WorldWideScience

Sample records for ancestral chloroplastic carbonic

  1. Export of carbon from chloroplasts at night

    Energy Technology Data Exchange (ETDEWEB)

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D. [Univ. of Wisconsin, Madison, WI (United States)

    1998-12-01

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

  2. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes.

    Science.gov (United States)

    Turmel, M; Otis, C; Lemieux, C

    1999-08-31

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure-which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions-and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts.

  3. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  4. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    Science.gov (United States)

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  5. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. V. Semenihin

    2015-06-01

    Full Text Available Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1 within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1. Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase.

  6. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  7. Ultrastructural changes in the membrane system of isolated chloroplasts of spinach under the influence of carbonic anhydrase inhibitors AA and EA

    Directory of Open Access Journals (Sweden)

    Marina V. Vodka

    2013-04-01

    Full Text Available The effects of carbonic anhydrase inhibitors (АА and EA on the membrane system of isolated chloroplasts of spinach were investigated. Under the influence of AA the considerable alterations in granal structure occurred, the thickness of the granal thylakoids increased by 36% and the interspace between thylakoids by 10% comparable with the control. As a result of EA treatment, the thickness of granal thylakoids enhanced by 31% and the interspace between thylakoids increased by 8% in comparison to the control. It was shown that structure of the granal system of the chloroplast was more sensitive to AA than EA. The data obtained can indicate a decrease in the activity of the thylakoid carbonic anhydrase, inhibition of electron transport and photosynthetic process as a whole in the presence of carbonic anhydrase inhibitors (AA and EA.

  8. The changes in the chloroplast membranes of pea leaves under the influence of carbonic anhydrase inhibitors (ions of copper and zinc

    Directory of Open Access Journals (Sweden)

    M.V. Vodka

    2014-04-01

    Full Text Available Тhe effects of carbonic anhydrase inhibitors, such as ions Cu2+ and Zn2+, on the membrane system of chloroplasts in pea leaves were investigated. After treatment of pea leaves with 250 mM Cu2+ or 400 mM Zn2+ we observed changes in the granal structure and compactness of the thylakoids in granae. It was shown that the thickness of granal thylakoids and the interspace between thylakoids increased comparing to control. Changes of the size and structure of thylakoids and granae in treated leaves may be associated with the enhanced accumulation of CO2 in the membrane. It is suggested that the carbonic anhydrase may also play a structural role in chloroplast granae.

  9. Ancestral Relationships Using Metafounders

    DEFF Research Database (Denmark)

    Legarra, Andres; Christensen, Ole Fredslund; Vitezica, Zulma G

    2015-01-01

    due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships....... We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view where each population is considered as an infinite, unrelated pool. Several ancestral populations may...... be connected and therefore related. Each ancestral population can be represented as a "metafounder", a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group". Metafounders have self- and across- relationships according to a set of parameters, which measure ancestral...

  10. Light and CO2/cAMP Signal Cross Talk on the Promoter Elements of Chloroplastic β-Carbonic Anhydrase Genes in the Marine Diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Tanaka, Atsushi; Ohno, Naoki; Nakajima, Kensuke; Matsuda, Yusuke

    2016-02-01

    Our previous study showed that three CO2/cAMP-responsive elements (CCRE) CCRE1, CCRE2, and CCRE3 in the promoter of the chloroplastic β-carbonic anhydrase 1 gene in the marine diatom Phaeodactylum tricornutum (Pptca1) were critical for the cAMP-mediated transcriptional response to ambient CO2 concentration. Pptca1 was activated under CO2 limitation, but the absence of light partially disabled this low-CO2-triggered transcriptional activation. This suppression effect disappeared when CCRE2 or two of three CCREs were replaced with a NotI restriction site, strongly suggesting that light signal cross-talks with CO2 on the cAMP-signal transduction pathway that targets CCREs. The paralogous chloroplastic carbonic anhydrase gene, ptca2 was also CO2/cAMP-responsive. The upstream truncation assay of the ptca2 promoter (Pptca2) revealed a short sequence of -367 to -333 relative to the transcription-start site to be a critical regulatory region for the CO2 and light responses. This core-regulatory region comprises one CCRE1 and two CCRE2 sequences. Further detailed analysis of Pptca2 clearly indicates that two CCRE2s are the cis-element governing the CO2/light response of Pptca2. The transcriptional activation of two Pptcas in CO2 limitation was evident under illumination with a photosynthetically active light wavelength, and an artificial electron acceptor from the reduction side of PSI efficiently inhibited Pptcas activation, while neither inhibition of the linear electron transport from PSII to PSI nor inhibition of ATP synthesis showed an effect on the promoter activity, strongly suggesting a specific involvement of the redox level of the stromal side of the PSI in the CO2/light cross talk. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Are palaeoscolecids ancestral ecdysozoans?

    Science.gov (United States)

    Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J

    2010-01-01

    The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.

  12. Nitrogen control of chloroplast development: Progress report

    International Nuclear Information System (INIS)

    Schmidt, G.W.

    1987-11-01

    A manifestation of nitrogen deficiency in vascular plants and algae is chlorosis, indicating that chloroplast biogenesis can be strongly restricted by direct or indirect effects of nitrogen assimilation products. To define the molecular basis of nitrogen responses we are using Chlamydomonas reinhardtii. Depending on the levels of ammonium, steady-state deficiency conditions are established such that the cellular levels of chlorophylls and xanthophylls are depressed. Chloroplasts in nitrogen-deficient cells contain appreciable levels of carbon assimilation enzyme and thylakoids with high electron transport activities. However, the light harvesting complexes are nearly absent and Photosystem I exhibits unusual characteristics. Studies of rates of protein synthesis by in vivo pulse-chase labeling and levels of RNAs encoded by the chloroplast and nuclear genomes have been initiated: the accumulation of transcripts for the nuclear light-harvesting apoproteins is dramatically altered qualitatively and quantitatively; there is no major effect on chloroplast RNAs but, in general, these are inefficiently utilized for protein synthesis until nitrogen is provided to the cultures. Supplying nitrogen results in an almost immediate release of chloroplast mRNAs from a translational arrest but the stimulation of the accumulation of nuclear transcripts for light-harvesting apoproteins does not occur until after a 1-2 hour lag

  13. Salinity Response in Chloroplasts: Insights from Gene Characterization

    Directory of Open Access Journals (Sweden)

    Jinwei Suo

    2017-05-01

    Full Text Available Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II activity, carbon dioxide (CO2 assimilation, photorespiration, reactive oxygen species (ROS scavenging, osmotic and ion homeostasis, abscisic acid (ABA biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.

