Sample records for ancestral duplication highly-conserved

  1. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. (United States)

    Uno, Y; Nishida, C; Takagi, C; Ueno, N; Matsuda, Y


    It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD.

  2. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication. (United States)

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming


    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.

  3. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). (United States)

    Shelomi, Matan; Heckel, David G; Pauchet, Yannick


    The Phasmatodea (stick insects) have multiple, endogenous, highly expressed copies of glycoside hydrolase family 9 (GH9) genes. The purpose for retaining so many was unknown. We cloned and expressed the enzymes in transfected insect cell lines, and tested the individual proteins against different plant cell wall component poly- and oligosaccharides. Nearly all isolated enzymes were active against carboxymethylcellulose, however most could also degrade glucomannan, and some also either xylan or xyloglucan. The latter two enzyme groups were each monophyletic, suggesting the evolution of these novel substrate specificities in an early ancestor of the order. Such enzymes are highly unusual for Metazoa, for which no xyloglucanases had been reported. Phasmatodea gut extracts could degrade multiple plant cell wall components fully into sugar monomers, suggesting that enzymatic breakdown of plant cell walls by the entire Phasmatodea digestome may contribute to the Phasmatodea nutritional budget. The duplication and neofunctionalization of GH9s in the ancestral Phasmatodea may have enabled them to specialize as folivores and diverge from their omnivorous ancestors. The structural changes enabling these unprecedented activities in the cellulases require further study.

  4. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event. (United States)

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A


    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  5. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Boore, Jeffrey L.


    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  6. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events. (United States)

    Song, Xiaowei; Tang, Yezhong; Wang, Yajun


    The vertebrate FoxP subfamily genes play important roles in the construction of essential functional modules involved in physiological and developmental processes. To explore the adaptive evolution of functional modules associated with the FoxP subfamily member genes, it is necessary to study the gene duplication process. We detected four member genes of the FoxP subfamily in sea lampreys (a representative species of jawless vertebrates) through genome screenings and phylogenetic analyses. Reliable paralogons (i.e. paralogous chromosome segments) have rarely been detected in scaffolds of FoxP subfamily member genes in sea lampreys due to the considerable existence of HTH_Tnp_Tc3_2 transposases. However, these transposases did not alter gene numbers of the FoxP subfamily in sea lampreys. The coincidence between the "1-4" gene duplication pattern of FoxP subfamily genes from invertebrates to vertebrates and two rounds of ancestral whole genome duplication (1R- and 2R-WGD) events reveal that the FoxP subfamily of vertebrates was quadruplicated in the 1R- and 2R-WGD events. Furthermore, we deduced that a synchronous gene duplication process occurred for the FoxP subfamily and for three linked gene families/subfamilies (i.e. MIT family, mGluR group III and PLXNA subfamily) in the 1R- and 2R-WGD events using phylogenetic analyses and mirror-dendrogram methods (i.e. algorithms to test protein-protein interactions). Specifically, the ancestor of FoxP1 and FoxP3 and the ancestor of FoxP2 and FoxP4 were generated in 1R-WGD event. In the subsequent 2R-WGD event, these two ancestral genes were changed into FoxP1, FoxP2, FoxP3 and FoxP4. The elucidation of these gene duplication processes shed light on the phylogenetic relationships between functional modules of the FoxP subfamily member genes.

  7. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of key-phylogenetical positions. Genome analyses supported the presence of a single fshr and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds, amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal teleosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinopterygians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two lhgcr paralogs (lhgcr1/ lhgcr2, which do not result from the teleost-specific whole-genome duplication (3R, but likely from a local gene duplication that occurred early in the actinopterygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotropin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a single lhgcr (lhgcr1 or lhgcr2 in some species, e.g. medaka and zebrafish. Sequence comparison highlighted divergences in the extracellular and intracellular domains of the duplicated lhgcr, suggesting differential properties such as ligand binding and activation mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships and tissue expression may have contributed as selective drives in the conservation of the duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of

  8. Expansion and Functional Divergence of Jumonji C-Containing Histone Demethylases: Significance of Duplications in Ancestral Angiosperms and Vertebrates. (United States)

    Qian, Shengzhan; Wang, Yingxiang; Ma, Hong; Zhang, Liangsheng


    Histone modifications, such as methylation and demethylation, are crucial mechanisms altering chromatin structure and gene expression. Recent biochemical and molecular studies have uncovered a group of histone demethylases called Jumonji C (JmjC) domain proteins. However, their evolutionary history and patterns have not been examined systematically. Here, we report extensive analyses of eukaryotic JmjC genes and define 14 subfamilies, including the Lysine-Specific Demethylase3 (KDM3), KDM5, JMJD6, Putative-Lysine-Specific Demethylase11 (PKDM11), and PKDM13 subfamilies, shared by plants, animals, and fungi. Other subfamilies are detected in plants and animals but not in fungi (PKDM12) or in animals and fungi but not in plants (KDM2 and KDM4). PKDM7, PKDM8, and PKDM9 are plant-specific groups, whereas Jumonji, AT-Rich Interactive Domain2, KDM6, and PKDM10 are animal specific. In addition to known domains, most subfamilies have characteristic conserved amino acid motifs. Whole-genome duplication (WGD) was likely an important mechanism for JmjC duplications, with four pairs from an angiosperm-wide WGD and others from subsequent WGDs. Vertebrates also experienced JmjC duplications associated with the vertebrate ancestral WGDs, with additional mammalian paralogs from tandem duplication and possible transposition. The sequences of paralogs have diverged in both known functional domains and other regions, showing evidence of selection pressure. The increases of JmjC copy number and the divergences in sequence and expression might have contributed to the divergent functions of JmjC genes, allowing the angiosperms and vertebrates to adapt to a great number of ecological niches and contributing to their evolutionary successes.

  9. The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene

    Directory of Open Access Journals (Sweden)

    Volff Jean-Nicolas


    Full Text Available Abstract Background Members of the makorin (mkrn gene family encode RING/C3H zinc finger proteins with U3 ubiquitin ligase activity. Although these proteins have been described in a variety of eukaryotes such as plants, fungi, invertebrates and vertebrates including human, almost nothing is known about their structural and functional evolution. Results Via partial sequencing of a testis cDNA library from the poeciliid fish Xiphophorus maculatus, we have identified a new member of the makorin gene family, that we called mkrn4. In addition to the already described mkrn1 and mkrn2, mkrn4 is the third example of a makorin gene present in both tetrapods and ray-finned fish. However, this gene was not detected in mouse and rat, suggesting its loss in the lineage leading to rodent murids. Mkrn2 and mkrn4 are located in large ancient duplicated regions in tetrapod and fish genomes, suggesting the possible involvement of ancestral vertebrate-specific genome duplication in the formation of these genes. Intriguingly, many mkrn1 and mkrn2 intronless retrocopies have been detected in mammals but not in other vertebrates, most of them corresponding to pseudogenes. The nature and number of zinc fingers were found to be conserved in Mkrn1 and Mkrn2 but much more variable in Mkrn4, with lineage-specific differences. RT-qPCR analysis demonstrated a highly gonad-biased expression pattern for makorin genes in medaka and zebrafish (ray-finned fishes and amphibians, but a strong relaxation of this specificity in birds and mammals. All three mkrn genes were maternally expressed before zygotic genome activation in both medaka and zebrafish early embryos. Conclusion Our analysis demonstrates that the makorin gene family has evolved through large-scale duplication and subsequent lineage-specific retroposition-mediated duplications in vertebrates. From the three major vertebrate mkrn genes, mkrn4 shows the highest evolutionary dynamics, with lineage-specific loss of zinc

  10. Zebrafish Wnt9a,9b paralog comparisons suggest ancestral roles for Wnt9 in neural, oral-pharyngeal ectoderm and mesendoderm. (United States)

    Cox, A A; Jezewski, P A; Fang, P-K; Payne-Ferreira, T L


    The Wnts are a highly conserved family of secreted glycoproteins involved in cell-cell signaling and pattern formation during early embryonic development. Teasing out the role of individual Wnt molecules through development is challenging. Gene duplications are one of the most important mechanisms for generating evolutionary variations. The current consensus suggests that most anatomical variation is generated by divergence of regulatory control regions rather than by coding sequence divergence. Thus phylogenetic comparisons of divergent gene expression patterns are essential to understanding ancestral morphogenetic patterns from which subsequent anatomy diversified in modern lineages. We previously demonstrated strongest expression of zebrafish wnt9b within its heart tube, limb bud and ventral/anterior ectoderm during oral and pharyngeal arch patterning. Our goal is to compare and contrast zwnt9b to its closest paralog, zwnt9a. Sequenced, fulllength zebrafish wnt9a and wnt9b cDNA clones were used for phylogenetic analysis, which suggests their derivation from a common pre-vertebrate archeolog by gene duplication and divergence. Here we demonstrate that zwnt9a expression is found within unique (CNS, pronephric ducts, sensory organs) and overlapping (pectoral fin buds) expression domains relative to zwnt9b. Apparently, Wnt9 paralogs differentially parsed common ancestral expression domains during their subsequent rounds of gene duplication, divergence and loss in different vertebrate lineages. This expression data suggests ancestral roles for Wnt9s in early patterning of neural/oral-pharyngeal ectoderm and mesendoderm derivatives.

  11. Ancestral Relationships Using Metafounders

    DEFF Research Database (Denmark)

    Legarra, Andres; Christensen, Ole Fredslund; Vitezica, Zulma G


    due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships....... We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view where each population is considered as an infinite, unrelated pool. Several ancestral populations may......Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist...

  12. Genomic evidence for adaptation by gene duplication. (United States)

    Qian, Wenfeng; Zhang, Jianzhi


    Gene duplication is widely believed to facilitate adaptation, but unambiguous evidence for this hypothesis has been found in only a small number of cases. Although gene duplication may increase the fitness of the involved organisms by doubling gene dosage or neofunctionalization, it may also result in a simple division of ancestral functions into daughter genes, which need not promote adaptation. Hence, the general validity of the adaptation by gene duplication hypothesis remains uncertain. Indeed, a genome-scale experiment found similar fitness effects of deleting pairs of duplicate genes and deleting individual singleton genes from the yeast genome, leading to the conclusion that duplication rarely results in adaptation. Here we contend that the above comparison is unfair because of a known duplication bias among genes with different fitness contributions. To rectify this problem, we compare homologous genes from the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. We discover that simultaneously deleting a duplicate gene pair in S. cerevisiae reduces fitness significantly more than deleting their singleton counterpart in S. pombe, revealing post-duplication adaptation. The duplicates-singleton difference in fitness effect is not attributable to a potential increase in gene dose after duplication, suggesting that the adaptation is owing to neofunctionalization, which we find to be explicable by acquisitions of binary protein-protein interactions rather than gene expression changes. These results provide genomic evidence for the role of gene duplication in organismal adaptation and are important for understanding the genetic mechanisms of evolutionary innovation.

  13. Gallbladder duplication

    Directory of Open Access Journals (Sweden)

    Yagan Pillay


    Conclusion: Duplication of the gallbladder is a rare congenital abnormality, which requires special attention to the biliary ductal and arterial anatomy. Laparoscopic cholecystectomy with intraoperative cholangiography is the appropriate treatment in a symptomatic gallbladder. The removal of an asymptomatic double gallbladder remains controversial.

  14. Are palaeoscolecids ancestral ecdysozoans? (United States)

    Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J


    The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.

  15. Ancestral gene synteny reconstruction improves extant species scaffolding. (United States)

    Anselmetti, Yoann; Berry, Vincent; Chauve, Cedric; Chateau, Annie; Tannier, Eric; Bérard, Sèverine


    We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.

  16. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome. (United States)

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F


    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  17. Ancestral process and diffusion model with selection

    CERN Document Server

    Mano, Shuhei


    The ancestral selection graph in population genetics introduced by Krone and Neuhauser (1997) is an analogue to the coalescent genealogy. The number of ancestral particles, backward in time, of a sample of genes is an ancestral process, which is a birth and death process with quadratic death and linear birth rate. In this paper an explicit form of the number of ancestral particle is obtained, by using the density of the allele frequency in the corresponding diffusion model obtained by Kimura (1955). It is shown that fixation is convergence of the ancestral process to the stationary measure. The time to fixation of an allele is studied in terms of the ancestral process.

  18. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu


    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  19. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch


    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  20. Plant Genome Duplication Database. (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H


    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at

  1. The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes.

    Directory of Open Access Journals (Sweden)

    Mario A Fares

    Full Text Available Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs are more likely to be retained than small-scale duplications (SSDs, though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e SSD-duplicates complement their functions to a greater extent than WGD-duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication.

  2. The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes (United States)

    Fares, Mario A.; Keane, Orla M.; Toft, Christina; Carretero-Paulet, Lorenzo; Jones, Gary W.


    Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent than WGD–duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication. PMID:23300483

  3. Duplication in DNA Sequences (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  4. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates

    Directory of Open Access Journals (Sweden)

    Bergthorsson Ulfar


    Full Text Available Abstract Background Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD event (ohnologs versus small-scale duplications (SSD to determine if there exist any differences in their patterns of sequence evolution. Results For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression. Conclusions Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.

  5. Genome duplication, subfunction partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. (United States)

    Cresko, William A; Yan, Yi-Lin; Baltrus, David A; Amores, Angel; Singer, Amy; Rodríguez-Marí, Adriana; Postlethwait, John H


    Teleosts are the most species-rich group of vertebrates, and a genome duplication (tetraploidization) event in ray-fin fish appears to have preceded this remarkable explosion of biodiversity. What is the relationship of the ray-fin genome duplication to the teleost radiation? Genome duplication may have facilitated lineage divergence by partitioning different ancestral gene subfunctions among co-orthologs of tetrapod genes in different teleost lineages. To test this hypothesis, we investigated gene expression patterns for Sox9 gene duplicates in stickleback and zebrafish, teleosts whose lineages diverged early in Euteleost evolution. Most expression domains appear to have been partitioned between Sox9a and Sox9b before the divergence of stickleback and zebrafish lineages, but some ancestral expression domains were distributed differentially in each lineage. We conclude that some gene subfunctions, as represented by lineage-specific expression domains, may have assorted differently in separate lineages and that these may have contributed to lineage diversification during teleost evolution.

  6. Object Duplicate Detection


    Vajda, Péter


    With the technological evolution of digital acquisition and storage technologies, millions of images and video sequences are captured every day and shared in online services. One way of exploring this huge volume of images and videos is through searching a particular object depicted in images or videos by making use of object duplicate detection. Therefore, need of research on object duplicate detection is validated by several image and video retrieva...

  7. Near Duplicate Document Detection Survey

    Directory of Open Access Journals (Sweden)

    Bassma S. Alsulami


    Full Text Available Search engines are the major breakthrough on the web for retrieving the information. But List of retrieved documents contains a high percentage of duplicated and near document result. So there is the need to improve the performance of search results. Some of current search engine use data filtering algorithm which can eliminate duplicate and near duplicate documents to save the users’ time and effort. The identification of similar or near-duplicate pairs in a large collection is a significant problem with wide-spread applications. In this paper survey present an up-to-date review of the existing literature in duplicate and near duplicate detection in Web

  8. MECP2 Duplication Syndrome

    DEFF Research Database (Denmark)

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia;


    Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients ...

  9. A Duplicate Construction Experiment. (United States)

    Bridgeman, Brent

    This experiment was designed to assess the ability of item writers to construct truly parallel tests based on a "duplicate-construction experiment" in which Cronbach argues that if the universe description and sampling are ideally refined, the two independently constructed tests will be entirely equivalent, and that within the limits of item…

  10. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker

    Directory of Open Access Journals (Sweden)

    Berline eFopa Fomeju


    Full Text Available All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the

  11. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  12. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  13. An Introduction to Duplicate Detection

    CERN Document Server

    Nauman, Felix


    With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle

  14. Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. (United States)

    Alexandrou, Markos A; Swartz, Brian A; Matzke, Nicholas J; Oakley, Todd H


    Multiple rounds of whole genome duplication have repeatedly marked the evolution of vertebrates, and correlate strongly with morphological innovation. However, less is known about the behavioral, physiological and ecological consequences of genome duplication, and whether these events coincide with major transitions in vertebrate complexity. The complex behavior of anadromy - where adult fishes migrate up rivers from the sea to their natal site to spawn - is well known in salmonid fishes. Some hypotheses suggest that migratory behavior evolved as a consequence of an ancestral genome duplication event, which permitted salinity tolerance and osmoregulatory plasticity. Here we test whether anadromy evolved multiple times within salmonids, and whether genome duplication coincided with the evolution of anadromy. We present a method that uses ancestral character simulation data to plot the frequency of character transitions over a time calibrated phylogenetic tree to provide estimates of the absolute timing of character state transitions. Furthermore, we incorporate extinct and extant taxa to improve on previous estimates of divergence times. We present the first phylogenetic evidence indicating that anadromy evolved at least twice from freshwater salmonid ancestors. Results suggest that genome duplication did not coincide in time with changes in migratory behavior, but preceded a transition to anadromy by 55-50 million years. Our study represents the first attempt to estimate the absolute timing of a complex behavioral trait in relation to a genome duplication event.

  15. Taking High Conservation Value from Forests to Freshwaters (United States)

    Abell, Robin; Morgan, Siân K.; Morgan, Alexis J.


    The high conservation value (HCV) concept, originally developed by the Forest Stewardship Council, has been widely incorporated outside the forestry sector into companies' supply chain assessments and responsible purchasing policies, financial institutions' investment policies, and numerous voluntary commodity standards. Many, if not most, of these newer applications relate to production practices that are likely to affect freshwater systems directly or indirectly, yet there is little guidance as to whether or how HCV can be applied to water bodies. We focus this paper on commodity standards and begin by exploring how prominent standards currently address both HCVs and freshwaters. We then highlight freshwater features of high conservation importance and examine how well those features are captured by the existing HCV framework. We propose a new set of freshwater `elements' for each of the six values and suggest an approach for identifying HCV Areas that takes out-of-fence line impacts into account, thereby spatially extending the scope of existing methods to define HCVs. We argue that virtually any non-marine HCV assessment, regardless of the production sector, should be expanded to include freshwater values, and we suggest how to put those recommendations into practice.

  16. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. (United States)

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles


    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.

  17. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. (United States)

    Eick, Geeta N; Thornton, Joseph W


    Members of the steroid hormone receptor (SR) family activate transcription from different DNA response elements and are regulated by distinct hormonal ligands. Understanding the evolutionary process by which this diversity arose can provide insight into how and why SRs function as they do. Here we review the characteristics of the ancient receptor protein from which the SR family descends by a process of gene duplication and divergence. Several orthogonal lines of evidence - bioinformatic, phylogenetic, and experimental - indicate that this ancient SR had the capacity to activate transcription from DNA estrogen response elements in response to estrogens. Duplication and divergence of the ancestral SR gene subsequently generated new receptors that were activated by other steroid hormones, including progestagens, androgens, and corticosteroids. The androgen and progesterone receptors recruited as their ligands steroids that were previously present as biochemical intermediates in the synthesis of estrogens. This process is an example of molecular exploitation--the evolution of new molecular interactions when an older molecule, which previously had a different function, is co-opted as a binding partner by a newly evolved molecule. The primordial interaction between the ancestral steroid receptor and estrogens may itself have evolved due to an early molecular exploitation event.

  18. Optimized ancestral state reconstruction using Sankoff parsimony

    Directory of Open Access Journals (Sweden)

    Valiente Gabriel


    Full Text Available Abstract Background Parsimony methods are widely used in molecular evolution to estimate the most plausible phylogeny for a set of characters. Sankoff parsimony determines the minimum number of changes required in a given phylogeny when a cost is associated to transitions between character states. Although optimizations exist to reduce the computations in the number of taxa, the original algorithm takes time O(n2 in the number of states, making it impractical for large values of n. Results In this study we introduce an optimization of Sankoff parsimony for the reconstruction of ancestral states when ultrametric or additive cost matrices are used. We analyzed its performance for randomly generated matrices, Jukes-Cantor and Kimura's two-parameter models of DNA evolution, and in the reconstruction of elongation factor-1α and ancestral metabolic states of a group of eukaryotes, showing that in all cases the execution time is significantly less than with the original implementation. Conclusion The algorithms here presented provide a fast computation of Sankoff parsimony for a given phylogeny. Problems where the number of states is large, such as reconstruction of ancestral metabolism, are particularly adequate for this optimization. Since we are reducing the computations required to calculate the parsimony cost of a single tree, our method can be combined with optimizations in the number of taxa that aim at finding the most parsimonious tree.

  19. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.


    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  20. Genetics Home Reference: MECP2 duplication syndrome (United States)

    ... Genetics Home Health Conditions MECP2 duplication syndrome MECP2 duplication syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description MECP2 duplication syndrome is a condition that occurs almost exclusively ...

  1. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  2. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane


    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  3. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  4. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell


    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  5. Resurrecting ancestral alcohol dehydrogenases from yeast. (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A


    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  6. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  7. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. (United States)

    Groussin, Mathieu; Hobbs, Joanne K; Szöllősi, Gergely J; Gribaldo, Simonetta; Arcus, Vickery L; Gouy, Manolo


    The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify.

  8. Divergence in Enzymatic Activities in the Soybean GST Supergene Family Provides New Insight into the Evolutionary Dynamics of Whole-Genome Duplicates. (United States)

    Liu, Hai-Jing; Tang, Zhen-Xin; Han, Xue-Min; Yang, Zhi-Ling; Zhang, Fu-Min; Yang, Hai-Ling; Liu, Yan-Jing; Zeng, Qing-Yin


    Whole-genome duplication (WGD), or polyploidy, is a major force in plant genome evolution. A duplicate of all genes is present in the genome immediately following a WGD event. However, the evolutionary mechanisms responsible for the loss of, or retention and subsequent functional divergence of polyploidy-derived duplicates remain largely unknown. In this study we reconstructed the evolutionary history of the glutathione S-transferase (GST) gene family from the soybean genome, and identified 72 GST duplicated gene pairs formed by a recent Glycine-specific WGD event occurring approximately 13 Ma. We found that 72% of duplicated GST gene pairs experienced gene losses or pseudogenization, whereas 28% of GST gene pairs have been retained in the soybean genome. The GST pseudogenes were under relaxed selective constraints, whereas functional GSTs were subject to strong purifying selection. Plant GST genes play important roles in stress tolerance and detoxification metabolism. By examining the gene expression responses to abiotic stresses and enzymatic properties of the ancestral and current proteins, we found that polyploidy-derived GST duplicates show the divergence in enzymatic activities. Through site-directed mutagenesis of ancestral proteins, this study revealed that nonsynonymous substitutions of key amino acid sites play an important role in the divergence of enzymatic functions of polyploidy-derived GST duplicates. These findings provide new insights into the evolutionary and functional dynamics of polyploidy-derived duplicate genes.

  9. Analysis of Duplicate Genes in Soybean

    Institute of Scientific and Technical Information of China (English)

    C.M. Cai; K.J. Van; M.Y. Kim; S.H. Lee


    @@ Gene duplication is a major determinant of the size and gene complement of eukaryotic genomes (Lockton and Gaut, 2005). There are a number of different ways in which duplicate genes can arise (Sankoff, 2001), but the most spectacular method of gene duplication may be whole genome duplication via polyploidization.

  10. 10 CFR 9.35 - Duplication fees. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Duplication fees. 9.35 Section 9.35 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Freedom of Information Act Regulations § 9.35 Duplication fees. (a)(1) The charges by the duplicating service contractor for the duplication of records made available...

  11. The evolutionary fate of alternatively spliced homologous exons after gene duplication. (United States)

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso


    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene.

  12. Partial 1q Duplications and Associated Phenotype (United States)

    Morris, Marcos L.M.; Baroneza, José E.; Teixeira, Patricia; Medina, Cristina T.N.; Cordoba, Mara S.; Versiani, Beatriz R.; Roese, Liege L.; Freitas, Erika L.; Fonseca, Ana C.S.; dos Santos, Maria C.G.; Pic-Taylor, Aline; Rosenberg, Carla; Oliveira, Silviene F.; Ferrari, Iris; Mazzeu, Juliana F.


    Duplications of the long arm of chromosome 1 are rare. Distal duplications are the most common and have been reported as either pure trisomy or unbalanced translocations. The paucity of cases with pure distal 1q duplications has made it difficult to delineate a partial distal trisomy 1q syndrome. Here, we report 2 patients with overlapping 1q duplications detected by G-banding. Array CGH and FISH were performed to characterize the duplicated segments, exclude the involvement of other chromosomes and determine the orientation of the duplication. Patient 1 presents with a mild phenotype and carries a 22.5-Mb 1q41q43 duplication. Patient 2 presents with a pure 1q42.13qter inverted duplication of 21.5 Mb, one of the smallest distal 1q duplications ever described and one of the few cases characterized by array CGH, thus contributing to a better characterization of distal 1q duplication syndrome. PMID:27022331

  13. Reconstructing ancestral ranges in historical biogeography: properties and prospects

    Institute of Scientific and Technical Information of China (English)

    Kristin S. LAMM; Benjamin D. REDELINGS


    Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal-vicariance analysis, the dispersal-extinction-cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.

  14. Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events. (United States)

    Rosato, Marcela; Moreno-Saiz, Juan C; Galián, José A; Rosselló, Josep A


    Several genome duplications have been identified in the evolution of seed plants, providing unique systems for studying karyological processes promoting diversification and speciation. Knowledge about the number of ribosomal DNA (rDNA) loci, together with their chromosomal distribution and structure, provides clues about organismal and molecular evolution at various phylogenetic levels. In this work, we aim to elucidate the evolutionary dynamics of karyological and rDNA site-number variation in all known taxa of subtribe Vellinae, showing a complex scenario of ancestral and more recent polyploid events. Specifically, we aim to infer the ancestral chromosome numbers and patterns of chromosome number variation, assess patterns of variation of both 45S and 5S rDNA families, trends in site-number change of rDNA loci within homoploid and polyploid series, and reconstruct the evolutionary history of rDNA site number using a phylogenetic hypothesis as a framework. The best-fitting model of chromosome number evolution with a high likelihood score suggests that the Vellinae core showing x = 17 chromosomes arose by duplication events from a recent x = 8 ancestor. Our survey suggests more complex patterns of polyploid evolution than previously noted for Vellinae. High polyploidization events (6x, 8x) arose independently in the basal clade Vella castrilensis-V. lucentina, where extant diploid species are unknown. Reconstruction of ancestral rDNA states in Vellinae supports the inference that the ancestral number of loci in the subtribe was two for each multigene family, suggesting that an overall tendency towards a net loss of 5S rDNA loci occurred during the splitting of Vellinae ancestors from the remaining Brassiceae lineages. A contrasting pattern for rDNA site change in both paleopolyploid and neopolyploid species was linked to diversification of Vellinae lineages. This suggests dynamic and independent changes in rDNA site number during speciation processes and a

  15. Origin of the Yeast Whole-Genome Duplication.

    Directory of Open Access Journals (Sweden)

    Kenneth H Wolfe


    Full Text Available Whole-genome duplications (WGDs are rare evolutionary events with profound consequences. They double an organism's genetic content, immediately creating a reproductive barrier between it and its ancestors and providing raw material for the divergence of gene functions between paralogs. Almost all eukaryotic genome sequences bear evidence of ancient WGDs, but the causes of these events and the timing of intermediate steps have been difficult to discern. One of the best-characterized WGDs occurred in the lineage leading to the baker's yeast Saccharomyces cerevisiae. Marcet-Houben and Gabaldón now show that, rather than simply doubling the DNA of a single ancestor, the yeast WGD likely involved mating between two different ancestral species followed by a doubling of the genome to restore fertility.

  16. Large-scale inference of the point mutational spectrum in human segmental duplications

    Directory of Open Access Journals (Sweden)

    Rognes Torbjørn


    Full Text Available Abstract Background Recent segmental duplications are relatively large (≥ 1 kb genomic regions of high sequence identity (≥ 90%. They cover approximately 4–5% of the human genome and play important roles in gene evolution and genomic disease. The DNA sequence differences between copies of a segmental duplication represent the result of various mutational events over time, since any two duplication copies originated from the same ancestral DNA sequence. Based on this fact, we have developed a computational scheme for inference of point mutational events in human segmental duplications, which we collectively term duplication-inferred mutations (DIMs. We have characterized these nucleotide substitutions by comparing them with high-quality SNPs from dbSNP, both in terms of sequence context and frequency of substitution types. Results Overall, DIMs show a lower ratio of transitions relative to transversions than SNPs, although this ratio approaches that of SNPs when considering DIMs within most recent duplications. Our findings indicate that DIMs and SNPs in general are caused by similar mutational mechanisms, with some deviances at the CpG dinucleotide. Furthermore, we discover a large number of reference SNPs that coincide with computationally inferred DIMs. The latter reflects how sequence variation in duplicated sequences can be misinterpreted as ordinary allelic variation. Conclusion In summary, we show how DNA sequence analysis of segmental duplications can provide a genome-wide mutational spectrum that mirrors recent genome evolution. The inferred set of nucleotide substitutions represents a valuable complement to SNPs for the analysis of genetic variation and point mutagenesis.

  17. Subfunctionalization reduces the fitness cost of gene duplication in humans by buffering dosage imbalances

    Directory of Open Access Journals (Sweden)

    Fernández Ariel


    Full Text Available Abstract Background Driven essentially by random genetic drift, subfunctionalization has been identified as a possible non-adaptive mechanism for the retention of duplicate genes in small-population species, where widespread deleterious mutations are likely to cause complementary loss of subfunctions across gene copies. Through subfunctionalization, duplicates become indispensable to maintain the functional requirements of the ancestral locus. Yet, gene duplication produces a dosage imbalance in the encoded proteins and thus, as investigated in this paper, subfunctionalization must be subject to the selective forces arising from the fitness bottleneck introduced by the duplication event. Results We show that, while arising from random drift, subfunctionalization must be inescapably subject to selective forces, since the diversification of expression patterns across paralogs mitigates duplication-related dosage imbalances in the concentrations of encoded proteins. Dosage imbalance effects become paramount when proteins rely on obligatory associations to maintain their structural integrity, and are expected to be weaker when protein complexation is ephemeral or adventitious. To establish the buffering effect of subfunctionalization on selection pressure, we determine the packing quality of encoded proteins, an established indicator of dosage sensitivity, and correlate this parameter with the extent of paralog segregation in humans, using species with larger population -and more efficient selection- as controls. Conclusions Recognizing the role of subfunctionalization as a dosage-imbalance buffer in gene duplication events enabled us to reconcile its mechanistic nonadaptive origin with its adaptive role as an enabler of the evolution of genetic redundancy. This constructive role was established in this paper by proving the following assertion: If subfunctionalization is indeed adaptive, its effect on paralog segregation should scale with the dosage

  18. Ancestral Area Analysis of the Genus Caragara (Leguminosae)

    Institute of Scientific and Technical Information of China (English)



    Caragana has a temperate Asian distribution. Based on the phylogeny and 13 distributionalareas of this genus, its ancestral area was studied via the ancestral area analysis suggested by Bremer(1992), Ronquist (1994) and Hausdorf (1997). The results indicate that three areas, Far East-NortheastChina, Altai-Sayan and North China-Qinling Mountains (Mts) are likely the ancestral areas. Linking to theviewpoints of the Holarctic origin for north temperate flora, Far East-Northeast China seems more likely tobe the ancestral area. According to the three ancestral areas isolated geographically and the analysis inthe present study, as well as former biogeographical analysis of this genus, it is suggested that Caraganaspeciation is mainly in the mode of vicariance rather than dispersal, and dispersed is often in shortdistance.

  19. Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar) (United States)

    Davidson, William S.


    Salmonids (e.g. Atlantic salmon, Pacific salmon, and trouts) have a long legacy of genome duplication. In addition to three ancient genome duplications that all teleosts are thought to share, salmonids have had one additional genome duplication. We explored a methodology for untangling these duplications from each other to better understand them in Atlantic salmon. In this methodology, homeologous regions (paralogous/duplicated genomic regions originating from a whole genome duplication) from the most recent genome duplication were assumed to have duplicated genes at greater density and have greater sequence similarity. This assumption was used to differentiate duplicated gene pairs in Atlantic salmon that are either from the most recent genome duplication or from earlier duplications. From a comparison with multiple vertebrate species, it is clear that Atlantic salmon have retained more duplicated genes from ancient genome duplications than other vertebrates--often at higher density in the genome and containing fewer synonymous mutations. It may be that polysomic inheritance is the mechanism responsible for maintaining ancient gene duplicates in salmonids. Polysomic inheritance (when multiple chromosomes pair during meiosis) is thought to be relatively common in salmonids compared to other vertebrate species. These findings illuminate how genome duplications may not only increase the number of duplicated genes, but may also be involved in the maintenance of them from previous genome duplications as well. PMID:28241055

  20. Evolution of human IgH3'EC duplicated structures: both enhancers HS1,2 are polymorphic with variation of transcription factor's consensus sites. (United States)

    Giambra, Vincenzo; Fruscalzo, Alberto; Giufre', Maria; Martinez-Labarga, Cristina; Favaro, Marco; Rocchi, Mariano; Frezza, Domenico


    The enhancer complex regulatory region at the 3' of the immunoglobulin heavy cluster (IgH3'EC) is duplicated in apes along with four constant genes and the region is highly conserved throughout humans. Both human IgH3'ECs consist of three loci high sensitive (HS) to DNAse I with enhancer activity. It is thus possible that the presence of structural divergences between the two IgH3'ECs and of relative polymorphisms correspond to functional regulatory changes. To analyse the polymorphisms of these almost identical regions, it resulted mandatory to identify the presence of divergent sequences, in order to select distinctive primers for specific PCR genomic amplifications. To this aim, we first compared the two entire IgH3'ECs in silicio, utilising the updated GenBank (GB) contigs, then we analysed the two IgH3'ECs by cloning and sequencing amplicons from independent genomes. In silicio analysis showed that several inversions, deletions and short insertions had occurred after the duplication. We analysed in detail, by sequencing specific regions, the polymorphisms occurring in enhancer HS1,2-A (which lies in IgH3'EC-1, 3' to the Calpha-1 gene) and in enhancer HS1,2-B (which lies in IgH3'EC-2, 3' to Calpha-2). Polymorphisms are due to the repetition (occurring one to four times) of a 38-bp sequence present at the 3' of the core of enhancers HS1,2. The structure of both human HS1,2 enhancers has revealed not yet described polymorphic features due to the presence of variable spacer elements separating the 38-bp repetitions and to variable external elements bordering the repetition cluster. We found that one of the external elements gave rise to a divergent allele 3 in the two clusters. The frequency of the different alleles of the two loci varies in the Italian population and allele 3 of both loci are very rare. The analysis of the Callicebus moloch, Gorilla gorilla and Pan troglodytes HS1,2 enhancers showed the transformation from the ancestral structure with the 31- to

  1. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal


    consistent with an ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, provide valuable new tools to study salmonids.

  2. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Cliften, P.F.; Johnston, M.


    Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications(1-3). Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes(1). Duplication(s) could have occurred before or after a given speciation. ...

  3. Congenital duplication of the gallbladder. (United States)

    Safioleas, Michael C; Papavassiliou, Vassilios G; Moulakakis, Konstantinos G; Angouras, Dimitrios C; Skandalakis, Panagiotis


    Duplication of the gallbladder is a rare congenital anomaly of the biliary system. In this article, two cases of gallbladder duplication are presented. The first case is a patient with double gallbladder and concomitant choledocholithiasis. The probable diagnosis of double gallbladder was made preoperatively by computed tomography. The patient underwent a successful open cholecystectomy and common bile duct exploration. In the second case, two cystic formations in the place of gallbladder are demonstrated with ultrasound scan in a woman with acute cholecystitis. At surgery, two gallbladders were found. A brief review of epidemiology and anatomy of double gallbladder is included, along with a discussion of the difficulties in diagnosis and treatment of this condition.

  4. AMID: autonomous modeler of intragenic duplication. (United States)

    Kummerfeld, Sarah K; Weiss, Anthony S; Fekete, Alan; Jermiin, Lars S


    Intragenic duplication is an evolutionary process where segments of a gene become duplicated. While there has been much research into whole-gene or domain duplication, there have been very few studies of non-tandem intragenic duplication. The identification of intragenically replicated sequences may provide insight into the evolution of proteins, helping to link sequence data with structure and function. This paper describes a tool for autonomously modelling intragenic duplication. AMID provides: identification of modularly repetitive genes; an algorithm for identifying repeated modules; and a scoring system for evaluating the modules' similarity. An evaluation of the algorithms and use cases are presented.

  5. A critical assessment of cross-species detection of gene duplicates using comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Renn Suzy CP


    Full Text Available Abstract Background Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. Results Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. Conclusions Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.

  6. Chromosome I duplications in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    McKim, K.S.; Rose, A.M. (Univ. of British Columbia, Vancouver (Canada))


    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.

  7. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    Directory of Open Access Journals (Sweden)

    Ciprian Jeler


    Full Text Available This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the consequences are not very promising: very much like correlationism, speculative materialism explicitly denies what I call the “generalized version of the realistic assumption of science” and, in so doing, renders scientific ancestral statements de jure unverifiable. Therefore, if correlationism is rendered suspicious by the issue of ancestrality, the same can be said of speculative materialism.

  8. Tubular Colonic Duplication Presenting as Rectovestibular Fistula. (United States)

    Karkera, Parag J; Bendre, Pradnya; D'souza, Flavia; Ramchandra, Mukunda; Nage, Amol; Palse, Nitin


    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in about 15% of all gastrointestinal duplications. Double termination of tubular colonic duplication in the perineum is even more uncommon. We present a case of a Y-shaped tubular colonic duplication which presented with a rectovestibular fistula and a normal anus. Radiological evaluation and initial exploration for sigmoidostomy revealed duplicated colons with a common vascular supply. Endorectal mucosal resection of theduplicated distal segment till the colostomy site with division of the septum of the proximal segment and colostomy closure proved curative without compromise of the continence mechanism. Tubular colonic duplication should always be ruled out when a diagnosis of perineal canal is considered in cases of vestibular fistula alongwith a normal anus.

