medicine. During medieval Europe, major universities and medical schools were established. In the ancient time, before hospitals had developed, patients were treated mostly in temples. PMID:18812066
Watzman, Haim
2006-01-01
Several artifacts found at the Gesher Benot Ya'aqov, or Daughters of Jacob Bridge, archaeological site in Israel provide a picture of ancient human ancestors that is different from the once accepted by most scholars. The discoveries by Israeli archaeologist Naama Goren-Inbar suggest that humans developed language and other key abilities far…
Adult Reading of Ancient Languages.
Casler, Frederick H.
Traditionally, students of ancient languages have been taught to translate rather than read. The four most popular current approaches to language instruction--the grammar-translation method, the direct-reading or inductive approach, the audiolingual method, and the structural approach--all have inherent deficiencies that are magnified when applied…
iCosmo: an interactive cosmology package
Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.
2011-04-01
Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.
Chiral Cosmological Models: Dark Sector Fields Description
Chervon, S V
2014-01-01
The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...
M-Theory Moduli Space and Cosmology
Brustein, Ram; Novák, E G
2003-01-01
We conduct a systematic search for a viable string/M-theory cosmology, focusing on cosmologies that include an era of slow-roll inflation, after which the moduli are stabilized and the Universe is in a state with an acceptably small cosmological constant. We observe that the duality relations between different cosmological backgrounds of string/M-theory moduli space are greatly simplified, and that this simplification leads to a truncated moduli space within which possible cosmological solutions lie. We review some known challenges to four dimensional models in the "outer", perturbative, region of moduli space, and use duality relations to extend them to models of all of the (compactified) perturbative string theories and 11D supergravity, including brane world models. We conclude that cosmologies restricted to the outer region are not viable, and that the most likely region of moduli space in which to find realistic cosmology is the "central", non-perturbative region, with coupling and compact volume both of...
Atmospheric predictability revisited
Directory of Open Access Journals (Sweden)
Lizzie S. R. Froude
2013-06-01
Full Text Available This article examines the potential to improve numerical weather prediction (NWP by estimating upper and lower bounds on predictability by re-visiting the original study of Lorenz (1982 but applied to the most recent version of the European Centre for Medium Range Weather Forecasts (ECMWF forecast system, for both the deterministic and ensemble prediction systems (EPS. These bounds are contrasted with an older version of the same NWP system to see how they have changed with improvements to the NWP system. The computations were performed for the earlier seasons of DJF 1985/1986 and JJA 1986 and the later seasons of DJF 2010/2011 and JJA 2011 using the 500-hPa geopotential height field. Results indicate that for this field, we may be approaching the limit of deterministic forecasting so that further improvements might only be obtained by improving the initial state. The results also show that predictability calculations with earlier versions of the model may overestimate potential forecast skill, which may be due to insufficient internal variability in the model and because recent versions of the model are more realistic in representing the true atmospheric evolution. The same methodology is applied to the EPS to calculate upper and lower bounds of predictability of the ensemble mean forecast in order to explore how ensemble forecasting could extend the limits of the deterministic forecast. The results show that there is a large potential to improve the ensemble predictions, but for the increased predictability of the ensemble mean, there will be a trade-off in information as the forecasts will become increasingly smoothed with time. From around the 10-d forecast time, the ensemble mean begins to converge towards climatology. Until this point, the ensemble mean is able to predict the main features of the large-scale flow accurately and with high consistency from one forecast cycle to the next. By the 15-d forecast time, the ensemble mean has lost
Enceladus' tidal dissipation revisited
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal
Undermining the Cosmological Principle Observational Characteristics of Inhomogeneous Cosmologies
Barrett, R K
2000-01-01
We challenge the widely held belief that the cosmological principle is an obvious consequence of the observed isotropy of the cosmic microwave background radiation (CMBR), combined with the Copernican principle. We perform a detailed study of a class of inhomogeneous perfect fluid cosmological models admitting an isotropic radiation field with a view to assessing their viability as models of the real universe. These spacetimes are distinguished from FLRW universes by the presence of inhomogeneous pressure, which results in an acceleration of the fluid (fundamental observers). We examine their physical, geometrical and observational characteristics \\emph{for all observer positions} in the spacetimes. To this end, we derive \\emph{exact, analytic} expressions for the distance-redshift relations and anisotropies for all observer locations, and compare their predictions with available observational constraints. The isotropy constraints derived from `local' observations (redshift $\\lesssim 1$) are also considered, ...