  14. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  15. Integrating Principles Underlying Ancestral Spirits Belief in ...

    African Journals Online (AJOL)

    , associated with ancestral spirits and its use as powerful therapeutic agent for influencing behavior or lifestyle changes. Explanatory models of attachment to ancestral spirits by living descendants are first discussed, followed by a discussion ...

  16. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator...

  17. Dichroism in spinach chloroplasts

    NARCIS (Netherlands)

    Thomas, J.B.; Lierop, J.H. van; Ham, M. ten

    1967-01-01

    In spinach chloroplasts oriented at steel-water interfaces parallel to the light beam a distinct dichroism is measured at about 680 nm. This dichroism is minimal upon addition of sucrose up to a final concentration of 0.18 M to the medium, the dichroic ratio amounting to 1.02. It is concluded that

  18. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  19. Chloroplast Microsatellite Diversity in Phaseolus vulgaris

    Science.gov (United States)

    Desiderio, F.; Bitocchi, E.; Bellucci, E.; Rau, D.; Rodriguez, M.; Attene, G.; Papa, R.; Nanni, L.

    2012-01-01

    Evolutionary studies that are aimed at defining the processes behind the present level and organization of crop genetic diversity represent the fundamental bases for biodiversity conservation and use. A Mesoamerican origin of the common bean Phaseolus vulgaris was recently suggested through analysis of nucleotide polymorphism at the nuclear level. Here, we have used chloroplast microsatellites to investigate the origin of the common bean, on the basis of the specific characteristics of these markers (no recombination, haploid genome, uniparental inheritance), to validate these recent findings. Indeed, comparisons of the results obtained through analysis of nuclear and cytoplasmic DNA should allow the resolution of some of the contrasting information available on the evolutionary processes. The main outcomes of the present study are: (i) confirmation at the chloroplast level of the results obtained through nuclear data, further supporting the Mesoamerican origin of P. vulgaris, with central Mexico representing the cradle of its diversity; (ii) identification of a putative ancestral plastidial genome, which is characteristic of a group of accessions distributed from central Mexico to Peru, but which have not been highlighted beforehand through analyses at the nuclear level. Finally, the present study suggests that when a single species is analyzed, there is the need to take into account the complexity of the relationships between P. vulgaris and its closely related and partially intercrossable species P. coccineus and P. dumosus. Thus, the present study stresses the importance for the investigation of the speciation processes of these taxa through comparisons of both plastidial and nuclear variability. This knowledge will be fundamental not only from an evolutionary point of view, but also to put P. coccineus and P. dumosus germplasm to better use as a source of useful diversity for P. vulgaris breeding. PMID:23346091

  20. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  1. Influence of pH upon the Warburg effect in isolated intact spinach chloroplasts. I. Carbon dioxide photoassimilation and glycolate synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.M.; Gibbs, M.; Cotler, D.N.

    1977-04-01

    The influence of pH upon the O/sub 2/ inhibition of /sup 14/CO/sub 2/ photoassimilation (Warburg effect) was examined in intact spinach (Spinacia oleracea) chloroplasts. With conditions which favored the Warburg effect, i.e. rate-limiting CO/sub 2/ and 100 percent O/sub 2/, O/sub 2/ inhibition was greater at pH 8.4 to 8.5 than at pH 7.5 to 7.8. At pH 8.5, as compared with 7.8, there was an enhanced /sup 14/C-labeling of glycolate, and a decrease of isotope in some phosphorylated Calvin cycle intermediates, particularly triose-phosphate. The /sup 14/C-labeling of starch was also more inhibited by O/sub 2/ at higher pH. The enhanced synthesis of glycolate during /sup 14/CO/sub 2/ assimilation at higher pH resulted in a diminution in the level of phosphorylated intermediates of the Calvin cycle, and this was apparently a causal factor of the increased severity of the Warburg effect. The /sup 14/C-labeling profiles have been interpreted in terms of a ''CO/sub 2/''-sensitive as well as a ''CO/sub 2/''-insensitive mechanism for glycolate synthesis. Both mechanisms functioned optimally at the higher pH and both responded to O/sub 2/.

  2. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  3. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  4. Protein import into chloroplasts requires a chloroplast ATPase

    International Nuclear Information System (INIS)

    Pain, D.; Blobel, G.

    1987-01-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the [ 35 S]methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H + , K + , Na + , or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors

  5. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  6. Insights into the Mechanisms of Chloroplast Division

    Directory of Open Access Journals (Sweden)

    Yamato Yoshida

    2018-03-01

    Full Text Available The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.

  7. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  8. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts

    DEFF Research Database (Denmark)

    Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos

    2016-01-01

    The chloroplasts found in plants and algae, and photosynthetic microorganisms such as cyanobacteria, are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused...... on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals, as well as complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression...... of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the production levels to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons...

  9. Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants.

    Science.gov (United States)

    Wang, Qing-Long; Chen, Juan-Hua; He, Ning-Yu; Guo, Fang-Qing

    2018-03-14

    Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.

  10. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts.