  9. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa


    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  10. Identification of the ancestral killer immunoglobulin-like receptor gene in primates

    Directory of Open Access Journals (Sweden)

    Coggill Penny


    Full Text Available Abstract Background Killer Immunoglobulin-like Receptors (KIR are essential immuno-surveillance molecules. They are expressed on natural killer and T cells, and interact with human leukocyte antigens. KIR genes are highly polymorphic and contribute vital variability to our immune system. Numerous KIR genes, belonging to five distinct lineages, have been identified in all primates examined thus far and shown to be rapidly evolving. Since few KIR remain orthologous between species, with only one of them, KIR2DL4, shown to be common to human, apes and monkeys, the evolution of the KIR gene family in primates remains unclear. Results Using comparative analyses, we have identified the ancestral KIR lineage (provisionally named KIR3DL0 in primates. We show KIR3DL0 to be highly conserved with the identification of orthologues in human (Homo sapiens, common chimpanzee (Pan troglodytes, gorilla (Gorilla gorilla, rhesus monkey (Macaca mulatta and common marmoset (Callithrix jacchus. We predict KIR3DL0 to encode a functional molecule in all primates by demonstrating expression in human, chimpanzee and rhesus monkey. Using the rhesus monkey as a model, we further show the expression profile to be typical of KIR by quantitative measurement of KIR3DL0 from an enriched population of natural killer cells. Conclusion One reason why KIR3DL0 may have escaped discovery for so long is that, in human, it maps in between two related leukocyte immunoglobulin-like receptor clusters outside the known KIR gene cluster on Chromosome 19. Based on genomic, cDNA, expression and phylogenetic data, we report a novel lineage of immunoglobulin receptors belonging to the KIR family, which is highly conserved throughout 50 million years of primate evolution.

  11. Detecting long tandem duplications in genomic sequences

    Directory of Open Access Journals (Sweden)

    Audemard Eric


    Full Text Available Abstract Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  12. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)


    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  13. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes.

    Directory of Open Access Journals (Sweden)

    Yun Ding

    Full Text Available Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator, exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes.

  14. The combinatorics of tandem duplication trees. (United States)

    Gascuel, Olivier; Hendy, Michael D; Jean-Marie, Alain; McLachlan, Robert


    We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted) that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm.

  15. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum.

    Directory of Open Access Journals (Sweden)

    Chenfei Zheng

    Full Text Available Complete mitochondrial (mt genome sequences with duplicate control regions (CRs have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P

  16. Duodenal duplication cyst identified with MRCP

    Energy Technology Data Exchange (ETDEWEB)

    Carbognin, G.; Guarise, A.; Biasiutti, C.; Pagnotta, N.; Procacci, C. [Department of Radiology, University Hospital ' G.B. Rossi' , Verona (Italy)


    We report a case of a stalked cystic duodenal duplication. The lesion, hyperintense on T2-weighted GRE images, maintained the signal intensity after oral administration of a negative contrast agent (Lumirem, Guerbet, Aulnay-Sous-Bois, France), confirming its independence from the duodenal lumen. To our knowledge, this is the first demonstration of duodenal duplication by means of MR cholangiopancreatography. (orig.)

  17. Bilateral duplication of the internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu [Seoul National University College of Medicine, Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si (Korea); Koo, Ja-Won [Seoul National University College of Medicine, Department of Otolaryngology, Seoul National University Bundang Hospital, Seongnam-si (Korea)


    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  18. Musculature in sipunculan worms: ontogeny and ancestral states. (United States)

    Schulze, Anja; Rice, Mary E


    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  19. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.

    Directory of Open Access Journals (Sweden)

    Li-Jun Ma


    Full Text Available Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs, comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11, could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.

  20. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin. (United States)

    Remmert, M; Biegert, A; Linke, D; Lupas, A N; Söding, J


    Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.

  1. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  2. Duplicated Ižnternal Juguler Vein

    Directory of Open Access Journals (Sweden)

    Ahmet Kirbas


    Full Text Available    Duplicated internal juguler vein (DIJV is a rare anomaly and reported incidence is 0.4 % in the literature. A 45-year-old female patient was referred to our hospital because of non pulsatile neck swelling. The magnetic resonance image (MRI showed left IJVs divided at the angles of the mandible running anterior to the common carotid artery until anterior mediastinal level. Clinicians should be aware of the rare possibility of duplicated IJVs in patients presenting with neck swelling. The development of imaging technics have revealed more cases of duplicated internal juguler vein.

  3. Mitochondrial genome sequences of Nematocera (lower Diptera): evidence of rearrangement following a complete genome duplication in a winter crane fly. (United States)

    Beckenbach, Andrew T


    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented.

  4. Identification of immunogenic HLA-B7 "Achilles' heel" epitopes within highly conserved regions of HIV

    DEFF Research Database (Denmark)

    De Groot, Anne S; Rivera, Daniel S; McMurry, Julie A;


    previously described as restricted by B7. The HLA-B7 restricted epitopes discovered using this in silico screening approach are highly conserved across strains and clades of HIV as well as conserved in the HIV genome over the 20 years since HIV-1 isolates were first sequenced. This study demonstrates......Genetic polymorphisms in class I human leukocyte antigen molecules (HLA) have been shown to determine susceptibility to HIV infection as well as the rate of progression to AIDS. In particular, the HLA-B7 supertype has been shown to be associated with high viral loads and rapid progression...... to disease. Using a multiplatform in silico/in vitro approach, we have prospectively identified 45 highly conserved, putative HLA-B7 restricted HIV CTL epitopes and evaluated them in HLA binding and ELISpot assays. All 45 epitopes (100%) bound to HLA-B7 in cell-based HLA binding assays: 28 (62%) bound...

  5. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    Directory of Open Access Journals (Sweden)

    Sophie Nadot


    Full Text Available Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales as a whole. Here, we present ancestral state reconstructions for several perianth characters, such as differentiation into sepals and petals, shape of petals, presence/absence of nectaries, and petaloid or sepaloid aspect of sepals. Characters were scored using the PROTEUS database and optimized on the most recent phylogeny of Ranunculaceae using parsimony and maximum likelihood methods. The results are discussed with regard to recent evo-devo studies focused on identifying genes involved in floral organs identity (the so-called ABC model in Ranunculales.

  6. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe


    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  7. Bilingualism (Ancestral Language Maintenance) among Native American, Vietnamese American, and Hispanic American College Students. (United States)

    Wharry, Cheryl


    A survey of 21 Hispanic, 22 Native American, and 10 Vietnamese American college students found that adoption or maintenance of ancestral language was related to attitudes toward ancestral language, beliefs about parental attitudes, and integrative motivation (toward family and ancestral ethnic group). There were significant differences by gender…

  8. The ancestral eutherian karyotype is present in Xenarthra.

    Directory of Open Access Journals (Sweden)

    Marta Svartman


    Full Text Available Molecular studies have led recently to the proposal of a new super-ordinal arrangement of the 18 extant Eutherian orders. From the four proposed super-orders, Afrotheria and Xenarthra were considered the most basal. Chromosome-painting studies with human probes in these two mammalian groups are thus key in the quest to establish the ancestral Eutherian karyotype. Although a reasonable amount of chromosome-painting data with human probes have already been obtained for Afrotheria, no Xenarthra species has been thoroughly analyzed with this approach. We hybridized human chromosome probes to metaphases of species (Dasypus novemcinctus, Tamandua tetradactyla, and Choloepus hoffmanii representing three of the four Xenarthra families. Our data allowed us to review the current hypotheses for the ancestral Eutherian karyotype, which range from 2n = 44 to 2n = 48. One of the species studied, the two-toed sloth C. hoffmanii (2n = 50, showed a chromosome complement strikingly similar to the proposed 2n = 48 ancestral Eutherian karyotype, strongly reinforcing it.

  9. Ancestral facial morphology of Old World higher primates. (United States)

    Benefit, B R; McCrossin, M L


    Fossil remains of the cercopithecoid Victoria-pithecus recently recovered from middle Miocene deposits of Maboko Island (Kenya) provide evidence of the cranial anatomy of Old World monkeys prior to the evolutionary divergence of the extant subfamilies Colobinae and Cercopithecinae. Victoria-pithecus shares a suite of craniofacial features with the Oligocene catarrhine Aegyptopithecus and early Miocene hominoid Afropithecus. All three genera manifest supraorbital costae, anteriorly convergent temporal lines, the absence of a postglabellar fossa, a moderate to long snout, great facial height below the orbits, a deep cheek region, and anteriorly tapering premaxilla. The shared presence of these features in a catarrhine generally ancestral to apes and Old World monkeys, an early ape, and an early Old World monkey indicates that they are primitive characteristics that typified the last common ancestor of Hominoidea and Cercopithecoidea. These results contradict prevailing cranial morphotype reconstructions for ancestral catarrhines as Colobus- or Hylobates-like, characterized by a globular anterior braincase and orthognathy. By resolving several equivocal craniofacial morphocline polarities, these discoveries lay the foundation for a revised interpretation of the ancestral cranial morphology of Catarrhini more consistent with neontological and existing paleontological evidence.

  10. The ancestral eutherian karyotype is present in Xenarthra. (United States)

    Svartman, Marta; Stone, Gary; Stanyon, Roscoe


    Molecular studies have led recently to the proposal of a new super-ordinal arrangement of the 18 extant Eutherian orders. From the four proposed super-orders, Afrotheria and Xenarthra were considered the most basal. Chromosome-painting studies with human probes in these two mammalian groups are thus key in the quest to establish the ancestral Eutherian karyotype. Although a reasonable amount of chromosome-painting data with human probes have already been obtained for Afrotheria, no Xenarthra species has been thoroughly analyzed with this approach. We hybridized human chromosome probes to metaphases of species (Dasypus novemcinctus, Tamandua tetradactyla, and Choloepus hoffmanii) representing three of the four Xenarthra families. Our data allowed us to review the current hypotheses for the ancestral Eutherian karyotype, which range from 2n = 44 to 2n = 48. One of the species studied, the two-toed sloth C. hoffmanii (2n = 50), showed a chromosome complement strikingly similar to the proposed 2n = 48 ancestral Eutherian karyotype, strongly reinforcing it.

  11. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.

  12. 44 CFR 206.191 - Duplication of benefits. (United States)


    ... section 312 of the Stafford Act, entitled Duplication of Benefits. This section relates to assistance for...) Duplication when assistance under the Act is involved. If duplication is discovered, the Regional... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Duplication of benefits....

  13. 48 CFR 1331.205-70 - Duplication of effort. (United States)


    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Duplication of effort....205-70 Duplication of effort. The Department will not pay any costs for work that is duplicative of..., Duplication of Effort, in all cost-reimbursement, time and materials, and labor hour solicitations...

  14. 44 CFR 204.62 - Duplication and recovery of assistance. (United States)


    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Duplication and recovery of... Administration § 204.62 Duplication and recovery of assistance. (a) Duplication of benefits. We provide supplementary assistance under the Stafford Act, which generally may not duplicate benefits received by...

  15. Persistence of duplicated PAC1 receptors in the teleost, Sparus auratus

    Directory of Open Access Journals (Sweden)

    Clark Melody S


    Full Text Available Abstract Background: Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation or partitioning of the function of the ancestral molecule (sub-functionalisation. Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide, were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown. Results: Duplicate sea bream PACAP receptor genes (sbPAC1A and sbPAC1B, members of family 2 GPCRs, were isolated and share 77% amino acid sequence identity. RT-PCR with specific primers for each gene revealed that they have a differential tissue distribution which overlaps with the distribution of the single mammalian receptor. Furthermore, in common with mammals, the teleost genes undergo alternative splicing and a PAC1Ahop1 isoform has been characterised. Duplicated orthologous receptors have also been identified in other teleost genomes and their distribution profile suggests that function may be species specific. Functional analysis of the paralogue sbPAC1s in Cos7 cells revealed that they are strongly stimulated in the presence of mammalian PACAP27 and PACAP38 and far less with VIP (Vasoactive Intestinal Peptide. The sbPAC1 receptors are equally stimulated (LOGEC50 values for maximal cAMP production in the presence of PACAP27 (-8.74 ± 0.29 M and -9.15 ± 0.21 M, respectively for sbPAC1A and sbPAC1B, P > 0.05 and PACAP38 (-8.54 ± 0.18 M and -8.92 ± 0.24 M, respectively for sbPAC1A and sbPAC1B, P > 0

  16. Local duplication of gonadotropin-releasing hormone (GnRH receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor.

    Directory of Open Access Journals (Sweden)

    Fatemeh Ameri Sefideh

    Full Text Available Gonadotropin-releasing hormone (GnRH and the GnRH receptor (GnRHR play an important role in vertebrate reproduction. Although many GnRHR genes have been identified in a large variety of vertebrate species, the evolutionary history of GnRHR in vertebrates is unclear. To trace the evolutionary origin of GnRHR we examined the conserved synteny of chromosomes harboring GnRHR genes and matched the genes to linkage groups of reconstructed vertebrate ancestor chromosomes. Consistent with the phylogenetic tree, three pairs of GnRHR subtypes were identified in three paralogous linkage groups, indicating that an ancestral pair emerged through local duplication before two rounds of whole genome duplication (2R. The 2R then led to the generation of six subtypes of GnRHR. Some subtypes were lost during vertebrate evolution after the divergence of teleosts and tetrapods. One subtype includes mammalian GnRHR and a coelacanth GnRHR that showed the greatest response to GnRH1 among the three types of GnRH. This study provides new insight into the evolutionary relationship of vertebrate GnRHRs.

  17. Duplication and relocation of the functional DPY19L2 gene within low copy repeats

    Directory of Open Access Journals (Sweden)

    Cheung Joseph


    Full Text Available Abstract Background Low copy repeats (LCRs are thought to play an important role in recent gene evolution, especially when they facilitate gene duplications. Duplicate genes are fundamental to adaptive evolution, providing substrates for the development of new or shared gene functions. Moreover, silencing of duplicate genes can have an indirect effect on adaptive evolution by causing genomic relocation of functional genes. These changes are theorized to have been a major factor in speciation. Results Here we present a novel example showing functional gene relocation within a LCR. We characterize the genomic structure and gene content of eight related LCRs on human Chromosomes 7 and 12. Two members of a novel transmembrane gene family, DPY19L, were identified in these regions, along with six transcribed pseudogenes. One of these genes, DPY19L2, is found on Chromosome 12 and is not syntenic with its mouse orthologue. Instead, the human locus syntenic to mouse Dpy19l2 contains a pseudogene, DPY19L2P1. This indicates that the ancestral copy of this gene has been silenced, while the descendant copy has remained active. Thus, the functional copy of this gene has been relocated to a new genomic locus. We then describe the expansion and evolution of the DPY19L gene family from a single gene found in invertebrate animals. Ancient duplications have led to multiple homologues in different lineages, with three in fish, frogs and birds and four in mammals. Conclusion Our results show that the DPY19L family has expanded throughout the vertebrate lineage and has undergone recent primate-specific evolution within LCRs.

  18. Do Children Think that Duplicating the Body also Duplicates the Mind? (United States)

    Hood, Bruce; Gjersoe, Nathalia L.; Bloom, Paul


    Philosophers use hypothetical duplication scenarios to explore intuitions about personal identity. Here we examined 5- to 6-year-olds' intuitions about the physical properties and memories of a live hamster that is apparently duplicated by a machine. In Study 1, children thought that more of the original's physical properties than episodic…

  19. National-scale analysis for the identification of High Conservation Value Forests (HCVFs

    Directory of Open Access Journals (Sweden)

    Maesano M


    Full Text Available In Italy, forests cover about one third of the national territory. In recent years, sustainability has been applied to forest management through the introduction of the Sustainable Forest Management (SFM concept. Since the Rio Conference, several initiatives at international and governmental level aimed to realize the SFM concept by the establishment of a set of principles with general validity. One of the most successful initiatives is the Forest Stewardship Council (FSC, which has developed a system of voluntary certification specific for the forestry sector, as well as 10 principles and 56 criteria for good forest management. The concept of High Conservation Value Forest concept (HCVFs was defined in 1999 by FSC under Principle 9, and its application requires the identification of six categories of High Conservation Values (HCV. The aim of this study was to define the parameters for the HCVFs Italian forests, A first national mapping for the first level of High Conservation Value was developed focusing on protected areas, threatened and endangered species and the ecosystemic temporal use. Protected areas may constitute the basis of the SFM. This work is the result of data processing and distribution analysis through the intersection of vectorial data of national forests areas in ArcMap, on the basis of available information. Protected forest areas represent 34% of the national forest area. The different categories of protected areas contribute differently to protection, in particular the larger amount of preserved forests (22.96% falls within Sites of Community Importance (SCI. The analysis of highly protected forest types revealed major differences likely linked to site ecological conditions, which are extremely variable over the country. The HCVF concept is applied in the forest certification field and can be used in sustainable forest management, planning and land use, and policy commitments.

  20. A conserved segmental duplication within ELA. (United States)

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C


    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication.

  1. A highly conserved repeated chromosomal sequence in the radioresistant bacterium Deinococcus radiodurans SARK. (United States)

    Lennon, E; Gutman, P D; Yao, H L; Minton, K W


    A DNA fragment containing a portion of a DNA damage-inducible gene from Deinococcus radiodurans SARK hybridized to numerous fragments of SARK genomic DNA because of a highly conserved repetitive chromosomal element. The element is of variable length, ranging from 150 to 192 bp, depending on the absence or presence of one or two 21-bp sequences located internally. A putative translational start site of the damage-inducible gene is within the reiterated element. The element contains dyad symmetries that suggest modes of transcriptional and/or translational control.

  2. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  3. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements.

    Directory of Open Access Journals (Sweden)

    Amaury Herpin


    Full Text Available Control and coordination of eukaryotic gene expression rely on transcriptional and posttranscriptional regulatory networks. Evolutionary innovations and adaptations often require rapid changes of such networks. It has long been hypothesized that transposable elements (TE might contribute to the rewiring of regulatory interactions. More recently it emerged that TEs might bring in ready-to-use transcription factor binding sites to create alterations to the promoters by which they were captured. A process where the gene regulatory architecture is of remarkable plasticity is sex determination. While the more downstream components of the sex determination cascades are evolutionary conserved, the master regulators can switch between groups of organisms even on the interspecies level or between populations. In the medaka fish (Oryzias latipes a duplicated copy of dmrt1, designated dmrt1bY or DMY, on the Y chromosome was shown to be the master regulator of male development, similar to Sry in mammals. We found that the dmrt1bY gene has acquired a new feedback downregulation of its expression. Additionally, the autosomal dmrt1a gene is also able to regulate transcription of its duplicated paralog by binding to a unique target Dmrt1 site nested within the dmrt1bY proximal promoter region. We could trace back this novel regulatory element to a highly conserved sequence within a new type of TE that inserted into the upstream region of dmrt1bY shortly after the duplication event. Our data provide functional evidence for a role of TEs in transcriptional network rewiring for sub- and/or neo-functionalization of duplicated genes. In the particular case of dmrt1bY, this contributed to create new hierarchies of sex-determining genes.

  4. Visual system evolution and the nature of the ancestral snake. (United States)

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J


    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic.

  5. Identification, expression, and characterization of the highly conserved D-xylose isomerase in animals

    Institute of Scientific and Technical Information of China (English)

    Ming Ding; Yigang Teng; Qiuyu Yin; Wei Chen; Fukun Zhao


    D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC The xylose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.

  6. Estimating ancestral geographical distributions: a Gondwanan origin for aphid parasitoids? (United States)

    Belshaw, R; Dowton, M; Quicke, D L; Austin, A D


    We tested the published hypothesis of a Gondwanan origin for the overwhelmingly northern hemisphere aphid parasitoids (Aphidiinae) as follows: (i) finding their sister group by a phylogenetic analysis of the entire Braconidae (Insecta: Hymenopterai using sequence data from approximately 500 bp fragments of both the nuclear 28S (D2 region) and mitochondrial 16S rDNA genes, (ii) using this sister-group relationship and the more informative 28S D2 gene to estimate the phylogeny of the Aphidiinae and (iii) estimating the ancestral distribution for the Aphidiinae using maximum-likelihood and maximum-parsimony methods. Both methods indicated a Gondwanan origin. PMID:10737407

  7. Infected colonic duplication: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Seon; Lee, Young Hwan; Kang, Eugene; Oh, Yeon Kyun; Yun, Ki Jung [Wonkwang Univ. School of Medicine and Hospital, Iksan (Korea, Republic of)


    An enteric duplication is a relatively common congenital anomaly, which is rarely complicated by infection. We report the radiologic findings including ultrasound, barium enema and computed tomography (CT) of an infected colonic duplication that was confirmed by pathology. This case demonstrated a complex hypoechoic cystic mass with a thick wall and septa in the left lower quadrant of abdomen and increased the color flow on the Color Doppler ultrasonography. On CT images, the cystic mass contained multiple enhancing septa, infiltrated to the mesocolon and displaced the adjacent bowels. On exploration, a large cystic mass with an abscess attached to the mesocolic border adhering to the small bowel was found.

  8. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    Kuhn Misty L


    Full Text Available Abstract Background ADP-glucose pyrophosphorylase (ADP-Glc PPase catalyzes the first committed step in the synthesis of glycogen in bacteria and starch in algae and plants. In oxygenic photosynthetic organisms, ADP-Glc PPase is mainly activated by 3-phosphoglycerate (3-PGA and to a lesser extent by other metabolites. In this work, we analyzed the activation promiscuity of ADP-Glc PPase subunits from the cyanobacterium Anabaena PCC 7120, the green alga Ostreococcus tauri, and potato (Solanum tuberosum tuber by comparing a specificity constant for 3-PGA, fructose-1,6-bisphosphate (FBP, fructose-6-phosphate, and glucose-6-phosphate. Results The 3-PGA specificity constant for the enzymes from Anabaena (homotetramer, O. tauri, and potato tuber was considerably higher than for other activators. O. tauri and potato tuber enzymes were heterotetramers comprising homologous small and large subunits. Conversely, the O. tauri small subunit (OtaS homotetramer was more promiscuous because its FBP specificity constant was similar to that for 3-PGA. To explore the role of both OtaS and OtaL (O. tauri large subunit in determining the specificity of the heterotetramer, we knocked out the catalytic activity of each subunit individually by site-directed mutagenesis. Interestingly, the mutants OtaSD148A/OtaL and OtaS/OtaLD171A had higher specificity constants for 3-PGA than for FBP. Conclusions After gene duplication, OtaS seemed to have lost specificity for 3-PGA compared to FBP. This was physiologically and evolutionarily feasible because co-expression of both subunits restored the specificity for 3-PGA of the resulting heterotetrameric wild type enzyme. This widespread promiscuity seems to be ancestral and intrinsic to the enzyme family. Its presence could constitute an efficient evolutionary mechanism to accommodate the ADP-Glc PPase regulation to different metabolic needs.

  9. BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut

    Directory of Open Access Journals (Sweden)

    Chaine Christian


    Full Text Available Abstract Background Cultivated peanut, Arachis hypogaea is an allotetraploid of recent origin, with an AABB genome. In common with many other polyploids, it seems that a severe genetic bottle-neck was imposed at the species origin, via hybridisation of two wild species and spontaneous chromosome duplication. Therefore, the study of the genome of peanut is hampered both by the crop's low genetic diversity and its polyploidy. In contrast to cultivated peanut, most wild Arachis species are diploid with high genetic diversity. The study of diploid Arachis genomes is therefore attractive, both to simplify the construction of genetic and physical maps, and for the isolation and characterization of wild alleles. The most probable wild ancestors of cultivated peanut are A. duranensis and A. ipaënsis with genome types AA and BB respectively. Results We constructed and characterized two large-insert libraries in Bacterial Artificial Chromosome (BAC vector, one for each of the diploid ancestral species. The libraries (AA and BB are respectively c. 7.4 and c. 5.3 genome equivalents with low organelle contamination and average insert sizes of 110 and 100 kb. Both libraries were used for the isolation of clones containing genetically mapped legume anchor markers (single copy genes, and resistance gene analogues. Conclusion These diploid BAC libraries are important tools for the isolation of wild alleles conferring resistances to biotic stresses, comparisons of orthologous regions of the AA and BB genomes with each other and with other legume species, and will facilitate the construction of a physical map.

  10. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  11. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities

    Directory of Open Access Journals (Sweden)

    Blanca Gómez-Escoda


    Full Text Available Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs and the Dbf4-dependent kinase (DDK. CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.

  12. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities (United States)

    Gómez-Escoda, Blanca; Wu, Pei-Yun Jenny


    Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism. PMID:28335524

  13. Fast phylogeny reconstruction through learning of ancestral sequences

    CERN Document Server

    Mihaescu, Radu; Rao, Satish


    Given natural limitations on the length DNA sequences, designing phylogenetic reconstruction methods which are reliable under limited information is a crucial endeavor. There have been two approaches to this problem: reconstructing partial but reliable information about the tree (\\cite{Mo07, DMR08,DHJ06,GMS08}), and reaching "deeper" in the tree through reconstruction of ancestral sequences. In the latter category, \\cite{DMR06} settled an important conjecture of M.Steel, showing that, under the CFN model of evolution, all trees on $n$ leaves with edge lengths bounded by the Ising model phase transition can be recovered with high probability from genomes of length $O(\\log n)$ with a polynomial time algorithm. Their methods had a running time of $O(n^{10})$. Here we enhance our methods from \\cite{DHJ06} with the learning of ancestral sequences and provide an algorithm for reconstructing a sub-forest of the tree which is reliable given available data, without requiring a-priori known bounds on the edge lengths o...

  14. The ancestral process of long term seed bank models

    CERN Document Server

    Blath, Jochen; Kurt, Noemi; Spanò, Dario


    We present a new model for the evolution of genetic types in the presence of so-called seed banks, i.e., where individuals may obtain their genetic type from ancestors which have lived in the near as well as the very far past. The classical Wright-Fisher model, as well as a seed bank model with bounded age distribution considered by Kaj, Krone and Lascoux (2001) are special cases of our model. We discern three parameter regimes of the seed bank age distribution, which lead to substantially different behaviour in terms of genetic variability, in particular with respect to fixation of types and time to the most recent common ancestor. We prove that for age distributions with finite mean, the rescaled ancestral process converges to a time-changed Kingman coalescent, while in the case of infinite mean, ancestral lineages might not merge at all with positive probability. Further, we present a construction of the forward in time process in equilibrium. The mathematical methods are based on renewal theory, the urn p...

  15. Organising European technical documentation to avoid duplication. (United States)

    Donawa, Maria


    The development of comprehensive accurate and well-organised technical documentation that demonstrates compliance with regulatory requirements is a resource-intensive, but critically important activity for medical device manufacturers. This article discusses guidance documents and method of organising technical documentation that may help avoid costly and time-consuming duplication.

  16. Gastric Duplication Cyst Causing Gastric Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Muna Al Shehi


    Full Text Available This is a case report of a newborn baby with gastric duplication cyst presented with non-bilious vomiting and upper abdominal distension. The diagnosis was suspected clinically and established by ultrasonography and computed tomography. The cyst was completely excised with uneventful recovery.

  17. Metabolic Adaptation after Whole Genome Duplication

    NARCIS (Netherlands)

    Hoek, M.J.A. van; Hogeweg, P.


    Whole genome duplications (WGDs) have been hypothesized to be responsible for major transitions in evolution. However, the effects of WGD and subsequent gene loss on cellular behavior and metabolism are still poorly understood. Here we develop a genome scale evolutionary model to study the dynamics

  18. Incomplete urethral duplication in an adult male.

    LENUS (Irish Health Repository)

    Davis, N F


    Urethral duplication is a rare congenital anomaly with less than 200 cases reported. It predominantly occurs in males and is nearly always diagnosed in childhood or adolescence. It is defined as a complete second passage from the bladder to the dorsum of the penis or as an accessory pathway that ends blindly on the dorsal or ventral surface.

  19. Decomposition of Parallel Copies with Duplication

    Directory of Open Access Journals (Sweden)

    G. N. Purohit


    Full Text Available SSA form is becoming more popular in the context of JIT compilation since it allows the compiler to perform important optimizations like common sub-expression elimination or constant propagation without the drawbacks of keeping huge data structures in memory or requiring a lot of computing power. The recent approach of SSA-based register allocation performs SSA elimination after register allocation. F. Bouchez et al. proposed parallel copy motion to prevent the splitting of edges when going out of colored SSA by moving the code that should be assigned to the edges to a more convenient place. Duplications in parallel copies pose some problems when moving them. In this paper an approach has been developed to decompose parallel copies so that duplications can be handled separately and parallel copies can be easily moved away without duplication. A simple and elegant application is moving duplicated copies out of critical edges. This is often beneficial compared to the alternative splitting the edge.

  20. Our experience with unusual gastrointestinal tract duplications in infants

    Directory of Open Access Journals (Sweden)

    Bilal Mirza


    Full Text Available Background: Classical duplications may present along any part of gastrointestinal tract (GIT from mouth to anus. Atypical or unusual rare varieties of GIT duplications may also occur, but with different anatomical features. Materials and Methods: We reviewed our 5-year record (February 2008-January 2013 to describe clinical profile of unusual GIT duplications in neonates and small infants. Results: Three patients with atypical variety of GIT duplications were managed in our department during this tenure. Two were females and one male. Age was ranged between 11 days and 2 months. All patients presented with massive abdominal distension causing respiratory embarrassment in two of them. In all patients, the pre-operative differential diagnoses also included GIT duplication cysts. Computerized tomography (CT scan showed single huge cyst in one and multiple cysts in two patients. In one patient the CT scan also depicted a thoracic cyst in relation to posterior mediastinum. At operation, one patient had colonic tubular duplication cyst along with another isolated duplication cyst, the second case had a tubular duplication cyst of ileum with its segmental dilatation, and in the third case two isolated duplications were found. Duplication cysts were excised along with mucosal stripping in one patient, cyst excision and intestinal resection and anastomosis in one patient, and only cysts excision in one. All patients did well post-operatively. Conclusion: We presented unusual GIT duplications. These duplications are managed on similar lines as classical duplications with good prognosis when dealt early.

  1. Mapping the transcription repressive domain in the highly conserved human gene hnulp1

    Institute of Scientific and Technical Information of China (English)


    HNULP1,a new member of the basic helixloop-helix transcription factors,contains a DUF654 domain in its C-terminus and is highly conserved from Drosophilae,yeast,zebrafish to mouse.The function of this motif,however,is currently unknown.In this research,we fused five deletion fragments of the DUF654 domain to the GAL4 DNA-binding domain and then co-transfected with plasmids L8G5-Luc and VP-16.The analysis of the GAL4 luciferase reporter gene indicated that fragments from 228 to 407 amino acids in the DUF654 domain had a strong transcription repression activity.Therefore,this study lays a solid foundation for research on the mechanism of hnulp1 transcriptional regulation and the function of the DUF654 domain.

  2. Cheetahs have 4 serum amyloid a genes evolved through repeated duplication events. (United States)

    Chen, Lei; Une, Yumi; Higuchi, Keiichi; Mori, Masayuki


    Amyloid A (AA) amyloidosis is a leading cause of mortality in captive cheetahs (Acinonyx jubatus). We performed genome walking and PCR cloning and revealed that cheetahs have 4 SAA genes (provisionally named SAA1A, SAA1B, SAA3A, and SAA3B). In addition, we identified multiple nucleotide polymorphisms in the 4 SAA genes by screening 51 cheetahs. The polymorphisms defined 4, 7, 6, and 4 alleles for SAA1A, SAA3A, SAA1B, and SAA3B, respectively. Pedigree analysis of the inheritance of genotypes for the SAA genes revealed that specific combinations of alleles for the 4 SAA genes cosegregated as a unit (haplotype) in pedigrees, indicating that the 4 genes were linked on the same chromosome. Notably, cheetah SAA1A and SAA1B were highly homologous in their nucleotide sequences. Likewise, SAA3A and SAA3B genes were homologous. These observations suggested a model for the evolution of the 4 SAA genes in cheetahs in which duplication of an ancestral SAA gene first gave rise to SAA1 and SAA3. Subsequently, each gene duplicated one more time, uniquely making 4 genes in the cheetah genome. The monomorphism of the cheetah SAA1A protein might be one of the factors responsible for the high incidence of AA amyloidosis in this species.

  3. Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. (United States)

    Mariotti, Marco; Santesmasses, Didac; Capella-Gutierrez, Salvador; Mateo, Andrea; Arnan, Carme; Johnson, Rory; D'Aniello, Salvatore; Yim, Sun Hee; Gladyshev, Vadim N; Serras, Florenci; Corominas, Montserrat; Gabaldón, Toni; Guigó, Roderic


    Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome.

  4. Presentation and Surgical Management of Duodenal Duplication in Adults

    Directory of Open Access Journals (Sweden)

    Caroline C. Jadlowiec


    Full Text Available Duodenal duplications in adults are exceedingly rare and their diagnosis remains difficult as symptoms are largely nonspecific. Clinical presentations include pancreatitis, biliary obstruction, gastrointestinal bleeding from ectopic gastric mucosa, and malignancy. A case of duodenal duplication in a 59-year-old female is presented, and her treatment course is reviewed with description of combined surgical and endoscopic approach to repair, along with a review of historic and current recommendations for management. Traditionally, gastrointestinal duplications have been treated with surgical resection; however, for duodenal duplications, the anatomic proximity to the biliopancreatic ampulla makes surgical management challenging. Recently, advances in endoscopy have improved the clinical success of cystic intraluminal duodenal duplications. Despite these advances, surgical resection is still recommended for extraluminal tubular duplications although combined techniques may be necessary for long tubular duplications. For duodenal duplications, a combined approach of partial excision combined with mucosal stripping may offer advantage.

  5. Duplication cysts: Diagnosis, management, and the role of endoscopic ultrasound. (United States)

    Liu, Roy; Adler, Douglas G


    Gastrointestinal tract duplication cysts are rare congenital gastrointestinal malformation in young patients and adults. They consist of foregut duplication cysts, small bowel duplication cysts, and large bowel duplication cysts. Endoscopic ultrasound (EUS) has been widely used as a modality for the evaluation and diagnosis of duplication cysts. EUS is the diagnostic tool of choice to investigate duplication cysts since it can distinguish between solid and cystic lesions. The question of whether or not to perform EUS-fine needle aspiration (EUS-FNA) on a lesion suspected of being a duplication cyst is controversial as these lesions can become infected with significant consequences, although EUS-FNA is often required to obtain a definitive diagnosis and to rule out more ominous lesions. This manuscript will review the literature on duplication cysts throughout the body and will also focus on the role of EUS and FNA with regards to these lesions.

  6. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. (United States)

    Hippauf, Frank; Michalsky, Elke; Huang, Ruiqi; Preissner, Robert; Barkman, Todd J; Piechulla, Birgit


    Methyl salicylate and methyl benzoate have important roles in a variety of processes including pollinator attraction and plant defence. These compounds are synthesized by salicylic acid, benzoic acid and benzoic acid/salicylic acid carboxyl methyltransferases (SAMT, BAMT and BSMT) which are members of the SABATH gene family. Both SAMT and BSMT were isolated from Nicotiana suaveolens, Nicotiana alata, and Nicotiana sylvestris allowing us to discern levels of enzyme divergence resulting from gene duplication in addition to species divergence. Phylogenetic analyses showed that Nicotiana SAMTs and BSMTs evolved in separate clades and the latter can be differentiated into the BSMT1 and the newly established BSMT2 branch. Although SAMT and BSMT orthologs showed minimal change coincident with species divergences, substantial evolutionary change of enzyme activity and expression patterns occurred following gene duplication. After duplication, the BSMT enzymes evolved higher preference for benzoic acid (BA) than salicylic acid (SA) whereas SAMTs maintained ancestral enzymatic preference for SA over BA. Expression patterns are largely complementary in that BSMT transcripts primarily accumulate in flowers, leaves and stems whereas SAMT is expressed mostly in roots. A novel enzyme, nicotinic acid carboxyl methyltransferase (NAMT), which displays a high degree of activity with nicotinic acid was discovered to have evolved in N. gossei from an ancestral BSMT. Furthermore a SAM-dependent synthesis of methyl anthranilate via BSMT2 is reported and contrasts with alternative biosynthetic routes previously proposed. While BSMT in flowers is clearly involved in methyl benzoate synthesis to attract pollinators, its function in other organs and tissues remains obscure.

  7. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706

    Directory of Open Access Journals (Sweden)

    Flavia J. Krsticevic


    Full Text Available In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706 genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues.

  8. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706) (United States)

    Krsticevic, Flavia J.; Arce, Débora P.; Ezpeleta, Joaquín; Tapia, Elizabeth


    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. PMID:27565886

  9. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals

    Directory of Open Access Journals (Sweden)

    Münk Carsten


    Full Text Available Abstract Background The APOBEC3 (A3 genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. Results We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. Conclusions Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure.

  10. The ancestral gene repertoire of animal stem cells. (United States)

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko


    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells.

  11. Global Alignment of Molecular Sequences via Ancestral State Reconstruction

    CERN Document Server

    Andoni, Alexandr; Hassidim, Avinatan; Roch, Sebastien


    Molecular phylogenetic techniques do not generally account for such common evolutionary events as site insertions and deletions (known as indels). Instead tree building algorithms and ancestral state inference procedures typically rely on substitution-only models of sequence evolution. In practice these methods are extended beyond this simplified setting with the use of heuristics that produce global alignments of the input sequences--an important problem which has no rigorous model-based solution. In this paper we consider a new version of the multiple sequence alignment in the context of stochastic indel models. More precisely, we introduce the following {\\em trace reconstruction problem on a tree} (TRPT): a binary sequence is broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to reconstruct the original sequence from the sequences received at the leaves of the tree. We give a recursive procedure for this problem with strong reconstruction guarantees at low mut...

  12. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L


    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  13. Case report: Antenatal MRI diagnosis of esophageal duplication cyst. (United States)

    Rangasami, Rajeswaran; Chandrasekharan, Anupama; Archana, Lal; Santhosh, Joseph


    Esophageal duplication cysts are classified as a subgroup of foregut duplication cysts. They are very rare and are predominantly detected in children. Antenatal detection is very rare. We report a case of an esophageal duplication cyst that was accurately identified antenatally by USG and MRI.