Cosmological solutions of Brans-Dicke equations with cosmological constant
Directory of Open Access Journals (Sweden)
I. Ahmadi-Azar
2002-12-01
Full Text Available In this paper, the analytical solutions of Brans-Dicke (B-D equations with cosmological constant are presented, in which the equation of state of the universe is P=mÙ° ρ , under the assumption φRn=c between the B-D field and the scale factor of the universe. The flat (K=0 Robertson- Walker metric has been considered for the metric of the universe. These solutions are rich in the sense that they include dust B-D theory with cosmological constant, Nariai Ù=° solutions, vacuum solutions of Ohanlen-Tupper and inflationary Ù=° solutions.
TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology
Gasperini, M.
2000-06-01
This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Achour, Jibril Ben; Grain, Julien; Marciano, Antonino
2016-01-01
Scalar cosmological perturbations in loop quantum cosmology (LQC) is revisited in a covariant manner, using self dual Ashtekar variables. For real-valued Ashtekar-Barbero variables, this `deformed algebra' approach has been shown to implement holonomy corrections from loop quantum gravity (LQG) in a consistent manner, albeit deforming the algebra of modified constraints in the process. This deformation has serious conceptual ramifications, not the least of them being an effective `signature-change' in the deep quantum regime. In this paper, we show that working with self dual variables lead to an undeformed algebra of hypersurface deformations, even after including holonomy corrections in the effective constraints. As a necessary consequence, the diffeomorphism constraint picks up non-perturbative quantum corrections thus hinting at a modification of the underlying space-time structure, a novel ingredient compared to the usual treatment of (spatial) diffeomorphisms in LQG. This work extends a similar result o...
Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter
Ureña-López, L Arturo
2015-01-01
As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eases their analytic and numerical analysis at the background and at the linear order of perturbations. We apply the method to a scalar field endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is shown that the Jeans wavenumber defined as $k_J = a \\sqrt{mH}$ is directly related to the suppression of linear perturbations at wavenumbers $k>k_J$. We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in t...
Zuber, Jean-Bernard
2016-01-01
In this note, I revisit integrals over $\\SU(N)$ of the form $ \\int DU\\, U_{i_1j_1}\\cdots U_{i_pj_p}\\Ud_{k_1l_1}\\cdots \\Ud_{k_nl_n}$. While the case $p=n$ is well known, it seems that explicit expressions for $p=n+N$ had not appeared in the literature. Similarities and differences, in particular in the large $N$ limit, between the two cases are discussed
The Damped String Problem Revisited
Gesztesy, Fritz
2010-01-01
We revisit the damped string equation on a compact interval with a variety of boundary conditions and derive an infinite sequence of trace formulas associated with it, employing methods familiar from supersymmetric quantum mechanics. We also derive completeness and Riesz basis results (with parentheses) for the associated root functions under less smoothness assumptions on the coefficients than usual, using operator theoretic methods (rather than detailed eigenvalue and root function asymptotics) only.
Markowitz Revisited: Social Portfolio Engineering
Gasser, Stephan; Kremser, Thomas; Rammerstorfer, Margarethe; Weinmayer, Karl
2014-01-01
In recent years socially responsible investing has become an increasingly more popular subject with both private and institutional investors. At the same time, a number of scientific papers have been published on socially responsible investments (SRIs), covering a broad range of topics, from what actually defines SRIs to the financial performance of SRI funds in contrast to non-SRI funds. In this paper, we revisit Markowitz' Portfolio Selection Theory and propose a modification...
Leadership and Management Theories Revisited
Madsen, Mona Toft
2001-01-01
The goal of the paper is to revisit and analyze key contributions to the understanding of leadership and management. As a part of the discussion a role perspective that allows for additional and/or integrated leader dimensions, including a change-centered, will be outlined. Seemingly, a major challenge on the substantive level is the integration of soft and hard managerial functions, while the concepts used in presenting these should at least in transition be able to contain a distinction bet...
Craig and Kalam Cosmological Argument
Directory of Open Access Journals (Sweden)
Tavacoli, Gh
2011-01-01
Full Text Available Among different arguments for the existence of God the Kalam cosmological argument is a very famous one which is elaborated by Professor William lane Craig. Craig claims that the universe began to exist, then he continues to say: everything that begins to exist has a cause and therefore the universe has a cause. But how do we know that the universe began to exist? This premise forms the most important part of Craig’s contention, and he bolsters it by four arguments, the first two are driven from philosophy and the other two, which he prefers to name them “confirmations from sciences” are driven from sciences; the first one evokes to big bang theory and the seconds to the second principle of thermodynamic which are respectively adopted from cosmology and physics.In this essay we are going to survey Craig’s arguments and estimate their value and weight.