    Science.gov (United States)

    Nielsen, Agnieszka Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos; Wlodarczyk, Artur Jacek; Gnanasekaran, Thiyagarajan; Perestrello Ramos H de Jesus, Maria; King, Brian Christopher; Bakowski, Kamil; Jensen, Poul Erik

    2016-07-01

    Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-03-14

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  12. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  13. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  14. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  15. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Yamano, Takashi; Tsujikawa, Tomoki; Hatano, Kyoko; Ozawa, Shin-Ichiro; Takahashi, Yuichiro; Fukuzawa, Hideya

    2010-09-01

    The carbon-concentrating mechanism (CCM) is essential to support photosynthesis under CO2-limiting conditions in aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii. The CCM is assumed to be comprised of inorganic carbon transport systems that, in conjunction with carbonic anhydrases, maintain high levels of CO2 around ribulose-1, 5-bisphosphate carboxylase/oxygenase in a specific compartment called the pyrenoid. A set of transcripts up-regulated during the induction of the CCM was identified previously and designated as low-CO2 (LC)-inducible genes. Although the functional importance of one of these LC-inducible genes, LciB, has been shown recently, the biochemical properties and detailed subcellular localization of its product LCIB remain to be elucidated. Here, using yeast two-hybrid, immunoprecipitation and mass spectrometry analyses we provide evidence to demonstrate that LCIB interacts with the LCIB homologous protein LCIC in yeast and in vivo. We also show that LCIB and LCIC are co-localized in the vicinity of the pyrenoid under LC conditions in the light, forming a hexamer complex of approximately 350 kDa, as estimated by gel filtration chromatography. LCIB localization around the pyrenoid was dependent on light illumination and LC conditions during active operation of the CCM. In contrast, in the dark or under high-CO2 conditions when the CCM was inactive, LCIB immediately diffused away from the pyrenoid. Based on these observations, we discuss possible functions of the LCIB-LCIC complex in the CCM.

  16. Staging Sacrifice: Performing History, Memory, and Ancestral ...

    African Journals Online (AJOL)

    Returning and recurring cultural forms, ancestral incarnations, theatrical imaginations, and racial memories in African plays construct a specific kind of historicity - the conjuring of the dead and the revitalization of cosmic energy or spiritual power. These formations perpetuate the construction of Africa and African-ness ...

  17. Ancestral Sequence Reconstruction with Maximum Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2017-12-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.

  18. Chloroplast genes in Chlamydomonas affecting organelle ribosomes. Genetic and biochemical analysis of analysis of antibiotic-resistant mutants at several gene loci.

    Science.gov (United States)

    Conde, M F; Boynton, J E; Gillham, N W; Harris, E H; Tingle, C L; Wang, W L

    1975-10-03

    Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial

  19. Protein import into chloroplasts requires a chloroplast ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pain, D.; Blobel, G.

    1987-05-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the (/sup 35/S)methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H/sup +/, K/sup +/, Na/sup +/, or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors.

  20. Mutational Dynamics of Aroid Chloroplast Genomes

    Science.gov (United States)

    Ahmed, Ibrar; Biggs, Patrick J.; Matthews, Peter J.; Collins, Lesley J.; Hendy, Michael D.; Lockhart, Peter J.

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  1. SKL1 Is Essential for Chloroplast Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huimin Xu

    2018-02-01

    Full Text Available The Arabidopsis shikimate kinase-like 1 (skl1-8 mutant is characterized by a pigment-defective phenotype. Although the related phenotypical defect mainly has been attributed to the blocking of chloroplast development, the molecular functions of SKL1 remain largely unknown. In this study, we combined multiple approaches to investigate the potential functions of SKL1. Results showed that the skl1-8 mutant exhibited an albino phenotype and had dramatically reduced chlorophyll content as a consequence of a single nuclear recessive gene mutation. Chemical complementation analysis indicated that SKL1 does not function as SK enzyme in the shikimate pathway. In addition, by chlorophyll fluorescence parameters and immunoblot analysis, the levels of photosynthetic proteins are substantially reduced. Moreover, by transcriptome analysis, specific groups of nuclear genes involved in photosynthesis, such as light-harvesting complex, pigment metabolism, carbon metabolism, and chloroplast gene expression, were down-regulated, whereas several defense and oxidative stress responsive genes were up-regulated in the skl1-8 mutant compared with the wide type. Furthermore, we found the expression of genes related to auxin transport and response was repressed in the skl1-8 mutant, probable suggesting that SKL1 is involved in auxin-related pathways during chloroplast development. Together, these results provide a useful reference for characterization of SKL1 function during chloroplast biogenesis and development.

  2. Assessing the Accuracy of Ancestral Protein Reconstruction Methods

    OpenAIRE

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-01-01

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolu...

  3. The ancestral complement system in sea urchins.

    Science.gov (United States)

    Smith, L C; Clow, L A; Terwilliger, D P

    2001-04-01

    The origin of adaptive immunity in the vertebrates can be traced to the appearance of the ancestral RAG genes in the ancestral jawed vertebrate; however, the innate immune system is more ancient. A central subsystem within innate immunity is the complement system, which has been identified throughout and seems to be restricted to the deuterostomes. The evolutionary history of complement can be traced from the sea urchins (members of the echinoderm phylum), which have a simplified system homologous to the alternative pathway, through the agnathans (hagfish and lamprey) and the elasmobranchs (sharks and rays) to the teleosts (bony fish) and tetrapods, with increases in the numbers of complement components and duplications in complement pathways. Increasing complexity in the complement system parallels increasing complexity in the deuterostome animals. This review focuses on the simplest of the complement systems that is present in the sea urchin. Two components have been identified that show significant homology to vertebrate C3 and factor B (Bf), called SpC3 and SpBf, respectively. Sequence analysis from both molecules reveals their ancestral characteristics. Immune challenge of sea urchins indicates that SpC3 is inducible and is present in coelomic fluid (the body fluids) in relatively high concentrations, while SpBf expression is constitutive and is present in much lower concentrations. Opsonization of foreign cells and particles followed by augmented uptake by phagocytic coelomocytes appears to be a central function for this simpler complement system and important for host defense in the sea urchin. These activities are similar to some of the functions of the homologous proteins in the vertebrate complement system. The selective advantage for the ancestral deuterostome may have been the amplification feedback loop that is still of central importance in the alternative pathway of complement in higher vertebrates. Feedback loop functions would quickly coat

  4. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures

    Science.gov (United States)

    Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John

    2017-11-01

    Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the

  5. Chloroplast division checkpoint in eukaryotic algae

    Science.gov (United States)

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  6. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  7. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  8. Ancestral genome organization: an alignment approach.