  14. Unilateral Pulmonary Agenesis and Gastric Duplication Cyst: A Rare Association


    Amir Halilbasic; Fahrija Skokic; Nesad Hotic; Edin Husaric; Gordana Radoja; Selma Muratovic; Nermina Dedic; Meliha Halilbasic


    Lung agenesis and gastric duplication cysts are both rare congenital anomalies. Gastric duplication cysts can present with nausea, vomiting, hematemesis, or vague abdominal pain. Unilateral pulmonary agenesis can present with respiratory distress which usually occurs due to retention of bronchial secretions and inflammations. We report the unique case of right pulmonary agenesis associated with gastric duplication cyst.

  15. Unilateral Pulmonary Agenesis and Gastric Duplication Cyst: A Rare Association

    Directory of Open Access Journals (Sweden)

    Amir Halilbasic


    Full Text Available Lung agenesis and gastric duplication cysts are both rare congenital anomalies. Gastric duplication cysts can present with nausea, vomiting, hematemesis, or vague abdominal pain. Unilateral pulmonary agenesis can present with respiratory distress which usually occurs due to retention of bronchial secretions and inflammations. We report the unique case of right pulmonary agenesis associated with gastric duplication cyst.

  16. Origin of the duplicated regions in the yeast genomes

    DEFF Research Database (Denmark)

    Piskur, Jure


    The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic...

  17. 48 CFR 1352.231-71 - Duplication of effort. (United States)


    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Duplication of effort. 1352.231-71 Section 1352.231-71 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES... Duplication of effort. As prescribed in 48 CFR 1331.205-70, insert the following clause: Duplication of...

  18. Genetics Home Reference: 7q11.23 duplication syndrome (United States)

    ... Health Conditions 7q11.23 duplication syndrome 7q11.23 duplication syndrome Enable Javascript to view the expand/collapse ... PDF Open All Close All Description 7q11.23 duplication syndrome is a condition that can cause a ...

  19. Rationality of Cross-System Data Duplication: A Case Study

    NARCIS (Netherlands)

    Hordijk, Wiebe; Wieringa, Roel; Pernici, Barbara


    Duplication of data across systems in an organization is a problem because it wastes effort and leads to inconsistencies. Researchers have proposed several technical solutions but duplication still occurs in practice. In this paper we report on a case study of how and why duplication occurs in a lar

  20. 38 CFR 10.52 - Duplication of payments prohibited. (United States)


    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Duplication of payments prohibited. 10.52 Section 10.52 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUSTED COMPENSATION Payments § 10.52 Duplication of payments prohibited. Duplication of payments...

  1. 47 CFR 80.467 - Duplication of VHF service. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Duplication of VHF service. 80.467 Section 80... STATIONS IN THE MARITIME SERVICES Public Coast Stations Use of Telephony § 80.467 Duplication of VHF service. No duplication of service areas as determined by subpart P of this part will be permitted...

  2. Genetics Home Reference: 22q11.2 duplication (United States)

    ... Home Health Conditions 22q11.2 duplication 22q11.2 duplication Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description 22q11.2 duplication is a condition caused by an extra copy ...

  3. 47 CFR 76.1508 - Network non-duplication. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network non-duplication. 76.1508 Section 76... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1508 Network non-duplication. (a... regarding the exercise of network non-duplication rights immediately available to all appropriate...

  4. 47 CFR 76.122 - Satellite network non-duplication. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant...

  5. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su


    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  6. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    Directory of Open Access Journals (Sweden)

    Dutartre Leslie


    Full Text Available Abstract Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA, are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(MBOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8 form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5 belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2 at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  7. Duplication Cyst of the Sigmoid Colon

    Directory of Open Access Journals (Sweden)

    Bastian Domajnko


    Full Text Available A 21-year-old male with developmental delay presented with abdominal pain of two days' duration. He was afebrile and his abdomen was soft with mild diffuse tenderness. There were no peritoneal signs. Plain x-ray demonstrated a large air-filled structure in the right upper quadrant. Computed tomography of the abdomen revealed a 9×8 cm structure adjacent to the hepatic flexure containing an air-fluid level. It did not contain oral contrast and had no apparent communication with the colon. At operation, the cystic lesion was identified as a duplication cyst of the sigmoid colon that was adherent to the right upper quadrant. The cyst was excised with a segment of the sigmoid colon and a stapled colo-colostomy was performed. Recovery was uneventful. Final pathology was consistent with a duplication cyst of the sigmoid colon. The cyst was attached to the colon but did not communicate with the lumen.

  8. Pseudomyxoma Peritonei Originating from an Intestinal Duplication

    Directory of Open Access Journals (Sweden)

    Julie Lemahieu


    Full Text Available Alimentary tract duplications are rare congenital anomalies. They most often become symptomatic in childhood and rarely undergo malignant transformation. Pseudomyxoma peritonei (PMP is an equally uncommon condition, most frequently originating from a primary appendiceal mucinous neoplasm. We report an extremely unusual case of PMP arising from an intestinal duplication. A 67-year-old woman presented with vague upper abdominal pain, and, unexpectedly, explorative laparoscopy revealed diffuse jelly-like peritoneal implants. The histopathological diagnosis of a low-grade PMP or “disseminated peritoneal adenomucinosis” was made. At that moment, no primary tumor was found. During later surgery, a cystic lesion located in the mesentery of the small bowel could be resected. Histologically, the cyst wall clearly showed the concentric layering of a normal bowel wall. The mucosa, however, displayed a diffuse low-grade villous adenoma. We concluded that this histological picture was most consistent with a small intestinal duplication, containing a low-grade villous adenoma. The adenoma caused a mucocele, which subsequently leaked or ruptured, giving rise to noninvasive mucinous peritoneal implants or low-grade PMP, also known as “disseminated peritoneal adenomucinosis” (DPAM.

  9. Pseudomyxoma peritonei originating from an intestinal duplication. (United States)

    Lemahieu, Julie; D'Hoore, André; Deloose, Stijn; Sciot, Raf; Moerman, Philippe


    Alimentary tract duplications are rare congenital anomalies. They most often become symptomatic in childhood and rarely undergo malignant transformation. Pseudomyxoma peritonei (PMP) is an equally uncommon condition, most frequently originating from a primary appendiceal mucinous neoplasm. We report an extremely unusual case of PMP arising from an intestinal duplication. A 67-year-old woman presented with vague upper abdominal pain, and, unexpectedly, explorative laparoscopy revealed diffuse jelly-like peritoneal implants. The histopathological diagnosis of a low-grade PMP or "disseminated peritoneal adenomucinosis" was made. At that moment, no primary tumor was found. During later surgery, a cystic lesion located in the mesentery of the small bowel could be resected. Histologically, the cyst wall clearly showed the concentric layering of a normal bowel wall. The mucosa, however, displayed a diffuse low-grade villous adenoma. We concluded that this histological picture was most consistent with a small intestinal duplication, containing a low-grade villous adenoma. The adenoma caused a mucocele, which subsequently leaked or ruptured, giving rise to noninvasive mucinous peritoneal implants or low-grade PMP, also known as "disseminated peritoneal adenomucinosis" (DPAM).

  10. Perforated ileal duplication cyst with haemorrhagic pseudocyst formation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Im Kyung; Kim, Bong Soo; Kim, Heung Chul; Lee, In Sun; Hwang, Woo Chul [Department of Radiology, College of Medicine, Hallym University (Korea); Namkung, Sook [Department of Radiology, College of Medicine, Hallym University (Korea); Department of Radiology, Chuncheon Sacred Heart Hospital, 153 Kyo-dong, Chuncheon, Kangwon-do, 200-704 (Korea)


    Duplication cysts of the gastrointestinal tract are rare congenital abnormalities. Ectopic gastric mucosa, which can be found in duplications, may cause peptic ulceration, gastrointestinal bleeding or perforation. We report a 1-year-old boy with a perforated ileal duplication cyst with haemorrhagic pseudocyst formation caused by peptic ulceration of the duplication cyst. It presented a snowman-like appearance consisting of a small, thick-walled, true enteric cyst and a large, thin-walled haemorrhagic pseudocyst on US and CT. It is an unusual manifestation of a duplication cyst, which has not been reported in the English language literature. (orig.)

  11. Molecular trajectories leading to the alternative fates of duplicate genes.

    Directory of Open Access Journals (Sweden)

    Michael Marotta

    Full Text Available Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2 gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes, whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4% than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes.

  12. Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. (United States)

    Chen, Keyang; Williams, Kevin Jon


    Endocytosis via rafts has attracted considerable recent interest, but the molecular mediators remain incompletely characterized. Here, we focused on the syndecan-1 heparan sulfate proteoglycan, a highly conserved, multifunctional receptor that we previously showed to undergo raft-dependent endocytosis upon clustering. Alanine scanning mutagenesis of three to five consecutive cytoplasmic residues at a time revealed that a conserved juxtamembrane motif, MKKK, was the only region required for efficient endocytosis after clustering. Endocytosis of clustered syndecan-1 occurs in two phases, each requiring a kinase and a corresponding cytoskeletal partner. In the initial phase, ligands trigger rapid MKKK-dependent activation of ERK and the localization of syndecan-1 into rafts. Activation of ERK drives the dissociation of syndecan-1 from α-tubulin, a molecule that may act as an anchor for syndecan-1 at the plasma membrane in the basal state. In the second phase, Src family kinases phosphorylate tyrosyl residues within the transmembrane and cytoplasmic regions of syndecan-1, a process that also requires MKKK. Tyrosine phosphorylation of syndecan-1 triggers the robust recruitment of cortactin, which we found to be an essential mediator of efficient actin-dependent endocytosis. These findings represent the first detailed characterization of the molecular events that drive endocytosis of a raft-dependent receptor and identify a novel endocytic motif, MKKK. Moreover, the results provide new tools to study syndecan function and regulation during uptake of its biologically and medically important ligands, such as HIV-1, atherogenic postprandial remnant lipoproteins, and molecules implicated in Alzheimer disease.

  13. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris)

    Indian Academy of Sciences (India)

    Wenping Zhang; Zhihe Zhang; Fujun Shen; Rong Hou; Xiaoping Lv; Bisong Yue


    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8–17 million years ago in the tiger and 4.6–16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular ‘fossils’ that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

  14. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence. (United States)

    Connolly, James P R; Gabrielsen, Mads; Goldstone, Robert J; Grinter, Rhys; Wang, Dai; Cogdell, Richard J; Walker, Daniel; Smith, David G E; Roe, Andrew J


    The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  15. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

    Directory of Open Access Journals (Sweden)

    James P R Connolly


    Full Text Available The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  16. A highly conserved program of neuronal microexons is misregulated in autistic brains. (United States)

    Irimia, Manuel; Weatheritt, Robert J; Ellis, Jonathan D; Parikshak, Neelroop N; Gonatopoulos-Pournatzis, Thomas; Babor, Mariana; Quesnel-Vallières, Mathieu; Tapial, Javier; Raj, Bushra; O'Hanlon, Dave; Barrios-Rodiles, Miriam; Sternberg, Michael J E; Cordes, Sabine P; Roth, Frederick P; Wrana, Jeffrey L; Geschwind, Daniel H; Blencowe, Benjamin J


    Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.

  17. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. (United States)

    Kawakami, Hironori; Ohashi, Eiji; Kanamoto, Shota; Tsurimoto, Toshiki; Katayama, Tsutomu


    In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.

  18. Dissecting the transcriptional regulatory properties of human chromosome 16 highly conserved non-coding regions.

    Directory of Open Access Journals (Sweden)

    José Luis Royo

    Full Text Available Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions.

  19. Human Cytomegalovirus UL138 Open Reading Frame Is Highly Conserved in Clinical Strains

    Institute of Scientific and Technical Information of China (English)

    Ying Qi; Rong He; Yan-ping Ma; Zheng-rong Sun; Yao-hua Ji; Qiang Ruan


    To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading flame (ORF) in clinical strains.Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains.Results UL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identities of UL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleotide mutations were substitutions. The spatial structure and post-translational modification sites of UL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV UL138 sequence variations were not definitely related with different clinical symptoms.Conclusion HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.

  20. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya; Margolin, William


    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium, and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.

  1. A dominant EV71-specific CD4+ T cell epitope is highly conserved among human enteroviruses.

    Directory of Open Access Journals (Sweden)

    Ruicheng Wei

    Full Text Available CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD, has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine.

  2. The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. (United States)

    Ayme-Southgate, Agnes J; Southgate, Richard J; Philipp, Richard A; Sotka, Erik E; Kramp, Catherine


    All striated muscles respond to stretch by a delayed increase in tension. This physiological response, known as stretch activation, is, however, predominantly found in vertebrate cardiac muscle and insect asynchronous flight muscles. Stretch activation relies on an elastic third filament system composed of giant proteins known as titin in vertebrates or kettin and projectin in insects. The projectin insect protein functions jointly as a "scaffold and ruler" system during myofibril assembly and as an elastic protein during stretch activation. An evolutionary analysis of the projectin molecule could potentially provide insight into how distinct protein regions may have evolved in response to different evolutionary constraints. We mined candidate genes in representative insect species from Hemiptera to Diptera, from published and novel genome sequence data, and carried out a detailed molecular and phylogenetic analysis. The general domain organization of projectin is highly conserved, as are the protein sequences of its two repeated regions-the immunoglobulin type C and fibronectin type III domains. The conservation in structure and sequence is consistent with the proposed function of projectin as a scaffold and ruler. In contrast, the amino acid sequences of the elastic PEVK domains are noticeably divergent, although their length and overall unusual amino acid makeup are conserved. These patterns suggest that the PEVK region working as an unstructured domain can still maintain its dynamic, and even its three-dimensional, properties, without the need for strict amino acid conservation. Phylogenetic analysis of the projectin proteins also supports a reclassification of the Hymenoptera in relation to Diptera and Coleoptera.

  3. Estimation of the ancestral effective population sizes of African great apes under different selection regimes. (United States)

    Schrago, Carlos G


    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  4. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding (United States)

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael


    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  5. Inference of Ancestral Recombination Graphs through Topological Data Analysis. (United States)

    Cámara, Pablo G; Levine, Arnold J; Rabadán, Raúl


    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands.

  6. Deep phylogeny, ancestral groups and the four ages of life. (United States)

    Cavalier-Smith, Thomas


    Organismal phylogeny depends on cell division, stasis, mutational divergence, cell mergers (by sex or symbiogenesis), lateral gene transfer and death. The tree of life is a useful metaphor for organismal genealogical history provided we recognize that branches sometimes fuse. Hennigian cladistics emphasizes only lineage splitting, ignoring most other major phylogenetic processes. Though methodologically useful it has been conceptually confusing and harmed taxonomy, especially in mistakenly opposing ancestral (paraphyletic) taxa. The history of life involved about 10 really major innovations in cell structure. In membrane topology, there were five successive kinds of cell: (i) negibacteria, with two bounding membranes, (ii) unibacteria, with one bounding and no internal membranes, (iii) eukaryotes with endomembranes and mitochondria, (iv) plants with chloroplasts and (v) finally, chromists with plastids inside the rough endoplasmic reticulum. Membrane chemistry divides negibacteria into the more advanced Glycobacteria (e.g. Cyanobacteria and Proteobacteria) with outer membrane lipolysaccharide and primitive Eobacteria without lipopolysaccharide (deserving intenser study). It also divides unibacteria into posibacteria, ancestors of eukaryotes, and archaebacteria-the sisters (not ancestors) of eukaryotes and the youngest bacterial phylum. Anaerobic eobacteria, oxygenic cyanobacteria, desiccation-resistant posibacteria and finally neomura (eukaryotes plus archaebacteria) successively transformed Earth. Accidents and organizational constraints are as important as adaptiveness in body plan evolution.

  7. Ancestral TSH mechanism signals summer in a photoperiodic mammal. (United States)

    Hanon, Elodie A; Lincoln, Gerald A; Fustin, Jean-Michel; Dardente, Hugues; Masson-Pévet, Mireille; Morgan, Peter J; Hazlerigg, David G


    In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.

  8. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans. (United States)

    Lopez-Valenzuela, Maria; Ramírez, Oscar; Rosas, Antonio; García-Vargas, Samuel; de la Rasilla, Marco; Lalueza-Fox, Carles; Espinosa-Parrilla, Yolanda


    Genetic changes in regulatory elements are likely to result in phenotypic effects that might explain population-specific as well as species-specific traits. MicroRNAs (miRNAs) are posttranscriptional repressors involved in the control of almost every biological process. These small noncoding RNAs are present in various phylogenetic groups, and a large number of them remain highly conserved at the sequence level. MicroRNA-mediated regulation depends on perfect matching between the seven nucleotides of its seed region and the target sequence usually located at the 3' untranslated region of the regulated gene. Hence, even single changes in seed regions are predicted to be deleterious as they may affect miRNA target specificity. In accordance to this, purifying selection has strongly acted on these regions. Comparison between the genomes of present-day humans from various populations, Neanderthal, and other nonhuman primates showed an miRNA, miR-1304, that carries a polymorphism on its seed region. The ancestral allele is found in Neanderthal, nonhuman primates, at low frequency (~5%) in modern Asian populations and rarely in Africans. Using miRNA target site prediction algorithms, we found that the derived allele increases the number of putative target genes for the derived miRNA more than ten-fold, indicating an important functional evolution for miR-1304. Analysis of the predicted targets for derived miR-1304 indicates an association with behavior and nervous system development and function. Two of the predicted target genes for the ancestral miR-1304 allele are important genes for teeth formation, enamelin, and amelotin. MicroRNA overexpression experiments using a luciferase-based assay showed that the ancestral version of miR-1304 reduces the enamelin- and amelotin-associated reporter gene expression by 50%, whereas the derived miR-1304 does not have any effect. Deletion of the corresponding target sites for miR-1304 in these dental genes avoided their repression

  9. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. (United States)

    Giovannotti, M; Caputo, V; O'Brien, P C M; Lovell, F L; Trifonov, V; Cerioni, P Nisi; Olmo, E; Ferguson-Smith, M A; Rens, W


    Skinks represent the most diversified squamate reptiles with a great variation in body size and form, and are found worldwide in a variety of habitats. Their remarkable diversification has been accompanied by only a few chromosome rearrangements, resulting in highly-conservative chromosomal complements of these lizards. In this study cross-species chromosome painting using Scincus scincus (2n = 32) as the source genome, was used to detect the chromosomal rearrangements and homologies between the following skinks: Chalcides chalcides (2n = 28), C. ocellatus (2n = 28), Eumeces schneideri (2n = 32), Lepidothyris fernandi (2n = 30), Mabuya quinquetaeniata (2n = 32). The results of this study confirmed a high degree of chromosome conservation between these species. The main rearrangements in the studied skinks involve chromosomes 3, 5, 6 and 7 of S. scincus. These subtelocentric chromosomes are homologous to the p and q arms of metacentric pair 3 and 4 in C. chalcides, C. ocellatus, L. fernandi, and M. quinquetaeniata, while they are entirely conserved in E. schneideri. Other rearrangements involve S. scincus 11 in L. fernandi and M. quinquetaeniata, supporting the monophyly of Lygosominae, and one of the chromosomes S. scincus 12-16, in M. quinquetaeniata. In conclusion, our data support the monophyly of Scincidae and confirm that Scincus-Eumeces plus Chalcides do not form a monophyletic clade, suggesting that the Scincus-Eumeces clade is basal to other members of this family. This study represents the first time the whole genome of any reptile species has been used for cross-species chromosome painting to assess chromosomal evolution in this group of vertebrates.

  10. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Santoshkumar Magadum; Urbi Banerjee; Priyadharshini Murugan; Doddabhimappa Gangapur; Rajasekar Ravikesavan


    Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.

  11. Sub-functionalization to ovule development following duplication of a floral organ identity gene. (United States)

    Galimba, Kelsey D; Di Stilio, Verónica S


    Gene duplications result in paralogs that may be maintained due to the gain of novel functions (neo-functionalization) or the partitioning of ancestral function (sub-functionalization). Plant genomes are especially prone to duplication; paralogs are particularly widespread in the floral MADS box transcription factors that control organ identity through the ABC model of flower development. C class genes establish stamen and carpel identity and control floral meristem determinacy, and are largely conserved across the angiosperm phylogeny. Originally, an additional D class had been identified as controlling ovule identity; yet subsequent studies indicated that both C and D lineage genes more commonly control ovule development redundantly. The ranunculid Thalictrum thalictroides has two orthologs of the Arabidopsis thaliana C class gene AGAMOUS (AG), ThtAG1 and ThtAG2 (Thalictrum thalictroides AGAMOUS1/2). We previously showed that ThtAG1 exhibits typical C class function; here we examine the role of its paralog, ThtAG2. Our phylogenetic analysis shows that ThtAG2 falls within the C lineage, together with ThtAG1, and is consistent with previous findings of a Ranunculales-specific duplication in this clade. However, ThtAG2 is not expressed in stamens, but rather solely in carpels and ovules. This female-specific expression pattern is consistent with D lineage genes, and with other C lineage genes known to be involved in ovule identity. Given the divergent expression of ThtAG2, we tested the hypothesis that it has acquired ovule identity function. Molecular evolution analyses showed evidence of positive selection on ThtAG2-a pattern that supports divergence of function by sub-functionalization. Down-regulation of ThtAG2 by virus-induced gene silencing resulted in homeotic conversions of ovules into carpel-like structures. Taken together, our results suggest that, although ThtAG2 falls within the C lineage, it has diverged to acquire "D function" as an ovule identity gene

  12. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae. (United States)

    Simon, Samson; Rühl, Mark; de Montaigu, Amaury; Wötzel, Stefan; Coupland, George


    Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution.

  13. The Duplicate-Replacement System: An Alternative Method of Handling Book Duplicates. (United States)

    Clement, Russell T.

    This report studied the alternative method of using book duplicates as replacement copies for worn or missing stack items. The simple operational procedure which is proposed and evaluated could be adapted to virtually any library setting. When tested in Brigham Young University's Lee Library, it was found that such a procedure cost an estimated…

  14. Clinical characterization and identification of duplication breakpoints in a Japanese family with Xq28 duplication syndrome including MECP2. (United States)

    Fukushi, Daisuke; Yamada, Kenichiro; Nomura, Noriko; Naiki, Misako; Kimura, Reiko; Yamada, Yasukazu; Kumagai, Toshiyuki; Yamaguchi, Kumiko; Miyake, Yoshishige; Wakamatsu, Nobuaki


    Xq28 duplication syndrome including MECP2 is a neurodevelopmental disorder characterized by axial hypotonia at infancy, severe intellectual disability, developmental delay, mild characteristic facial appearance, epilepsy, regression, and recurrent infections in males. We identified a Japanese family of Xq28 duplications, in which the patients presented with cerebellar ataxia, severe constipation, and small feet, in addition to the common clinical features. The 488-kb duplication spanned from L1CAM to EMD and contained 17 genes, two pseudo genes, and three microRNA-coding genes. FISH and nucleotide sequence analyses demonstrated that the duplication was tandem and in a forward orientation, and the duplication breakpoints were located in AluSc at the EMD side, with a 32-bp deletion, and LTR50 at the L1CAM side, with "tc" and "gc" microhomologies at the duplication breakpoints, respectively. The duplicated segment was completely segregated from the grandmother to the patients. These results suggest that the duplication was generated by fork-stalling and template-switching at the AluSc and LTR50 sites. This is the first report to determine the size and nucleotide sequences of the duplicated segments at Xq28 of three generations of a family and provides the genotype-phenotype correlation of the patients harboring the specific duplicated segment.

  15. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  16. Reconstructing the ancestral butterfly eye: focus on the opsins. (United States)

    Briscoe, Adriana D


    The eyes of butterflies are remarkable, because they are nearly as diverse as the colors of wings. Much of eye diversity can be traced to alterations in the number, spectral properties and spatial distribution of the visual pigments. Visual pigments are light-sensitive molecules composed of an opsin protein and a chromophore. Most butterflies have eyes that contain visual pigments with a wavelength of peak absorbance, lambda(max), in the ultraviolet (UV, 300-400 nm), blue (B, 400-500 nm) and long wavelength (LW, 500-600 nm) part of the visible light spectrum, respectively, encoded by distinct UV, B and LW opsin genes. In the compound eye of butterflies, each individual ommatidium is composed of nine photoreceptor cells (R1-9) that generally express only one opsin mRNA per cell, although in some butterfly eyes there are ommatidial subtypes in which two opsins are co-expressed in the same photoreceptor cell. Based on a phylogenetic analysis of opsin cDNAs from the five butterfly families, Papilionidae, Pieridae, Nymphalidae, Lycaenidae and Riodinidae, and comparative analysis of opsin gene expression patterns from four of the five families, I propose a model for the patterning of the ancestral butterfly eye that is most closely aligned with the nymphalid eye. The R1 and R2 cells of the main retina expressed UV-UV-, UV-B- or B-B-absorbing visual pigments while the R3-9 cells expressed a LW-absorbing visual pigment. Visual systems of existing butterflies then underwent an adaptive expansion based on lineage-specific B and LW opsin gene multiplications and on alterations in the spatial expression of opsins within the eye. Understanding the molecular sophistication of butterfly eye complexity is a challenge that, if met, has broad biological implications.

  17. Cholecystitis of a duplicated gallbladder complicated by a cholecystoenteric fistula

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Brady K. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Chess, Mitchell A. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Advanced Imaging, Batavia, NY (United States)


    Gallbladder duplications are uncommon anatomic variants that are sometimes mistaken for other entities on imaging. We present a surgically confirmed case of cholecystitis in a ductular-type duplicated gallbladder complicated by the formation of an inflammatory fistula to the adjacent duodenum. Both US and magnetic resonance cholangiopancreatography were performed preoperatively, in addition to intraoperative cholangiography, which confirmed the presence of a duplicated gallbladder. (orig.)


    Directory of Open Access Journals (Sweden)

    A. Burgio


    Full Text Available Gastrointestinal (GI tract duplications are rare congenital malformations. Most of them occur in the ileum and only 1-5%, of all duplication, were in the rectum. Different clinical features including chronic constipation, rectal prolapsed or polips. We report on a 4-years-old girl with Down syndrome and anorectal malformation (ARM who was found to have a rectal duplication cyst.

  19. Colonic duplication in an adult mimicking a tumor of pancreas

    Institute of Scientific and Technical Information of China (English)


    Duplications of the alimentary tract are uncommon congenital malformations that can present diagnostic difficulties.We report a rare case of a cystic colonic duplication in a female adult.Preoperative investigations were suggestive of pancreatic tumor.The diagnosis was established based on the histopathological examination of the resected specimen.We concluded that,though uncommon,intestinal duplication should be considered in differential diagnosis of abdominal mass.

  20. A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene

    Directory of Open Access Journals (Sweden)

    Derouin Francis


    Full Text Available Abstract Background Leishmaniases are among the most proteiform parasitic infections in humans ranging from unapparent to cutaneous, mucocutaneous or visceral diseases. The various clinical issues depend on complex and still poorly understood mechanisms where both host and parasite factors are interacting. Among the candidate factors of parasite virulence are the A2 genes, a family of multiple genes that are developmentally expressed in species of the Leishmania donovani group responsible for visceral diseases (VL. By contrast, in L. major determining cutaneous infections (CL we showed that A2 genes are present in a truncated form only. Furthermore, the A2 genomic sequences of L. major were considered subsequently to represent non-expressed pseudogenes 1. Consequently, it was suggested that the structural and functional properties of A2 genes could play a role in the differential tropism of CL and VL leishmanias. On this basis, it was of importance to determine whether the observed structural/functional particularities of the L. major A2 genes were shared by other CL Leishmania, therefore representing a proper characteristic of CL A2 genes as opposed to those of VL isolates. Methods In the present study we amplified by PCR and sequenced the A2 genes from genomic DNA and from clonal libraries of the four Old World CL species comparatively to a clonal population of L. infantum VL parasites. Using RT-PCR we also amplified and sequenced A2 mRNA transcripts from L. major. Results A unique A2 sequence was identified in Old World cutaneous Leishmania by sequencing. The shared sequence was highly conserved among the various CL strains and species analysed, showing a single polymorphism C/G at position 58. The CL A2 gene was found to be functionally transcribed at both parasite stages. Conclusion The present study shows that cutaneous strains of leishmania share a conserved functional A2 gene. As opposed to the multiple A2 genes described in VL isolates

  1. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer


    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  2. Duplicate inferior vena cava filters: more is not always better. (United States)

    Katyal, Anup; Javed, Muhammad Ali


    Duplication of the inferior vena cava (IVC) has been reported in literature. This achieves clinical significance in the setting of lower extremity venous thromboembolism with a contraindication for anticoagulation. We describe a case of lower extremity deep vein thrombosis with duplicate IVC. Anticoagulation was contraindicated in this case leading to successful treatment with double IVC filters. We conducted a PubMed search for all current English language published literature, where filters were placed in the presence of duplicate IVC. We suggest that patients with deep vein thrombosis should have an accurate assessment of venous anatomy before IVC filter placement. Duplication of IVC, although rare, should be considered as this has management implications.

  3. MR Imaging Findings in Xp21.2 Duplication Syndrome (United States)

    Whitehead, Matthew T; Helman, Guy; Gropman, Andrea L


    Xp21.2 duplication syndrome is a rare genetic disorder of undetermined prevalence and clinical relevance. As the use of chromosomal microarray has become first line for the work-up of childhood developmental delay, more gene deletions and duplications have been recognized. To the best of our knowledge, the imaging findings of Xp21.2 duplication syndrome have not been reported. We report a case of a 33 month-old male referred for developmental delay that was found to have an Xp21.2 duplication containing IL1RAPL1 and multiple midline brain malformations.

  4. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis


    Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia.

  5. Benchmarking Transcriptome Quantification Methods for Duplicated Genes in Xenopus laevis. (United States)

    Kwon, Taejoon


    Xenopus is an important model organism for the study of genome duplication in vertebrates. With the full genome sequence of diploid Xenopus tropicalis available, and that of allotetraploid X. laevis close to being finished, we will be able to expand our understanding of how duplicated genes have evolved. One of the key features in the study of the functional consequence of gene duplication is how their expression patterns vary across different conditions, and RNA-seq seems to have enough resolution to discriminate the expression of highly similar duplicated genes. However, most of the current RNA-seq analysis methods were not designed to study samples with duplicate genes such as in X. laevis. Here, various computational methods to quantify gene expression in RNA-seq data were evaluated, using 2 independent X. laevis egg RNA-seq datasets and 2 reference databases for duplicated genes. The fact that RNA-seq can measure expression levels of similar duplicated genes was confirmed, but long paired-end reads are more informative than short single-end reads to discriminate duplicated genes. Also, it was found that bowtie, one of the most popular mappers in RNA-seq analysis, reports significantly smaller numbers of unique hits according to a mapping quality score compared to other mappers tested (BWA, GSNAP, STAR). Calculated from unique hits based on a mapping quality score, both expression levels and the expression ratio of duplicated genes can be estimated consistently among biological replicates, demonstrating that this method can successfully discriminate the expression of each copy of a duplicated gene pair. This comprehensive evaluation will be a useful guideline for studying gene expression of organisms with genome duplication using RNA-seq in the future.

  6. Analysis of the stone ancestral hall of Guo’s tomb on Xiaotang mountainin Han dynasty architectural features

    Institute of Scientific and Technical Information of China (English)



    The stone ancestral hall of Guo’s tomb in Xiaotang mountain is the earliest existing buildings on the ground in China. It has a very high historical, cultural and artistic value, and it was described by the ancient and modern scholars and experts in their books and articles. But the study of architectural of ancestral hall was emphasized from 1930s, and became a brilliant star in the Chinese historic buildings. In this article, the architectural characteristics of the stone ancestral hall are discussed through fieldworks, in order to clarify the real architecture appearance of the ancestral hall and refer more informations for comprehensive study of Xiaotang stone ancestral hall.

  7. Slipins: ancient origin, duplication and diversification of the stomatin protein family

    Directory of Open Access Journals (Sweden)

    Young J Peter W


    Full Text Available Abstract Background Stomatin is a membrane protein that was first isolated from human red blood cells. Since then, a number of stomatin-like proteins have been identified in all three domains of life. The conservation among these proteins is remarkable, with bacterial and human homologs sharing 50 % identity. Despite being associated with a variety of diseases such as cancer, kidney failure and anaemia, precise functions of these proteins remain unclear. Results We have constructed a comprehensive phylogeny of all 'stomatin-like' sequences that share a 150 amino acid domain. We show these proteins comprise an ancient family that arose early in prokaryotic evolution, and we propose a new nomenclature that reflects their phylogeny, based on the name "slipin" (stomatin-like protein. Within prokaryotes there are two distinct subfamilies that account for the two different origins of the eight eukaryotic stomatin subfamilies, one of which gave rise to eukaryotic SLP-2, renamed here "paraslipin". This was apparently acquired through the mitochondrial endosymbiosis and is widely distributed amongst the major kingdoms. The other prokaryotic subfamily gave rise to the ancestor of the remaining seven eukaryotic subfamilies. The highly diverged "alloslipin" subfamily is represented only by fungal, viral and ciliate sequences. The remaining six subfamilies, collectively termed "slipins", are confined to metazoa. Protostome stomatin, as well as a newly reported arthropod subfamily slipin-4, are restricted to invertebrate groups, whilst slipin-1 (previously SLP-1 is present in nematodes and higher metazoa. In vertebrates, the stomatin family expanded considerably, with at least two duplication events giving rise to podocin and slipin-3 subfamilies (previously SLP-3, with the retained ancestral sequence giving rise to vertebrate stomatin. Conclusion Stomatin-like proteins have their origin in an ancient duplication event that occurred early on in the evolution

  8. Widely divergent transcriptional patterns between SLE patients of different ancestral backgrounds in sorted immune cell populations. (United States)

    Sharma, Shruti; Jin, Zhongbo; Rosenzweig, Elizabeth; Rao, Swapna; Ko, Kichul; Niewold, Timothy B


    Systemic lupus erythematosus (SLE) is a complex autoimmune disease of uncertain etiology. Patients from different ancestral backgrounds demonstrate differences in clinical manifestations and autoantibody profiles. We examined genome-wide transcriptional patterns in major immune cell subsets across different ancestral backgrounds. Peripheral blood was collected from African-American (AA) and European-American (EA) SLE patients and controls. CD4 T-cells, CD8 T-cells, monocytes, and B cells were purified by flow sorting, and each cell subset from each subject was run on a genome-wide expression array. Cases were compared to controls of the same ancestral background. The overlap in differentially expressed gene (DEG) lists between different cell types from the same ancestral background was modest (type between different ancestral backgrounds. IFN-stimulated gene (ISG) expression was not up-regulated synchronously in all cell types from a given patient, for example a given subject could have high ISG expression in T and B cells, but not in monocytes. AA subjects demonstrated more concordance in ISG expression between cell types from the same individual, and AA patients demonstrated significant down-regulation of metabolic gene expression which was not observed in EA patients. ISG expression was significantly decreased in B cells in patients taking immunosuppressants, while ISGs in other cell types did not differ with medication use. In conclusion, gene expression was strikingly different between immune cell subsets and between ancestral backgrounds in SLE patients. These findings emphasize the critical importance of studying multiple ancestral backgrounds and multiple cell types in gene expression studies. Ancestral backgrounds which are not studied will not benefit from personalized medicine strategies in SLE.

  9. The survival effect in memory: does it hold into old age and non-ancestral scenarios? (United States)

    Yang, Lixia; Lau, Karen P L; Truong, Linda


    The survival effect in memory refers to the memory enhancement for materials encoded in reference to a survival scenario compared to those encoded in reference to a control scenario or with other encoding strategies. The current study examined whether this effect is well maintained in old age by testing young (ages 18-29) and older adults (ages 65-87) on the survival effect in memory for words encoded in ancestral and/or non-ancestral modern survival scenarios relative to a non-survival control scenario. A pilot study was conducted to select the best matched comparison scenarios based on potential confounding variables, such as valence and arousal. Experiment 1 assessed the survival effect with a well-matched negative control scenario in both young and older adults. The results showed an age-equivalent survival effect across an ancestral and a non-ancestral modern survival scenario. Experiment 2 replicated the survival effect in both age groups with a positive control scenario. Taken together, the data suggest a robust survival effect that is well preserved in old age across ancestral and non-ancestral survival scenarios.

  10. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami


    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  11. 42 CFR 457.626 - Prevention of duplicate payments. (United States)


    ... 42 Public Health 4 2010-10-01 2010-10-01 false Prevention of duplicate payments. 457.626 Section... Payments to States § 457.626 Prevention of duplicate payments. (a) General rule. No payment shall be made... CFR 144.103, which is not part of, or wholly owned by, a governmental entity. Prompt payment...

  12. 40 CFR 25.13 - Coordination and non-duplication. (United States)


    ... PROGRAMS UNDER THE RESOURCE CONSERVATION AND RECOVERY ACT, THE SAFE DRINKING WATER ACT, AND THE CLEAN WATER ACT § 25.13 Coordination and non-duplication. The public participation activities and materials that... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Coordination and non-duplication....

  13. 10 CFR 7.21 - Cost of duplication of documents. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or...

  14. MECP2 duplication: possible cause of severe phenotype in females. (United States)

    Scott Schwoerer, Jessica; Laffin, Jennifer; Haun, Joanne; Raca, Gordana; Friez, Michael J; Giampietro, Philip F


    MECP2 duplication syndrome, originally described in 2005, is an X-linked neurodevelopmental disorder comprising infantile hypotonia, severe to profound intellectual disability, autism or autistic-like features, spasticity, along with a variety of additional features that are not always clinically apparent. The syndrome is due to a duplication (or triplication) of the gene methyl CpG binding protein 2 (MECP2). To date, the disorder has been described almost exclusively in males. Female carriers of the duplication are thought to have no or mild phenotypic features. Recently, a phenotype for females began emerging. We describe a family with ∼290 kb duplication of Xq28 region that includes the MECP2 gene where the proposita and affected family members are female. Twin sisters, presumed identical, presented early with developmental delay, and seizures. Evaluation of the proposita at 25 years of age included microarray comparative genomic hybridization (aCGH) which revealed the MECP2 gene duplication. The same duplication was found in the proposita's sister, who is more severely affected, and the proband's mother who has mild intellectual disability and depression. X-chromosome inactivation studies showed significant skewing in the mother, but was uninformative in the twin sisters. We propose that the MECP2 duplication caused for the phenotype of the proband and her sister. These findings support evidence for varied severity in some females with MECP2 duplications.