Craig and Kalam Cosmological Argument
Directory of Open Access Journals (Sweden)
Gholamhosein Tavacoly
2011-09-01
Full Text Available Among different arguments for the existence of God the Kalam cosmological argument is a very famous one which is elaborated by Professor William lane Craig. Craig claims that the universe began to exist , then he continues to say: everything that begins to exist has a cause and therefore the universe has a cause. But how do we know that the universe began to exist? This premise forms the most important part of Craig’s contention, and he bolsters it by four arguments, the first two are driven from philosophy and the other two, which he prefers to name them “confirmations from sciences” are driven from sciences the first one evokes to big bang theory and the seconds to the second principle of thermodynamic which are respectively adopted from cosmology and physics. In this essay we are going to survey Craig’s arguments and estimate their value and weight.
Noncommutative Fluid and Cosmological Perturbations
Das, Praloy
2016-01-01
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...
Cosmological Simulations using Grid Middleware
Caniou, Y; Depardon, B; Courtois, H; Teyssier, R
2006-01-01
One way to access the aggregated power of a collection of heterogeneous machines is to use a grid middleware, such as DIET, GridSolve or NINF. It addresses the problem of monitoring the resources, of handling the submissions of jobs and as an example the inherent transfer of input and output data, in place of the user. In this paper we present how to run cosmological simulations using the RAMSES application along with the DIET middleware. We will describe how to write the corresponding DIET client and server. The remainder of the paper is organized as follows: Section 2 presents the DIET middleware. Section 3 describes the RAMSES cosmological software and simulations, and how to interface it with DIET. We show how to write a client and a server in Section 4. Finally, Section 5 presents the experiments realized on Grid'5000, the French Research Grid, and we conclude in Section 6.
Cosmology with Negative Absolute Temperatures
Vieira, J P P; Lewis, Antony
2016-01-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Cosmology with clusters of galaxies
Bahcall, Neta A
1995-01-01
Rich clusters of galaxies, the largest virialized systems known, provide a powerful tool for the study of cosmology. Some of the fundamental questions that can be addressed with clusters of galaxies include: how did galaxies and large-scale structure form and evolve? What is the amount, composition and distribution of matter in the universe? I review some of the studies utilizing clusters of galaxies to investigare, among others: - The dark matter on clusters scale and the mean mass-density of the universe; - The large-scale structure of the universe; - The peculiar velocity field on large scales; - The mass-function of groups and clusters of galaxies; - The constraints placed on specific cosmological models using the cluster data.
Effective perfect fluids in cosmology
Energy Technology Data Exchange (ETDEWEB)
Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail: guillermo.ballesteros@unige.ch, E-mail: brando.bellazzini@pd.infn.it [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)
2013-04-01
We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.
Braneworld cosmology and noncommutative inflation
Calcagni, G
2005-01-01
In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 \\propto \\rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their...
Graviton spectra in string cosmology
Energy Technology Data Exchange (ETDEWEB)
Galluccio, Massimo [Osservatorio Astronomico di Roma (Roma-IT); Litterio, Marco [Istituto Astronomico dell' Universita (Roma-IT); Occhionero, Franco [Osservatorio Astronomico di Roma (Roma-IT)
1996-08-01
We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.
Graviton Spectra in String Cosmology
Galluccio, M; Occhionero, F; Galluccio, Massimo; Litterio, Marco; Occhionero, Franco
1997-01-01
We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an $\\omega^3$ increase and initiates an $\\omega^{-7}$ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.