    Science.gov (United States)

    Holloway, Patrick; Swenson, Krister; Ardell, David; El-Mabrouk, Nadia

    2013-04-01

    We present a comparative genomics approach for inferring ancestral genome organization and evolutionary scenarios, based on present-day genomes represented as ordered gene sequences with duplicates. We develop our methodology for a model of evolution restricted to duplication and loss, and then show how to extend it to other content-modifying operations, and to inversions. From a combinatorial point of view, the main consequence of ignoring rearrangements is the possibility of formulating the problem as an alignment problem. On the other hand, duplications and losses are asymmetric operations that are applicable to one of the two aligned sequences. Consequently, an ancestral genome can directly be inferred from a duplication-loss scenario attached to a given alignment. Although alignments are a priori simpler to handle than rearrangements, we show that a direct approach based on dynamic programming leads, at best, to an efficient heuristic. We present an exact pseudo-boolean linear programming algorithm to search for the optimal alignment along with an optimal scenario of duplications and losses. Although exponential in the worst case, we show low running times on real datasets as well as synthetic data. We apply our algorithm (*) in a phylogenetic context to the evolution of stable RNA (tRNA and rRNA) gene content and organization in Bacillus genomes. Our results lead to various biological insights, such as rates of ribosomal RNA proliferation among lineages, their role in altering tRNA gene content, and evidence of tRNA class conversion.

  9. Current trends in chloroplast genome research

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... photosynthetic protists and photosynthetic cyanobacteria. (Howe, 2003; Xiong, 2009; Raven, 2003). ..... accurate identification of tRNA genes within DNA sequences and is being used in chloroplast .... chloroplast genomes identifies differences between chilling-tolerant and susceptible cucumber lines.

  10. On the structure of the spinach chloroplast

    NARCIS (Netherlands)

    Thomas, J.B.; Bustraan, M.; Paris, C.H.

    1952-01-01

    The structure of spinach chloroplasts was investigated with the aid of the electron microscope. It has been established that: 1. 1. the outer membrane of the chloroplasts is composed of both proteins and lipoids. 2. 2. the stroma is also built up by these components. 3. 3. within the

  11. Evolution: In Chloroplast Genomes, Anything Goes.

    Science.gov (United States)

    Smith, David Roy

    2017-12-18

    A new study shows that Cladophorales green algae have the most unconventional chloroplast DNAs ever observed, whereby genes are located on small linear single-stranded palindromic elements. This puzzling architecture has parallels with mini-circular chloroplast genomes of dinoflagellates and raises many questions about how it arose and is maintained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic ...

  13. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  14. The role of chloroplasts in plant pathology.

    Science.gov (United States)

    Sowden, Robert G; Watson, Samuel J; Jarvis, Paul

    2018-04-13

    Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Assessing the accuracy of ancestral protein reconstruction methods.

    Directory of Open Access Journals (Sweden)

    Paul D Williams

    2006-06-01

    Full Text Available The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  16. Assessing the accuracy of ancestral protein reconstruction methods.

    Science.gov (United States)

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-06-23

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  17. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.

    Science.gov (United States)

    Pedersen, Niklas; Holyoak, David T; Newton, Angela E

    2007-06-01

    The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.

  18. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases.

    Science.gov (United States)

    Devamani, Titu; Rauwerdink, Alissa M; Lunzer, Mark; Jones, Bryan J; Mooney, Joanna L; Tan, Maxilmilien Alaric O; Zhang, Zhi-Jun; Xu, Jian-He; Dean, Antony M; Kazlauskas, Romas J

    2016-01-27

    Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases ∼ 100 million years ago. Both enzyme types are α/β-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, γ-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzymes are catalytically promiscuous, but HNL1 is especially so.

  19. Complete chloroplast genome of Ficus racemosa (Moraceae).

    Science.gov (United States)

    Mao, Qi; Bi, Guiqi

    2016-11-01

    Ficus racemosa, with immense medicinal value, and known as Cluster Fig Tree, Indian Fig Tree or Goolar (Gular) Figis, is a species of plant which belongs to family Moraceae. The complete chloroplast genome of Ficus racemosa was obtained by de novo assembly using next-generation sequencing data. The chloroplast genome of F. racemosa was 159 473 bp in length, which consisted of a large single region (88 110 bp), a small single copy region (20 007 bp) and a pair of invert repeat regions (25 678 bp). The overall GC content of this chloroplast genome was 36.0%. The chloroplast genome harbored 117 genes, including 84 protein-coding genes, 27 tRNA, and eight rRNA genes (4.5S rRNA, 5S rRNA, 16s rRNA and 23s rRNA) that were two copied. Phylogenetic analysis of the complete chloroplast genome sequences with the report-related chloroplast genomes revealed that Ficus racemosa is most closely related to Morus indica, a typical higher plant in fiamly Moraceae.

  20. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment.

    Science.gov (United States)

    Larkin, Robert M; Stefano, Giovanni; Ruckle, Michael E; Stavoe, Andrea K; Sinkler, Christopher A; Brandizzi, Federica; Malmstrom, Carolyn M; Osteryoung, Katherine W

    2016-02-23

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.