  15. 29 CFR 1912.4 - Avoidance of duplication. (United States)


    ... 29 Labor 7 2010-07-01 2010-07-01 false Avoidance of duplication. 1912.4 Section 1912.4 Labor... (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.4 Avoidance of duplication. No... advisory committee established under section 7(b) of the Act....

  16. Evolution after whole-genome duplication: a network perspective. (United States)

    Zhu, Yun; Lin, Zhenguo; Nakhleh, Luay


    Gene duplication plays an important role in the evolution of genomes and interactomes. Elucidating how evolution after gene duplication interplays at the sequence and network level is of great interest. In this work, we analyze a data set of gene pairs that arose through whole-genome duplication (WGD) in yeast. All these pairs have the same duplication time, making them ideal for evolutionary investigation. We investigated the interplay between evolution after WGD at the sequence and network levels and correlated these two levels of divergence with gene expression and fitness data. We find that molecular interactions involving WGD genes evolve at rates that are three orders of magnitude slower than the rates of evolution of the corresponding sequences. Furthermore, we find that divergence of WGD pairs correlates strongly with gene expression and fitness data. Because of the role of gene duplication in determining redundancy in biological systems and particularly at the network level, we investigated the role of interaction networks in elucidating the evolutionary fate of duplicated genes. We find that gene neighborhoods in interaction networks provide a mechanism for inferring these fates, and we developed an algorithm for achieving this task. Further epistasis analysis of WGD pairs categorized by their inferred evolutionary fates demonstrated the utility of these techniques. Finally, we find that WGD pairs and other pairs of paralogous genes of small-scale duplication origin share similar properties, giving good support for generalizing our results from WGD pairs to evolution after gene duplication in general.

  17. 47 CFR 61.73 - Duplication of rates or regulations. (United States)


    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Duplication of rates or regulations. 61.73 Section 61.73 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Duplication of rates or regulations. A carrier concurring in schedules of another carrier must not...

  18. 49 CFR 24.3 - No duplication of payments. (United States)


    ... 49 Transportation 1 2010-10-01 2010-10-01 false No duplication of payments. 24.3 Section 24.3 Transportation Office of the Secretary of Transportation UNIFORM RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION FOR FEDERAL AND FEDERALLY-ASSISTED PROGRAMS General § 24.3 No duplication of payments. No...

  19. Penile shaft sinus: A sequalae of circumcision in urethral duplication

    Directory of Open Access Journals (Sweden)

    Lukman O Abdur-Rahman


    Full Text Available Urethral duplication (UD is rare congenital anomalies with varied presentation. Careful clinical evaluation of children by specialist would enhance diagnosis, adequate management and reduce occurrence of complication. We present a 12-year-old boy with chronic post circumcision ventral penile sinus that was successfully managed for urethral duplication.

  20. Testing of duplicate rinse aliquots for presence of Salmonella (United States)

    Testing of chicken carcass rinses for Salmonella prevalence is often performed in duplicate because of the potential importance of the results, but anecdotal reports indicate that duplicate samples often disagree. This might be due to normal variation in microbiological methods or to the testing of...

  1. Two cases of the caudal duplication anomaly including a discordant monozygotic twin

    NARCIS (Netherlands)

    Kroes, HY; Takahashi, M; Zijlstra, RJ; Baert, JALL; Kooi, KA; Hofstra, RMW; van Essen, AJ


    We present two unrelated patients with various duplications in the caudal region. One patient presented with a duplication of the distal spine from L4, left double ureter, duplication of the vagina and cervix, and duplication of the distal colon. The second patient was diagnosed with a duplication o

  2. Detection of tandam duplications and implications for linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matise, T.C.; Weeks, D.E. (Univ. of Pittsburgh, PA (United States)); Chakravarti, A. (Case Western Reserve Univ., Cleveland, OH (United States)); Patel, P.I.; Lupski, J.R. (Baylor College of Medicine, Houston, TX (United States)); Nelis, E.; Timmerman, V.; Van Broeckhoven, C. (Univ. of Antwerp (Belgium))


    The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, the authors studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. They demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, they devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. They tested their methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, the method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data the method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A. 18 refs., 5 figs., 6 tabs.

  3. Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication. (United States)

    Lavy, Tali; Yanagida, Hayato; Tawfik, Dan S


    Derived from the yeast whole-genome duplication, Saccharomyces cerevisiae GAL1 and GAL3 encode the catabolic enzyme galactokinase (Gal1) and its transcriptional coinducer (Gal3), whereas the ancestral, preduplicated GAL1 gene performed both functions. Previous studies indicated that divergence was primarily driven by changes in upstream promoter elements, and changes in GAL3's coding region are assumed to be the result of drift. We show that replacement of GAL3's open-reading-frame with GAL1's results in an extended lag phase upon switching to growth on galactose with up to 2.5-fold differences in the initial cell masses. Accordingly, the binding affinity of Gal3 to Gal80 was found to be greater than 10-folds higher than that of Gal1, with both a higher association rate (ka) and lower dissociation (kd) rate. Thus, while changes in the noncoding, regulatory regions were the initial driving force for GAL3's subfunctionalization as a coinducer, adaptive changes in the protein sequence seem to have followed.

  4. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. (United States)

    Kim, Sangtae; Yoo, Mi-Jeong; Albert, Victor A; Farris, James S; Soltis, Pamela S; Soltis, Douglas E


    B-function MADS-box genes play crucial roles in floral development in model angiosperms. We reconstructed the structural and functional implications of B-function gene phylogeny in the earliest extant flowering plants based on analyses that include 25 new AP3 and PI sequences representing critical lineages of the basalmost angiosperms: Amborella, Nuphar (Nymphaeaceae), and Illicium (Austrobaileyales). The ancestral size of exon 5 in PI-homologues is 42 bp, typical of exon 5 in other plant MADS-box genes. This 42-bp length is found in PI-homologues from Amborella and Nymphaeaceae, successive sisters to all other angiosperms. Following these basalmost branches, a deletion occurred in exon 5, yielding a length of 30 bp, a condition that unites all other angiosperms. Several shared amino acid strings, including a prominent "DEAER" motif, are present in the AP3- and PI-homologues of Amborella. These may be ancestral motifs that were present before the duplication that yielded the AP3 and PI lineages and subsequently were modified after the divergence of Amborella. Other structural features were identified, including a motif that unites the previously described TM6 clade and a deletion in AP3-homologues that unites all Magnoliales. Phylogenetic analyses of AP3- and PI-homologues yielded gene trees that generally track organismal phylogeny as inferred by multigene data sets. With both AP3 and PI amino acid sequences, Amborella and Nymphaeaceae are sister to all other angiosperms. Using nonparametric rate smoothing (NPRS), we estimated that the duplication that produced the AP3 and PI lineages occurred approximately 260 mya (231-290). This places the duplication after the split between extant gymnosperms and angiosperms, but well before the oldest angiosperm fossils. A striking similarity in the multimer-signalling C domains of the Amborella proteins suggests the potential for the formation of unique transcription-factor complexes. The earliest angiosperms may have been

  5. Novel Duplicate Address Detection with Hash Function. (United States)

    Song, GuangJia; Ji, ZhenZhou


    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution.

  6. Duplicated laboratory tests: evaluation of a computerized alert intervention abstract. (United States)

    Bridges, Sharon A; Papa, Linda; Norris, Anne E; Chase, Susan K


    Redundant testing contributes to reductions in healthcare system efficiency. The purpose of this study was to: (1) determine if the use of a computerized alert would reduce the number and cost of duplicated Acute Hepatitis Profile (AHP) laboratory tests and (2) assess what patient, test, and system factors were associated with duplication. This study used a quasi-experimental pre- and post-test design to determine the proportion of duplication of the AHP test before and after implementation of a computerized alert intervention. The AHP test was duplicated if the test was requested again within 15 days of the initial test being performed and the result present in the medical record. The intervention consisted of a computerized alert (pop-up window) that indicated to the clinician that the test had recently been ordered. A total of 674 AHP tests were performed in the pre-intervention period and 692 in the postintervention group. In the pre-intervention period, 53 (7.9%) were duplicated and in postintervention, 18 (2.6%) were duplicated (ptests (p≤.001). Implementation of computerized alerts may be useful in reducing duplicate laboratory tests and improving healthcare system efficiency.

  7. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto


    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  8. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman


    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  9. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California (United States)

    du Bray, Edward A.; John, David A.


    Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably

  10. Methods, apparatus and system for selective duplication of subtasks

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.


    A method for selective duplication of subtasks in a high-performance computing system includes: monitoring a health status of one or more nodes in a high-performance computing system, where one or more subtasks of a parallel task execute on the one or more nodes; identifying one or more nodes as having a likelihood of failure which exceeds a first prescribed threshold; selectively duplicating the one or more subtasks that execute on the one or more nodes having a likelihood of failure which exceeds the first prescribed threshold; and notifying a messaging library that one or more subtasks were duplicated.

  11. Foregut duplication cysts of the stomach with respiratory epithelium

    Institute of Scientific and Technical Information of China (English)

    Theodosios Theodosopoulos; Athanasios Marinis; Konstantinos Karapanos; Georgios Vassilikostas; Nikolaos Dafnios; Lazaros Samanides; Eleni Carvounis


    Gastrointestinal duplication is a congenital rare disease entity. Gastric duplication cysts seem to appear even more rarely. Herein, two duplications cysts of the stomach in a 46 year-old female patient are presented.Abdominal computed tomography demonstrated a cystic lesion attached to the posterior aspect of the gastric fundus, while upper gastrointestinal endoscopy was negative. An exploratory laparotomy revealed a non-communicating cyst and a smaller similar cyst embedded in the gastrosplenic ligament. Excision of both cysts along with the spleen was performed and pathology reported two smooth muscle coated cysts with a pseudostratified ciliated epithelial lining (respiratory type).

  12. Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. (United States)

    Xu, Lin; Chen, Hong; Hu, Xiaohua; Zhang, Rongmei; Zhang, Ze; Luo, Z W


    The average length of genes in a eukaryote is larger than in a prokaryote, implying that evolution of complexity is related to change of gene lengths. Here, we show that although the average lengths of genes in prokaryotes and eukaryotes are much different, the average lengths of genes are highly conserved within either of the two kingdoms. This suggests that natural selection has clearly set a strong limitation on gene elongation within the kingdom. Furthermore, the average gene size adds another distinct characteristic for the discrimination between the two kingdoms of organisms.

  13. Clusters of ancestrally related genes that show paralogy in whole or in part are a major feature of the genomes of humans and other species.

    Directory of Open Access Journals (Sweden)

    Michael B Walker

    Full Text Available Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity.Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets ( describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.

  14. Attack Vulnerability of Network with Duplication-Divergence Mechanism

    Institute of Scientific and Technical Information of China (English)


    We study the attack vulnerability of network with duplication-divergence mechanism. Numerical results have shown that the duplication-divergence network with larger retention probability a is more robust against target attack relatively. Furthermore, duplication-divergence network is broken down more quickly than its counterpart BA network under target attack. Such result is consistent with the fact of WWW and Internet networks under target attack. So duplication-divergence model is a more realistic one for us to investigate the characteristics of the world wide web in future. We also observe that the exponent 7 of degree distribution and average degree are important parameters of networks, reflecting the performance of networks under target attack. Our results are helpful to the research on the security of network.

  15. Complete duplication of bladder and urethra: a case report. (United States)

    Esham, W; Holt, H A


    A case of complete duplication of the bladder and urethra in a girl is reported, demonstrating outlet obstruction in the bladder on the left side. Associated anomalies and pertinent literature are reviewed.

  16. Common 5' beta-globin RFLP haplotypes harbour a surprising level of ancestral sequence mosaicism. (United States)

    Webster, Matthew T; Clegg, John B; Harding, Rosalind M


    Blocks of linkage disequilibrium (LD) in the human genome represent segments of ancestral chromosomes. To investigate the relationship between LD and genealogy, we analysed diversity associated with restriction fragment length polymorphism (RFLP) haplotypes of the 5' beta-globin gene complex. Genealogical analyses were based on sequence alleles that spanned a 12.2-kb interval, covering 3.1 kb around the psibeta gene and 6.2 kb of the delta-globin gene and its 5' flanking sequence known as the R/T region. Diversity was sampled from a Kenyan Luo population where recent malarial selection has contributed to substantial LD. A single common sequence allele spanning the 12.2-kb interval exclusively identified the ancestral chromosome bearing the "Bantu" beta(s) (sickle-cell) RFLP haplotype. Other common 5' RFLP haplotypes comprised interspersed segments from multiple ancestral chromosomes. Nucleotide diversity was similar between psibeta and R/T-delta-globin but was non-uniformly distributed within the R/T-delta-globin region. High diversity associated with the 5' R/T identified two ancestral lineages that probably date back more than 2 million years. Within this genealogy, variation has been introduced into the 3' R/T by gene conversion from other ancestral chromosomes. Diversity in delta-globin was found to lead through parts of the main genealogy but to coalesce in a more recent ancestor. The well-known recombination hotspot is clearly restricted to the region 3' of delta-globin. Our analyses show that, whereas one common haplotype in a block of high LD represents a long segment from a single ancestral chromosome, others are mosaics of short segments from multiple ancestors related in genealogies of unsuspected complexity.

  17. Modeling protein network evolution under genome duplication and domain shuffling

    Directory of Open Access Journals (Sweden)

    Isambert Hervé


    Full Text Available Abstract Background Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI networks by outweighing, in particular, all time-linear network growths modeled so far. Results We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from i prevailing exponential network dynamics under duplication and ii asymmetric divergence of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of direct and indirect PPI networks of S. cerevisiae are well reproduced numerically with only two adjusted parameters of clear biological significance (i.e. network effective growth rate and average number of protein-binding domains per protein. Conclusion This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale

  18. [Respiratory insufficiency due to duplications of the oesophagus]. (United States)

    Luoma, Reijo


    Duplications of the oesophagus are uncommon congenital malformations with possible occurrence in any part of the gastrointestinal tract. The duplications may be cysts, diverticula or tubular-shaped. Cysts may even occur further away from the gastrointestinal tract, not necessarily having contact with it. I present a patient case, in which a 13-month-old child was brought to the emergency room due to gradually increasing dyspnea. The child made a full recovery after the surgical procedure.

  19. Gene duplication in the genome of parasitic Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Flores Roberto


    Full Text Available Abstract Background Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins, which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.

  20. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. (United States)

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M


    Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were

  1. A novel duplicate images detection method based on PLSA model (United States)

    Liao, Xiaofeng; Wang, Yongji; Ding, Liping; Gu, Jian


    Web image search results usually contain duplicate copies. This paper considers the problem of detecting and clustering duplicate images contained in web image search results. Detecting and clustering the duplicate images together facilitates users' viewing. A novel method is presented in this paper to detect and cluster duplicate images by measuring similarity between their topics. More specifically, images are viewed as documents consisting of visual words formed by vector quantizing the affine invariant visual features. Then a statistical model widely used in text domain, the PLSA(Probabilistic Latent Semantic Analysis) model, is utilized to map images into a probabilistic latent semantic space. Because the main content remains unchanged despite small digital alteration, duplicate images will be close to each other in the derived semantic space. Based on this, a simple clustering process can successfully detect duplicate images and cluster them together. Comparing to those methods based on comparison between hash value of visual words, this method is more robust to the visual feature level alteration posed on the images. Experiments demonstrates the effectiveness of this method.

  2. Gene and genome duplication in Acanthamoeba polyphaga Mimivirus. (United States)

    Suhre, Karsten


    Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.

  3. Duplicate publication rate decline in Korean medical journals. (United States)

    Kim, Soo Young; Bae, Chong-Woo; Hahm, Chang Kok; Cho, Hye Min


    The purpose of this study was to examine trends in duplicate publication in Korean medical articles indexed in the KoreaMed database from 2004 to 2009, before and after a campaign against scientific misconduct launched by the Korean Association of Medical Journal Editors in 2006. The study covered period from 2007 to 2012; and 5% of the articles indexed in KoreaMed were retrieved by random sampling. Three authors reviewed full texts of the retrieved articles. The pattern of duplicate publication, such as copy, salami slicing (fragmentation), and aggregation (imalas), was also determined. Before the launching ethics campaign, the national duplication rate in medical journals was relatively high: 5.9% in 2004, 6.0% in 2005, and 7.2% in 2006. However, duplication rate steadily declined to 4.5% in 2007, 2.8% in 2008, and 1.2 % in 2009. Of all duplicated articles, 53.4% were classified as copies, 27.8% as salami slicing, and 18.8% as aggregation (imalas). The decline in duplicate publication rate took place as a result of nationwide campaigns and monitoring by KoreaMed and KoreaMed Synapse, starting from 2006.

  4. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. (United States)

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato


    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki.

  5. Mutational dynamics of murine angiogenin duplicates

    Directory of Open Access Journals (Sweden)

    Fares Mario A


    Angiogenin in vertebrates and highlight the plasticity of this protein after gene duplication. Our results suggest functional divergence among mAng paralogs. This puts forward mAng as a good system candidate for testing functional plasticity of such an important protein while stresses caution when using mouse as a model to infer the consequences of mutations in the single Ang copy of humans.

  6. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function

    Directory of Open Access Journals (Sweden)

    Meuwissen Pieter J


    Full Text Available Abstract Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2 and non-canonical (B2 and C1422 HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2, the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we

  7. Inheritance of the 8.1 ancestral haplotype in recurrent pregnancy loss

    DEFF Research Database (Denmark)

    Kolte, Astrid M; Nielsen, Henriette S; Steffensen, Rudi;


    BACKGROUND AND OBJECTIVES: The 8.1 ancestral haplotype (AH) (HLA-A1, C7, B8, C4AQ0, C4B1, DR3, DQ2) is a remarkably long and conserved haplotype in the human major histocompatibility complex. It has been associated with both beneficial and detrimental effects, consistent with antagonistic pleiotr...

  8. Language Shift and Maintenance in Multilingual Mauritius: The Case of Indian Ancestral Languages (United States)

    Bissoonauth, Anu


    This paper reports on a research study conducted in Mauritius between June and July 2009. The aim of this research was to investigate the use of Indian ancestral languages in the domestic domain by the younger generations. The data were collected in the field by means of a questionnaire and interviews from a quota sample of secondary school…

  9. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs. (United States)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun


    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue.

  10. Assessing the prediction fidelity of ancestral reconstruction by a library approach. (United States)

    Bar-Rogovsky, Hagit; Stern, Adi; Penn, Osnat; Kobl, Iris; Pupko, Tal; Tawfik, Dan S


    Ancestral reconstruction is a powerful tool for studying protein evolution as well as for protein design and engineering. However, in many positions alternative predictions with relatively high marginal probabilities exist, and thus the prediction comprises an ensemble of near-ancestor sequences that relate to the historical ancestor. The ancestral phenotype should therefore be explored for the entire ensemble, rather than for the sequence comprising the most probable amino acid at all positions [the most probable ancestor (mpa)]. To this end, we constructed libraries that sample ensembles of near-ancestor sequences. Specifically, we identified positions where alternatively predicted amino acids are likely to affect the ancestor's structure and/or function. Using the serum paraoxonases (PONs) enzyme family as a test case, we constructed libraries that combinatorially sample these alternatives. We next characterized these libraries, reflecting the vertebrate and mammalian PON ancestors. We found that the mpa of vertebrate PONs represented only one out of many different enzymatic phenotypes displayed by its ensemble. The mammalian ancestral library, however, exhibited a homogeneous phenotype that was well represented by the mpa. Our library design strategy that samples near-ancestor ensembles at potentially critical positions therefore provides a systematic way of examining the robustness of inferred ancestral phenotypes.

  11. Discovery of highly conserved unique peanut and tree nut peptides by LC-MS/MS for multi-allergen detection. (United States)

    Sealey-Voyksner, Jennifer; Zweigenbaum, Jerry; Voyksner, Robert


    Proteins unique to peanuts and various tree nuts have been extracted, subjected to trypsin digestion and analysis by liquid chromatography/quadrupole time-of-flight mass spectrometry, in order to find highly conserved peptides that can be used as markers to detect peanuts and tree nuts in food. The marker peptide sequences chosen were those found to be present in both native (unroasted) and thermally processed (roasted) forms of peanuts and tree nuts. Each peptide was selected by assuring its presence in food that was processed or unprocessed, its abundance for sensitivity, sequence size, and uniqueness for peanut and each specific variety of tree nut. At least two peptides were selected to represent peanut, almond, pecan, cashew, walnut, hazelnut, pine nut, Brazil nut, macadamia nut, pistachio nut, chestnut and coconut; to determine the presence of trace levels of peanut and tree nuts in food by a novel multiplexed LC-MS method.

  12. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Directory of Open Access Journals (Sweden)

    Andrea M Santangelo


    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  13. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W


    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  14. Study of intrachromosomal duplications among the eukaryote genomes. (United States)

    Achaz, G; Netter, P; Coissac, E


    Complete eukaryote chromosomes were investigated for intrachromosomal duplications of nucleotide sequences. The analysis was performed by looking for nonexact repeats on two complete genomes, Saccharomyces cerevisiae and Caenorhabditis elegans, and four partial ones, Drosophila melanogaster, Plasmodium falciparum, Arabidopsis thaliana, and Homo sapiens. Through this analysis, we show that all eukaryote chromosomes exhibit similar characteristics for their intrachromosomal repeats, suggesting similar dynamics: many direct repeats have their two copies physically close together, and these close direct repeats are more similar and shorter than the other repeats. On the contrary, there are almost no close inverted repeats. These results support a model for the dynamics of duplication. This model is based on a continuous genesis of tandem repeats and implies that most of the distant and inverted repeats originate from these tandem repeats by further chromosomal rearrangements (insertions, inversions, and deletions). Remnants of these predicted rearrangements have been brought out through fine analysis of the chromosome sequence. Despite these dynamics, shared by all eukaryotes, each genome exhibits its own style of intrachromosomal duplication: the density of repeated elements is similar in all chromosomes issued from the same genome, but is different between species. This density was further related to the relative rates of duplication, deletion, and mutation proper to each species. One should notice that the density of repeats in the X chromosome of C. elegans is much lower than in the autosomes of that organism, suggesting that the exchange between homologous chromosomes is important in the duplication process.

  15. The duplication 17p13.3 phenotype

    DEFF Research Database (Denmark)

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica


    additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large....... Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype...... was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome....

  16. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A


    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  17. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.


    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  18. The Sequence and Analysis of Duplication Rich Human Chromosome 16 (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.


    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  19. Ultrasound evaluation of the enteric duplication cyst: the gut signature. (United States)

    Di Serafino, Marco; Mercogliano, Carmela; Vallone, Gianfranco


    Gastrointestinal duplication cyst is a rare congenital anomaly that may occur anywhere along the gastrointestinal tract from the tongue to the anus. Such cysts occur most commonly in the small bowel and about half are in the mesenteric border of the ileum. Such cystic duplications communicate only rarely with the intestinal lumen although the cysts are attached to the intestine and may even share a common wall with the adjacent alimentary tract. These lesions can vary in shape, being cystic or tubular, and often show the same structure of the adjacent normal bowel. It is usually asymptomatic and complications are rare but they may include obstruction by volvulus or intussusception, bleeding, infection, and perforation. When diagnosed these lesions should be surgically resected to avoid future possible complications. The authors present a case of enteric cystic duplication and its ultrasound appearance in a 12-month-old Caucasian female infant cause of acute abdominal pain and intestinal obstruction, thus requiring urgent surgery.

  20. A Method of Object-based De-duplication

    Directory of Open Access Journals (Sweden)

    Fang Yan


    Full Text Available Today, the world is increasingly awash in more and more unstructured data, not only because of the Internet, but also because data that used to be collected on paper or media such as film, DVDs and compact discs has moved online [1]. Most of this data is unstructured and in diverse formats such as e-mail, documents, graphics, images, and videos. In managing unstructured data complexity and scalability, object storage has a clear advantage. Object-based data de-duplication is the current most advanced method and is the effective solution for detecting duplicate data. It can detect common embedded data for the first backup across completely unrelated files and even when physical block layout changes. However, almost all of the current researches on data de-duplication do not consider the content of different file types, and they do not have any knowledge of the backup data format. It has been proven that such method cannot achieve optimal performance for compound files.In our proposed system, we will first extract objects from files, Object_IDs are then obtained by applying hash function to the objects. The resulted Object_IDs are used to build as indexing keys in B+ tree like index structure, thus, we avoid the need for a full object index, the searching time for the duplicate objects reduces to O(log n.We introduce a new concept of a duplicate object resolver. The object resolver mediates access to all the objects and is a central point for managing all the metadata and indexes for all the objects. All objects are addressable by their IDs which is unique in the universe. The resolver stores metadata with triple format. This improved metadata management strategy allows us to set, add and resolve object properties with high flexibility, and allows the repeated use of the same metadata among duplicate object.

  1. Multi-Factor Duplicate Question Detection in Stack Overflow

    Institute of Scientific and Technical Information of China (English)

    张芸; David Lo; 夏鑫; 孙建伶


    Stack Overflow is a popular on-line question and answer site for software developers to share their experience and expertise. Among the numerous questions posted in Stack Overflow, two or more of them may express the same point and thus are duplicates of one another. Duplicate questions make Stack Overflow site maintenance harder, waste resources that could have been used to answer other questions, and cause developers to unnecessarily wait for answers that are already available. To reduce the problem of duplicate questions, Stack Overflow allows questions to be manually marked as duplicates of others. Since there are thousands of questions submitted to Stack Overflow every day, manually identifying duplicate questions is a di昋cult work. Thus, there is a need for an automated approach that can help in detecting these duplicate questions. To address the above-mentioned need, in this paper, we propose an automated approach named DUPPREDICTOR that takes a new question as input and detects potential duplicates of this question by considering multiple factors. DUPPREDICTOR extracts the title and description of a question and also tags that are attached to the question. These pieces of information (title, description, and a few tags) are mandatory information that a user needs to input when posting a question. DUPPREDICTOR then computes the latent topics of each question by using a topic model. Next, for each pair of questions, it computes four similarity scores by comparing their titles, descriptions, latent topics, and tags. These four similarity scores are finally combined together to result in a new similarity score that comprehensively considers the multiple factors. To examine the benefit of DUPPREDICTOR, we perform an experiment on a Stack Overflow dataset which contains a total of more than two million questions. The result shows that DUPPREDICTOR can achieve a recall-rate@20 score of 63.8%. We compare our approach with the standard search engine of Stack

  2. Urethral duplication with unusual cause of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    Vivek Venkatramani


    Full Text Available A 12-year-old boy presented with poor flow and recurrent urinary tract infections following hypospadias repair at the age of 3 years. The evaluation revealed urethral duplication with a hypoplastic dorsal urethra and patent ventral urethra. He also had duplication of the bladder neck, and on voiding cystourethrogram the ventral bladder neck appeared hypoplastic and compressed by the dorsal bladder neck during voiding. The possibility of functional obstruction of the ventral urethra by the occluded dorsal urethra was suspected, and he underwent a successful urethro-urethrostomy.

  3. Medical image of the week: duplicate superior vena cava

    Directory of Open Access Journals (Sweden)

    L'Heureux D


    Full Text Available A persistent left SVC is the most common thoracic venous anomaly and usually opens into the right atrium via the coronary sinus. A central line inserted into the left SVC may be mistaken for placement in other sites such as the subclavian or carotid artery, the mediastinum, the pericardium or pleural space. A duplicate SVC may cause difficulty in introducing central venous catheters or pulmonary artery catheters because of the narrow opening of the coronary sinus to reach the right atrium. In addition, a duplicate SVC is associated with important cardiac conditions such as atrial septal defects and ventricular arrhythmias.

  4. Evolution of Weighted Networks by Duplication-Divergence Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Guo; YAN Jia-Ren; LIU Zi-Ran; WANG Li


    @@ The duplication and divergence process is ubiquitous in nature and man-made networks. Motivated by the duplication-divergence mechanism which depicts the growth of protein networks, we propose a weighted network model in which topological evolution is coupled with weight dynamics. Large scale numerical results indicate that our model can naturally generate networks with power-law-like distributions of degree, strength and weight.The degree-strength correlation is illustrated as well. These properties are in agreement well with empirical data observed in real-world systems. Furthermore, by altering the retention probability σ, weighted, structured exponential networks are realized.

  5. Splenic duplication: a rare cause of acute upper gastrointestinal bleeding. (United States)

    Sharma, Pankaj; Alkadhi, Hatem; Gubler, Christoph; Bauerfeind, Peter; Pfammatter, Thomas


    Acute gastrointestinal bleeding represents a common medical emergency. We report the rare case of acute upper gastrointestinal bleeding caused by varices in the gastric fundus secondary to splenic duplication. Splenic duplication has been only rarely reported in the literature, and no case so far has described the associated complication of gastrointestinal bleeding, caused by venous drainage of the upper spleen via varices in the gastric fundus. We describe the imaging findings from endoscopy, endosonography, computed tomography (CT), flat-panel CT, and angiography in this rare condition and illustrate the effective role of intra-arterial embolization.

  6. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS, which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots.

  7. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains.

    Directory of Open Access Journals (Sweden)

    Didier Menard


    Full Text Available BACKGROUND: Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes. METHODS/PRINCIPAL FINDINGS: Through recent whole genome sequencing we obtained ≥ 70× coverage of the P. vivax genome from five field-isolates, resulting in ≥ 93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported. CONCLUSIONS/SIGNIFICANCE: The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion

  8. The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

    Directory of Open Access Journals (Sweden)

    Florian Mattenberger


    Full Text Available Gene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver of innovations . However, here we show that increased phenotypic plasticity after duplication plays a more major role than thought before in the origin of adaptations. We perform an exhaustive analysis of the transcriptional alterations of duplicated genes in the unicellular eukaryote Saccharomyces cerevisiae when challenged with five different environmental stresses. Analysis of the transcriptomes of yeast shows that gene duplication increases the transcriptional response to environmental changes, with duplicated genes exhibiting signatures of adaptive transcriptional patterns in response to stress. The mechanism of duplication matters, with whole-genome duplicates being more transcriptionally altered than small-scale duplicates. The predominant transcriptional pattern follows the classic theory of evolution by gene duplication; with one gene copy remaining unaltered under stress, while its sister copy presents large transcriptional plasticity and a prominent role in adaptation. Moreover, we find additional transcriptional profiles that are suggestive of neo- and subfunctionalization of duplicate gene copies. These patterns are strongly correlated with the functional dependencies and sequence divergence profiles of gene copies. We show that, unlike singletons, duplicates respond more specifically to stress, supporting the role of natural selection in the transcriptional plasticity of duplicates. Our results reveal the underlying transcriptional complexity of duplicated genes and its role in the origin of adaptations.

  9. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and non-random loss

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, Dennis V.; Boore, Jeffrey L.; Brown, Wesley M.


    We determined the complete mtDNA sequences of the millipedes Narceus annularus and Thyropygus sp. (Arthropoda: Diplopoda) and identified in both genomes all 37 genes typical for metazoan mtDNA. The arrangement of these genes is identical in the two millipedes, but differs from that inferred to be ancestral for arthropods by the location of four genes/gene clusters. This novel gene arrangement is unusual for animal mtDNA, in that genes with opposite transcriptional polarities are clustered in the genome and the two clusters are separated by two non-coding regions. The only exception to this pattern is the gene for cysteine tRNA, which is located in the part of the genome that otherwise contains all genes with the opposite transcriptional polarity. We suggest that a mechanism involving complete mtDNA duplication followed by the loss of genes, predetermined by their transcriptional polarity and location in the genome, could generate this gene arrangement from the one ancestral for arthropods. The proposed mechanism has important implications for phylogenetic inferences that are drawn on the basis of gene arrangement comparisons.

  10. Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae). (United States)

    Barros E Silva, A E; Dos Santos Soares Filho, W; Guerra, M


    Sites of 5S and 45S rDNA are more commonly located on different chromosomes of most angiosperms. Previous investigations have shown that in the subfamily Aurantioideae these sites may appear closely linked (adjacent sites), as in Poncirustrifoliata, or completely isolated, as in some species of Citrus. In the present work, the distribution of rDNA sites was investigated in representatives of 9 genera of Aurantioideae by FISH and CMA banding, aiming to understand the evolution of adjacent sites in the subfamily. A total of 57 rDNA sites were observed, 40 of them being adjacent to each other. All adjacent sites displayed the 45S rDNA array more terminally located. Assuming that the linked 5S-45S rDNA arrangement was the ancestral condition in Aurantioideae, the isolated rDNA sites observed in Clausena excavata,Bergera koenigii, and Fortunella obovata, as well as the complete linkage loss in Citrus maxima and C. medica indicates that unlinked sites arose independently several times in the evolution of the group. The linkage loss may be due to independent dispersion of one or both rDNA sequence families followed by deletion of the corresponding array in the adjacent site. The possible mechanisms behind these events and their occurrence in other groups are discussed.

  11. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen


    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  12. On the ancestral recruitment of metalloproteinases into the venom of snakes. (United States)

    Casewell, Nicholas R


    Tracing the evolutionary history of proteins can reveal insights into gene alterations responsible for changes in structure and function. Here, the origin of snake venom metalloproteinases was rigorously reassessed using phylogenetics and the reconstruction of ancestral sequences. Basal SVMPs are most closely related to ADAM 7, 28 and decysin-1 proteins. Reconstructing the evolutionary history of these proteins and their hypothetical ancestors reveals progressive alterations in the amino acid composition and structural characteristics of ADAMs/SVMPs through evolutionary time.

  13. The ancestral karyotype of Carnivora: comparison with that of platyrrhine monkeys. (United States)

    Dutrillaux, B; Couturier, J


    The karyotypes of six species of Carnivora (Mungos mungo, Paradoxurus hermaphroditus, Potos flavus, Mustela furo, Felis serval, and Halichoerus grypus), representative of five different families, were studied and compared. Correspondence between almost all chromosome segments was found, and a presumed ancestral karyotype of Carnivora is proposed. Analogies to human chromosomes are also given, and the results obtained are in excellent agreement with previously published gene mapping data on man and the domestic cat.

  14. The highly conserved human cytomegalovirus UL136 ORF generates multiple Golgi-localizing protein isoforms through differential translation initiation. (United States)

    Liao, Huanan; Lee, Jung-Hyun; Kondo, Rikita; Katata, Marei; Imadome, Ken-Ichi; Miyado, Kenji; Inoue, Naoki; Fujiwara, Shigeyoshi; Nakamura, Hiroyuki


    The UL133-UL138 locus in the unique long b' (ULb') region of the human cytomegalovirus (HCMV) genome is considered to play certain roles in viral replication, dissemination and latency in a host cell type-dependent manner. Here we characterized the proteins encoded by UL136, one of the open reading frames (ORFs) in the locus. Comparative sequence analysis of UL136 among clinical isolates and laboratory strains indicates that its predicted amino-acid sequence is highly conserved. A polyclonal antibody against UL136 proteins (pUL136s) was raised against its carboxy-terminal region and this antibody specifically recognized at least five UL136-encoded protein isoforms of 29-17 kDa both in HCMV-infected cells and in cells transfected with a construct expressing pUL136. Immunofluorescence analysis with this antibody revealed localization of pUL136 in the Golgi apparatus. Analysis of several pUL136 mutants indicated that the putative transmembrane domain of pUL136 is required for its Golgi localization. Mutational analysis of multiple AUG codons in UL136 demonstrated that translation initiation from these AUG codons contributes in the generation of pUL136 isoforms.

  15. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding. (United States)

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning


    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  16. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon (United States)

    Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.


    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7–3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2–1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.

  17. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)


    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  18. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection. (United States)

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja


    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation.

  19. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins. (United States)

    Clifton, Ben E; Jackson, Colin J


    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  20. Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. (United States)

    Damen, Wim G M; Saridaki, Theodora; Averof, Michalis


    Changing conditions of life impose new requirements on the morphology and physiology of an organism. One of these changes is the evolutionary transition from aquatic to terrestrial life, leading to adaptations in locomotion, breathing, reproduction, and mechanisms for food capture. We have shown previously that insects' wings most likely originated from one of the gills of ancestral aquatic arthropods during their transition to life on land. Here we investigate the fate of these ancestral gills during the evolution of another major arthropod group, the chelicerates. We examine the expression of two developmental genes, pdm/nubbin and apterous, that participate in the specification of insects' wings and are expressed in particular crustacean epipods/gills. In the horseshoe crab, a primitively aquatic chelicerate, pdm/nubbin is specifically expressed in opisthosomal appendages that give rise to respiratory organs called book gills. In spiders (terrestrial chelicerates), pdm/nubbin and apterous are expressed in successive segmental primordia that give rise to book lungs, lateral tubular tracheae, and spinnerets, novel structures that are used by spiders to breathe on land and to spin their webs. Combined with morphological and palaeontological evidence, these observations suggest that fundamentally different new organs (wings, air-breathing organs, and spinnerets) evolved from the same ancestral structure (gills) in parallel instances of terrestrialization.

  1. Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM to predict individuals' continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of structure informative markers, efficient detection of population substructure and ancestral inference.

  2. What was the ancestral sex-determining mechanism in amniote vertebrates? (United States)

    Johnson Pokorná, Martina; Kratochvíl, Lukáš


    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms.

  3. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. (United States)

    King, Benedict; Lee, Michael S Y


    Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals.

  4. Against Unnecessary Duplication of Selves: A Sartrean Argument Against Zahavi

    NARCIS (Netherlands)

    Gusman, S.W.