Cosmology with inhomogeneous magnetic fields
International Nuclear Information System (INIS)
We review spacetime dynamics in the presence of large-scale electromagnetic fields and then consider the effects of the magnetic component on perturbations to a spatially homogeneous and isotropic universe. Using covariant techniques, we refine and extend earlier work and provide the magnetohydrodynamic equations that describe inhomogeneous magnetic cosmologies in full general relativity. Specialising this system to perturbed Friedmann-Robertson-Walker models, we examine the effects of the field on the expansion dynamics and on the growth of density inhomogeneities, including non-adiabatic modes. We look at scalar perturbations and obtain analytic solutions for their linear evolution in the radiation, dust and inflationary eras. In the dust case we also calculate the magnetic analogue of the Jeans length. We then consider the evolution of vector perturbations and find that the magnetic presence generally reduces the decay rate of these distortions. Finally, we examine the implications of magnetic fields for the evolution of cosmological gravitational waves
Cosmological Evolution of Linear Bias
Basilakos, S; Basilakos, Spyros; Plionis, Manolis
2000-01-01
Using linear perturbation theory and the Friedmann-Lemaitre solutions of the cosmological field equations, we derive analytically a second-order differential equation for the evolution of the linear bias factor, b(z), between the background matter and a mass-tracer fluctuation field. We find b(z) to be a strongly dependent function of redshift in all cosmological models. Comparing our analytical solution with the semi-analytic model of Mo & White, which utilises the Press-Schechter formalism and the gravitationally induced evolution of clustering, we find an extremely good agreement even at large redshifts, once we normalize to the same bias value at two different epochs, one of which is the present. Furthermore, our analytic b(z) function agrees well with the outcome of N-body simulations even up to large redshifts.
Indian Academy of Sciences (India)
Roy Maartens
2000-10-01
Magnetic ﬁelds are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these ﬁelds could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic ﬁelds aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic ﬁelds originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.
Holographic signatures of cosmological singularities.
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T
2014-09-19
To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.
Cosmology with negative absolute temperatures
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Cosmological Parameters and Black Holes
Harun-al-Rashid, S M
2002-01-01
This work is related to different questions within cosmology. The principal idea herein is to develop cosmological knowledge making use of the analyses of observational data in order to find the values of the matter density Omega_m and vacuum energy density Omega_Lambda. Data fitting is carried out using two statistical methods, chi^2 and maximum likelihood. The data analysis exhibits that a low density and flat Universe is strongly favoured. Applying the Omega_m value found for clusters of galaxies, we demonstrate that clusters have very little room for baryonic dark matter. An upper limit to the small but non-negligible sum of baryonic dark matter and galaxy mass can be estimated, requiring the use of special statistics. A Toroidal Black Hole (TBH) study, in contrast to the Spherical Black Hole (SBH), shows that the TBH can be used as an important tool in explaining AGN phenomena.
Stability of cosmological deflagration fronts
Megevand, Ariel
2013-01-01
In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that for large enough supercooling, any subsonic wall velocity...
Particle Creation in Bouncing Cosmologies
Celani, Diogo C F; Vitenti, Sandro D P
2016-01-01
We investigate scalar particle creation in a set of bouncing models where the bounce occurs due to quantum cosmological effects described by the Wheeler-DeWitt equation. The scalar field can be either conformally or minimally coupled to gravity, and it can be massive or massless, without self interaction. The analysis is made for models containing a single radiation fluid, and for the more realistic case of models containing the usual observed radiation and dust fluids, which can fit most of the observed features of our Universe, including an almost scale invariant power spectrum of scalar cosmological perturbations. In the conformal coupling case, the particle production is negligible. In the minimal coupling case, for massive particles, the results point to the same physical conclusion within observational constraints: particle production is most important at the bounce energy scale, and it is not sensitive neither to its mass nor whether there is dust in the background model. The only caveat is the case wh...
Cosmology from Type Ia Supernovae
Perlmutter, S; Deustua, S; Fabbro, S; Goldhaber, Gerson; Groom, D E; Kim, A G; Kim, M Y; Knop, R A; Nugent, P; Pennypacker, C R; Goobar, A; Pain, R; Hook, I M; Lidman, C E; Ellis, Richard S; Irwin, M J; McMahon, R G; Ruiz-Lapuente, P; Walton, N A; Schaefer, B; Boyle, B J; Filippenko, A V; Matheson, T; Fruchter, A S; Panagia, N; Newberg, H J M; Couch, W J
1997-01-01
This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described. More extensive analyses of these results with some additional methods and data are presented in the more recent LBNL report #41801 (Perlmutter et al., 1998; accepted for publication in Ap.J.), astro-ph/9812133 . This Lawrence Berkeley National Laboratory reprint is a reduction of a poster presentation from the Cosmology Display Session #85 on 9 January 1998 at the American Astronomical Society meeting in Washington D.C. It is also available on the World Wide Web at http://supernova.LBL.gov/ This work has also been referenced in the literature by the pre-meeting abstract citation: Perlmutter et al., B.A.A.S., volume 29, page 1351 (1997).