  1. Chloroplast and cytoplasmic ribosomes of Euglena: selective binding of dihydrostreptomycin to chloroplast ribosomes.

    Science.gov (United States)

    Schwartzbach, S D; Schiff, J A

    1974-10-01

    Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The K(diss) for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 x 10(-7) M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm(1) (r)BNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The K(diss) for the chloroplast ribosome-dihydrostreptomycin complex of Sm(1) (r) is 387 x 10(-7) M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 x 10(-7) M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena.

  2. Chloroplast and Cytoplasmic Ribosomes of Euglena: Selective Binding of Dihydrostreptomycin to Chloroplast Ribosomes1

    Science.gov (United States)

    Schwartzbach, Steven D.; Schiff, Jerome A.

    1974-01-01

    Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The Kdiss for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 × 10−7 M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm1rBNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The Kdiss for the chloroplast ribosome-dihydrostreptomycin complex of Sm1r is 387 × 10−7 M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 × 10−7 M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena. PMID:4138802

  3. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    Directory of Open Access Journals (Sweden)

    Ciprian Jeler

    2014-12-01

    Full Text Available This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the consequences are not very promising: very much like correlationism, speculative materialism explicitly denies what I call the “generalized version of the realistic assumption of science” and, in so doing, renders scientific ancestral statements de jure unverifiable. Therefore, if correlationism is rendered suspicious by the issue of ancestrality, the same can be said of speculative materialism.

  4. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States.

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-02-01

    Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. A set of command line-based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion.

  5. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    OpenAIRE

    Ciprian Jeler

    2014-01-01

    This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the...

  6. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  7. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  8. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice.

    Science.gov (United States)

    Sade, Nir; Umnajkitikorn, Kamolchanok; Rubio Wilhelmi, Maria Del Mar; Wright, Matthew; Wang, Songhu; Blumwald, Eduardo

    2018-02-12

    Abiotic stress-induced senescence in crops is a process particularly affecting the photosynthetic apparatus, decreasing photosynthetic activity and inducing chloroplast degradation. A pathway for stress-induced chloroplast degradation that involves the CHLOROPLAST VESICULATION (CV) gene was characterized in rice (Oryza sativa) plants. OsCV expression was up-regulated with the age of the plants and when plants were exposed to water-deficit conditions. The down-regulation of OsCV expression contributed to the maintenance of the chloroplast integrity under stress. OsCV-silenced plants displayed enhanced source fitness (i.e. carbon and nitrogen assimilation) and photorespiration, leading to water-deficit stress tolerance. Co-immunoprecipitation, intracellular co-localization, and bimolecular fluorescence demonstrated the in vivo interaction between OsCV and chloroplastic glutamine synthetase (OsGS2), affecting source-sink relationships of the plants under stress. Our results would indicate that the OsCV-mediated chloroplast degradation pathway is involved in the regulation of nitrogen assimilation during stress-induced plant senescence. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Mergers and acquisitions: malaria and the great chloroplast heist.

    Science.gov (United States)

    McFadden, G I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.

  10. Recent achievements obtained by chloroplast transformation.

    Science.gov (United States)

    Adem, Muhamed; Beyene, Dereje; Feyissa, Tileye

    2017-01-01

    Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.

  11. Reconstruction of the ancestral marsupial karyotype from comparative gene maps

    Science.gov (United States)

    2013-01-01

    Background The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. Results We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. Conclusions Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome. PMID:24261750

  12. Non radioactive precursor import into chloroplasts

    International Nuclear Information System (INIS)

    Lombardo, V.A.; Ottado, J.

    2003-01-01

    Full text: Eukaryotic cells have a subcellular organization based on organelles. Protein transport to these organelles is quantitatively important because the majority of cellular proteins are codified in nuclear genes and then delivered to their final destination. Most of the chloroplast proteins are translated on cytoplasmic ribosomes as larger precursors with an amino terminal transit peptide that is necessary and sufficient to direct the precursor to the chloroplast. Once inside the organelle the transit peptide is cleaved and the mature protein adopts its folded form. In this work we developed a system for the expression and purification of the pea ferredoxin-NADP + reductase precursor (preFNR) for its import into chloroplasts in non radioactive conditions. We constructed a preFNR fused in its carboxy terminus to a 6 histidines peptide (preFNR-6xHis) that allows its identification using a commercial specific antibody. The construction was expressed, purified, processed and precipitated, rendering a soluble and active preFNR-6xHis that was used in binding and import into chloroplasts experiments. The reisolated chloroplasts were analyzed by SDS-PAGE, electro-blotting and revealed by immuno-detection using either colorimetric or chemiluminescent reactive. We performed also import experiments labeling preFNR and preFNR-6xHis with radioactive methionine as controls. We conclude that preFNR-6xHis is bound and imported into chloroplasts as the wild type preFNR and that both colorimetric or chemiluminescent detection methods are useful to avoid the manipulation of radioactive material. (author)

  13. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  14. Ancestrality and evolution of trait syndromes in finches (Fringillidae).

    Science.gov (United States)

    Ponge, Jean-François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre-Yves; Théry, Marc; Guilbert, Éric

    2017-12-01

    Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from "ancestral" to "derived" strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r-K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B-strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with "slow pace of life" and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out-of-the-tropics, migratory, with a "fast pace of life" and high sexual dimorphism.

  15. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    Science.gov (United States)

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  16. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae

    Science.gov (United States)

    Park, Kyu Tae

    2017-01-01

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna, Spirodela, Wolffiella, Wolffia, Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus. In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region. PMID:29144427

  17. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae.

    Science.gov (United States)

    Choi, Kyoung Su; Park, Kyu Tae; Park, SeonJoo

    2017-11-16

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops ( Colocasia , commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna , Spirodela , Wolffiella , Wolffia , Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus . In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region.