    In this article I argue that Zahavi's Sartre-inspired combination of the experiential and narrative self entails an unnecessary duplication of selves. Sartre himself accused Husserl of the same mistake in The Transcendence of the Ego. He claims that Husserl's combination of the transcendental I and

  5. Alimentary tract duplications in children: Report of 16 years′ experience

    Directory of Open Access Journals (Sweden)

    Mohamed Zouari


    Full Text Available Background: Alimentary tract duplications (ATDs are a rare condition in children, characterised by a large pathogenic, clinical, and histological polymorphism. Surgical observation and pathologic evaluation of the resected specimens are the only way to confirm the diagnosis. In this study, we want to analyse the anatomical, clinical and therapeutic aspects of this entity. Patients and Methods: A total of 12 cases of ATD were diagnosed over a 16-year period at paediatric surgery department. The diagnosis was evoked on clinical and radiological data. Histological study of the resected specimens confirmed the diagnosis in all cases. Results: The mean age of patients at diagnosis was 41 months with a peak of incidence at the 1 st year of life (42%. Out of a total 12 cases, 10 were girls and 2 were boys. Abdominal pain and vomiting were the most frequent presenting features. Ultrasonography, tomodensitometry and magnetic resonance imaging were useful for diagnosis. ATDs were localised on the oesophagus in one case, the stomach in one case, the duodenum in four cases, the ileum in five cases, and the colon in one case. All these duplications were cystic, with three communicating duplications. All patients underwent surgery, and resection procedure was chosen according to duplication type and site. Histological study confirmed the diagnosis in all cases. Conclusion: ATDs are a rare condition in children. Diagnosis relies on histology, and treatment can only be by means of surgery. The outcome after surgery is generally favourable. Diagnosis and precocious surgery of ATDs can warn serious complications.

  6. Intragenic duplication: a novel mutational mechanism in hereditary pancreatitis

    DEFF Research Database (Denmark)

    Joergensen, Maiken T; Geisz, Andrea; Brusgaard, Klaus


    In a hereditary pancreatitis family from Denmark, we identified a novel intragenic duplication of 9 nucleotides in exon-2 of the human cationic trypsinogen (PRSS1) gene (c.63_71dup) which at the amino-acid level resulted in the insertion of 3 amino acids within the activation peptide of cationic...

  7. Harmfulness of Code Duplication - A Structured Review of the Evidence

    NARCIS (Netherlands)

    Hordijk, Wiebe; Ponisio, María Laura; Wieringa, Roel


    Duplication of code has long been thought to decrease changeability of systems, but recently doubts have been expressed whether this is true in general. This is a problem for researchers because it makes the value of research aimed against clones uncertain, and for practitioners as they cannot be su

  8. The functions of word duplication in Indonesian languages

    NARCIS (Netherlands)

    Gonda, J.


    Abstract In this paper, which is not intended to give an exhaustive collection of word-types, the author tries to review and to systematize a number of the most characteristic meanings of duplication (and reduplication) in Indonesian languages and to look more closely into some aspects of these proc

  9. Duplicate 24-hour diet study 1994 organochlorine and organophosphorous pesticides

    NARCIS (Netherlands)

    Baumann RA; Hoogerbrugge R; Zoonen P van; LOC


    Duplicate diet samples collected in 1994 were analysed for organochlorine and organophosphorous pesticides. It was not possible to evaluate wether dietary intake exceeded the established Acceptable Daily Intake (ADI). For the other organophosphorous compounds as well as for the organoclorine pestic

  10. Colovesical fistula resulting from a perforated colonic duplication. (United States)

    Decter, R M; Kaplan, K M; Eggli, K D; Krummel, T M


    Colovesical fistulas in children are most often associated with high anorectal imperforations. Acquired enterovesical fistulas in children only rarely have been reported as a consequence of an inflammatory process. We present a case of an acquired colovesical fistula formed by the erosion of an abscess at the distal end of a colonic duplication in a child who presented with fever of unknown origin.

  11. Novel clinical finding in MECP2 duplication syndrome


    Budisteanu, Magdalena; Papuc, Sorina Mihaela; Tutulan-Cunita, Andreea; Budisteanu, Bogdan; Arghir, Aurora


    Novel clinical finding in MECP2 duplication syndrome phone: +40-213349068 (Budisteanu, Magdalena) (Budisteanu, Magdalena) ?Victor Babes? National Institute of Pathology - 99-101 Splaiul Independentei, Sect. 5 - 050096 - Bucharest - ROMANIA (Budisteanu, Magdalena) ?Prof. Dr. Alexandru Obregia? Clinical Hospital of Psychiatry - 10-12 Berceni Av., Sector 4 - 041914 - Bucharest - ROMANIA (Budisteanu, Magdalena) ?Victor Babes? National Institute of Patholog...

  12. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren


    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  13. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko


    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene...

  14. Non-recurrent SEPT9 duplications cause hereditary neuralgic amyotrophy.

    NARCIS (Netherlands)

    Collie, A.M.; Landsverk, M.L.; Ruzzo, E.; Mefford, H.C.; Buysse, K.; Adkins, J.R.; Knutzen, D.M.; Barnett, K.; Brown Jr., R.H.; Parry, G.J.; Yum, S.W.; Simpson, D.A.; Olney, R.K.; Chinnery, P.F.; Eichler, E.E.; Chance, P.F.; Hannibal, M.C.


    BACKGROUND: Genomic copy number variants have been shown to be responsible for multiple genetic diseases. Recently, a duplication in septin 9 (SEPT9) was shown to be causal for hereditary neuralgic amyotrophy (HNA), an episodic peripheral neuropathy with autosomal dominant inheritance. This duplicat

  15. Ancestral sleep. (United States)

    de la Iglesia, Horacio O; Moreno, Claudia; Lowden, Arne; Louzada, Fernando; Marqueze, Elaine; Levandovski, Rosa; Pilz, Luisa K; Valeggia, Claudia; Fernandez-Duque, Eduardo; Golombek, Diego A; Czeisler, Charles A; Skene, Debra J; Duffy, Jeanne F; Roenneberg, Till


    While we do not yet understand all the functions of sleep, its critical role for normal physiology and behaviour is evident. Its amount and temporal pattern depend on species and condition. Humans sleep about a third of the day with the longest, consolidated episode during the night. The change in lifestyle from hunter-gatherers via agricultural communities to densely populated industrialized centres has certainly affected sleep, and a major concern in the medical community is the impact of insufficient sleep on health [1,2]. One of the causal mechanisms leading to insufficient sleep is altered exposure to the natural light-dark cycle. This includes the wide availability of electric light, attenuated exposure to daylight within buildings, and evening use of light-emitting devices, all of which decrease the strength of natural light-dark signals that entrain circadian systems [3].


    Directory of Open Access Journals (Sweden)

    Khlestkina E.


    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  17. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene

    Directory of Open Access Journals (Sweden)

    Gustavo Fernandes


    Full Text Available Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1 which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689 flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689 in the interphases analyzed and two signals (RP5-1002G3conRP5-92689 in 93% of cells. These findings show a tandem duplication of 17q11.2. Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders.

  18. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  19. [Duplication of DNA--a mechanism for the development of new functionality of genes]. (United States)

    Maślanka, Roman; Zadrąg-Tęcza, Renata


    The amplification of DNA is considered as a mechanism for rapid evolution of organisms. Duplication can be especially advantageous in the case of changing environmental conditions. Whole genome duplication maintains the proper balance between gene expression. This seems to be the main reason why WGD is more favorable than duplication of the fragments of DNA. The polyploidy status disappear as a result of the loss of the majority of duplicated genes. The preservation of duplicated genes is associated with the development of their new functions. Polyploidization is often noted for plants. However due to sequencing technique, the duplications episodes are more frequently reports also for the other systematic taxa, including animals. The occurrence of ancient genome duplication is also considered for yeast Saccharomyces cerevisiae. The existence of two active copies of ribosomal protein genes can be a confirmation of this process. Development of the fermentation process might be one of the probable causes of the yeast genome duplication.

  20. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant. (United States)

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie


    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc.

  1. Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins

    Directory of Open Access Journals (Sweden)

    Burgoyne Robert D


    Full Text Available Abstract Background Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined. Findings We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1 are highly conserved suggesting essential functional roles. Conclusions The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.

  2. Highly conserved asparagine 82 controls the interaction of Na+ with the sodium-coupled neutral amino acid transporter SNAT2. (United States)

    Zhang, Zhou; Gameiro, Armanda; Grewer, Christof


    The neutral amino acid transporter 2 (SNAT2), which belongs to the SLC38 family of solute transporters, couples the transport of amino acid to the cotransport of one Na(+) ion into the cell. Several polar amino acids are highly conserved within the SLC38 family. Here, we mutated three of these conserved amino acids, Asn(82) in the predicted transmembrane domain 1 (TMD1), Tyr(337) in TMD7, and Arg(374) in TMD8; and we studied the functional consequences of these modifications. The mutation of N82A virtually eliminated the alanine-induced transport current, as well as amino acid uptake by SNAT2. In contrast, the mutations Y337A and R374Q did not abolish amino acid transport. The K(m) of SNAT2 for its interaction with Na(+), K(Na(+)), was dramatically reduced by the N82A mutation, whereas the more conservative mutation N82S resulted in a K(Na(+)) that was in between SNAT2(N82A) and SNAT2(WT). These results were interpreted as a reduction of Na(+) affinity caused by the Asn(82) mutations, suggesting that these mutations interfere with the interaction of SNAT2 with the sodium ion. As a consequence of this dramatic reduction in Na(+) affinity, the apparent K(m) of SNAT2(N82A) for alanine was increased 27-fold compared with that of SNAT2(WT). Our results demonstrate a direct or indirect involvement of Asn(82) in Na(+) coordination by SNAT2. Therefore, we predict that TMD1 is crucial for the function of SLC38 transporters and that of related families.

  3. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. (United States)

    Froyen, Guy; Corbett, Mark; Vandewalle, Joke; Jarvela, Irma; Lawrence, Owen; Meldrum, Cliff; Bauters, Marijke; Govaerts, Karen; Vandeleur, Lucianne; Van Esch, Hilde; Chelly, Jamel; Sanlaville, Damien; van Bokhoven, Hans; Ropers, Hans-Hilger; Laumonnier, Frederic; Ranieri, Enzo; Schwartz, Charles E; Abidi, Fatima; Tarpey, Patrick S; Futreal, P Andrew; Whibley, Annabel; Raymond, F Lucy; Stratton, Michael R; Fryns, Jean-Pierre; Scott, Rodney; Peippo, Maarit; Sipponen, Marjatta; Partington, Michael; Mowat, David; Field, Michael; Hackett, Anna; Marynen, Peter; Turner, Gillian; Gécz, Jozef


    Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.

  4. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.H.G.; Powell, L.W.; Leggett, B.A. [Univ. of Queensland (Australia)] [and others


    Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, one copy, and no copies of the ancestral haplotype). We also examined iron indices in two groups of HC heterozygotes (those with the ancestral haplotype and those without) and in age-matched controls. These analyses indicate that (i) HC patients with two copies of the ancestral haplotype show significantly more severe expression of the disorder than those with one copy or those without, (ii) HC heterozygotes have partial clinical expression, which may be influenced by the presence of the ancestral haplotype in females but not in males, and (iii) the high population frequency of the HC gene may be the result of the selective advantage conferred by protecting heterozygotes against iron deficiency. 18 refs., 3 tabs.

  5. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Non-duplication and syndicated exclusivity. 76... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated... television station that would be entitled to exercise network non-duplication protection or...

  6. 47 CFR 76.93 - Parties entitled to network non-duplication protection. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Parties entitled to network non-duplication... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.93 Parties entitled to network non-duplication...

  7. 47 CFR 76.92 - Cable network non-duplication; extent of protection. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable network non-duplication; extent of... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.92 Cable network non-duplication; extent of protection....

  8. Partial craniofacial duplication: a review of the literature and case report. (United States)

    Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P


    Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity.

  9. 76 FR 71060 - Clarification of Duplication of Benefits Requirements Under the Stafford Act for Community... (United States)


    ... URBAN DEVELOPMENT Clarification of Duplication of Benefits Requirements Under the Stafford Act for... duplication of benefits requirements under the Stafford Act for all active Community Development Block Grant... absence of these specific requirements, Stafford Act prohibition on duplication of benefits in section...

  10. 47 CFR 73.3556 - Duplication of programming on commonly owned or time brokered stations. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Duplication of programming on commonly owned or....3556 Duplication of programming on commonly owned or time brokered stations. (a) No commercial AM or FM... service area of either station. (b) For purposes of this section, duplication means the broadcasting...

  11. 36 CFR 1010.17 - Actions to eliminate duplication with State and local procedures. (United States)


    ... duplication with State and local procedures. 1010.17 Section 1010.17 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL QUALITY § 1010.17 Actions to eliminate duplication with State and local... fullest extent possible to reduce duplication between NEPA and State and local requirements....

  12. Simultaneous identification of duplications and lateral gene transfers. (United States)

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens


    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  13. Bayesian approach for near-duplicate image detection

    CERN Document Server

    Bueno, Lucas Moutinho; Torres, Ricardo da Silva


    In this paper we propose a bayesian approach for near-duplicate image detection, and investigate how different probabilistic models affect the performance obtained. The task of identifying an image whose metadata are missing is often demanded for a myriad of applications: metadata retrieval in cultural institutions, detection of copyright violations, investigation of latent cross-links in archives and libraries, duplicate elimination in storage management, etc. The majority of current solutions are based either on voting algorithms, which are very precise, but expensive; either on the use of visual dictionaries, which are efficient, but less precise. Our approach, uses local descriptors in a novel way, which by a careful application of decision theory, allows a very fine control of the compromise between precision and efficiency. In addition, the method attains a great compromise between those two axes, with more than 99% accuracy with less than 10 database operations.

  14. Computerized scheme for duplicate checking of bibliographic data bases

    Energy Technology Data Exchange (ETDEWEB)

    Giles, C.A.; Brooks, A.A.; Doszkocs, T.; Hummel, D.J.


    A technique for the automatic identification of duplicate documents within large bibliographic data bases has been designed and tested with encouraging results. The procedure is based on the generation and comparison of significant elements compressed from existing document descriptions. Problems arising from inconsistencies in editorial style and data base formats and from discrepancies in spelling, punctuation, translation and transliteration schemes are discussed; one method for circumventing ambiguities and errors of this type is proposed. The generalized computer program employs a key-making, sorting, weighting, and summation scheme for the detection of duplicates and, according to preliminary findings, achieves this objective with a high degree of accuracy. Sample results from five large data bases suggest that this automatic system performs as effectively as manual techniques.

  15. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R


    with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are common, surprising given their potential for disrupting tubulin coding sequence. Compensatory evolution is found in Drosophila beta 2 tubulin cis-regulation, and reveals selective pressures acting to maintain testis expression without the use of previously identified testis cis-regulatory elements. Conclusion Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. They evolve through gene duplication, subfunctionalization in expression domain and divergence of duplication products, largely in CTT residues that mediate interactions with other proteins. This has resulted in the tissue-specific minor insect isoforms, and in particular the highly diverse α3, α4, and β2 reproductive tissue-specific tubulin isoforms, illustrating that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection.

  16. Concerted evolution of duplicated protein-coding genes in Drosophila.


    Hickey, D. A.; Bally-Cuif, L.; Abukashawa, S; Payant, V; Benkel, B F


    Very rapid rates of gene conversion were observed between duplicated alpha-amylase-coding sequences in Drosophila melanogaster. This gene conversion process was also seen in the related species Drosophila erecta. Specifically, there is virtual sequence identity between the coding regions of the two genes within each species, while the sequence divergence between species is close to that expected based on their phylogenetic relationship. The flanking, noncoding regions are much more highly div...

  17. Root hairs, trichomes and the evolution of duplicate genes. (United States)

    Kellogg, E A


    The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.

  18. [Congenital segmental duplication of the lumbar ureter (author's transl)]. (United States)

    Ponthieu, A; Anfossi, G; Guidicelli, C; Boutboul, R


    In a 23-year-old man attacks of nephritic colic led to the discovery of an obstruction on the left lumbar ureter. Segmental resection of the ureter was performed, removing 10 mm of malformed, obstructed ureter. This was an incomplete duplication, the two ureteral segments lying side-by-side, each with its own musculature, for a distance of 7mm. Above and below the anomaly, the ureter was normal. This exceptional malformation is compared with other internal obstructions of the ureter.

  19. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms. (United States)

    Lowery, Robert K; Uribe, Gabriel; Jimenez, Eric B; Weiss, Mark A; Herrera, Kristian J; Regueiro, Maria; Herrera, Rene J


    Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations.

  20. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra

    Directory of Open Access Journals (Sweden)

    Azevedo Nathália F


    Full Text Available Abstract Background Xenarthra (sloths, armadillos and anteaters represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome. B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4. The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.

  1. Prevalent RNA recognition motif duplication in the human genome. (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng


    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.

  2. Cep63 and cep152 cooperate to ensure centriole duplication.

    Directory of Open Access Journals (Sweden)

    Nicola J Brown

    Full Text Available Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.

  3. Cep63 and cep152 cooperate to ensure centriole duplication. (United States)

    Brown, Nicola J; Marjanović, Marko; Lüders, Jens; Stracker, Travis H; Costanzo, Vincenzo


    Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.

  4. Williams Syndrome and 15q Duplication: Coincidence versus Association. (United States)

    Khokhar, Aditi; Agarwal, Swashti; Perez-Colon, Sheila


    Williams syndrome is a multisystem disorder caused by contiguous gene deletion in 7q11.23, commonly associated with distinctive facial features, supravalvular aortic stenosis, short stature, idiopathic hypercalcemia, developmental delay, joint laxity, and a friendly personality. The clinical features of 15q11q13 duplication syndrome include autism, mental retardation, ataxia, seizures, developmental delay, and behavioral problems. We report a rare case of a girl with genetically confirmed Williams syndrome and coexisting 15q duplication syndrome. The patient underwent treatment for central precocious puberty and later presented with primary amenorrhea. The karyotype revealed 47,XX,+mar. FISH analysis for the marker chromosome showed partial trisomy/tetrasomy for proximal chromosome 15q (15p13q13). FISH using an ELN-specific probe demonstrated a deletion in the Williams syndrome critical region in 7q11.23. To our knowledge, a coexistence of Williams syndrome and 15q duplication syndrome has not been reported in the literature. Our patient had early pubertal development, which has been described in some patients with Williams syndrome. However, years later after discontinuing gonadotropin-releasing hormone analogue treatment, she developed primary amenorrhea.

  5. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng


    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  6. Primitive duplicate Hox clusters in the European eel's genome.

    Directory of Open Access Journals (Sweden)

    Christiaan V Henkel

    Full Text Available The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758 have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire.

  7. Sustainability of ancestral methods of agricultural production in Perú: ¿keep or replace?

    Directory of Open Access Journals (Sweden)

    Dani Eduardo Vargas Huanca


    Full Text Available Based on the success of some Andean products such as quinoa, potatoes or maca in international food trade and the growing environmental degradation facing developing countries, resulting from intensive exploitation activities; Our research seeks to show the trend that is assumed from the academic / scientific community and public officials in the food sector in Peru, against the need to maintain sustainable various ancestral modes of agricultural production (case quinoa, for it analyze quantitative and qualitative obtained from public institutions and Peruvian universities.

  8. Sandals as Icons: Representations in Ancestral Pueblo Rock Art and Effigies in Stone and Wood


    Polly Schaafsma


    Dating the late 1000s to the mid-1200s CE, petroglyphs of sandal images are among others that distinguish ancient Pueblo rock art in the San Juan and Little Colorado River drainages on the Colorado Plateau from Ancestral Pueblo rock art elsewhere across the Southwest. The sandal “track” also has counterparts  as effigies in stone and wood often found in ceremonial contexts in Pueblo sites. These representations reflect the sandal styles of the times, both plain in contour and the jog-toed var...

  9. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph


    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  10. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ


    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  11. A highly conserved motif at the COOH terminus dictates endoplasmic reticulum exit and cell surface expression of NKCC2. (United States)

    Zaarour, Nancy; Demaretz, Sylvie; Defontaine, Nadia; Mordasini, David; Laghmani, Kamel


    Mutations in the apically located Na(+)-K(+)-2Cl(-) co-transporter, NKCC2, lead to type I Bartter syndrome, a life-threatening kidney disorder, yet the mechanisms underlying the regulation of mutated NKCC2 proteins in renal cells have not been investigated. Here, we identified a trihydrophobic motif in the distal COOH terminus of NKCC2 that was required for endoplasmic reticulum (ER) exit and surface expression of the co-transporter. Indeed, microscopic confocal imaging showed that a naturally occurring mutation depriving NKCC2 of its distal COOH-terminal region results in the absence of cell surface expression. Biotinylation assays revealed that lack of cell surface expression was associated with abolition of mature complex-glycosylated NKCC2. Pulse-chase analysis demonstrated that the absence of mature protein was not caused by reduced synthesis or increased rates of degradation of mutant co-transporters. Co-immunolocalization experiments revealed that these mutants co-localized with the ER marker protein-disulfide isomerase, demonstrating that they are retained in the ER. Cell treatment with proteasome or lysosome inhibitors failed to restore the loss of complex-glycosylated NKCC2, further eliminating the possibility that mutant co-transporters were processed by the Golgi apparatus. Serial truncation of the NKCC2 COOH terminus, followed by site-directed mutagenesis, identified hydrophobic residues (1081)LLV(1083) as an ER exit signal necessary for maturation of NKCC2. Mutation of (1081)LLV(1083) to AAA within the context of the full-length protein prevented NKCC2 ER exit independently of the expression system. This trihydrophobic motif is highly conserved in the COOH-terminal tails of all members of the cation-chloride co-transporter family, and thus may function as a common motif mediating their transport from the ER to the cell surface. Taken together, these data are consistent with a model whereby naturally occurring premature terminations that interfere with

  12. Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns

    Directory of Open Access Journals (Sweden)

    Fraser Tresa S


    Full Text Available Abstract Background Dengue viruses (DENV are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The trans-splicing variant of the Tetrahymena thermophila group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors. Results Several anti-DENV Group I trans-splicing introns (αDENV-GrpIs were designed and tested for their ability to target DENV-2 NGC genomes in situ. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically trans-splice a new RNA sequence downstream of the targeted site in vitro and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC. Conclusions Analysis shows that our αDENV-GrpIs have the ability to effectively trans-splice the DENV genome in situ. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and

  13. Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping. (United States)

    Książkiewicz, Michał; Zielezinski, Andrzej; Wyrwa, Katarzyna; Szczepaniak, Anna; Rychel, Sandra; Karlowski, Wojciech; Wolko, Bogdan; Naganowska, Barbara

    The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.

  14. The correlation between pertinence and rate of citation duplication in multidatabase searches. (United States)

    Neway, J M; Lancaster, F W


    The rate of citation duplication was examined in three databases: MEDLINE, BIOSIS, and LIFE SCIENCES COLLECTION. Duplicate citations were found to be more pertinent than unique citations. The duplicate citations came from a highly compact literature, while those from a single database were very widely scattered. The pertinent duplicated citations were more likely to be retrieved in searches that had more terms overall, had a higher percentage of thesaurus terms, and had terms which appeared in both title and abstract. These results suggest that the rate of duplication of citations in multidatabase searches may be used to rank output according to probable pertinence.

  15. Multiple Isolated Enteric Duplication Cysts in an Infant - A Diagnostic Dilemma. (United States)

    Udiya, Alok Kumar; Shetty, Gurucharan S; Chauhan, Udit; Singhal, Shweta; Prabhu, Shailesh M


    Completely isolated enteric duplication cysts are a rare variety of enteric duplication cysts having an independent blood supply with no communication with any part of the adjacent bowel segment. We report a case showing two completely isolated enteric duplication cysts originating in the greater omentum and transverse mesocolon in an infant. Multiple isolated enteric duplication cysts involving non-contiguous bowel segments have not been previously reported in the literature. In addition the transverse mesocolon duplication cyst was infected showing septations and loss of double wall sign resulting in difficulty in imaging diagnosis. Both the cysts were excised and confirmed on histopathology.

  16. Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing

    DEFF Research Database (Denmark)

    Limborg, Morten; Seeb, Lisa W.; Seeb, J. E.


    detecting selection. Retained duplicates from ancient whole-genome duplications (WGDs) may be found throughout genomes, whereas retained duplicates from recent WGDs are concentrated at distal ends of some chromosome arms. Additionally, segmental duplicates can be found at distal ends or nearly anywhere...... studies. We provide guidelines on how to use this haploid strategy for studies on polyploid-origin vertebrates including how it can be used to screen duplicated loci in natural populations. We conclude by discussing areas of research that will benefit from better inclusion of polyploid loci; we...

  17. Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure. (United States)

    DeGiorgio, Michael; Rosenberg, Noah A


    In the last few years, several statistically consistent consensus methods for species tree inference have been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in unstructured ancestral populations. One source of gene tree discordance that has only recently been identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this article, we describe a general model of ancestral population structure, and by relying on a single carefully constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR, R(∗) Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are statistically inconsistent under the model. We find that among the consensus methods evaluated, the only method that is statistically consistent in the presence of ancestral population structure is GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods in a model with ancestral population structure, showing that as the number of gene trees increases, estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of the level of population structure, whereas estimates based on the remaining methods only approach the true species tree topology if the level of structure is low. However, through simulations using species trees both with and without ancestral population structure, we show that GLASS/Maximum Tree performs unusually poorly on gene trees inferred from alignments with little information. This practical limitation of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both further testing of additional existing methods and development of novel methods under conditions that incorporate ancestral population structure.

  18. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. (United States)

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi


    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.

  19. Large inverted duplications in the human genome form via a fold-back mechanism.

    Directory of Open Access Journals (Sweden)

    Karen E Hermetz


    Full Text Available Inverted duplications are a common type of copy number variation (CNV in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a "fold-back" intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes.

  20. De Novo duplication in Charcot-Marie-Tooth Type 1A

    Energy Technology Data Exchange (ETDEWEB)

    Mandich, P.; Bellone, E.; Ajmar, F. [and others


    We read with interest the paper on {open_quotes}Prevalence and Origin of De Novo Duplications in Charcot-Marie-Tooth Disease Type 1A: First Report of a De Novo Duplication with a Maternal Origin,{close_quotes}. They reported their experience with 10 sporadic cases of Charcot-Marie-Tooth type 1A (CMT1A) in which it was demonstrated that the disease had arisen as the result of a de novo duplication. They analyzed the de novo-duplication families by using microsatellite markers and identified the parental origin of the duplication in eight cases. In one family the duplication was of maternal origin, whereas in the remaining seven cases it was of paternal origin. The authors concluded that their report was the first evidence of a de novo duplication of maternal origin, suggesting that this is not a phenomenon associated solely with male meiosis. 7 refs.

  1. Bearing the unbearable: ancestral transmission through dreams and moving metaphors in the analtyic field. (United States)

    Pickering, Judith


    This paper explores how untold and unresolved intergenerational trauma may be transmitted through unconscious channels of communication, manifesting in the dreams of descendants. Unwitting carriers for that which was too horrific for their ancestors to bear, descendants may enter analysis through an unconscious need to uncover past secrets, piece together ancestral histories before the keys to comprehending their terrible inheritance die with their forebears. They seek the relational containment of the analytic relationship to provide psychological conditions to bear the unbearable, know the unknowable, speak the unspeakable and redeem the unredeemable. In the case of 'Rachael', initial dreams gave rise to what Hobson (1984) called 'moving metaphors of self' in the analytic field. Dream imagery, projective and introjective processes in the transference-countertransference dynamics gradually revealed an unknown ancestral history. I clarify the back and forth process from dream to waking dream thoughts to moving metaphors and differentiate the moving metaphor from a living symbol. I argue that the containment of the analytic relationship nested within the security of the analytic space is a necessary precondition for such healing processes to occur.

  2. Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10.

    Directory of Open Access Journals (Sweden)

    Teresa Almeida

    Full Text Available Spinocerebellar ataxia type 10 (SCA10 is an autosomal dominant neurodegenerative disease characterized by cerebellar ataxia and seizures. The disease is caused by a large ATTCT repeat expansion in the ATXN10 gene. The first families reported with SCA10 were of Mexican origin, but the disease was soon after described in Brazilian families of mixed Portuguese and Amerindian ancestry. The origin of the SCA10 expansion and a possible founder effect that would account for its geographical distribution have been the source of speculation over the last years. To unravel the mutational origin and spread of the SCA10 expansion, we performed an extensive haplotype study, using closely linked STR markers and intragenic SNPs, in families from Brazil and Mexico. Our results showed (1 a shared disease haplotype for all Brazilian and one of the Mexican families, and (2 closely-related haplotypes for the additional SCA10 Mexican families; (3 little or null genetic distance in small normal alleles of different repeat sizes, from the same SNP lineage, indicating that they are being originated by a single step mechanism; and (4 a shared haplotype for pure and interrupted expanded alleles, pointing to a gene conversion model for its generation. In conclusion, we show evidence for an ancestral common origin for SCA10 in Latin America, which might have arisen in an ancestral Amerindian population and later have been spread into the mixed populations of Mexico and Brazil.

  3. The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome. (United States)

    Nelson, Matthew N; Parkin, Isobel A P; Lydiate, Derek J


    The organisation of the Sinapis alba genome, comprising 12 linkage groups (n = 12), was compared with the Brassicaceae ancestral karyotype (AK) genomic blocks previously described in other crucifer species. Most of the S. alba genome falls into conserved triplicated genomic blocks that closely match the AK-defined genomic blocks found in other crucifer species including the A, B, and C genomes of closely related Brassica species. In one instance, an S. alba linkage group (S05) was completely collinear with one AK chromosome (AK1), the first time this has been observed in a member of the Brassiceae tribe. However, as observed for other members of the Brassiceae tribe, ancestral genomic blocks were fragmented in the S. alba genome, supporting previously reported comparative chromosome painting describing rearrangements of the AK karyotype prior to the divergence of the Brassiceae from other crucifers. The presented data also refute previous phylogenetic reports that suggest S. alba was more closely related to Brassica nigra (B genome) than to B. rapa (A genome) and B. oleracea (C genome). A comparison of the S. alba and Arabidopsis thaliana genomes revealed many regions of conserved gene order, which will facilitate access to the rich genomic resources available in the model species A. thaliana for genetic research in the less well-resourced crop species S. alba.

  4. On the historical biogeography of global Galliformes: ancestral range and diversification patterns

    Institute of Scientific and Technical Information of China (English)

    Youhua; Chen


    Background: In this study, the ancestral distributional ranges and the tempo of diversification patterns of global Galliformes were investigated.Methods: Different diversification models characterizing possible tempo patterns were fitted and compared onto the phylogenetic tree for the 197 Galliforme species, consisting of a constant-speciation and constant-extinction model(CONSTANT), a decreasing-speciation and constant-extinction model(SPVAR), a constant-speciation and increasing-extinction model(EXVAR) and a decreasing-speciation and increasing-extinction model(BOTHVAR).Ancestral range reconstruction was conducted using the dispersal-extinction-cladogenesis model.Results: A constant-diversification-rate(CONSTANT) model best quantified the historical speciation patterns of this avian assemblage through model selection. Clade age and species richness are significantly and positively correlated. The most recent common ancestor for Galliformes species was originally found in the disjunctive regions between Southeast Asia and North America. High-frequency dispersal events were identified across the whole evolutionary time.Conclusions: The constant diversification rate for global Galliforme species implied that there were no diversification rate-shifting trends for Galliformes species. The present study may contribute to the understanding of the ecology and diversity patterns of Galliformes from the perspective of historical biogeography, although some limitations existed.

  5. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors. (United States)

    Clifton, Ben E; Whitfield, Jason H; Sanchez-Romero, Inmaculada; Herde, Michel K; Henneberger, Christian; Janovjak, Harald; Jackson, Colin J


    Small molecule biosensors based on Förster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.

  6. Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA (United States)

    Ui, T.; Glicken, H.


    Various parameters of the internal structure of a debris-avalanche deposit from ancestral Mount Shasta (size and percentage of block facies in each exposure, number and width of jigsaw cracks, and number of rounded clasts in matrix facies) were measured in order to study flow and emplacement mechanisms. Three types of coherent blocks were identified: blocks of massive or brecciated lava flows or domes, blocks of layered volcaniclastic deposits, and blocks of accidental material, typically from sedimentary units underlying Shasta Valley. The mean maximum dimension of the three largest blocks of layered volcaniclastic material is 220 m, and that of the lava blocks, 110 m. This difference may reflect plastic deformation of blocks of layered volcaniclastic material; blocks of massive or brecciated volcanic rock deformated brittly and may have split into several smaller blocks. The blocks in the deposit are one order of magnitude larger, and the height of collapse 1100 m higher, than the Pungarehu debris-avalanche deposit at Mount Egmont, New Zealand, although the degree of fracturing is about the same.This suggests either that the Shasta source material was less broken, or that the intensity of any accompanying explosion was smaller at ancestral Mount Shasta. The Shasta debris-avalanche deposit covered the floor of a closed basin; the flanks of the basin may have retarded the opening of jigsaw cracks and the formation of stretched and deformed blocks such as those of the Pungarehu debris-avalanche deposit. ?? 1986 Springer-Verlag.

  7. QTL linkage analysis of connected populations using ancestral marker and pedigree information. (United States)

    Bink, Marco C A M; Totir, L Radu; ter Braak, Cajo J F; Winkler, Christopher R; Boer, Martin P; Smith, Oscar S


    The common assumption in quantitative trait locus (QTL) linkage mapping studies that parents of multiple connected populations are unrelated is unrealistic for many plant breeding programs. We remove this assumption and propose a Bayesian approach that clusters the alleles of the parents of the current mapping populations from locus-specific identity by descent (IBD) matrices that capture ancestral marker and pedigree information. Moreover, we demonstrate how the parental IBD data can be incorporated into a QTL linkage analysis framework by using two approaches: a Threshold IBD model (TIBD) and a Latent Ancestral Allele Model (LAAM). The TIBD and LAAM models are empirically tested via numerical simulation based on the structure of a commercial maize breeding program. The simulations included a pilot dataset with closely linked QTL on a single linkage group and 100 replicated datasets with five linkage groups harboring four unlinked QTL. The simulation results show that including parental IBD data (similarly for TIBD and LAAM) significantly improves the power and particularly accuracy of QTL mapping, e.g., position, effect size and individuals' genotype probability without significantly increasing computational demand.

  8. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple. (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L


    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.

  9. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.

    Directory of Open Access Journals (Sweden)

    Katherine Belov


    Full Text Available The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum sequence to construct the first map of a marsupial major histocompatibility complex (MHC. The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.

  10. Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. (United States)

    Rahman, Imran A; Zamora, Samuel; Falkingham, Peter L; Phillips, Jeremy C


    Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy.

  11. A FORTRAN subroutine to compute inbreeding and kinship coefficients according to the number of ancestral generations. (United States)

    Vu Tien Khang, J


    This paper presents a FORTRAN IV subroutine to calculate inbreeding and kinship coefficients from pedigree information in a diploid population without self-fertilization. The user can specify the number of ancestral generations to be taken into account. It is thus possible to determine contributions of succeeding ancestral generations to the inbreeding and kinship coefficients under consideration. The subroutine is based on a recursive procedure that generates systematically all paths connecting two individuals. NP and NM, whose kinship coefficient is to be calculated (or between the father NP and the mother NM of the individual whose inbreeding coefficient is to be calculated). These paths obey the following conditions: (i) a given path does not contain the same parent-offspring link more than once; (ii) the vertex of a path is an ancestor common to individuals NP and NM, with a rank lower or equal to the parameter specified in input. Constraints regarding the size of the corpus of genealogical data and the storage method are discussed, as well as the interest of this subroutine compared to the existing ones. An example of application is given.

  12. On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. (United States)

    Trudeau, Devin L; Kaltenbach, Miriam; Tawfik, Dan S


    Ancestral reconstruction provides instrumental insights regarding the biochemical and biophysical characteristics of past proteins. A striking observation relates to the remarkably high thermostability of reconstructed ancestors. The latter has been linked to high environmental temperatures in the Precambrian era, the era relating to most reconstructed proteins. We found that inferred ancestors of the serum paraoxonase (PON) enzyme family, including the mammalian ancestor, exhibit dramatically increased thermostabilities compared with the extant, human enzyme (up to 30 °C higher melting temperature). However, the environmental temperature at the time of emergence of mammals is presumed to be similar to the present one. Additionally, the mammalian PON ancestor has superior folding properties (kinetic stability)-unlike the extant mammalian PONs, it expresses in E. coli in a soluble and functional form, and at a high yield. We discuss two potential origins of this unexpectedly high stability. First, ancestral stability may be overestimated by a "consensus effect," whereby replacing amino acids that are rare in contemporary sequences with the amino acid most common in the family increases protein stability. Comparison to other reconstructed ancestors indicates that the consensus effect may bias some but not all reconstructions. Second, we note that high stability may relate to factors other than high environmental temperature such as oxidative stress or high radiation levels. Foremost, intrinsic factors such as high rates of genetic mutations and/or of transcriptional and translational errors, and less efficient protein quality control systems, may underlie the high kinetic and thermodynamic stability of past proteins.

  13. On the historical biogeography of global Galliformes:ancestral range and diversification patterns

    Institute of Scientific and Technical Information of China (English)

    Youhua Chen


    Background:In this study, the ancestral distributional ranges and the tempo of diversification patterns of global Galliformes were investigated. Methods:Different diversification models characterizing possible tempo patterns were fitted and compared onto the phylogenetic tree for the 197 Galliforme species, consisting of a constant-speciation and constant-extinction model (CONSTANT), a decreasing-speciation and constant-extinction model (SPVAR), a constant-speciation and increasing-extinction model (EXVAR) and a decreasing-speciation and increasing-extinction model (BOTHVAR). Ancestral range reconstruction was conducted using the dispersal-extinction-cladogenesis model. Results:A constant-diversification-rate (CONSTANT) model best quantified the historical speciation patterns of this avian assemblage through model selection. Clade age and species richness are significantly and positively correlated. The most recent common ancestor for Galliformes species was originally found in the disjunctive regions between Southeast Asia and North America. High-frequency dispersal events were identified across the whole evolutionary time. Conclusions:The constant diversification rate for global Gal iforme species implied that there were no diversification rate-shifting trends for Galliformes species. The present study may contribute to the understanding of the ecology and diversity patterns of Galliformes from the perspective of historical biogeography, although some limitations existed.