Exact cosmological solutions for MOG
Energy Technology Data Exchange (ETDEWEB)
Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2015-09-15
We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)
Cosmological String Gas on Orbifolds
Easther, R; Jackson, M G; Easther, Richard; Greene, Brian R.; Jackson, Mark G.
2002-01-01
It has long been known that strings wound around incontractible cycles can play a vital role in cosmology. In particular, in a spacetime with toroidal spatial hypersurfaces, the dynamics of the winding modes may help yield three large spatial dimensions. However, toroidal compactifications are phenomenologically unrealistic. In this paper we therefore take a first step toward extending these cosmological considerations to $D$-dimensional toroidal orbifolds. We use numerical simulation to study the timescales over which "pseudo-wound" strings unwind on these orbifolds with trivial fundamental group. We show that pseudo-wound strings can persist for many ``Hubble times'' in some of these spaces, suggesting that they may affect the dynamics in the same way as genuinely wound strings. We also outline some possible extensions that include higher-dimensional wrapped branes.
Dipolar Dark Matter and Cosmology
Blanchet, Luc; Tiec, Alexandre Le; Marsat, Sylvain
2013-01-01
The phenomenology of the modified Newtonian dynamics (MOND) can be recovered from a mechanism of "gravitational polarization" of some dipolar medium playing the role of dark matter. We review a relativistic model of dipolar dark matter (DDM) within standard general relativity to describe, at some effective level, a fluid polarizable in a gravitational field. At first order in cosmological perturbation theory, this model is equivalent to the concordance cosmological scenario, or Lambda-cold dark matter (CDM) model. At second order, however, the internal energy of DDM modifies the curvature perturbation generated by CDM. This correction, which depends quadratically on the dipole, induces a new type of non-Gaussianity in the bispectrum of the curvature perturbation with respect to standard CDM. Recent observations by the Planck satellite impose stringent constraints on the primordial value of the dipole field.
Inflation and Loop Quantum Cosmology
Barrau, Aurelien
2010-01-01
On the one hand, inflation is an extremely convincing scenario: it solves most cosmological paradoxes and generates fluctuations that became the seeds for the growth of structures. It, however, suffers from a "naturalness" problem: generating initial conditions for inflation is far from easy. On the other hand, loop quantum cosmology is very successful: it solves the Big Bang singularity through a non-perturbative and background-independent quantization of general relativity. It, however, suffers from a key drawback: it is extremely difficult to test. Recent results can let us hope that inflation and LQC could mutually cure those pathologies: LQC seems to naturally generate inflation and inflation could allow us to test LQC.
Bruel, Per V.
2002-11-01
Models were made of vases described by Vitruvius in Rome in about the year 70 A.D. and of sound vases (lydpotter) placed in Danish churches from 1100-1300 A.D. Measurements of vase's resonant frequencies and damping (reradiation) verified that the model vases obeyed expected physical rules. It was concluded that the excellent acoustical quality of many ancient Greek and Roman theaters cannot be ascribed to the vases placed under their seats. This study also found that sound vases placed in Nordic churches could not have shortened the reverberation time because there are far too few of them. Moreover, they could not have covered a broad frequency range. It remains a mystery why vases were installed under the seats of ancient Greek theaters and why, 1000 years later, Danes placed vases in their churches.
Mitogenomic analyses from ancient DNA
DEFF Research Database (Denmark)
Paijmans, Johanna L.A.; Gilbert, M Thomas P; Hofreiter, Michael
2013-01-01
analyses (whether using modern or ancient DNA) were largely restricted to the analysis of short fragments of the mitochondrial genome. However, due to many technological advances during the past decade, a growing number of studies have explored the power of complete mitochondrial genome sequences...... (mitogenomes). Such studies were initially limited to analyses of extant organisms, but developments in both DNA sequencing technologies and general methodological aspects related to working with degraded DNA have resulted in complete mitogenomes becoming increasingly popular for ancient DNA studies as well....... To date, at least 124 partially or fully assembled mitogenomes from more than 20 species have been obtained, and, given the rapid progress in sequencing technology, this number is likely to dramatically increase in the future. The increased information content offered by analysing full mitogenomes has...
Molecular analysis of ancient caries.
Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A; Jiménez-Marín, Andrea R; Malgosa, Assumpció
2014-09-01
An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains.
Constraints on Cosmic Distance Duality Relation from Cosmological Observations
Lv, Meng-Zhen
2016-01-01
In this paper, we use the model dependent method to revisit the constraint on the well-known cosmic distance duality relation (CDDR). By using the latest SNIa samples, such as Union2.1, JLA and SNLS, we find that the SNIa data alone can not constrain the cosmic opacity parameter $\\varepsilon$, which denotes the deviation from the CDDR, $d_{\\rm L} = d_{\\rm A}(1+z)^{2+\\varepsilon}$, very well. The constraining power on $\\varepsilon$ from the luminosity distance indicator provided by SNIa and GRB is hardly to be improved at present. When we include other cosmological observations, such as the measurements of Hubble parameter, the baryon acoustic oscillations and the distance information from cosmic microwave background, we obtain the tightest constraint on the cosmic opacity parameter $\\varepsilon$, namely the 68\\% C.L. limit: $\\varepsilon=0.023\\pm0.018$. Furthermore, we also consider the evolution of $\\varepsilon$ as a function of $z$ using two methods, the parametrization and the principle component analysis, ...
Cosmological Landscape From Nothing: Some Like It Hot
Barvinsky, A O
2006-01-01
Motivated by the growing interest in generation of stringy landscape via quantum creation from nothing, we revisit the old idea of Euclidean quantum gravity alternative to the construction of the pure Hartle-Hawking quantum state. Creation from nothing is described by the {\\em density matrix} given by the Euclidean path integral. Its calculation with back reaction of quantum matter properly taken into account suggests a novel picture of the early quantum Universe. Landscape of universes in the bounded range of the cosmological constant, $\\Lambda_{\\rm min}\\leq \\Lambda \\leq \\Lambda_{\\rm max}$, is created with mixed quasi-equilibrium state of high-temperature gas of particles of conformally invariant fields. Instantons with $\\Lambda<\\Lambda_{\\rm min}$ are completely eliminated by infinite positive value of their action, which suggests solution to the problem of boundedness of the on-shell gravitational action in the infrared domain of Euclidean quantum gravity. The mechanism of this elimination is based on no...
Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne
2014-01-01
Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, w...
Cosmological solution moduli of bigravity
Energy Technology Data Exchange (ETDEWEB)
Yılmaz, Nejat Tevfik [Department of Electrical and Electronics Engineering, Yaşar University,Selçuk Yaşar Kampüsü, Üniversite Caddesi,No. 35-37, AğaçlıYol, 35100, Bornova, İzmir (Turkey)
2015-09-29
We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.
Cosmological parallax-distance formula
Singal, Ashok K.
2015-09-01
The standard cosmological parallax-distance formula, as found in the literature, including text-books and reference books on cosmology, requires a correction. This correction stems from the fact that in the standard text-book derivation it has been ignored that any chosen baseline in a gravitationally bound system does not partake in the cosmological expansion. Though the correction is available in the literature for some time, the text-books still continue to use the older, incorrect formula, and its full implications are not yet fully realized. Apart from providing an alternate correct, closed-form expression that is more suitable and convenient for computations for certain limiting cases of FRW () world models, we also demonstrate how one can compute parallax distance for the currently favored flat-space accelerating-universe (, ) cosmologies. Further, we show that the correction in parallax distance at large redshifts could amount to a factor of three or even more. Moreover, even in an infinite universe the parallax distance does not increase indefinitely with redshift and that even the farthest possible observable point may have a finite parallax angle, a factor that needs to be carefully taken into account when using distant objects as the background field against which the parallax of a foreground object is to be measured. Some other complications that could arise in parallax measurements of a distant source, like that due to the deflection of incoming light by the gravitation field of the Sun and other planetary bodies in the solar system, are pointed out.
Numerical Relativity and Inhomogeneous Cosmologies
Hern, S D
2000-01-01
In this work numerical methods for solving Einstein's equations are developed and applied to the study of inhomogeneous cosmological models. A two-dimensional computer code is described which implements two advanced numerical methods: LeVeque's multi-dimensional high-resolution integration scheme which allows accurate evolution of solutions containing discontinuities or steep gradients, and an adaptive mesh refinement (AMR) algorithm which enables the local resolution of a simulation to vary dynamically in response to the behaviour of the evolved solution...