  18. Formation of glycolate by a reconstituted spinach chloroplast preparation.

    Science.gov (United States)

    Shain, Y; Gibbs, M

    1971-09-01

    A reconstituted preparation requiring fructose 6-phosphate, transketolase, triphosphopyridine nucleotide, ferredoxin, fragmented spinach chloroplasts, and light capable of forming glycolate at rates of about 10 micromoles per milligram of chlorophyll per hour has been characterized. The glycolaldehyde-transketolase addition product could be substituted for fructose 6-phosphate and transketolase. The stoichiometry of the reaction was: 1 mole of fructose 6-phosphate consumed for each mole of glycolate and of reduced triphosphopyridine nucleotide produced. Evidence was presented indicating that glycolate formation was coupled to the photosystems of the photosynthetic electron transport chain. Synthesis of glycolate is envisaged as the result of either (a) a reaction between the upper two carbon atoms derived from fructose 6-phosphate and an uncharacterized oxidant generated by photosystem 2 or (b) hydrogen peroxide produced by the reoxidation of reduced triphos-phopyridine nucleotide or reduced ferredoxin by molecular oxygen.

  19. Formation of Glycolate by a Reconstituted Spinach Chloroplast Preparation 1

    Science.gov (United States)

    Shain, Y.; Gibbs, Martin

    1971-01-01

    A reconstituted preparation requiring fructose 6-phosphate, transketolase, triphosphopyridine nucleotide, ferredoxin, fragmented spinach chloroplasts, and light capable of forming glycolate at rates of about 10 micromoles per milligram of chlorophyll per hour has been characterized. The glycolaldehyde-transketolase addition product could be substituted for fructose 6-phosphate and transketolase. The stoichiometry of the reaction was: 1 mole of fructose 6-phosphate consumed for each mole of glycolate and of reduced triphosphopyridine nucleotide produced. Evidence was presented indicating that glycolate formation was coupled to the photosystems of the photosynthetic electron transport chain. Synthesis of glycolate is envisaged as the result of either (a) a reaction between the upper two carbon atoms derived from fructose 6-phosphate and an uncharacterized oxidant generated by photosystem 2 or (b) hydrogen peroxide produced by the reoxidation of reduced triphos-phopyridine nucleotide or reduced ferredoxin by molecular oxygen. PMID:16657791

  20. Chloroplast replication and growth in tobacco

    NARCIS (Netherlands)

    Verbeek-Boasson, Rosalinda

    1969-01-01

    SUMMARY AND CONCLUSIONS 1. The greening and the growth of chloroplasts as induced by light has been investigated in leaf discs from etiolated tobacco leaves in sterile culture. 2.On a medium containing salts after Murashige and Skoog plus sucrose, chlorophyll synthesis proceeds very slowly during

  1. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang

    2004-01-01

    Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica),...

  2. Current trends in chloroplast genome research

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Therefore, cpDNA sequence information has been instrumental in phylogenetic studies and ... This is primarily due to innovations in (a) chloroplast DNA sequencing and (b) bioinformatics tools .... sequencing projects, it requires a large infrastructure and manpower including cloning of DNA into vectors, ...

  3. Development and characterization of chloroplast microsatellite ...

    Indian Academy of Sciences (India)

    萧睿

    The entire chloroplast genome of P. massioniana was amplified by 35 primer pairs. (Supplementary 1) (Cronn et al., 2008). We obtained the sequence of these regions which averaged ~3.6 kb in size, using Sanger sequencing and primer walking strategy. (GenBank accession number: MF564195). The microsatellite motifs ...

  4. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth ... International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA ...

  5. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  6. Ancestral gene synteny reconstruction improves extant species scaffolding.

    Science.gov (United States)

    Anselmetti, Yoann; Berry, Vincent; Chauve, Cedric; Chateau, Annie; Tannier, Eric; Bérard, Sèverine

    2015-01-01

    We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.

  7. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.

  8. Musculature in sipunculan worms: ontogeny and ancestral states.

    Science.gov (United States)

    Schulze, Anja; Rice, Mary E

    2009-01-01

    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  9. A comparison of ancestral state reconstruction methods for quantitative characters.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Didier, Gilles

    2016-09-07

    Choosing an ancestral state reconstruction method among the alternatives available for quantitative characters may be puzzling. We present here a comparison of seven of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. A review of the relations between these methods shows that the maximum likelihood, the restricted maximum likelihood and the generalized least squares under Brownian model infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) directional or stabilizing selection. We give the general form of ancestral state distributions conditioned on leaf states under the simulation models. Ancestral distributions are used first, to give a theoretical lower bound of the expected reconstruction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by the methods generally make sense (some more than others); (ii) it is essential to detect the presence of an evolutionary trend and to choose a reconstruction method accordingly; (iii) all the methods show good performances on characters under stabilizing selection; (iv) without trend or stabilizing selection, the maximum likelihood method is generally the most accurate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling X-linked ancestral origins in multiparental populations

    NARCIS (Netherlands)

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes

  11. An Epistemological Analysis of the African Ontology of `Ancestral ...

    African Journals Online (AJOL)

    The paper explores the contemporary debate surrounding the idea of ancestral reincarnation in African society and philosophy. It analyzes various problem areas having to do with the physical and spiritual status of ancestors, their relationship with their societies of orientation, the philosophical contexts of their existence, ...