  14. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. (United States)

    Hsieh, Szu-Chia; Wu, Yi-Chieh; Zou, Gang; Nerurkar, Vivek R; Shi, Pei-Yong; Wang, Wei-Kung


    The envelope and precursor membrane (prM) proteins of dengue virus (DENV) are present on the surface of immature virions. During maturation, prM protein is cleaved by furin protease into pr peptide and membrane (M) protein. Although previous studies mainly focusing on the pr region have identified several residues important for DENV replication, the functional role of M protein, particularly the α-helical domain (MH), which is predicted to undergo a large conformational change during maturation, remains largely unknown. In this study, we investigated the role of nine highly conserved MH domain residues in the replication cycle of DENV by site-directed mutagenesis in a DENV1 prME expression construct and found that alanine substitutions introduced to four highly conserved residues at the C terminus and one at the N terminus of the MH domain greatly affect the production of both virus-like particles and replicon particles. Eight of the nine alanine mutants affected the entry of replicon particles, which correlated with the impairment in prM cleavage. Moreover, seven mutants were found to have reduced prM-E interaction at low pH, which may inhibit the formation of smooth immature particles and exposure of prM cleavage site during maturation, thus contributing to inefficient prM cleavage. Taken together, these results are the first report showing that highly conserved MH domain residues, located at 20-38 amino acids downstream from the prM cleavage site, can modulate the prM cleavage, maturation of particles, and virus entry. The highly conserved nature of these residues suggests potential targets of antiviral strategy.

  15. Structure-Function Analysis of Escherichia coli MnmG (GidA), a Highly Conserved tRNA-Modifying Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rong; Villarroya, Magda; Ruiz-Partida, Rafael; Li, Yunge; Proteau, Ariane; Prado, Silvia; Moukadiri, Ismaïl; Benítez-Páez, Alfonso; Lomas, Rodrigo; Wagner, John; Matte, Allan; Velázquez-Campoy, Adrián; Armengod, M.-Eugenia; Cygler, Miroslaw; (McGill); (Zaragoza); (LGM-Spain)


    The MnmE-MnmG complex is involved in tRNA modification. We have determined the crystal structure of Escherichia coli MnmG at 2.4-{angstrom} resolution, mutated highly conserved residues with putative roles in flavin adenine dinucleotide (FAD) or tRNA binding and MnmE interaction, and analyzed the effects of these mutations in vivo and in vitro. Limited trypsinolysis of MnmG suggests significant conformational changes upon FAD binding.

  16. The first exon duplication mouse model of Duchenne muscular dystrophy: A tool for therapeutic development. (United States)

    Vulin, Adeline; Wein, Nicolas; Simmons, Tabatha R; Rutherford, Andrea M; Findlay, Andrew R; Yurkoski, Jacqueline A; Kaminoh, Yuuki; Flanigan, Kevin M


    Exon duplication mutations account for up to 11% of all cases of Duchenne muscular dystrophy (DMD), and a duplication of exon 2 is the most common duplication in patients. For use as a platform for testing of duplication-specific therapies, we developed a mouse model that carries a Dmd exon 2 duplication. By using homologous recombination we duplicated exon 2 within intron 2 at a location consistent with a human duplication hotspot. mRNA analysis confirms the inclusion of a duplicated exon 2 in mouse muscle. Dystrophin expression is essentially absent by immunofluorescent and immunoblot analysis, although some muscle specimens show very low-level trace dystrophin expression. Phenotypically, the mouse shows similarities to mdx, the standard laboratory model of DMD. In skeletal muscle, areas of necrosis and phagocytosis are seen at 3 weeks, with central nucleation prominent by four weeks, recapitulating the "crisis" period in mdx. Marked diaphragm fibrosis is noted by 6 months, and remains unchanged at 12 months. Our results show that the Dup2 mouse is both pathologically (in degree and distribution) and physiologically similar to mdx. As it recapitulates the most common single exon duplication found in DMD patients, this new model will be a useful tool to assess the potential of duplicated exon skipping.

  17. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya


    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  18. Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. (United States)

    Pegueroles, Cinta; Laurie, Steve; Albà, M Mar


    Gene duplication is widely regarded as a major mechanism modeling genome evolution and function. However, the mechanisms that drive the evolution of the two, initially redundant, gene copies are still ill defined. Many gene duplicates experience evolutionary rate acceleration, but the relative contribution of positive selection and random drift to the retention and subsequent evolution of gene duplicates, and for how long the molecular clock may be distorted by these processes, remains unclear. Focusing on rodent genes that duplicated before and after the mouse and rat split, we find significantly increased sequence divergence after duplication in only one of the copies, which in nearly all cases corresponds to the novel daughter copy, independent of the mechanism of duplication. We observe that the evolutionary rate of the accelerated copy, measured as the ratio of nonsynonymous to synonymous substitutions, is on average 5-fold higher in the period spanning 4-12 My after the duplication than it was before the duplication. This increase can be explained, at least in part, by the action of positive selection according to the results of the maximum likelihood-based branch-site test. Subsequently, the rate decelerates until purifying selection completely returns to preduplication levels. Reversion to the original rates has already been accomplished 40.5 My after the duplication event, corresponding to a genetic distance of about 0.28 synonymous substitutions per site. Differences in tissue gene expression patterns parallel those of substitution rates, reinforcing the role of neofunctionalization in explaining the evolution of young gene duplicates.

  19. Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster. (United States)

    Gao, Dahai; Ko, Dennis C; Tian, Xinmin; Yang, Guang; Wang, Liuyang


    Gene duplication has been proposed to serve as the engine of evolutionary innovation. It is well recognized that eukaryotic genomes contain a large number of duplicated genes that evolve new functions or expression patterns. However, in mollusks, the evolutionary mechanisms underlying the divergence and the functional maintenance of duplicate genes remain little understood. In the present study, we performed a comprehensive analysis of duplicate genes in the protein kinase superfamily using whole genome and transcriptome data for the Pacific oyster. A total of 64 duplicated gene pairs were identified based on a phylogenetic approach and the reciprocal best BLAST method. By analyzing gene expression from RNA-seq data from 69 different developmental and stimuli-induced conditions (nine tissues, 38 developmental stages, eight dry treatments, seven heat treatments, and seven salty treatments), we found that expression patterns were significantly correlated for a number of duplicate gene pairs, suggesting the conservation of regulatory mechanisms following divergence. Our analysis also identified a subset of duplicate gene pairs with very high expression divergence, indicating that these gene pairs may have been subjected to transcriptional subfunctionalization or neofunctionalization after the initial duplication events. Further analysis revealed a significant correlation between expression and sequence divergence (as revealed by synonymous or nonsynonymous substitution rates) under certain conditions. Taken together, these results provide evidence for duplicate gene sequence and expression divergence in the Pacific oyster, accompanying its adaptation to harsh environments. Our results provide new insights into the evolution of duplicate genes and their expression levels in the Pacific oyster.

  20. Concerted evolution of duplicated protein-coding genes in Drosophila. (United States)

    Hickey, D A; Bally-Cuif, L; Abukashawa, S; Payant, V; Benkel, B F


    Very rapid rates of gene conversion were observed between duplicated alpha-amylase-coding sequences in Drosophila melanogaster. This gene conversion process was also seen in the related species Drosophila erecta. Specifically, there is virtual sequence identity between the coding regions of the two genes within each species, while the sequence divergence between species is close to that expected based on their phylogenetic relationship. The flanking, noncoding regions are much more highly diverged and do not appear to be subject to gene conversion. Comparison of amylase sequences between the two species provides a clear demonstration that recurrent gene conversion does indeed lead to the concerted evolution of the gene pair.

  1. Intragenic Duplication A Novel Mutational Mechanism in Hereditary Pancreatitis

    DEFF Research Database (Denmark)

    Joergensen, M. T.; Geisz, A.; Brusgaard, K.


    OBJECTIVES: In a hereditary pancreatitis family from Denmark, we identified a novel intragenic duplication of 9 nucleotides in exon-2 of the human cationic trypsinogen (PRSS1) gene (c.63_71dup) which at the amino-acid level resulted in the insertion of 3 amino acids within the activation peptide...... pancreatitis. The accelerated activation of p.K23_I24insIDK by cathepsin B is a unique biochemical property not found in any other pancreatitis-associated trypsinogen mutant. In contrast, the robust autoactivation of the novel mutant confirms the notion that increased autoactivation is a disease......-relevant mechanism in hereditary pancreatitis....

  2. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    Directory of Open Access Journals (Sweden)

    Bing Qu


    Full Text Available Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B model was performed to explain the relationship between structure and hydrophobicity.

  3. 10p Duplication characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr. [Henry Ford Hospital, Detroit, MI (United States)


    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  4. Genome duplication in early vertebrates: insights from agnathan cytogenetics. (United States)

    Caputo Barucchi, V; Giovannotti, M; Nisi Cerioni, P; Splendiani, A


    Agnathans represent a remnant of a primitive offshoot of the vertebrates, and the long evolutionary separation between their 2 living groups, namely hagfishes and lampreys, could explain profound biological differences, also in karyotypes and genome sizes. Here, cytogenetic studies available on these vertebrates were summarized and data discussed with reference to the recently demonstrated monophyly of this group and to the 2 events of whole genome duplication (1R and 2R) characterizing the evolution of vertebrates. The comparison of cytogenetic data and phylogenetic relationships among agnathans and gnathostomes seems to support the hypothesis that 1R and 2R occurred before the evolutionary divergence between jawless and jawed vertebrates.

  5. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  6. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira


    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  7. Where did the chili get its spice? Biogeography of capsaicinoid production in ancestral wild chili species. (United States)

    Tewksbury, Joshua J; Manchego, Carlos; Haak, David C; Levey, Douglas J


    The biogeography of pungency in three species of wild chili in the chaco and surrounding highland habitats of southeastern Bolivia is described. We report that Capsicum chacoense, C. baccatum, and C. eximium are polymorphic for production of capsaicin and its analogs, such that completely pungent and completely nonpungent individuals co-occur in some populations. In C. chacoense, the density of plants and the proportion of pungent plants increased with elevation. Above 900 m, all individuals in all populations except two were pungent; nonpungent individuals in at least one of the two polymorphic populations were likely a result of spreading by humans. The occurrence of pungent and nonpungent individuals in three species of ancestral Capsicum and the geographic variation of pungency within species suggest that production of capsaicin and its analogs entails both costs and benefits, which shift from one locality to another. Determining the selection pressures behind such shifts is necessary to understand the evolution of pungency in chilies.

  8. A phenol-enriched cuticle is ancestral to lignin evolution in land plants (United States)

    Renault, Hugues; Alber, Annette; Horst, Nelly A.; Basilio Lopes, Alexandra; Fich, Eric A.; Kriegshauser, Lucie; Wiedemann, Gertrud; Ullmann, Pascaline; Herrgott, Laurence; Erhardt, Mathieu; Pineau, Emmanuelle; Ehlting, Jürgen; Schmitt, Martine; Rose, Jocelyn K. C.; Reski, Ralf; Werck-Reichhart, Danièle


    Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions. PMID:28270693

  9. Novel ancestral Dysferlin splicing mutation which migrated from the Iberian peninsula to South America. (United States)

    Vernengo, Luis; Oliveira, Jorge; Krahn, Martin; Vieira, Emilia; Santos, Rosário; Carrasco, Luisa; Negrão, Luís; Panuncio, Ana; Leturcq, France; Labelle, Veronique; Bronze-da-Rocha, Elsa; Mesa, Rosario; Pizzarossa, Carlos; Lévy, Nicolas; Rodriguez, Maria-Mirta


    Primary dysferlinopathies are a group of recessive heterogeneous muscular dystrophies. The most common clinical presentations are Miyoshi myopathy and LGMD2B. Additional presentations range from isolated hyperCKemia to severe functional disability. Symptomatology begins in the posterior muscle compartment of the calf and its clinical course progresses slowly in Miyoshi myopathy whereas LGMD2B involves predominantly the proximal muscles of the lower limbs. The age of onset ranges from 13 to 60years in Caucasians. We present five patients that carry a novel mutation in the exon12/intron12 boundary: c.1180_1180+7delAGTGCGTG (r.1054_1284del). We provide evidence of a founder effect due to a common ancestral origin of this mutation, detected in heterozygosity in four patients and in homozygosity in one patient.

  10. On the ancestral compatibility of two phylogenetic trees with nested taxa. (United States)

    Llabrés, Mercè; Rocha, Jairo; Rosselló, Francesc; Valiente, Gabriel


    Compatibility of phylogenetic trees is the most important concept underlying widely-used methods for assessing the agreement of different phylogenetic trees with overlapping taxa and combining them into common supertrees to reveal the tree of life. The notion of ancestral compatibility of phylogenetic trees with nested taxa was recently introduced. In this paper we analyze in detail the meaning of this compatibility from the points of view of the local structure of the trees, of the existence of embeddings into a common supertree, and of the joint properties of their cluster representations. Our analysis leads to a very simple polynomial-time algorithm for testing this compatibility, which we have implemented and is freely available for download from the BioPerl collection of Perl modules for computational biology.

  11. Opossum carboxylesterases: sequences, phylogeny and evidence for CES gene duplication events predating the marsupial-eutherian common ancestor

    Directory of Open Access Journals (Sweden)

    Chan Jeannie


    revealed conserved residues previously reported for human CES1 involved in catalysis, ligand binding, tertiary structure and organelle localization. Phylogenetic studies indicated the gene duplication events which generated ancestral mammalian CES genes predated the common ancestor for marsupial and eutherian mammals, and appear to coincide with the early diversification of tetrapods.

  12. Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees.

    Directory of Open Access Journals (Sweden)

    Paul H Williams

    Full Text Available Our grasp of biodiversity is fine-tuned through the process of revisionary taxonomy. If species do exist in nature and can be discovered with available techniques, then we expect these revisions to converge on broadly shared interpretations of species. But for the primarily arctic bumblebees of the subgenus Alpinobombus of the genus Bombus, revisions by some of the most experienced specialists are unusual for bumblebees in that they have all reached different conclusions on the number of species present. Recent revisions based on skeletal morphology have concluded that there are from four to six species, while variation in colour pattern of the hair raised questions as to whether at least seven species might be present. Even more species are supported if we accept the recent move away from viewing species as morphotypes to viewing them instead as evolutionarily independent lineages (EILs using data from genes. EILs are recognised here in practice from the gene coalescents that provide direct evidence for their evolutionary independence. We show from fitting both general mixed Yule/coalescent (GMYC models and Poisson-tree-process (PTP models to data for the mitochondrial COI gene that there is support for nine species in the subgenus Alpinobombus. Examination of the more slowly evolving nuclear PEPCK gene shows further support for a previously unrecognised taxon as a new species in northwestern North America. The three pairs of the most morphologically similar sister species are separated allopatrically and prevented from interbreeding by oceans. We also find that most of the species show multiple shared colour patterns, giving the appearance of mimicry among parts of the different species. However, reconstructing ancestral colour-pattern states shows that speciation is likely to have cut across widespread ancestral polymorphisms, without or largely without convergence. In the particular case of Alpinobombus, morphological, colour-pattern, and

  13. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations

    Directory of Open Access Journals (Sweden)

    Omberg Larsson


    Full Text Available Abstract Background Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Results Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. Conclusions By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  14. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. (United States)

    Erkenbrack, Eric M; Ako-Asare, Kayla; Miller, Emily; Tekelenburg, Saira; Thompson, Jeffrey R; Romano, Laura


    Diverse sampling of organisms across the five major classes in the phylum Echinodermata is beginning to reveal much about the structure and function of gene regulatory networks (GRNs) in development and evolution. Sea urchins are the most studied clade within this phylum, and recent work suggests there has been dramatic rewiring at the top of the skeletogenic GRN along the lineage leading to extant members of the euechinoid sea urchins. Such rewiring likely accounts for some of the observed developmental differences between the two major subclasses of sea urchins-cidaroids and euechinoids. To address effects of topmost rewiring on downstream GRN events, we cloned four downstream regulatory genes within the skeletogenic GRN and surveyed their spatiotemporal expression patterns in the cidaroid Eucidaris tribuloides. We performed phylogenetic analyses with homologs from other non-vertebrate deuterostomes and characterized their spatiotemporal expression by quantitative polymerase chain reaction (qPCR) and whole-mount in situ hybridization (WMISH). Our data suggest the erg-hex-tgif subcircuit, a putative GRN kernel, exhibits a mesoderm-specific expression pattern early in Eucidaris development that is directly downstream of the initial mesodermal GRN circuitry. Comparative analysis of the expression of this subcircuit in four echinoderm taxa allowed robust ancestral state reconstruction, supporting hypotheses that its ancestral function was to stabilize the mesodermal regulatory state and that it has been co-opted and deployed as a unit in mesodermal subdomains in distantly diverged echinoderms. Importantly, our study supports the notion that GRN kernels exhibit structural and functional modularity, locking down and stabilizing clade-specific, embryonic regulatory states.

  15. Evolutionary history of assassin bugs (insecta: hemiptera: Reduviidae: insights from divergence dating and ancestral state reconstruction.

    Directory of Open Access Journals (Sweden)

    Wei Song Hwang

    Full Text Available Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp. and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies to date based on molecular data (5 markers. This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11-14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma, but significant lineage diversification only began in the Late Cretaceous (97 Ma. The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of

  16. Early genome duplications in conifers and other seed plants. (United States)

    Li, Zheng; Baniaga, Anthony E; Sessa, Emily B; Scascitelli, Moira; Graham, Sean W; Rieseberg, Loren H; Barker, Michael S


    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity.

  17. Gastric Duplication: A Rare Cause of Recurrent Vomiting (United States)

    Koduri, Brahmananda; Yost, Christina; Goodman, Michael H.; Hoelzer, Dennis


    Vomiting is a physical finding that can occur at any age but presents the greatest challenge when it is recurrent in a child. The etiology is varied (Sieunarine and Manmohansingh, 1989; Suzuki, 1982), and recurrent vomiting can be a symptom of life threatening medical or surgical emergencies. Early recognition is mandatory for preventing delay in management and potential complications. Gastric duplication is rare and mostly diagnosed in infancy with only a few cases documented in the medical literature presenting in childhood. We present a three-year-old Vietnamese female with recurrent vomiting. Obstruction and sepsis were ruled out as a cause of the recurrent vomiting by history and appropriate tests. Persistent vomiting and paucity of air on the plain abdominal films provided a clue to the diagnosis. A CT scan of the abdomen with contrast revealed a uniformly thin walled fluid attenuation mass in the epigastric region which did not opacify with contrast. An abdominal ultrasound confirmed gastric duplication cyst and the patient was taken to the operating room for excision of the cyst.

  18. Hox gene duplications correlate with posterior heteronomy in scorpions. (United States)

    Sharma, Prashant P; Schwager, Evelyn E; Extavour, Cassandra G; Wheeler, Ward C


    The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions.

  19. On the Approximability of Comparing Genomes with Duplicates

    CERN Document Server

    Angibaud, Sébastien; Rusu, Irena; Thevenin, Annelyse; Vialette, Stéphane


    A central problem in comparative genomics consists in computing a (dis-)similarity measure between two genomes, e.g. in order to construct a phylogeny. All the existing measures are defined on genomes without duplicates. However, we know that genes can be duplicated within the same genome. One possible approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between genes of both genomes, where the correspondence is chosen in order to optimize the studied measure. In this paper, we are interested in three measures (number of breakpoints, number of common intervals and number of conserved intervals) and three models of matching (exemplar, intermediate and maximum matching models). We prove that, for each model and each measure M, computing a matching between two genomes that optimizes M is APX-hard. We also study the complexity of the following problem: is there an exemplarization (resp. an intermediate/maximum matching) that induces no breakpoint? We prove the problem...

  20. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  1. Inhibiting translation elongation can aid genome duplication in Escherichia coli. (United States)

    Myka, Kamila K; Hawkins, Michelle; Syeda, Aisha H; Gupta, Milind K; Meharg, Caroline; Dillingham, Mark S; Savery, Nigel J; Lloyd, Robert G; McGlynn, Peter


    Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.

  2. Colonic duplication in adults: Report of two cases presenting with rectal bleeding

    Institute of Scientific and Technical Information of China (English)

    C Fotiadis; M Genetzakis; I Papandreou; EP Misiakos; E Agapitos; GC Zografos


    Gastrointestinal duplication is an uncommon congenital abnormality in two-thirds of cases manifesting before the age of 2 years. Ileal duplication is common while colonic duplication, either cystic or tubular, is a rather unusual clinical entity that remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients,colonic duplication is encountered in adults only in a few cases. This study reports two cases of colonic duplication in adults. Both cases presented with rectal bleeding on admission. The study was focused on clinical, imaging,histological, and therapeutical aspects of the presenting cases. Gastrografin enema established the diagnosis in both cases. The cystic structure and the adjacent part of the colon were excised en-block. The study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of rectal bleeding.

  3. Comparative Inference of Duplicated Genes Produced by Polyploidization in Soybean Genome

    Directory of Open Access Journals (Sweden)

    Yanmei Yang


    Full Text Available Soybean (Glycine max is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  4. A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping


    Naruse, Kiyoshi; Tanaka, Minoru; Mita, Kazuei; Shima, Akihiro; Postlethwait, John; Mitani, Hiroshi


    The mapping of Hox clusters and many duplicated genes in zebrafish indicated an extra whole-genome duplication in ray-fined fish. However, to reconstruct the preduplication chromosomes (proto-chromosomes), the comparative genomic studies of more distantly related teleosts are essential. Medaka and zebrafish are ideal for this purpose, because their lineages separated from their last common ancestor ∼140 million years ago. To reconstruct ancient vertebrate chromosomes, including the chromosome...

  5. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter


    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  6. Unusual duplicate bladder exstrophy in a female newborn: a case report. (United States)

    Bouali, Ourdia; Mouttalib, Sofia; Abbo, Olivier; Lemasson, Frédérique; Moscovici, Jacques; Galinier, Philippe


    The authors report a rare variant of exstrophy-epispadias complex, a duplicate bladder with normal bladder communicating with an exstrophic bladder by a fistula, in a girl with no genital malformation except for a duplicated clitoris. This variant could be a hybrid form of duplicate bladder exstrophy and superior vesical fistula. It seems easier to repair and has a better prognosis than classic bladder exstrophy.

  7. An Improved Approach to perform Crawling and avoid Duplicate Web Pages

    Directory of Open Access Journals (Sweden)

    Dhiraj Khurana


    Full Text Available When a web search is performed it includes many duplicate web pages or the websites. It means we can get number of similar pages at different web servers. We are proposing a Web Crawling Approach to Detect and avoid Duplicate or Near Duplicate WebPages. In this proposed work we are presenting a keyword Prioritization based approach to identify the web page over the web. As such pages will beidentified it will optimize the web search.

  8. Gastric Duplication Cyst: A Rare Congenital Disease Often Misdiagnosed in Adults

    Directory of Open Access Journals (Sweden)

    Jessica Falleti


    Full Text Available Gastrointestinal duplication is a rare congenital disease which affected more commonly the ileum, while the stomach is rarely involved. Generally diagnosed in paediatric or young age, it could be difficult to suspect a gastrointestinal duplication in adults. Herein, we report a 55-year-old male with a gastric duplication cyst found on routinely checkup for chronic hepatitis and first misdiagnosed as a gastrointestinal stromal tumor (GIST; we also discuss its embryology.

  9. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins


    Hargreaves, Adam D; Swain, Martin T.; Matthew J. Hegarty; Logan, Darren W; Mulley, John F


    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel...

  10. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome. (United States)

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W


    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  11. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. (United States)

    Lahortiga, Idoya; De Keersmaecker, Kim; Van Vlierberghe, Pieter; Graux, Carlos; Cauwelier, Barbara; Lambert, Frederic; Mentens, Nicole; Beverloo, H Berna; Pieters, Rob; Speleman, Frank; Odero, Maria D; Bauters, Marijke; Froyen, Guy; Marynen, Peter; Vandenberghe, Peter; Wlodarska, Iwona; Meijerink, Jules P P; Cools, Jan


    We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.

  12. Prevalence and origin of De Novo duplications in Charcot-Marie-Tooth disease type 1A: First report of a De Novo duplication with a maternal origin

    Energy Technology Data Exchange (ETDEWEB)

    Blair, I.P.; Nash, J.; Gordon, M.J.; Nicholson, G.A. [Univ. of Sydney, New South Wales (United Kingdom)


    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that {>=}10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus. 41 refs., 2 figs.

  13. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication. (United States)

    Xiang, Yezi; Huang, Chien-Hsun; Hu, Yi; Wen, Jun; Li, Shisheng; Yi, Tingshuang; Chen, Hongyi; Xiang, Jun; Ma, Hong


    Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.

  14. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy (United States)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford


    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  15. The ethics of scholarly publishing: exploring differences in plagiarism and duplicate publication across nations. (United States)

    Amos, Kathleen A


    This study explored national differences in plagiarism and duplicate publication in retracted biomedical literature. The national affiliations of authors and reasons for retraction of papers accessible through PubMed that were published from 2008 to 2012 and subsequently retracted were determined in order to identify countries with the largest numbers and highest rates of retraction due to plagiarism and duplicate publication. Authors from more than fifty countries retracted papers. While the United States retracted the most papers, China retracted the most papers for plagiarism and duplicate publication. Rates of plagiarism and duplicate publication were highest in Italy and Finland, respectively. Unethical publishing practices cut across nations.

  16. Colonic duplication in an adult who presented with chronic constipation attributed to hypothyroidism

    Institute of Scientific and Technical Information of China (English)

    Tihomir Kekez; Goran Augustin; Irena Hrstic; Dubravko Smud; Mate Majerovic; Zeljko Jelincic; Emil Kinda


    Gastrointestinal duplications are an uncommon congenital abnormality that manifest before the age of two in 80% of cases. Heal duplication is the most common while colonic duplication, either cystic or tubular, occurs in 10%-15% of cases and remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients, colonic duplication is encountered in adults in only a few cases. The most common clinical manifestations are abdominal pain and intestinal obstruction. Rarely, duplications present with signs of acute abdomen or acute bleeding. This study reports a case of colonic duplication in an adult who presented with chronic constipation. Complete diagnostic workup was made on several occasions during the previous eight year period, but no pathology was found and chronic constipation was attributed to hypothyroidism caused by long standing Hashimoto thyroiditis. Multislice CT, performed because of abdominal distension, defined colonic pathology but the definite diagnosis of duplication of the transversal colon was made at operation. The cystic duplication and the adjacent part of the ascending and transversal colon were excised en-block. This study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of chronic constipation even when precipitating factors for constipation, such as hypothyroidism are present.

  17. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class (United States)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method

  18. Modelling the ancestral sequence distribution and model frequencies in context-dependent models for primate non-coding sequences

    Directory of Open Access Journals (Sweden)

    Baele Guy


    Full Text Available Abstract Background Recent approaches for context-dependent evolutionary modelling assume that the evolution of a given site depends upon its ancestor and that ancestor's immediate flanking sites. Because such dependency pattern cannot be imposed on the root sequence, we consider the use of different orders of Markov chains to model dependence at the ancestral root sequence. Root distributions which are coupled to the context-dependent model across the underlying phylogenetic tree are deemed more realistic than decoupled Markov chains models, as the evolutionary process is responsible for shaping the composition of the ancestral root sequence. Results We find strong support, in terms of Bayes Factors, for using a second-order Markov chain at the ancestral root sequence along with a context-dependent model throughout the remainder of the phylogenetic tree in an ancestral repeats dataset, and for using a first-order Markov chain at the ancestral root sequence in a pseudogene dataset. Relaxing the assumption of a single context-independent set of independent model frequencies as presented in previous work, yields a further drastic increase in model fit. We show that the substitution rates associated with the CpG-methylation-deamination process can be modelled through context-dependent model frequencies and that their accuracy depends on the (order of the Markov chain imposed at the ancestral root sequence. In addition, we provide evidence that this approach (which assumes that root distribution and evolutionary model are decoupled outperforms an approach inspired by the work of Arndt et al., where the root distribution is coupled to the evolutionary model. We show that the continuous-time approximation of Hwang and Green has stronger support in terms of Bayes Factors, but the parameter estimates show minimal differences. Conclusions We show that the combination of a dependency scheme at the ancestral root sequence and a context

  19. The structural color of red rose petals and their duplicates. (United States)

    Feng, Lin; Zhang, Yanan; Li, Mingzhu; Zheng, Yongmei; Shen, Weizhi; Jiang, Lei


    The observation of the surface of a red rose petal indicates that there are micropapillae on the surface and many nanofolders exist on each papilla. Here, much tinier nanorods with periodic pattern on the nanofolders can be seen by in situ atomic force microscopy (AFM). Angle-resolved UV-vis spectral measurement and reflectance UV-vis spectra by immersion red rose petal in solvents with different refractive indices demonstrate that such periodic nanostructures can induce structural color. The combination of structural color, driven by the nanostructures, and chemical color, driven by pigments, provide flowers bright color and special functions for human and animals' visual system. Biomimic polymer films, that fabricated by duplicating the petal's hierarchical micro/nano structures, exhibit only structural color by UV-vis spectra since there is no pigment introduced.

  20. Chromosome duplication in Brachiaria (A. Rich. Stapf allows intraspecific crosses

    Directory of Open Access Journals (Sweden)

    Carine Simioni


    Full Text Available Brachiaria decumbens cv. Basilisk is the single most important forage grass used for pastures in the tropics.Breeding to produce improved cultivars has been impossible until now due to the lack of compatible sexual ecotypes. Thispaper reports the success of somatic chromosome duplication of sexually reproducing diploid plants of B. decumbens and ofa diploid hybrid between B. decumbens and B. brizantha, which should allow intraspecific crosses with natural apomictictetraploid accessions of either species. Polyploidization was induced in explants cultured in vitro on a medium supplementedwith colchicine at 0.01% for 48 hours, transferred to the same medium without colchicine until shoot regeneration occurred.Five sexual tetraploid plants (3.9% of plants recovered were obtained. Crosses with apomictic cultivars recovered 14 seeds.The novel sexual tetraploids generated were unique and represented a major breakthrough in breeding B. decumbens toobtain superior hybrids.

  1. Delusional misidentifications and duplications: right brain lesions, left brain delusions. (United States)

    Devinsky, Orrin


    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  2. Iron dialyzability from hospital duplicate meals: daily intake. (United States)

    Velasco-Reynold, Carlos; Navarro-Alarcon, Miguel; Lopez-Ga de la Serrana, Herminia; Perez-Valero, Vidal; Lopez-Martinez, María C


    Both total and dialyzable iron levels and corresponding dialyzability were determined in 108 duplicate meals during 36 consecutive days. Total mean iron fraction of 5.90 +/- 4.97 mg was found in the meals. The iron supplied by the meals is directly and significantly (p < 0.05) correlated with macromicronutrient content (carbohydrates, fiber, and protein). The mean iron dialyzability (4.81 +/- 3.25%) was low and not significantly different among the three primary meals (breakfast, lunch, and dinner). Significant interactions of several minerals on iron levels were found (p < 0.05). Iron dialyzability was only statistically influenced by zinc dialyzability in meals (p < 0.05). The dialyzed iron fraction present in meals was significantly correlated with protein and ascorbic acid levels (p < 0.01). The mean iron daily dietary intake was 17.7 +/- 6.91 mg. The hospital meals provided enough iron. Foods of animal origin are primary sources of iron in diet.

  3. An optimal scheduling algorithm based on task duplication

    Institute of Scientific and Technical Information of China (English)

    Ruan Youlin; Liu Gan; Zhu Guangxi; Lu Xiaofeng


    When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O ( v2 ), where v represents the number of tasks.

  4. Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Vogel Christine


    Full Text Available Abstract Background One mechanism to account for robustness against gene knockouts or knockdowns is through buffering by gene duplicates, but the extent and general correlates of this process in organisms is still a matter of debate. To reveal general trends of this process, we provide a comprehensive comparison of gene essentiality, duplication and buffering by duplicates across seven bacteria (Mycoplasma genitalium, Bacillus subtilis, Helicobacter pylori, Haemophilus influenzae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Escherichia coli, and four eukaryotes (Saccharomyces cerevisiae (yeast, Caenorhabditis elegans (worm, Drosophila melanogaster (fly, Mus musculus (mouse. Results In nine of the eleven organisms, duplicates significantly increase chances of survival upon gene deletion (P-value ≤ 0.05, but only by up to 13%. Given that duplicates make up to 80% of eukaryotic genomes, the small contribution is surprising and points to dominant roles of other buffering processes, such as alternative metabolic pathways. The buffering capacity of duplicates appears to be independent of the degree of gene essentiality and tends to be higher for genes with high expression levels. For example, buffering capacity increases to 23% amongst highly expressed genes in E. coli. Sequence similarity and the number of duplicates per gene are weak predictors of the duplicate's buffering capacity. In a case study we show that buffering gene duplicates in yeast and worm are somewhat more similar in their functions than non-buffering duplicates and have increased transcriptional and translational activity. Conclusion In sum, the extent of gene essentiality and buffering by duplicates is not conserved across organisms and does not correlate with the organisms' apparent complexity. This heterogeneity goes beyond what would be expected from differences in experimental approaches alone. Buffering by duplicates contributes to robustness in several organisms

  5. 20-Mb duplication of chromosome 9p in a girl with minimal physical findings and normal IQ: narrowing of the 9p duplication critical region to 6 Mb. (United States)

    Bonaglia, Maria Clara; Giorda, Roberto; Carrozzo, Romeo; Roncoroni, Maria Elena; Grasso, Rita; Borgatti, Renato; Zuffardi, Orsetta


    We studied the case of a girl with a partial 9p duplication, dup(9)(p22.1 --> p13.1). Molecular cytogenetics studies defined the chromosome 9 rearrangement as a direct duplication of 20 Mb from D9S1213 to D9S52. Microsatellite analysis demonstrated the presence of a double dosage of the paternal alleles and demonstrated that the duplication occurred between sister chromatids. The patient's phenotype was almost normal, with a few minor anomalies (dolichocephaly, crowded teeth, high arched palate) and normal IQ. The breakpoint's location in this patient and previously reported cases suggest that the critical region for the 9p duplication syndrome lies within a 6-Mb portion of chromosome 9p22 between markers D9S267 and D9S1213.

  6. Gene duplications in prokaryotes can be associated with environmental adaptation

    Directory of Open Access Journals (Sweden)

    Lempicki Richard A


    Full Text Available Abstract Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive

  7. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication

    Directory of Open Access Journals (Sweden)

    Sato Yukuto


    Full Text Available Abstract Background Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish. Results We applied a state-of-the-art method of maximum-likelihood phylogenetic inference and conserved synteny analyses to each of 130 genes involved in the above biological systems of human. These analyses identified 116 orthologous gene groups between teleosts and tetrapods, and 45 pairs of 3R-WGD-derived duplicate genes among them. This suggests that more than half [(45×2/(116+45] = 56.5% of the loci, probably more than ten thousand genes, present in a common ancestor of the four teleosts were still duplicated after the 3R-WGD. The estimated temporal pattern of gene loss suggested that, after the 3R-WGD, many (71/116 of the duplicated genes were rapidly lost during the initial 75 million years (MY, whereas on average more than half (27.3/45 of the duplicated genes remaining in the ancestor of the four teleosts (45/116 have persisted for about 275 MY. The 3R-WGD-derived duplicates that have persisted for a long evolutionary periods of time had significantly larger number of interacting partners and longer length of protein coding sequence, implying that they tend to be more multifunctional than the singletons after the 3R-WGD. Conclusion

  8. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.


    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  9. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan


    Full Text Available Abstract Background As one of the most widely used parsimony methods for ancestral reconstruction, the Fitch method minimizes the total number of hypothetical substitutions along all branches of a tree to explain the evolution of a character. Due to the extensive usage of this method, it has become a scientific endeavor in recent years to study the reconstruction accuracies of the Fitch method. However, most studies are restricted to 2-state evolutionary models and a study for higher-state models is needed since DNA sequences take the format of 4-state series and protein sequences even have 20 states. Results In this paper, the ambiguous and unambiguous reconstruction accuracy of the Fitch method are studied for N-state evolutionary models. Given an arbitrary phylogenetic tree, a recurrence system is first presented to calculate iteratively the two accuracies. As complete binary tree and comb-shaped tree are the two extremal evolutionary tree topologies according to balance, we focus on the reconstruction accuracies on these two topologies and analyze their asymptotic properties. Then, 1000 Yule trees with 1024 leaves are generated and analyzed to simulate real evolutionary scenarios. It is known that more taxa not necessarily increase the reconstruction accuracies under 2-state models. The result under N-state models is also tested. Conclusions In a large tree with many leaves, the reconstruction accuracies of using all taxa are sometimes less than those of using a leaf subset under N-state models. For complete binary trees, there always exists an equilibrium interval [a, b] of conservation probability, in which the limiting ambiguous reconstruction accuracy equals to the probability of randomly picking a state. The value b decreases with the increase of the number of states, and it seems to converge. When the conservation probability is greater than b, the reconstruction accuracies of the Fitch method increase rapidly. The reconstruction

  10. Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6

    DEFF Research Database (Denmark)

    Bergmann, T K; Bathum, L; Brøsen, Kim


    a duplicated allele. The question is whether gene duplication is a relatively rare cause (perhaps predictor) of very rapid metabolism or whether a low metabolic ratio is a poor predictor of this. METHODS: After measuring metabolic ratios anew, we selected six volunteers with duplication of CYP2D6 and metabolic...... ratios ranging from 0.07 to 0.17 and six volunteers without duplication with metabolic ratios ranging from 0.08 to 0.21. Each subject took 100 mg of desipramine. Blood and urine were collected for 48 h. RESULTS: The median total oral clearance of desipramine was 372 l/h and 196 l/h [median difference 108...... l/h (95.9% c.i., -304-598 l/h)] and the median partial clearance of desipramine by 2-hydroxylation was 155 l/h and 87 l/h [median difference 47 l/h (95.9% c.i., -124-141 l/h)] for the group with duplication and the group without duplication, respectively. CONCLUSION: The predictive value...