Information gains from cosmological probes
Grandis, S.; Seehars, S.; Refregier, A.; Amara, A.; Nicola, A.
2016-05-01
In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the `surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and {H0} measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.
The cosmological potential of supergravity
Hull, C. M.
The implications of a supergravity model for defining a theory for unifying all the laws of nature are discussed. Attention is given to extended supergravity and properties of anti-de Sitter space, positive mass, and stability. Implications of positive mass for anti-de Sitter space are explored, together with supersymmetry breaking, the invalidity of a bubble solution due to positive energy theorems, and the role of space-time foam (Hawking, 1978) in determining a value for the cosmological constant.
Observational constraints on undulant cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
Cosmology with moving bimetric fluids
García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado
2016-01-01
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function...
Alfaro, Jorge; González, Pablo
2012-01-01
We present a model of the gravitational field based on two symmetric tensors. Gravity is affected by the new field, but outside matter the predictions of the model coincide exactly with general relativity, so all classical tests are satisfied. We find that massive particles do not follow a geodesic while massless particles trajectories are null geodesics of an effective metric. We study the Cosmological case, where we get an accelerated expansion of the universe without dark energy. We also i...
Early Cosmology and Fundamental Physics
De Vega, Hector
2003-01-01
Based on Lectures at the 9th. Chalonge School in Astrofundamental Physics, Palermo, September 2002, NATO ASI. To appear in the Proceedings, N. S'anchez and Yu. Parijskij editors, Kluwer. This is a pedagogical introduction to early cosmology and the host of fundamental physics involved in it (particle physics, grand unification andgeneral relativity). Inflation and the inflaton field are the centraltheme of this review. The quantum field treatment of the inflaton ispresented including its o...
ANCIENT BREAD STAMPS FROM JORDAN
Kakish, Randa
2014-01-01
Marking bread was an old practice performed in different parts of the old world. It was done for religious, magical, economic and identification purposes. Bread stamps differ from other groups of stamps. Accordingly, the aim of this article is to identify such stamps, displayed or stored, in a number of Jordanian Archaeological Museums. A col-lection of twelve ancient bread stamps were identified and studied. Two of the stamps were of unknown provenance while the others came from al-Shuneh, D...
Ancient Technology in Contemporary Surgery
Buck, Bruce A.
1982-01-01
Archaeologists have shown that ancient man developed the ability to produce cutting blades of an extreme degree of sharpness from volcanic glass. The finest of these prismatic blades were produced in Mesoamerica about 2,500 years ago. The technique of production of these blades was rediscovered 12 years ago by Dr. Don Crabtree, who suggested possible uses for the blades in modern surgery. Blades produced by Dr. Crabtree have been used in experimental microsurgery with excellent results. Anima...
Splendid Arts Fram Ancient Capitals
Institute of Scientific and Technical Information of China (English)
1998-01-01
IT was in the golden autumn in Beijing, when the sky was high and the air clear, that I hurried to Zhongshan Park to witness the display of the songs and dances of the seven Chinese ancient capitals. The flower beds arranged for the celebration of National Day were still there and the colorful blooms looked especially bright in the sunshine. The seven cities which have served as capitals in Chinese history are Beijing,
Psychiatric Thoughts in Ancient India
Directory of Open Access Journals (Sweden)
Ravi Abhyankar
2015-01-01
Full Text Available A review of the literature regarding psychiatric thoughts in ancient India is attempted. Besides interesting reading, many of the concepts are still relevant and can be used in day-to-day practice especially towards healthy and happy living. Certain concepts are surprisingly contemporary and valid today. They can be used in psychotherapy and counselling and for promoting mental health. However, the description and classification of mental illness is not in tune with modern psychiatry.
Quantum gravity and quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Papantonopoulos, Lefteris [National Technical Univ. of Athens (Greece). Dept. of Physics; Siopsis, George [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics and Astronomy; Tsamis, Nikos (eds.) [Crete Univ, Heraklion (Greece). Dept. of Physics
2013-02-01
With contributions by leading researcher in the field. Chapters written as both tutorial and state-of-the-art surveys. Can be used both as advanced course material and for self study. Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.
High energy physics and cosmology
International Nuclear Information System (INIS)
This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe
Quantum gravity and quantum cosmology
International Nuclear Information System (INIS)
With contributions by leading researcher in the field. Chapters written as both tutorial and state-of-the-art surveys. Can be used both as advanced course material and for self study. Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.