  12. Are survival processing memory advantages based on ancestral priorities?

    Science.gov (United States)

    Soderstrom, Nicholas C; McCabe, David P

    2011-06-01

    Recent research has suggested that our memory systems are especially tuned to process information according to its survival relevance, and that inducing problems of "ancestral priorities" faced by our ancestors should lead to optimal recall performance (Nairne & Pandeirada, Cognitive Psychology, 2010). The present study investigated the specificity of this idea by comparing an ancestor-consistent scenario and a modern survival scenario that involved threats that were encountered by human ancestors (e.g., predators) or threats from fictitious creatures (i.e., zombies). Participants read one of four survival scenarios in which the environment and the explicit threat were either consistent or inconsistent with ancestrally based problems (i.e., grasslands-predators, grasslands-zombies, city-attackers, city-zombies), or they rated words for pleasantness. After rating words based on their survival relevance (or pleasantness), the participants performed a free recall task. All survival scenarios led to better recall than did pleasantness ratings, but recall was greater when zombies were the threat, as compared to predators or attackers. Recall did not differ for the modern (i.e., city) and ancestral (i.e., grasslands) scenarios. These recall differences persisted when valence and arousal ratings for the scenarios were statistically controlled as well. These data challenge the specificity of ancestral priorities in survival-processing advantages in memory.

  13. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.

    Science.gov (United States)

    van Baren, Marijke J; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J; Kuo, Alan; Grigoriev, Igor V; Wong, Chee-Hong; Smith, Richard D; Callister, Stephen J; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore

  14. Photosynthetic 14C fixation in leaves and isolated chloroplasts of some scrub species under the influence of paraquat and 2,4,5-T

    International Nuclear Information System (INIS)

    Madhusudana Rao, I.; Swamy, P.M.; Rama Das, V.S.

    1980-01-01

    The diurnal course of carbon dioxide uptake in the leaves of six nonsucculent semiarid scrub species was investigated. Five nonsucculent scrub species, Carissa spinarum, Maba buxifolia, Flacourtia sepiaria, Gymnosporia emerginata and Dodonaea viscosa exhibited nocturnal carbon assimilation while day time CO 2 uptake was predominant in Chomelia asiatica. Foliar application of paraquat (100 mg 1sup(-1)) or 2,4,5-T (2000 mg 1sup(-1)) caused a marked inhibition in the dark uptake of CO 2 . On the other hand, carbon uptake during day was slightly reduced. Studies on the carbon assimilation of isolated chloroplasts under the influence of paraquat or 2,4,5-T revealed that paraquat is more effective than 2,4,5-T in the suppression of carbon assimilation of in vivo and in vitro chloroplasts. The data suggested that the process of nocturnal carbon assimilation is far more sensitive to paraquat than the light dependent carbon fixation during day. (author)

  15. [Stable transformation of Solanum rickii chloroplast DNA].

    Science.gov (United States)

    Matveeva, N A; Shakhovskiĭ, A M; Kuchuk, N V

    2005-01-01

    The biolistic method was used for genetic transformation of Solanum rickii chloroplasts with aadA gene encoding resistance to streptomycine and spectinomycine. Selective pressure was applied immediately after microbombardment to avoid appearance of mutant lines. The transplastomic Solanum rickii plants remained green during two years cultivation on the media supplemented with two antibiotics. There were no morphological differences between the transformed and the wild type plants.

  16. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-07-01

    Full Text Available Abstract Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales. Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate

  17. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  18. Copper delivery to chloroplast proteins and its regulation

    Directory of Open Access Journals (Sweden)

    Guadalupe eAguirre

    2016-01-01

    Full Text Available Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase,¬ but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field.

  19. Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy

    Directory of Open Access Journals (Sweden)

    Masanori Izumi

    2018-03-01

    Full Text Available Most assimilated nutrients in the leaves of land plants are stored in chloroplasts as photosynthetic proteins, where they mediate CO2 assimilation during growth. During senescence or under suboptimal conditions, chloroplast proteins are degraded, and the amino acids released during this process are used to produce young tissues, seeds, or respiratory energy. Protein degradation machineries contribute to the quality control of chloroplasts by removing damaged proteins caused by excess energy from sunlight. Whereas previous studies revealed that chloroplasts contain several types of intraplastidic proteases that likely derived from an endosymbiosed prokaryotic ancestor of chloroplasts, recent reports have demonstrated that multiple extraplastidic pathways also contribute to chloroplast protein turnover in response to specific cues. One such pathway is autophagy, an evolutionarily conserved process that leads to the vacuolar or lysosomal degradation of cytoplasmic components in eukaryotic cells. Here, we describe and contrast the extraplastidic pathways that degrade chloroplasts. This review shows that diverse pathways participate in chloroplast turnover during sugar starvation, senescence, and oxidative stress. Elucidating the mechanisms that regulate these pathways will help decipher the relationship among the diverse pathways mediating chloroplast protein turnover.

  20. Uptake and incorporation of iron in sugar beet chloroplasts.

    Science.gov (United States)

    Solti, Adám; Kovács, Krisztina; Basa, Brigitta; Vértes, Attila; Sárvári, Eva; Fodor, Ferenc

    2012-03-01

    Chloroplasts contain 80-90% of iron taken up by plant cells. Though some iron transport-related envelope proteins were identified recently, the mechanism of iron uptake into chloroplasts remained unresolved. To shed more light on the process of chloroplast iron uptake, trials were performed with isolated intact chloroplasts of sugar beet (Beta vulgaris). Iron uptake was followed by measuring the iron content of chloroplasts in the form of ferrous-bathophenantroline-disulphonate complex after solubilising the chloroplasts in reducing environment. Ferric citrate was preferred to ferrous citrate as substrate for chloroplasts. Strong dependency of ferric citrate uptake on photosynthetic electron transport activity suggests that ferric chelate reductase uses NADPH, and is localised in the inner envelope membrane. The K(m) for iron uptake from ferric-citrate pool was 14.65 ± 3.13 μM Fe((III))-citrate. The relatively fast incorporation of (57)Fe isotope into Fe-S clusters/heme, detected by Mössbauer spectroscopy, showed the efficiency of the biosynthetic machinery of these cofactors in isolated chloroplasts. The negative correlation between the chloroplast iron concentration and the rate of iron uptake refers to a strong feedback regulation of the uptake. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    Science.gov (United States)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettucepandanleaves' chloroplasts. Chloroplasts of oil palm frond and water lettuce showed low photoreduction rate of 14 to 22%. On the other hand, the chloroplasts of both spinach and pandan leaves exerted an initial photoreduction rate which was above 90%. The photoreduction rate of these chloroplasts remained to above 60% even after 30 day-storage at -20°C. In comparison with spinach, pandan leaves' chloroplasts possessed similar in vitro functional activity and storage stability at 4°C and -20°C. This warrants further investigation on chloroplasts of pandan leaves for higher-value applications.