  11. MARCH5 gene is duplicated in rainbow trout, but only fish-specific gene copy is up-regulated after VHSV infection. (United States)

    Rebl, Alexander; Köbis, Judith M; Fischer, Uwe; Takizawa, Fumio; Verleih, Marieke; Wimmers, Klaus; Goldammer, Tom


    Ubiquitination regulates the activity, stability, and localization of a wide variety of proteins. Several mammalian MARCH ubiquitin E3 ligase proteins have been suggested to control cell surface immunoreceptors. The mitochondrial protein MARCH5 is a positive regulator of Toll-like receptor 7-mediated NF-κB activation in mammals. In the present study, duplicated MARCH5-like cDNA sequences were isolated from rainbow trout (Oncorhynchus mykiss) comprising open reading frames of 882 bp (MARCH5A) and 885 bp (MARCH5B), respectively. Trout MARCH5A and MARCH5B-encoding sequences share only 65% sequence identity. Phylogenetic analyses including an additionally isolated MARCH5-like sequence from whitefish (Coregonus maraena) suggest that teleosts possess an additional MARCH5 gene copy resulting from a fish-specific whole genome duplication. Coding sequences of MARCH5A and MARCH5B genes from trout are distributed over six exons. Hypothetical MARCH5 proteins from trout comprise four transmembrane helices and a single motif similar to a RING variant domain (RINGv) including eight highly conserved cysteine and histidine residues. A 'reverse-northern blot' analysis revealed furthermore a MARCH5B Δexon5 transcript variant. Both MARCH5 genes from trout show a strain-, tissue- and cell-specific expression profile indicating different functional roles. Fish-specific MARCH5A gene for instance might be involved in defense mechanisms, since in vivo-challenge with the viral pathogen VHSV caused a significant 1.7-fold elevated copy number of the respective gene in gills four days after infection, whereas MARCH5B transcript level did not increase.

  12. A rare association of rectal and genitourinary duplication and anorectal malformation

    Institute of Scientific and Technical Information of China (English)

    王俊; 施诚仁; 余世耀; 吴燕; 徐长辉


    @@ It is very rare to see multiple malformations occurring in both the urogenital and digestive systems in a case of congenital anorectal malformation. In this particular care, an imperforated anus occurred with other multiple malformations, including a double kidney, urethral duplication and rectal duplication, etc.

  13. Duplicate publications and related problems in published papers on oral and maxillofacial surgery. (United States)

    Le, A; Moran, C M P; Bezuhly, M; Hong, P


    As duplicate publication is unethical, our aim was to find out how common it is among published papers on oral and maxillofacial surgery. We used PubMed to identify index articles published in 2010 in the Journal of Oral and Maxillofacial Surgery, the British Journal of Oral and Maxillofacial Surgery, and the European Journal of Cranio-Maxillo-Facial Surgery, and searched for possible duplicate publications from 2008 to 2012 using the first or second and last authors' names. Suspected duplicates were categorised into "non-duplicate" (no overlap), "duplicate" (identical results and conclusions), or "salami-sliced" publications (part of the index article repeated or continued). Of the 589 index articles, 17 (3%) had some form of duplication, but specifically, we found 3 duplicate, and 15 salami-sliced publications. Most redundant articles originated from China (n=4), followed by Italy, Japan, and Germany (3 from each) and the United States and Denmark (2 each). Of the 18 redundant publications, 9 did not reference the related index article. Duplicate material is still being published, and salami-slicing is relatively common among publications on oral and maxillofacial surgery. Further research is required into the extent and impact of this finding.

  14. Interstitial duplications of chromosome region 15q11q13 : Clinical and molecular characterization

    NARCIS (Netherlands)

    Repetto, GR; White, LM; Bader, PJ; Johnson, D; Knoll, JHM


    Duplications of chromosome region 15q11q13 often occur as a supernumerary chromosome 15. Less frequently they occur as interstitial duplications [dup(15)]. We describe the clinical and molecular characteristics of three patients with de novo dup(15). The patients, two males and one female (ages 3-21

  15. Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Trabjerg, Betina B; Olsen, Line;


    Importance: Microdeletions and duplications have been described at the 22q11.2 locus. However, little is known about the clinical and epidemiologic consequences at the population level. Objective: To identify indicators of deletions or duplications at the 22q11.2 locus and estimate the incidence ...

  16. Identification of large NF1 duplications reciprocal to NAHR-mediated type-1 NF1 deletions. (United States)

    Kehrer-Sawatzki, Hildegard; Bengesser, Kathrin; Callens, Tom; Mikhail, Fady; Fu, Chuanhua; Hillmer, Morten; Walker, Martha E; Saal, Howard M; Lacassie, Yves; Cooper, David N; Messiaen, Ludwine


    Approximately 5% of all patients with neurofibromatosis type-1 (NF1) exhibit large deletions of the NF1 gene region. To date, only nine unrelated cases of large NF1 duplications have been reported, with none of the affected patients exhibiting multiple café au lait spots (CALS), Lisch nodules, freckling, or neurofibromas, the hallmark signs of NF1. Here, we have characterized two novel NF1 duplications, one sporadic and one familial. Both index patients with NF1 duplications exhibited learning disabilities and atypical CALS. Additionally, patient R609021 had Lisch nodules, whereas patient R653070 exhibited two inguinal freckles. The mother and sister of patient R609021 also harbored the NF1 duplication and exhibited cognitive dysfunction but no CALS. The breakpoints of the nine NF1 duplications reported previously have not been identified and hence their underlying generative mechanisms have remained unclear. In this study, we performed high-resolution breakpoint analysis that indicated that the two duplications studied were mediated by nonallelic homologous recombination (NAHR) and that the duplication breakpoints were located within the NAHR hotspot paralogous recombination site 2 (PRS2), which also harbors the type-1 NF1 deletion breakpoints. Hence, our study indicates for the first time that NF1 duplications are reciprocal to type-1 NF1 deletions and originate from the same NAHR events.

  17. 43 CFR 46.440 - Eliminating duplication with State and local procedures. (United States)


    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Eliminating duplication with State and... IMPLEMENTATION OF THE NATIONAL ENVIRONMENTAL POLICY ACT OF 1969 Environmental Impact Statements § 46.440 Eliminating duplication with State and local procedures. A bureau must incorporate in its...

  18. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution. (United States)

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A


    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae).

  19. Extensive local gene duplication and functional divergence among paralogs in Atlantic salmon. (United States)

    Warren, Ian A; Ciborowski, Kate L; Casadei, Elisa; Hazlerigg, David G; Martin, Sam; Jordan, William C; Sumner, Seirian


    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle.

  20. 7 CFR 3430.36 - Procedures to minimize or eliminate duplication of effort. (United States)


    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Procedures to minimize or eliminate duplication of effort. 3430.36 Section 3430.36 Agriculture Regulations of the Department of Agriculture (Continued...: Application Review and Evaluation § 3430.36 Procedures to minimize or eliminate duplication of effort....

  1. Novel duplication pattern of the mitochondrial control region in Cantor's Giant softshell turtle Pelochelys cantorii. (United States)

    Zhang, Xin-Cheng; Li, Wei; Zhao, Jian; Chen, Hai-Gang; Zhu, Xin-Ping


    Cantor's Giant Softshell Turtle, Pelochelys cantorii has become one of the most critically endangered species in the world. When comparative analyses of the P. cantorii complete mitochondrial genome sequences were conducted, we discovered a duplication of a segment of the control region in the mitochondrial genome of P. cantorii. The duplication is characterized by two copies of conserved sequence box 2 (CSB2) and CSB3 in a single control region. In contrast to previous reports of duplications involving the control regions of other animals, this particular pattern of duplications appears to be unique to P. cantorii. Copies of the CSB2 and CSB3 show many of the conserved sequence features typically found in mitochondrial control regions, and rare differences were found between the paralogous copies. Using the primer design principle of simple sequence repeats (SSR) and the reference sequence of the duplicated CSBs, specific primers were designed to amplify the duplicated CSBs. These primers were validated among different individuals and populations of P. cantorii. This unique duplication structure suggests the two copies of the CSB2 and CSB3 may have arisen through occasional tandem duplication and subsequent concerted evolution.

  2. 26 CFR 1.362-4 - Limitations on built-in loss duplication. (United States)


    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Limitations on built-in loss duplication. 1.362-4 Section 1.362-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... duplication. (a) Purpose and scope—(1) In general. (2) Intercompany transactions. For rules relating to...

  3. 40 CFR 1506.2 - Elimination of duplication with State and local procedures. (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Elimination of duplication with State... OTHER REQUIREMENTS OF NEPA § 1506.2 Elimination of duplication with State and local procedures. (a... 102(2)(D) of the Act may do so. (b) Agencies shall cooperate with State and local agencies to...

  4. 10 CFR 9.39 - Search and duplication provided without charge. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Search and duplication provided without charge. 9.39 Section 9.39 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Freedom of Information Act Regulations § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency...

  5. Divergence of Recently Duplicated Mg-Type MADS-Box Genes in Petunia

    NARCIS (Netherlands)

    Bemer, M.; Gordon, J.; Weterings, K.; Angenent, G.C.


    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications,

  6. Case of a congenital urethral duplication being unmasked following circumcision for balanitis xerotica obliterans. (United States)

    Boyd, Matthew; Woodward, Mark; Lambert, Anthony


    We present the case of an 11-year-old boy diagnosed with an Effmann Type II A1 urethral duplication after routine circumcision for balanitis xerotica obliterans (BXO). We discuss the pathophysiology, investigation and management both of BXO and urethral duplication.

  7. Doublet Production in the Development of Medieval and Modern Spanish: New Approaches to Phonolexical Duplication (United States)

    Haney, Darren W.


    This dissertation offers new approaches to an old and well-known problem in the study of the development of Romance varieties: duplicate lexis or doublets. Traditional analyses of duplication are narrow in scope both in what qualifies as a doublet (the popular/learned opposition has dominated, to the exclusion of other pairs) and in channels of…

  8. Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism. (United States)

    Wang, Miao; Li, Huiping; Takumi, Toru; Qiu, Zilong; Xu, Xiu; Yu, Xiang; Bian, Wen-Jie


    Autism spectrum disorder (ASD) encompasses a complex set of developmental neurological disorders, characterized by deficits in social communication and excessive repetitive behaviors. In recent years, ASD is increasingly being considered as a disease of the synapse. One main type of genetic aberration leading to ASD is gene duplication, and several mouse models have been generated mimicking these mutations. Here, we studied the effects of MECP2 duplication and human chromosome 15q11-13 duplication on synaptic development and neural circuit wiring in the mouse sensory cortices. We showed that mice carrying MECP2 duplication had specific defects in spine pruning, while the 15q11-13 duplication mouse model had impaired spine formation. Our results demonstrate that spine pathology varies significantly between autism models and that distinct aspects of neural circuit development may be targeted in different ASD mutations. Our results further underscore the importance of gene dosage in normal development and function of the brain.

  9. Prenatal Diagnosis of 17p13.1p13.3 Duplication

    Directory of Open Access Journals (Sweden)

    Kirsi Kiiski


    Full Text Available We present here the first prenatal diagnosis of 17p13.1p13.3 duplication. 17p13.3 duplication has recently been defined as a new distinctive syndrome with several diagnosed patients. In the current case prenatal chromosome analysis (G-banding performed on cultured amniocytes revealed additional material in chromosome 19p. This was further defined as a chromosome 17p13.1p13.3 duplication by FISH and genomic microarray analysis (GMA. In addition Prenatal BACs-on-Beads (PN_BoBs assay was performed, which detected the duplication clearly. This enables rapid prenatal diagnosis of the duplication for this family in the future.

  10. Pinda: a web service for detection and analysis of intraspecies gene duplication events. (United States)

    Kontopoulos, Dimitrios-Georgios; Glykos, Nicholas M


    We present Pinda, a Web service for the detection and analysis of possible duplications of a given protein or DNA sequence within a source species. Pinda fully automates the whole gene duplication detection procedure, from performing the initial similarity searches, to generating the multiple sequence alignments and the corresponding phylogenetic trees, to bootstrapping the trees and producing a Z-score-based list of duplication candidates for the input sequence. Pinda has been cross-validated using an extensive set of known and bibliographically characterized duplication events. The service facilitates the automatic and dependable identification of gene duplication events, using some of the most successful bioinformatics software to perform an extensive analysis protocol. Pinda will prove of use for the analysis of newly discovered genes and proteins, thus also assisting the study of recently sequenced genomes. The service's location is The source code is freely available via

  11. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J. [Children`s Hospital, Boston, MA (United States)] [and others


    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  12. Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae

    Directory of Open Access Journals (Sweden)

    Azanza Beatriz


    Full Text Available Abstract Background Specialised leaf-eating is almost universally regarded as the ancestral state of all ruminants, yet little evidence can be cited in support of this assumption, apart from the fact that all early ruminants had low crowned cheek teeth. Instead, recent years have seen the emergence evidence contradicting the conventional view that low tooth crowns always indicate leaf-eating and high tooth crowns grass-eating. Results Here we report the results of two independent palaeodietary reconstructions for one of the earliest deer, Procervulus ginsburgi from the Early Miocene of Spain, suggesting that despite having lower tooth crowns than any living ruminant, this species included a significant proportion of grass in its diet. Conclusion The phylogenetic distribution of feeding styles strongly supports that leaf-grass mixed feeding was the original feeding style of deer, and that later dietary specialization on leaves or grass occurred independently in several lineages. Evidence for other ruminant clades suggests that facultative mixed feeding may in fact have been the primitive dietary state of the Ruminantia, which would have been morphologically expressed only under specific environmental factors.

  13. A PCA-based method for ancestral informative markers selection in structured populations

    Institute of Scientific and Technical Information of China (English)


    Identification of population structure can help trace population histories and identify disease genes. Structured association (SA) is a commonly used approach for population structure identification and association mapping. A major issue with SA is that its performance greatly depends on the informa-tiveness and the numbers of ancestral informative markers (AIMs). Present major AIM selection meth-ods mostly require prior individual ancestry information, which is usually not available or uncertain in practice. To address this potential weakness, we herein develop a novel approach for AIM selection based on principle component analysis (PCA), which does not require prior ancestry information of study subjects. Our simulation and real genetic data analysis results suggest that, with equivalent AIMs, PCA-based selected AIMs can significantly increase the accuracy of inferred individual ancestries compared with traditionally randomly selected AIMs. Our method can easily be applied to whole genome data to select a set of highly informative AIMs in population structure, which can then be used to identify potential population structure and correct possible statistical biases caused by population stratification.

  14. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds. (United States)

    Griffin, Christopher T; Nesbitt, Sterling J


    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  15. Bacterial community composition and diversity in an ancestral ant fungus symbiosis. (United States)

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G


    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.

  16. Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula. (United States)

    Smith, Martin R


    The Middle Cambrian lophotrochozoans Odontogriphus omalus and Wiwaxia corrugata have been interpreted as stem-group members of either the Mollusca, the Annelida, or a group containing Mollusca + Annelida. The case for each classification rests on the organisms' unusual mouthparts, whose two to three tooth-rows resemble both the molluscan radula and the jaws of certain annelid worms. Despite their potential significance, these mouthparts have not previously been described in detail. This study examined the feeding apparatuses of over 300 specimens from the 505-million-year-old Burgess Shale, many of which were studied for the first time. Rather than denticulate plates, each tooth row comprises a single axial tooth that is flanked on each side by eight to 16 separate shoehorn-shaped teeth. Tooth rows sat on a grooved basal tongue, and two large lobes flanked the apparatus. New observations--the shape, distribution and articulation of the individual teeth, and the mouthparts' mode of growth--are incompatible with an annelid interpretation, instead supporting a classification in Mollusca. The ancestral molluscan radula is best reconstructed as unipartite with a symmetrical medial tooth, and Odontogriphus and Wiwaxia as grazing deposit-feeders.

  17. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. (United States)

    Rock, Jeremy M; Lang, Ulla F; Chase, Michael R; Ford, Christopher B; Gerrick, Elias R; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M; Lamers, Meindert H


    The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3'-5' exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain-mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.

  18. The tendency to recreate ancestral CG dinucleotides in the human genome

    Directory of Open Access Journals (Sweden)

    Li Mingkun


    Full Text Available Abstract Background The CG dinucleotides are known to be deficient in the human genome, due to a high mutation rate from 5-methylated CG to TG and its complementary pair CA. Meanwhile, many cellular functions rely on these CG dinucleotides, such as gene expression controlled by cytosine methylation status. Thus, CG dinucleotides that provide essential functional substrates should be retained in genomes. How these two conflicting processes regarding the fate of CG dinucleotides - i.e., high mutation rate destroying CG dinucleotides, vs. functional processes that require their preservation remains an unsolved question. Results By analyzing the mutation and frequency spectrum of newly derived alleles in the human genome, a tendency towards generating more CGs was observed, which was mainly contributed by an excess number of mutations from CA/TG to CG. Simultaneously, we found a fixation preference for CGs derived from TG/CA rather than CGs generated by other dinucleotides. These tendencies were observed both in intergenic and genic regions. An analysis of Integrated Extended Haplotype Homozygosity provided no evidence of selection for newly derived CGs. Conclusions Ancestral CG dinucleotides that were subsequently lost by mutation tend to be recreated in the human genome, as indicated by a biased mutation and fixation pattern favoring new CGs that derived from TG/CA.

  19. Sandals as Icons: Representations in Ancestral Pueblo Rock Art and Effigies in Stone and Wood

    Directory of Open Access Journals (Sweden)

    Polly Schaafsma


    Full Text Available Dating the late 1000s to the mid-1200s CE, petroglyphs of sandal images are among others that distinguish ancient Pueblo rock art in the San Juan and Little Colorado River drainages on the Colorado Plateau from Ancestral Pueblo rock art elsewhere across the Southwest. The sandal “track” also has counterparts  as effigies in stone and wood often found in ceremonial contexts in Pueblo sites. These representations reflect the sandal styles of the times, both plain in contour and the jog-toed variety, the latter characterized by a projection where the little toe is positioned. These representations are both plain and patterned,  as are their material sandal counterparts. Their significance  as symbolic icons is their dominant aspect, and a ritual meaning is implicit.  As a component of a symbol system that was radically altered after 1300 CE, however, there is no ethnographic information that provides clues as to the sandal icon’s meaning. While there is no significant pattern of its associations with other symbolic content in the petroglyph panels, in some western San Juan sites cases a relationship to the hunt can be inferred. It is suggested that the track itself could refer to a deity, a mythological hero, or the carver ’s social identity. In conclusion, however, no clear meaning of the images themselves is forthcoming, and further research beckons.

  20. Ancestral origins of the prion protein gene D178N mutation in the Basque Country. (United States)

    Rodríguez-Martínez, Ana B; Barreau, Christian; Coupry, Isabelle; Yagüe, Jordi; Sánchez-Valle, Raquel; Galdós-Alcelay, Luis; Ibáñez, Agustín; Digón, Antón; Fernández-Manchola, Ignacio; Goizet, Cyril; Castro, Azucena; Cuevas, Nerea; Alvarez-Alvarez, Maite; de Pancorbo, Marian M; Arveiler, Benoît; Zarranz, Juan J


    Fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD) are familial prion diseases with autosomal dominant inheritance of the D178N mutation. FFI has been reported in at least 27 pedigrees around the world. Twelve apparently unrelated FFI and fCJD pedigrees with the characteristic D178N mutation have been reported in the Prion Diseases Registry of the Basque Country since 1993. The high incidence of familial prion diseases in this region may reflect a unique ancestral origin of the chromosome carrying this mutation. In order to investigate this putative founder effect, we developed "happy typing", a new approach to the happy mapping method, which consists of the physical isolation of large haploid genomic DNA fragments and their analysis by the Polymerase Chain Reaction in order to perform haplotypic analysis instead of pedigree analysis. Six novel microsatellite markers, located in a 150-kb genomic segment flanking the PRNP gene were characterized for typing haploid DNA fragments of 285 kb in size. A common haplotype was found in patients from the Basque region, strongly suggesting a founder effect. We propose that "happy typing" constitutes an efficient method for determining disease-associated haplotypes, since the analysis of a single affected individual per pedigree should provide sufficient evidence.

  1. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. (United States)

    Aoshima, Miho; Igarashi, Yasuo


    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  2. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.


    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  3. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. (United States)

    Huang, Ruiqi; O'Donnell, Andrew J; Barboline, Jessica J; Barkman, Todd J


    Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.

  4. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Directory of Open Access Journals (Sweden)

    Mohan Manikkam

    Full Text Available Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET, a plastic mixture (bisphenol A and phthalates, dioxin (TCDD and a hydrocarbon mixture (jet fuel, JP8. After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation. Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  5. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario


    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  6. Evolutionary Psychology: How Psychological Mechanisms Shaped by Natural Selection for Ancestral Environments Produce Current Behaviours

    Institute of Scientific and Technical Information of China (English)

    Charles Crawford


    The central purpose of this paper is to explain how Darwin's theory of evolution by natural selection can be used in understanding current human behaviour. First, Darwin's logic is briefly described. Development is an important issue when applying evolutionary theory to human behaviour. The notion of innate developmental orga-nization of psychological mechanisms is introduced. The possible social and political outcomes produced when differ-ent levels of innate developmental organization are paired with different beliefs about it are considered. The notion of psychological mechanisms as evolved adaptations is considered in some detail. Then I discuss different ways evo-htionists think about how genes are involved in the development of adaptations. The paper concludes with a frame-work for considering how ancestral adaptations function in current environments and outlines some ways of studying them. In China and many other parts of the world people desire a more harmonious society. Ⅰ hope that this paper will be of some small help in achieving this great task.

  7. A PCA-based method for ancestral informative markers selection in structured populations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; ZHANG Lei; DENG Hong-Wen


    Identification of population structure can help trace population histories and identify disease genes.Structured association (SA) is a commonly used approach for population structure identification and association mapping. A major issue with SA is that its performance greatly depends on the informativeness and the numbers of ancestral informative markers (AIMs). Present major AIM selection methods mostly require prior individual ancestry information, which is usually not available or uncertain in practice. To address this potential weakness, we herein develop a novel approach for AIM selection based on principle component analysis (PCA), which does not require prior ancestry information of study subjects. Our simulation and real genetic data analysis results suggest that, with equivalent AIMs,PCA-based selected AIMs can significantly increase the accuracy of inferred individual ancestries compared with traditionally randomly selected AIMs. Our method can easily be applied to whole genome data to select a set of highly informative AIMs in population structure, which can then be used to identify potential population structure and correct possible statistical biases caused by population stratification.

  8. 客家祠堂的文化内涵研究--以三明客家祠堂为例%Study on the Culture Connotation of Hakka Ancestral Hall---Taking Sanming Hakka Ancestral Hall as an Example

    Institute of Scientific and Technical Information of China (English)



    Hakka ancestral hall is the most important place of Hakka clan ancestors,and it is an emotion carrier of Hakka as well, which contains rich cultural connotation. Sanming,as an important part of Fujian,Guangdong and Jiangxi Hakka stronghold,has a large number of Hakka ancestral halls. The name、couplets and architectural pattern of Hakka ancestral hall reflect how deeply the con-cept of ancestor worship of Hakka is;The pedigree of a clan、temple monument and ancestral hall couplets reflect how difficult Hakka' s migration path is;Its ancestor's instruction and function reflect how strong Hakka's concept of farming-reading is;Its site selection and layout reflect how prosperous Feng Shui Culture in Hakka is. They are the windows through which we can know Hakka history and Hak-ka culture.%客家祠堂是客家宗族祭祖的首要重地,也是客家人的情感载体,蕴含着丰富的文化内涵。三明作为闽粤赣边客家大本营的重要地区,拥有大量的客家祠堂,其堂号、楹联、建筑格局反映了客家人崇祖观念之深;其族谱、祠碑、楹联反映了客家人移民道路之艰;其祖训、功能反映出客家人耕读思想之重;其选址、布局反映出客家人风水文化之盛。客家祠堂是研究与理解客家历史文化的重要窗口。

  9. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens


    . Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3°C, whereas they showed a growth trade-off at temperatures below 34°C. Computational analysis of the physical properties...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  10. Identification of a new Newcastle disease virus isolate from Indonesia represents an ancestral lineage of class II genotype XIII. (United States)

    Forrester, Naomi L; Widen, Steve G; Wood, Thomas G; Travassos da Rosa, Amelia P; Ksiazek, Thomas G; Vasilakis, Nikos; Tesh, Robert B


    An unknown virus was isolated from a mosquito pool collected in Jakarta during routine surveillance in 1979. Analysis of the sample using the Illumina platform resulted in the identification of a Newcastle disease virus (NDV) isolate. The sequence of the isolate indicated that it is an ancestral lineage of class II, genotype XIII. The source of the isolate is unusual, as newcastle disease virus is not believed to be vector-borne, although this mosquito pool was processed in a laboratory also handling samples for avian influenza surveillance and it is possible that this resulted in cross-contamination. This NDV isolate is still ancestral to most extant genotype XIII strains and provides a useful insight into historic NDV evolution.

  11. BcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris.

    Directory of Open Access Journals (Sweden)

    Meiling Lyu

    Full Text Available Polygalacturonase (PG is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a chromosomal segmental duplication. Although structurally similar, their regulatory and intron sequences largely diverged. QRT-PCR analysis showed that the expression level of BcMF26b was higher than that of BcMF26a in almost all the tested organs and tissues in Brassica campestris. Promoter activity analysis showed that, at reproductive development stages, BcMF26b promoter was active in tapetum, pollen grains, and pistils, whereas BcMF26a promoter was only active in pistils. In the subcellular localization experiment, BcMF26a and BcMF26b proteins could be localized to the cell wall. When the two genes were co-inhibited, pollen intine was formed abnormally and pollen tubes could not grow or stretch. Moreover, the knockout mutants of At4g33440 delayed the growth of pollen tubes. Therefore, BcMF26a/b can participate in the construction of pollen wall by modulating intine information and BcMF26b may play a major role in co-inhibiting transformed plants.

  12. Duplicate Address Detection Table in IPv6 Mobile Networks (United States)

    Alisherov, Farkhod; Kim, Taihoon

    In IP networks, each computer or communication equipment needs an IP address. To supply enough IP addresses, the new Internet protocol IPv6 is used in next generatoion mobile communication. Although IPv6 improves the existing IPv4 Internet protocol, Duplicate Address Detection (DAD) mechanism may consume resources and suffer from long delay. DAD is used to ensure whether the IP address is unique or not. When a mobile node performs an inter-domain handoff, it will first generate a new IP and perform a DAD procedure. The DAD procedure not only wastes time but also increases the signaling load on Internet. In this paper, the author proposes a new DAD mechanism to speed up the DAD procedure. A DAD table is created in access or mobility routers in IP networks and record all IP addresses of the area. When a new IP address needs to perform DAD, it can just search in the DAD table to confirm the uniqueness of the address.

  13. Duplicated Collecting System in a Series of Children

    Directory of Open Access Journals (Sweden)

    Belde KASAP


    Full Text Available OBJECTIVE: To report a series of children with duplicated collecting system (DCS and associated problems. MATERIAL and METHODS: The data of patients with DCS between 1996 and 2011 was reviewed retrospectively. RESULTS: DCS was reported in 59 (M/F:18/41 patients. Mean age at diagnosis was 81.5±41.3 (3- 159 months, mean follow-up duration was 32.2±29.1 (3-130 months. Presenting symptoms were urinary tract infection in 33, nocturnal enuresis in three, diurnal enuresis in two, kidney stones in three and miscellaneous in the rest of the patients. The diagnostic modalities were magnetic resonance urography in three, voiding cystourography in fi ve and intravenous pyelography in the rest. Twentyfour (41% had right-sided, 24 (41% had left-sided and 11 (18% had bilateral DCS in a total of 70 renal units. Insertion of ureters into the bladder could be demonstrated in 33 units (20 incomplete, 13 complete. Vesicoureteral refl ux was found in 16, and ureterocele was found in four renal units. There was refl ux to both moieties in two patients. Surgical interventions included partial nephrectomy in two, ureteroureterostomy in one and anti-refl ux surgery in three of the patients. One patient had Noonan Syndrome and another had atrial septal defect. CONCLUSION: This series was reported to emphasize the clinical and anatomical problems associated with DCS.

  14. The Evolutionary Relationship between Alternative Splicing and Gene Duplication (United States)

    Iñiguez, Luis P.; Hernández, Georgina


    The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study. PMID:28261262

  15. Gene duplication and divergence affecting drug content in Cannabis sativa. (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David


    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  16. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D.

    Directory of Open Access Journals (Sweden)

    Daniel E Adkins

    Full Text Available Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient's unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE (n = 765 and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D (n = 1892. Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples. Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient's unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions.

  17. [Evolutionary history of Metazoa, ancestral status of the bilateria clonal reproduction, and semicolonial origin of the mollusca]. (United States)

    Martynov, A V


    Evolutionary history of any metazoan group is a history of the entire ontogenetic cycles instead of separate stages and genes only. Ontogeny in the most objective way links two key components of the biological systematics: historically-independent characters attribution and phylogeny itself. A general theory encompassing "static" traditional taxonomy and dynamic evolutionary process, based on the ontogenetic transformation of the organisms' shape is suggested here to term as ontogenetic systematics. As an important practical implication of the ontogenetic systematics, a new model of the bilaterian metazoans evolution is suggested. The new model considers asexual clonal reproduction as a central feature of the ancestral ontogenetic cycles of basal Bilateria. The new scenario resolves several notable contradictions, e.g. morphological, ontogenetic and molecular similarities of Pogonophora, Vestimentifera, Phoronida simultaneously to protostomian Spiralia (Lophotrochozoa) and Deuterostomia. The suggested model implies individuation (possibly multiple) of ancestral semicolonial sedentary group as a major factor of the basal Bilateria diversification. In the late Ediacaran and early Cambrian thus existed ancestral bilaterian group that shared characters of both Spiralia and Deuterostomia and possessed polyp-shape body and cephalic secretory shield (like in modern Pterobranchia and Vestimentifera), that later on reduced in various lines. This ancestral taxon in rank of supraphylum is suggested to term as Carmaphora (shield-bearers). Presence of the enigmatic sedentary fossil of the genus Cloudina with vestimentiferan-like tubes and evident clonal reproduction already in the late Ediacaran, and most recent found of an unquestionable pterobranch already in the early Cambrian support the new model of Bilateria evolution.

  18. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D


    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  19. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA

    DEFF Research Database (Denmark)

    Vester, Birte; Garrett, Roger Antony


    The peptidyl transfer site has been localized at the centre of domain V of 23S-like ribosomal RNA (rRNA) primarily on the basis of a chloramphenicol binding site. The implicated region constitutes an unstructured circle in the current secondary structural model which contains several universally...... into 50S subunits, but while the two lethal mutant RNAs were strongly selected against in 70S ribosomes, the plasmid-encoded A2503----C RNA was preferred over the chromosome-encoded RNA, contrary to current regulatory theories. The results establish the critical structural and functional importance...... of highly conserved nucleotides in the chloramphenicol binding region. A mechanistic model is also presented to explain the disruptive effect of chloramphenicol (and other antibiotics) on peptide bond formation at the ribosomal subunit interface....

  20. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target. (United States)

    Wang, Shao-Ru; Min, Yuan-Qin; Wang, Jia-Qi; Liu, Chao-Xing; Fu, Bo-Shi; Wu, Fan; Wu, Ling-Yu; Qiao, Zhi-Xian; Song, Yan-Yan; Xu, Guo-Hua; Wu, Zhi-Guo; Huang, Gai; Peng, Nan-Fang; Huang, Rong; Mao, Wu-Xiang; Peng, Shuang; Chen, Yu-Qi; Zhu, Ying; Tian, Tian; Zhang, Xiao-Lian; Zhou, Xiang


    G-quadruplex (G4) is one of the most important secondary structures in nucleic acids. Until recently, G4 RNAs have not been reported in any ribovirus, such as the hepatitis C virus. Our bioinformatics analysis reveals highly conserved guanine-rich consensus sequences within the core gene of hepatitis C despite the high genetic variability of this ribovirus; we further show using various methods that such consensus sequences can fold into unimolecular G4 RNA structures, both in vitro and under physiological conditions. Furthermore, we provide direct evidences that small molecules specifically targeting G4 can stabilize this structure to reduce RNA replication and inhibit protein translation of intracellular hepatitis C. Ultimately, the stabilization of G4 RNA in the genome of hepatitis C represents a promising new strategy for anti-hepatitis C drug development.

  1. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  2. Patients with isolated oligo/hypodontia caused by RUNX2 duplication. (United States)

    Molin, Arnaud; Lopez-Cazaux, Serena; Pichon, Olivier; Vincent, Marie; Isidor, Bertrand; Le Caignec, Cédric


    Loss-of-function mutations of RUNX2 are responsible for cleidocranial dysplasia, an autosomal dominant disorder characterized by delayed closure of cranial sutures, aplastic or hypoplastic clavicles, moderate short stature and supernumerary teeth. By contrast, an increased gene dosage is expected for duplication of the entire RUNX2 sequence and thus, a phenotype different from cleidocranial dysplasia. To date, two cousins with a duplication including the entire RUNX2 sequence in addition to MIR586, CLIC5 and the 5' half of SUPT3H have been reported. These patients presented with metopic synostosis and hypodontia. Here, we report on a family with an affected mother and three affected children. The four patients carried a 285 kb duplication identified by array comparative genomic hybridization. The duplication includes the entire sequence of RUNX2 and the 5' half of SUPT3H. We confirmed the duplication by real-time quantitative PCR in the four patients. Two children presented with the association of metopic craniosynostosis and oligo/hypodontia previously described, confirming the phenotype caused by RUNX2 duplication. Interestingly, the mother and one child had isolated hypodontia without craniosynostosis, broadening the phenotype observed in patients with such duplications.

  3. Report on 3 patients with 12p duplication including GRIN2B. (United States)

    Poirsier, Celine; Landais, Emilie; Bednarek, Nathalie; Nobecourt, Jean-Marie; Khoury, Maroun; Schmidt, Pascal; Morville, Patrice; Gruson, Nadine; Clomes, Sandrine; Michel, Nicole; Riot, Anita; Manjeongean, Christelle; Gaillard, Dominique; Doco-Fenzy, Martine


    The duplication of the short arm (p) of chromosome 12 is a rare chromosomal abnormality, and most reported cases result from malsegregation of a balanced parental translocation associated with other chromosomal imbalances. Of the reported cases, only 15 involve a pure and complete 12p duplication and only 10 involve a pure and partial duplication overlapping the 12p12.3p13.1 region, including a single instance of an inherited duplication in two related individuals. Here, we report three new patients with a pure 12p duplication, detected by conventional cytogenetic studies and characterized by array-comparative genomic hybridization (array-CGH) and fluorescence in situ hybridization (FISH). The first patient was a child carrying a de novo inverted duplication of the short arm of chromosome 12. His phenotype was similar to that of the "trisomy 12p syndrome", characterized by developmental delays and craniofacial abnormalities including a high forehead, a short nose with anteverted nostrils and an everted lower lip. The second and third patients were a mother and son with a direct 12p12.3p13.1 duplication, exhibiting a milder phenotype characterized by moderate developmental delays, dysmorphic facial features, behavioral problems and obesity. The present data, including the rarity of the familial cases, should contribute to our knowledge of the genotype/phenotype correlation in trisomy 12p patients.

  4. Effect of Incomplete Lineage Sorting On Tree-Reconciliation-Based Inference of Gene Duplication. (United States)

    Zheng, Yu; Zhang, Louxin


    In the tree reconciliation approach to infer the duplication history of a gene family, the gene (family) tree is compared to the corresponding species tree. Incomplete lineage sorting (ILS) gives rise to stochastic variation in the topology of a gene tree and hence likely introduces false duplication events when a tree reconciliation method is used. We quantify the effect of ILS on gene duplication inference in a species tree in terms of the expected number of false duplication events inferred from reconciling a random gene tree, which occurs with a probability predicted in coalescent theory, and the species tree. We computationally examine the relationship between the effect of ILS on duplication inference in a species tree and its topological parameters. Our findings suggest that ILS may cause non-negligible bias on duplication inference, particularly on an asymmetric species tree. Hence, when gene duplication is inferred via tree reconciliation or any other approach that takes gene tree topology into account, the ILS-induced bias should be examined cautiously.

  5. Consensus properties and their large-scale applications for the gene duplication problem. (United States)

    Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver


    Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.

  6. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. (United States)

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Bi, Weimin; Carvalho, Claudia M B; Simmons, Alexandra D; Wiszniewska, Joanna; Fang, Ping; Eng, Patricia A; Cooper, M Lance; Sutton, V Reid; Roeder, Elizabeth R; Bodensteiner, John B; Delgado, Mauricio R; Prakash, Siddharth K; Belmont, John W; Stankiewicz, Pawel; Berg, Jonathan S; Shinawi, Marwan; Patel, Ankita; Cheung, Sau Wai; Lupski, James R


    Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.

  7. Estimating ancestral proportions in a multi-ethnic US sample: implications for studies of admixed populations

    Directory of Open Access Journals (Sweden)

    Levran Orna


    Full Text Available Abstract This study was designed to determine the ancestral composition of a multi-ethnic sample collected for studies of drug addictions in New York City and Las Vegas, and to examine the reliability of self-identified ethnicity and three-generation family history data. Ancestry biographical scores for seven clusters corresponding to world major geographical regions were obtained using STRUCTURE, based on genotypes of 168 ancestry informative markers (AIMs, for a sample of 1,291 African Americans (AA, European Americans (EA, and Hispanic Americans (HA along with data from 1,051 HGDP-CEPH ‘diversity panel’ as a reference. Self-identified ethnicity and family history data, obtained in an interview, were accurate in identifying the individual major ancestry in the AA and the EA samples (approximately 99% and 95%, respectively but were not useful for the HA sample and could not predict the extent of admixture in any group. The mean proportions of the combined clusters corresponding to European and Middle Eastern populations in the AA sample, revealed by AIMs analysis, were 0.13. The HA subjects, predominantly Puerto Ricans, showed a highly variable hybrid contribution pattern of clusters corresponding to Europe (0.27, Middle East (0.27, Africa (0.20, and Central Asia (0.14. The effect of admixture on allele frequencies is demonstrated for two single-nucleotide polymorphisms (118A > G, 17 C > T of the mu opioid receptor gene (OPRM1. This study reiterates the importance of AIMs in defining ancestry, especially in admixed populations.

  8. Does body posture influence hand preference in an ancestral primate model?

    Directory of Open Access Journals (Sweden)

    Leliveld Lisette


    Full Text Available Abstract Background The origin of human handedness and its evolution in primates is presently under debate. Current hypotheses suggest that body posture (postural origin hypothesis and bipedalism hypothesis have an important impact on the evolution of handedness in primates. To gain insight into the origin of manual lateralization in primates, we studied gray mouse lemurs, suggested to represent the most ancestral primate condition. First, we investigated hand preference in a simple food grasping task to explore the importance of hand usage in a natural foraging situation. Second, we explored the influence of body posture by applying a forced food grasping task with varying postural demands (sit, biped, cling, triped. Results The tested mouse lemur population did not prefer to use their hands alone to grasp for food items. Instead, they preferred to pick them up using a mouth-hand combination or the mouth alone. If mouth usage was inhibited, they showed an individual but no population level handedness for all four postural forced food grasping tasks. Additionally, we found no influence of body posture on hand preference in gray mouse lemurs. Conclusion Our results do not support the current theories of primate handedness. Rather, they propose that ecological adaptation indicated by postural habit and body size of a given species has an important impact on hand preference in primates. Our findings suggest that small-bodied, quadrupedal primates, adapted to the fine branch niche of dense forests, prefer mouth retrieval of food and are less manually lateralized than large-bodied species which consume food in a more upright, and less stable body posture.

  9. Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms

    Directory of Open Access Journals (Sweden)

    Hsu Tsai-Wen


    Full Text Available Abstract Background This study addresses the apportionment of genetic diversity between Cycas revoluta and C. taitungensis, species that constitute the section Asiorientales and represent a unique, basal lineage of the Laurasian genus Cycas. Fossil evidence indicates divergence of the section from the rest of Cycas at least 30 million years ago. Geographically, C. taitungensis is limited to Taiwan whereas C. revoluta is found in the Ryukyu Archipelago and on mainland China. Results The phylogenies of ribosomal ITS region of mtDNA and the intergenic spacer between atpB and rbcL genes of cpDNA were reconstructed. Phylogenetic analyses revealed paraphyly of both loci in the two species and also in the section Asiorientales. The lack of reciprocal monophyly between these long isolated sections is likely due to persistent shared ancestral polymorphisms. Molecular dating estimated that mt- and cp DNA lineages coalesced to the most recent common ancestors (TMRCA about 327 (mt and 204 MYA (cp, corresponding with the divergence of cycad sections in the Mesozoic. Conclusion Fates of newly derived mutations of cycads follow Klopfstein et al.'s surfing model where the majority of new mutations do not spread geographically and remain at low frequencies or are eventually lost by genetic drift. Only successful 'surfing mutations' reach very high frequencies and occupy a large portion of a species range. These mutations exist as dominant cytotypes across populations and species. Geographical subdivision is lacking in both species, even though recurrent gene flow by both pollen and seed is severely limited. In total, the contrasting levels between historical and ongoing gene flow, large population sizes, a long lifespan, and slow mutation rates in both organelle DNAs have all likely contributed to the unusually long duration of paraphyly in cycads.

  10. Regionalization of the shark hindbrain: a survey of an ancestral organization

    Directory of Open Access Journals (Sweden)

    Isabel eRodríguez-Moldes


    Full Text Available Cartilaginous fishes (chondrichthyans represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8 and Hoxa2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons, tyrosine hydroxylase (catecholaminergic neurons, choline acetyltransferase (cholinergic neurons and calretinin (a calcium-binding protein. The patterns observed revealed many topological correspondences with other vertebrates

  11. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    Full Text Available Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  12. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life? (United States)

    Couvigny, Benoit; Thérial, Claire; Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric


    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  13. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? (United States)

    Holland, L. Z.; Holland, N. D.


    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  14. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    Energy Technology Data Exchange (ETDEWEB)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O.; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J.; Kuo, Alan; Grigoriev, Igor V.; Wong, Chee-Hong; Smith, Richard D.; Callister, Stephen J.; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z.


    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share less than 8,142of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the


    Directory of Open Access Journals (Sweden)

    Jairzinho Francisco Panqueba Cifuentes


    Full Text Available Los juegos de pelota mesoamericanos son manifestaciones corporales que han sido exploradasprincipalmente desde perspectivas arqueológicas e históricas, pero también han sido retomadosdesde distintas iniciativas para ponerlos en práctica. Desde la frontera entre Estados Unidos conMéxico, pasando por distintos Estados del país “azteca”, son practicadas diferentes modalidades deeste juego. Sin embargo, decir que el chaaj en Mesoamérica es hoy en día una alternativa recreativay deportiva, es quedarse corto respecto a su ya demostrado potencial. La sacralidad manifestada através de los movimientos corporales está ofreciendo opciones de innovación en varios espacios de lassociedades actuales. En su dimensión ceremonial, revela una comunicación ancestral muy actual. Allíse ponen en juego los códices, las interpretaciones arqueológicas y los conocimientos territoriales depersonas sabedoras de las comunidades. En su dimensión lúdica, el juego reúne elementos culturales,deportivos y pedagógicos. Ha sido una práctica corporal, técnica y motora ejecutada constantementeen algunas regiones mexicanas y guatemaltecas. No obstante su antigüedad, en los últimos años seviene registrando una promoción inusitada, en medio de los actuales tiempos de cambio que fueronanunciados desde tiempos inmemoriales por los sabedores y las sabedoras mayas.

  16. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)


    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  17. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche. (United States)

    Miller, Scott R; Wood, A Michelle; Blankenship, Robert E; Kim, Maria; Ferriera, Steven


    Gene duplication may be an important mechanism for the evolution of new functions and for the adaptive modulation of gene expression via dosage effects. Here, we analyzed the fate of gene duplicates for two strains of a novel group of cyanobacteria (genus Acaryochloris) that produces the far-red light absorbing chlorophyll d as its main photosynthetic pigment. The genomes of both strains contain an unusually high number of gene duplicates for bacteria. As has been observed for eukaryotic genomes, we find that the demography of gene duplicates can be well modeled by a birth-death process. Most duplicated Acaryochloris genes are of comparatively recent origin, are strain-specific, and tend to be located on different genetic elements. Analyses of selection on duplicates of different divergence classes suggest that a minority of paralogs exhibit near neutral evolutionary dynamics immediately following duplication but that most duplicate pairs (including those which have been retained for long periods) are under strong purifying selection against amino acid change. The likelihood of duplicate retention varied among gene functional classes, and the pronounced differences between strains in the pool of retained recent duplicates likely reflects differences in the nutrient status and other characteristics of their respective environments. We conclude that most duplicates are quickly purged from Acaryochloris genomes and that those which are retained likely make important contributions to organism ecology by conferring fitness benefits via gene dosage effects. The mechanism of enhanced duplication may involve homologous recombination between genetic elements mediated by paralogous copies of recA.

  18. 47 CFR 76.120 - Network non-duplication protection, syndicated exclusivity and sports blackout rules for... (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network non-duplication protection, syndicated... CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.120 Network non-duplication protection, syndicated exclusivity and sports blackout rules...

  19. The highly conserved 5' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs

    Directory of Open Access Journals (Sweden)

    Deng Jun-Xia


    Full Text Available Abstract Background Enterovirus 71 (EV71 is a highly infectious agent that plays an etiological role in hand, foot, and mouth disease. It is associated with severe neurological complications and has caused significant mortalities in recent large-scale outbreaks. Currently, no effective vaccine or specific clinical therapy is available against EV71. Methods Unmodified 21 nucleotide small interfering RNAs (siRNAs and classic 2′-modified (2′-O-methylation or 2′-fluoro modification siRNAs were designed to target highly conserved 5′ untranslated region (UTR of the EV71 genome and employed as anti-EV71 agents. Real-time TaqMan RT-PCR, western blot analysis and plaque assays were carried out to evaluate specific viral inhibition by the siRNAs. Results Transfection of rhabdomyosarcoma (RD cells with siRNAs targeting the EV71 genomic 5′ UTR significantly delayed and alleviated the cytopathic effects of EV71 infection, increased cell viability in EV71-infected RD cells. The inhibitory effect on EV71 replication was sequence-specific and dosage-dependent, with significant corresponding decreases in viral RNA, VP1 protein and viral titer. Appropriate 2′-modified siRNAs exhibited similar RNA interference (RNAi activity with dramatically increased serum stability in comparison with unmodified counterparts. Conclusion Sequences were identified within the highly conserved 5′ UTR that can be targeted to effectively inhibit EV71 replication through RNAi strategies. Appropriate 2′-modified siRNAs provide a promising approach to optimizing siRNAs to overcome barriers on RNAi-based antiviral therapies for broader administration.

  20. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. (United States)

    Vercruysse, Maarten; Köhrer, Caroline; Davies, Bryan W; Arnold, Markus F F; Mekalanos, John J; RajBhandary, Uttam L; Walker, Graham C


    YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3' end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3' end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes.

  1. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Chen


    Full Text Available While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.

  2. When ancestral heritage is a source of discomfort: culture, pre-object relatedness, and self-alienation. (United States)

    Kradin, Richard L


    The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered.

  3. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B


    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  4. Recurrent Chromosome 16p13.1 Duplications Are a Risk Factor for Aortic Dissections (United States)

    McDonald, Merry-Lynn N.; Johnson, Ralph J.; Wang, Min; Regalado, Ellen S.; Russell, Ludivine; Cao, Jiu-Mei; Kwartler, Callie; Fraivillig, Kurt; Coselli, Joseph S.; Safi, Hazim J.; Estrera, Anthony L.; Leal, Suzanne M.; LeMaire, Scott A.; Belmont, John W.; Milewicz, Dianna M.


    Chromosomal deletions or reciprocal duplications of the 16p13.1 region have been implicated in a variety of neuropsychiatric disorders such as autism, schizophrenia, epilepsies, and attention-deficit hyperactivity disorder (ADHD). In this study, we investigated the association of recurrent genomic copy number variants (CNVs) with thoracic aortic aneurysms and dissections (TAAD). By using SNP arrays to screen and comparative genomic hybridization microarrays to validate, we identified 16p13.1 duplications in 8 out of 765 patients of European descent with adult-onset TAAD compared with 4 of 4,569 controls matched for ethnicity (P = 5.0×10−5, OR = 12.2). The findings were replicated in an independent cohort of 467 patients of European descent with TAAD (P = 0.005, OR = 14.7). Patients with 16p13.1 duplications were more likely to harbor a second rare CNV (P = 0.012) and to present with aortic dissections (P = 0.010) than patients without duplications. Duplications of 16p13.1 were identified in 2 of 130 patients with familial TAAD, but the duplications did not segregate with TAAD in the families. MYH11, a gene known to predispose to TAAD, lies in the duplicated region of 16p13.1, and increased MYH11 expression was found in aortic tissues from TAAD patients with 16p13.1 duplications compared with control aortas. These data suggest chromosome 16p13.1 duplications confer a risk for TAAD in addition to the established risk for neuropsychiatric disorders. It also indicates that recurrent CNVs may predispose to disorders involving more than one organ system, an observation critical to the understanding of the role of recurrent CNVs in human disease and a finding that may be common to other recurrent CNVs involving multiple genes. PMID:21698135

  5. Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections.

    Directory of Open Access Journals (Sweden)

    Shao-Qing Kuang


    Full Text Available Chromosomal deletions or reciprocal duplications of the 16p13.1 region have been implicated in a variety of neuropsychiatric disorders such as autism, schizophrenia, epilepsies, and attention-deficit hyperactivity disorder (ADHD. In this study, we investigated the association of recurrent genomic copy number variants (CNVs with thoracic aortic aneurysms and dissections (TAAD. By using SNP arrays to screen and comparative genomic hybridization microarrays to validate, we identified 16p13.1 duplications in 8 out of 765 patients of European descent with adult-onset TAAD compared with 4 of 4,569 controls matched for ethnicity (P = 5.0 × 10⁻⁵, OR = 12.2. The findings were replicated in an independent cohort of 467 patients of European descent with TAAD (P = 0.005, OR = 14.7. Patients with 16p13.1 duplications were more likely to harbor a second rare CNV (P = 0.012 and to present with aortic dissections (P = 0.010 than patients without duplications. Duplications of 16p13.1 were identified in 2 of 130 patients with familial TAAD, but the duplications did not segregate with TAAD in the families. MYH11, a gene known to predispose to TAAD, lies in the duplicated region of 16p13.1, and increased MYH11 expression was found in aortic tissues from TAAD patients with 16p13.1 duplications compared with control aortas. These data suggest chromosome 16p13.1 duplications confer a risk for TAAD in addition to the established risk for neuropsychiatric disorders. It also indicates that recurrent CNVs may predispose to disorders involving more than one organ system, an observation critical to the understanding of the role of recurrent CNVs in human disease and a finding that may be common to other recurrent CNVs involving multiple genes.

  6. Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans. (United States)

    Rogers, Rebekah L; Cridland, Julie M; Shao, Ling; Hu, Tina T; Andolfatto, Peter; Thornton, Kevin R


    Tandem duplications are an essential source of genetic novelty, and their variation in natural populations is expected to influence adaptive walks. Here, we describe evolutionary impacts of recently-derived, segregating tandem duplications in Drosophila yakuba and Drosophila simulans. We observe an excess of duplicated genes involved in defense against pathogens, insecticide resistance, chorion development, cuticular peptides, and lipases or endopeptidases associated with the accessory glands across both species. The observed agreement is greater than expectations on chance alone, suggesting large amounts of convergence across functional categories. We document evidence of widespread selection on the D. simulans X, suggesting adaptation through duplication is common on the X. Despite the evidence for positive selection, duplicates display an excess of low frequency variants consistent with largely detrimental impacts, limiting the variation that can effectively facilitate adaptation. Standing variation for tandem duplications spans less than 25% of the genome in D. yakuba and D. simulans, indicating that evolution will be strictly limited by mutation, even in organisms with large population sizes. Effective whole gene duplication rates are low at 1.17 × 10-9 per gene per generation in D. yakuba and 6.03 × 10-10 per gene per generation in D. simulans, suggesting long wait times for new mutations on the order of thousands of years for the establishment of sweeps. Hence, in cases where adaptation depends on individual tandem duplications, evolution will be severely limited by mutation. We observe low levels of parallel recruitment of the same duplicated gene in different species, suggesting that the span of standing variation will define evolutionary outcomes in spite of convergence across gene ontologies consistent with rapidly evolving phenotypes.

  7. Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Rebekah L Rogers

    Full Text Available Tandem duplications are an essential source of genetic novelty, and their variation in natural populations is expected to influence adaptive walks. Here, we describe evolutionary impacts of recently-derived, segregating tandem duplications in Drosophila yakuba and Drosophila simulans. We observe an excess of duplicated genes involved in defense against pathogens, insecticide resistance, chorion development, cuticular peptides, and lipases or endopeptidases associated with the accessory glands across both species. The observed agreement is greater than expectations on chance alone, suggesting large amounts of convergence across functional categories. We document evidence of widespread selection on the D. simulans X, suggesting adaptation through duplication is common on the X. Despite the evidence for positive selection, duplicates display an excess of low frequency variants consistent with largely detrimental impacts, limiting the variation that can effectively facilitate adaptation. Standing variation for tandem duplications spans less than 25% of the genome in D. yakuba and D. simulans, indicating that evolution will be strictly limited by mutation, even in organisms with large population sizes. Effective whole gene duplication rates are low at 1.17 × 10-9 per gene per generation in D. yakuba and 6.03 × 10-10 per gene per generation in D. simulans, suggesting long wait times for new mutations on the order of thousands of years for the establishment of sweeps. Hence, in cases where adaptation depends on individual tandem duplications, evolution will be severely limited by mutation. We observe low levels of parallel recruitment of the same duplicated gene in different species, suggesting that the span of standing variation will define evolutionary outcomes in spite of convergence across gene ontologies consistent with rapidly evolving phenotypes.

  8. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection

    Directory of Open Access Journals (Sweden)

    Martens Cindy


    Full Text Available Abstract Background Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. Results Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD. Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. Conclusions The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.

  9. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong


    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  10. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs: An Ancestral Family of Flavin Monooxygenases.

    Directory of Open Access Journals (Sweden)

    Maria Laura Mascotti

    Full Text Available The Baeyer-Villiger Monooxygenases (BVMOs are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga and Haptophyta (Emiliania huxleyi for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.

  11. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. (United States)

    Shedlock, Andrew M; Botka, Christopher W; Zhao, Shaying; Shetty, Jyoti; Zhang, Tingting; Liu, Jun S; Deschavanne, Patrick J; Edwards, Scott V


    We report results of a megabase-scale phylogenomic analysis of the Reptilia, the sister group of mammals. Large-scale end-sequence scanning of genomic clones of a turtle, alligator, and lizard reveals diverse, mammal-like landscapes of retroelements and simple sequence repeats (SSRs) not found in the chicken. Several global genomic traits, including distinctive phylogenetic lineages of CR1-like long interspersed elements (LINEs) and a paucity of A-T rich SSRs, characterize turtles and archosaur genomes, whereas higher frequencies of tandem repeats and a lower global GC content reveal mammal-like features in Anolis. Nonavian reptile genomes also possess a high frequency of diverse and novel 50-bp unit tandem duplications not found in chicken or mammals. The frequency distributions of approximately 65,000 8-mer oligonucleotides suggest that rates of DNA-word frequency change are an order of magnitude slower in reptiles than in mammals. These results suggest a diverse array of interspersed and SSRs in the common ancestor of amniotes and a genomic conservatism and gradual loss of retroelements in reptiles that culminated in the minimalist chicken genome. The sequences reported in this paper have been deposited in the GenBank database (accession nos. CZ 250707-CZ 257443 and DX 390731-DX 389174).

  12. [Complete lower urinary tract duplication with true diphallia associated to anorrectal and neural malformations]. (United States)

    Guirao, M J; Zambudio, G; Nortes, L; Jiménez, J I Ruiz


    We report a case of complete urinary tract duplication with true diphallia associated to intestinal and neural anomalies. Complete penile duplication with hypospadias and bifidum scrotum were showed. Moreover, he had got anorrectal disease (anterior anus) and neural tube defects (myelomeningocele). Radiological and functional studies were performed and complete duplication lower urinary tract with coordinate miction were found. Combined surgical approach were used: perineal to remove lateralized and hypospadic penile and abdominal for cystoplasty. We report a case due to the extremely low prevalence. Only 15 cases have been described in the literature.

  13. Enteric duplication cyst of the pancreas associated with chronic pancreatitis and pancreatic cancer. (United States)

    Chiu, Alexander S; Bluhm, David; Xiao, Shu-Yan; Waxman, Irving; Matthews, Jeffrey B


    Pancreas-associated enteric duplication cysts are rare developmental anomalies that communicate with the main pancreatic duct and may be associated with recurrent acute and chronic abdominal pain in children. In adults, these lesions may masquerade as pancreatic pseudocysts or pancreatic cystic neoplasms. An adult patient with a pancreas-associated enteric duplication is described which represents the first reported instance of association with both chronic calcific pancreatitis and pancreatic cancer. The clinical spectrum of pancreas-associated enteric duplication cyst, including diagnostic and therapeutic options, is reviewed.

  14. Caudal Duplication Syndrome: the Vital Role of a Multidisciplinary Approach and Staged Correction. (United States)

    Samuk, Inbal; Levitt, Marc; Dlugy, Elena; Kravarusic, Dragan; Ben-Meir, David; Rajz, Gustavo; Konen, Osnat; Freud, Enrique


    Caudal duplication syndrome is a rare entity that describes the association between congenital anomalies involving caudal structures and may have a wide spectrum of clinical manifestations. A full-term male presented with combination of anomalies including anorectal malformation, duplication of the colon and lower urinary tract, split of the lower spine, and lipomyelomeningocele with tethering of the cord. We report this exceptional case of caudal duplication syndrome with special emphasis on surgical strategy and approach combining all disciplines involved. The purpose of this report is to present the pathology, assessment, and management strategy of this complex case.

  15. 7q11.23 Duplication Syndrome: Physical Characteristics and Natural History



    In order to describe the physical characteristics, medical complications, and natural history of classic 7q11.23 duplication syndrome [hereafter Dup7 (MIM 609757)], reciprocal duplication of the region deleted in Williams syndrome [hereafter WS (MIM 194050)], we systematically evaluated 53 individuals aged 1.25–21.25 years and 11 affected adult relatives identified in cascade testing. In this series, 27% of probands with Dup7 had an affected parent. Seven of the 26 de novo duplications that w...

  16. Duplication of the pituitary gland in a newborn with median cleft face syndrome and nasal teratoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamon-Kerautret, M.; Ares, G.S.; Demondion, X.; Pruvo, J.P. [Service de Neuroradiologie, Hopital Roger Salengro, CHRU Lille (France); Rouland, V. [Service de Neonatologie, Hopital Roger Salengro, CHRU Lille (France); Francke, J.P. [Departement d`Anatomie, Faculte de Medicine, Universite de Lille (France)


    A newborn suffered immediate neonatal respiratory distress because of an obstructive, soft-tissue nasal mass. Clinical examination revealed a cleft palate with a protruding polypoid mass. CT and MRI showed a heterogeneous nasopharyngeal mass and associated intracranial abnormalities - duplication of the hypophysis and hypoplasia of the corpus callosum. Duplication of the hypophysis is a very rare malformation, only 13 cases having been previously described. The suggested pathogenesis is duplication of the prechordal plate and anterior end of the notochord during early embryological development. (orig.) With 2 figs., 3 refs.

  17. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Christiansen, Louise Slot; Clausen, Anders R.;


    , among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of d......CK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters...

  18. Generating new prions by targeted mutation or segment duplication. (United States)

    Paul, Kacy R; Hendrich, Connor G; Waechter, Aubrey; Harman, Madison R; Ross, Eric D


    Yeasts contain various protein-based genetic elements, termed prions, that result from the structural conversion of proteins into self-propagating amyloid forms. Most yeast prion proteins contain glutamine/asparagine (Q/N)-rich prion domains that drive prion activity. Here, we explore two mechanisms by which new prion domains could evolve. First, it has been proposed that mutation and natural selection will tend to result in proteins with aggregation propensities just low enough to function under physiological conditions and thus that a small number of mutations are often sufficient to cause aggregation. We hypothesized that if the ability to form prion aggregates was a sufficiently generic feature of Q/N-rich domains, many nonprion Q/N-rich domains might similarly have aggregation propensities on the edge of prion formation. Indeed, we tested four yeast Q/N-rich domains that had no detectable aggregation activity; in each case, a small number of rationally designed mutations were sufficient to cause the proteins to aggregate and, for two of the domains, to create prion activity. Second, oligopeptide repeats are found in multiple prion proteins, and expansion of these repeats increases prion activity. However, it is unclear whether the effects of repeat expansion are unique to these specific sequences or are a generic result of adding additional aggregation-prone segments into a protein domain. We found that within nonprion Q/N-rich domains, repeating aggregation-prone segments in tandem was sufficient to create prion activity. Duplication of DNA elements is a common source of genetic variation and may provide a simple mechanism to rapidly evolve prion activity.

  19. Duplication of pilus gene complexes of Haemophilus influenzae biogroup aegyptius. (United States)

    Read, T D; Dowdell, M; Satola, S W; Farley, M M


    Brazilian purpuric fever (BPF) is a recently described pediatric septicemia caused by a strain of Haemophilus influenzae biogroup aegyptius. The pilus specified by this bacterium may be important in BPF pathogenesis, enhancing attachment to host tissue. Here, we report the cloning of two haf (for H. influenzae biogroup aegyptius fimbriae) gene clusters from a cosmid library of strain F3031. We sequenced a 6.8-kb segment of the haf1 cluster and identified five genes (hafA to hafE). The predicted protein products, HafA to HafD, are 72, 95, 98, and 90% similar, respectively, to HifA to HifD of the closely related H. influenzae type b pilus. Strikingly, the putative pilus adhesion, HifE, shares only 44% identity with HafE, suggesting that the proteins may differ in receptor specificity. Insertion of a mini-gammadelta transposon in the hafE gene eliminated hemadsorption. The nucleotide sequences of the haf1 and haf2 clusters are more than 99% identical. Using the recently published sequence of the H. influenzae Rd genome, we determined that the haf1 complex lies at a unique position in the chromosome between the pmbA gene and a hypothetical open reading frame, HI1153. The location of the haf2 cluster, inserted between the purE and pepN genes, is analogous to the hif genes on H. influenzae type b. BPF fimbrial phase switching appears to involve slip-strand mispairing of repeated dinucleotides in the pilus promoter. The BPF-associated H. influenzae biogroup aegyptius pilus system generally resembles other H. influenzae, but the possession of a second fimbrial gene cluster, which appears to have arisen by a recent duplication event, and the novel sequence of the HafE adhesin may be significant in the unusual pathogenesis of BPF.

  20. Characterization of patients with duplicated z-hypnotic use: A population-based study in Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Hua Hsieh, MS


    Conclusion: Duplicated z-hypnotic users were more likely to receive prescriptions with long duration and high daily dose. Healthcare professionals and policy makers are recommended to put more efforts into dealing with this urgent drug safety issue.

  1. [Septate uterus with cervical duplication and vaginal partition: a rare malformation]. (United States)

    García-León, F; Kably-Ambe, A; Von-der-Meden, W; Dosal, M; Escarcega, H


    It presents three cases of Mullerian anomalies with septate uterus and cervical duplication and longitudinal vaginal septum. There are a few previous cases reported. The cases are discussed and the literature is revised.

  2. Bilateral inferior vena cava filter insertion in a patient with duplication of the infrarenal vena cava.

    LENUS (Irish Health Repository)

    Leong, S


    BACKGROUND: Inferior vena cava (IVC) filter insertion is a commonly performed procedure for indications such as recurrent pulmonary emboli or contraindication to anticoagulation. Symptomatic duplication of the IVC is exceedingly rare with only a handful of cases being described in the literature. AIM: We report an unusual case of a patient with symptomatic duplication of the IVC. RESULT: A 53-year-old woman presented at our hospital for resection of a cerebral metastasis from a non-small cell lung cancer following a recent diagnosis of bilateral lower limb deep venous thrombosis. This required perioperative reversal of anticoagulation and IVC filter insertion. Conventional venography performed during filter insertion documented the existence of a duplicated IVC. CONCLUSION: We present a case of a symptomatic duplication of the IVC requiring filter insertion. We review the developmental anatomy of the IVC along with the diagnostic findings and management strategies available.

  3. Isolated omental duplication cyst with respiratory epithelium & pancreatic glands: Case report & review of literature

    Directory of Open Access Journals (Sweden)

    Phuoc T. Nguyen


    Full Text Available Duplication cysts are uncommon congenital anomalies. They are usually in communication with or are attached to an adjacent segment of bowel. Rarely are they completely isolated from the gastrointestinal tract. To date, there have been 29 reported cases of non-communicating or isolated duplication cysts. Few contain respiratory epithelium and pancreatic glands. Patients may present with pain, an acute abdomen, bleeding or malignant degeneration. Differential diagnoses for an isolated cystic mass should include duplication cyst in the pediatric population. Recognition and awareness of these anomalies and their various presentations can aid in management. The unusual case of an isolated duplication cyst containing respiratory and pancreatic tissue, found within omentum, is presented with a review of the literature.

  4. Acute abdominal pain presenting as a rare appendiceal duplication: a case report

    Directory of Open Access Journals (Sweden)

    Mahmood Ali


    Full Text Available Abstract Introduction Appendiceal duplication is a rare anomaly that can manifest as right lower quadrant pain. There are several variations described for this condition. We recommend aggressive operative management should this anatomical variation present in the presence of acute appendicitis. Case presentation We report the case of a 15-year-old African American girl who presented to our hospital with right lower quadrant pain and was subsequently found to have appendiceal duplication. Conclusion There are two categorical systems that have described and stratified appendiceal duplication. Both classification systems have been outlined and referenced in this case report. A computed tomography scan has been included to provide a visual aid to help identify true vermiform appendiceal duplication. The presence of this anatomical abnormality is not a reason for surgical intervention; however, should this be found in the setting of acute appendicitis, aggressive resection of both appendices is mandatory.

  5. Combined duplication of the colon and vermiform appendix in an adult patient

    Institute of Scientific and Technical Information of China (English)

    Sahin Kabay; Mehmet Yucel; Faik Yaylak; Alper Hacioglu; Mustafa C Algin; Esra G Olgun; Levent Sahin; Tayfun Aydin


    Combined duplication of the colon and vermiform appendix is one of the rare congenital anomalities of the alimentary tract. Only a few cases have been reported in the adult population. A 28-year-old man presented to the clinic with a mass in the right flank. Imaging showed only a hydronephrotic atrophic kidney. The final diagnosis was only available at exploration. Combined duplication of the tubular colon and vermiform appendix was confirmed histopathologically. The patient was treated with nephrectomy and complete resection of the duplicated colon and vermiform appendix. The patient recovered uneventfully, and has done well for the past year. This is believed to be one of the first reports of combined duplication of the tubular colon and vermiform appendix as a cause of hydronephrotic atrophic kidney in an adult patient.

  6. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    report a common ancestral mutation in CRYBB3 associated with autosomal recessive congenital cataracts identified in four familial cases of Pakistani origin.

  7. Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. (United States)

    Bonine, Kevin E; Gleeson, Todd T; Garland, Theodore


    . Reconstruction of ancestral trait values by use of phylogenetically based statistical methods indicates especially large changes in fiber-type composition during the evolution of horned lizards.

  8. MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement

    Directory of Open Access Journals (Sweden)

    Zhang Liqing


    Full Text Available Abstract Background Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model. However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model. Results In this paper, we develop MSOAR 2.0, an improved system for one-to-one ortholog assignment. For a pair of input genomes, the system first focuses on the tandemly duplicated genes of each genome and tries to identify among them those that were duplicated after the speciation (i.e., the so-called inparalogs, using a simple phylogenetic tree reconciliation method. For each such set of tandemly duplicated inparalogs, all but one gene will be deleted from the concerned genome (because they cannot possibly appear in any one-to-one ortholog pairs, and MSOAR is invoked. Using both simulated and real data experiments, we show that MSOAR 2.0 is able to achieve a better sensitivity and specificity than MSOAR. In comparison with the well-known genome-scale ortholog assignment tool InParanoid, Ensembl ortholog database, and the orthology information extracted from the well-known whole-genome multiple alignment program MultiZ, MSOAR 2.0 shows the highest sensitivity. Although the specificity of MSOAR 2.0 is slightly worse than that of InParanoid in the real data experiments

  9. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

    Directory of Open Access Journals (Sweden)

    Haendler Bernard


    Full Text Available Abstract Background Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes. Results In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen receptor (AR, NR3C4, a nuclear receptor known to play a key role in sex-determination in vertebrates. The pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including the model species zebrafish, Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in basal teleost fish (Osteoglossiformes and Anguilliformes, the two copies remain very similar, whereas, specifically in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD and the DNA binding domain (DBD. Conclusion The comparison of the mutations present in these divergent AR-B with those known in human to be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two distinct AR duplicates may be correlated to specific functional differences that may be

  10. Esophageal duplication cyst causing unilateral hyperinflation of the lung in a neonate. (United States)

    Madhusudhan, K S; Seith, A; Srinivas, M; Gupta, A Kumar


    Esophageal duplication cysts are rare congenital anomalies. Frequently asymptomatic, they may cause respiratory distress and feeding difficulties in infants. Unilateral hyperinflation of the lung due to compression of the bronchus by the cyst is rare. We report a case of a 4-day-old male neonate presenting with respiratory distress who had an esophageal duplication cyst causing obstructive hyperinflation of the right lung. The nature of the cyst was confirmed after surgery.

  11. Detecting duplicates in a homicide registry using a Bayesian partitioning approach


    Sadinle, Mauricio


    Finding duplicates in homicide registries is an important step in keeping an accurate account of lethal violence. This task is not trivial when unique identifiers of the individuals are not available, and it is especially challenging when records are subject to errors and missing values. Traditional approaches to duplicate detection output independent decisions on the coreference status of each pair of records, which often leads to nontransitive decisions that have to be reconciled in some ad...

  12. Methods for identifying and mapping recent segmental and gene duplications in eukaryotic genomes. (United States)

    Khaja, Razi; MacDonald, Jeffrey R; Zhang, Junjun; Scherer, Stephen W


    The aim of this chapter is to provide instruction for analyzing and mapping recent segmental and gene duplications in eukaryotic genomes. We describe a bioinformatics-based approach utilizing computational tools to manage eukaryotic genome sequences to characterize and understand the evolutionary fates and trajectories of duplicated genes. An introduction to bioinformatics tools and programs such as BLAST, Perl, BioPerl, and the GFF specification provides the necessary background to complete this analysis for any eukaryotic genome of interest.

  13. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. (United States)

    Nguyen Ba, Alex N; Strome, Bob; Hua, Jun Jie; Desmond, Jonathan; Gagnon-Arsenault, Isabelle; Weiss, Eric L; Landry, Christian R; Moses, Alan M


    Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.

  14. Gastric Duplication Cyst in Association with Duodenal Atresia in a Neonate (United States)

    Mirshemirani, Alireza; Roshanzamir, Fatollah; Razavi, Sajad; Sarafi, Mehdi


    Concurrence of duodenal atresia and gastric duplication cyst is extremely rare entity. We report a 6-day-old female neonate who presented with neonatal intestinal obstruction. X-ray abdomen showed double bubble sign. At laparotomy, a huge cystic structure attached to greater curvature of the stomach along with duodenal atresia of second part of duodenum was found. The cystic structure was excised and duodeno-duodenostomy performed. Histopathology report confirmed it gastric duplication cyst. PMID:26816679

  15. Gastric Duplication: A Rare Cause of Massive Lower Gastrointestinal Haemorrhage, Chest Wall Mass, and Enterocutaneous Fistula


    Emeka B. Kesieme; Dongo, Andrew E; Osime, Clement O.; Olomu, Sylvia C.; Awe, Oluwafemi O.; Gerald I Eze; Sylvester U. Eluehike


    Gastric duplications are uncommon developmental abnormality reported to present with different clinical scenarios. We present a 2-1/2-year-old Nigerian female who started having intermittent massive lower gastrointestinal haemorrhage at 5 months of age. She subsequently developed a lower chest wall mass and enterocutaneous fistula. She was found to have gastric duplication with fistulous communication with the descending colon, spleen, and lower chest wall. To the best of our knowledge, this...

  16. Molecular and Population Analysis of Natural Selection on the Human Haptoglobin Duplication


    Rodriguez, Santiago; Williams, Dylan M; Guthrie, Philip AI; McArdle, Wendy L.; Smith, George Davey; Evans, David M.; Gaunt, Tom R.; Day, Ian NM


    Haptoglobin binds free haemoglobin that prevents oxidative damage produced by haemolysis. There is a copy number variant (CNV) in the haptoglobin gene (HP) consisting of two alleles, Hp1 (no duplication), and Hp2 (1.7kb duplication involving two exons). The spread of the Hp2 allele is believed to have taken place under selective pressures conferred by malaria resistance. However, molecular evidence is lacking and Hp did not emerge in genomewide SNPs surveys for evidence of selection. In Europ...

  17. Comparative genomics of the syndecans defines an ancestral genomic context associated with matrilins in vertebrates

    Directory of Open Access Journals (Sweden)

    Adams Josephine C


    Full Text Available Abstract Background The syndecans are the major family of transmembrane proteoglycans in animals and are known for multiple roles in cell interactions and growth factor signalling during development, inflammatory response, wound-repair and tumorigenesis. Although syndecans have been cloned from several invertebrate and vertebrate species, the extent of conservation of the family across the animal kingdom is unknown and there are gaps in our knowledge of chordate syndecans. Here, we develop a new level of knowledge for the whole syndecan family, by combining molecular phylogeny of syndecan protein sequences with analysis of the genomic contexts of syndecan genes in multiple vertebrate organisms. Results We identified syndecan-encoding sequences in representative Cnidaria and throughout the Bilateria. The C1 and C2 regions of the cytoplasmic domain are highly conserved throughout the animal kingdom. We identified in the variable region a universally-conserved leucine residue and a tyrosine residue that is conserved throughout the Bilateria. Of all the genomes examined, only tetrapod and fish genomes encode multiple syndecans. No syndecan-1 was identified in fish. The genomic context of each vertebrate syndecan gene is syntenic between human, mouse and chicken, and this conservation clearly extends to syndecan-2 and -3 in T. nigroviridis. In addition, tetrapod syndecans were found to be encoded from paralogous chromosomal regions that also contain the four members of the matrilin family. Whereas the matrilin-3 and syndecan-1 genes are adjacent in tetrapods, this chromosomal region appears to have undergone extensive lineage-specific rearrangements in fish. Conclusion Throughout the animal kingdom, syndecan extracellular domains have undergone rapid change and elements of the cytoplasmic domains have been very conserved. The four syndecan genes of vertebrates are syntenic across tetrapods, and synteny of the syndecan-2 and -3 genes is apparent

  18. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  19. Clustering of diverse replicated sequences in the MHC: Evidence for en bloc duplication

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Pinelli, M. [Univ. Western Australia, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital (Australia)


    The MHC contains clusters of polymorphic duplicated genes and gene sequences. It has been thought that these duplicated genes and sequences have arisen from single gene duplications. We compared the cloned region between TNF and HLA-B with the region in close proximity to HLA-A using sequence analysis and DNA hybridization. The results indicate that several sequences existing in the region centromeric of HLA-B are also present in close proximity to HLA-A. These include sequences belonging to the P5, BAT1, and PERB11 gene families as well as HLA class I gene sequences. Interestingly, when the two regions of approximately 200 kilobases are compared, the replicated sequences are organized similarly but in an inverted fashion suggesting the existence of an historical inverted en bloc duplication. Thus, we propose that the origin of these MHC gene clusters involves several mechanisms. In addition to single gene replication, a long-range duplication of a genomic block must have occurred. It is possible that a block at the telomeric end of the MHC represents a basic functional genomic unit conserved and duplicated en bloc. 49 refs., 3 figs., 3 tabs.

  20. "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Zhang Guofan


    Full Text Available Abstract Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9:477 reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp and found that a DNA segment containing four tRNA genes (trnK1, trnC, trnQ1 and trnN, a duplicated (rrnS and a split rRNA gene (rrnL5' was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.