  2. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  3. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    Directory of Open Access Journals (Sweden)

    Sophie Nadot

    2016-04-01

    Full Text Available Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales as a whole. Here, we present ancestral state reconstructions for several perianth characters, such as differentiation into sepals and petals, shape of petals, presence/absence of nectaries, and petaloid or sepaloid aspect of sepals. Characters were scored using the PROTEUS database and optimized on the most recent phylogeny of Ranunculaceae using parsimony and maximum likelihood methods. The results are discussed with regard to recent evo-devo studies focused on identifying genes involved in floral organs identity (the so-called ABC model in Ranunculales.

  4. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  5. Ancestrality and evolution of trait syndromes in finches (Fringillidae)

    OpenAIRE

    Ponge, Jean‐François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre‐Yves; Théry, Marc; Guilbert, Éric

    2017-01-01

    International audience; Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from “ancestral” to “derived” strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabil...

  6. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  7. Molecular paleontology: a biochemical model of the ancestral ribosome.

    Science.gov (United States)

    Hsiao, Chiaolong; Lenz, Timothy K; Peters, Jessica K; Fang, Po-Yu; Schneider, Dana M; Anderson, Eric J; Preeprem, Thanawadee; Bowman, Jessica C; O'Neill, Eric B; Lie, Lively; Athavale, Shreyas S; Gossett, J Jared; Trippe, Catherine; Murray, Jason; Petrov, Anton S; Wartell, Roger M; Harvey, Stephen C; Hud, Nicholas V; Williams, Loren Dean

    2013-03-01

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.

  8. Cases in which ancestral maximum likelihood will be confusingly misleading.

    Science.gov (United States)

    Handelman, Tomer; Chor, Benny

    2017-05-07

    Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.

  9. Choosing the best ancestral character state reconstruction method.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Pontarotti, Pierre; Didier, Gilles

    2013-03-01

    Despite its intrinsic difficulty, ancestral character state reconstruction is an essential tool for testing evolutionary hypothesis. Two major classes of approaches to this question can be distinguished: parsimony- or likelihood-based approaches. We focus here on the second class of methods, more specifically on approaches based on continuous-time Markov modeling of character evolution. Among them, we consider the most-likely-ancestor reconstruction, the posterior-probability reconstruction, the likelihood-ratio method, and the Bayesian approach. We discuss and compare the above-mentioned methods over several phylogenetic trees, adding the maximum-parsimony method performance in the comparison. Under the assumption that the character evolves according a continuous-time Markov process, we compute and compare the expectations of success of each method for a broad range of model parameter values. Moreover, we show how the knowledge of the evolution model parameters allows to compute upper bounds of reconstruction performances, which are provided as references. The results of all these reconstruction methods are quite close one to another, and the expectations of success are not so far from their theoretical upper bounds. But the performance ranking heavily depends on the topology of the studied tree, on the ancestral node that is to be inferred and on the parameter values. Consequently, we propose a protocol providing for each parameter value the best method in terms of expectation of success, with regard to the phylogenetic tree and the ancestral node to infer. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. CHLOROPLAST BIOGENESIS Genes Act Cell and Noncell Autonomously in Early Chloroplast Development1

    Science.gov (United States)

    de la Luz Gutiérrez-Nava, María; Gillmor, C. Stewart; Jiménez, Luis F.; Guevara-García, Arturo; León, Patricia

    2004-01-01

    In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis. PMID:15133149

  11. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    Science.gov (United States)

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  12. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  13. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  14. A protocol for expression of foreign genes in chloroplasts.

    Science.gov (United States)

    Verma, Dheeraj; Samson, Nalapalli P; Koya, Vijay; Daniell, Henry

    2008-01-01

    Several major costs associated with the production of biopharmaceuticals or vaccines in fermentation-based systems could be minimized by using plant chloroplasts as bioreactors, which facilitates rapid scale-up. Oral delivery of chloroplast-derived therapeutic proteins through plant cells eliminates expensive purification steps, low temperature storage, transportation and sterile injections for their delivery. Chloroplast transformation technology (CTT) has also been successfully used to engineer valuable agronomic traits and for the production of industrial enzymes and biomaterials. Here, we provide a detailed protocol for the construction of chloroplast expression and integration vectors, selection and regeneration of transformants, evaluation of transgene integration and inheritance, confirmation of transgene expression and extraction, and quantitation and purification of foreign proteins. Integration of appropriate transgenes into chloroplast genomes and the resulting high levels of functional protein expression can be achieved in approximately 6 months in lettuce and tobacco. CTT is eco-friendly because transgenes are maternally inherited in most crop plants.

  15. Genetic population structure of the desert shrub species lycium ruthenicum inferred from chloroplast dna

    International Nuclear Information System (INIS)

    Chen, H.; Yonezawa, T.

    2014-01-01

    Lycium ruthenicum (Solananeae), a spiny shrub mostly distributed in the desert regions of north and northwest China, has been shown to exhibit high tolerance to the extreme environment. In this study, the phylogeography and evolutionary history of L. ruthenicum were examined, on the basis of 80 individuals from eight populations. Using the sequence variations of two spacer regions of chloroplast DNA (trnH-psbA and rps16-trnK) , the absence of a geographic component in the chloroplast DNA genetic structure was identified (GST = 0.351, NST = 0.304, NST< GST), which was consisted with the result of SAMOVA, suggesting weak phylogeographic structure of this species. Phylogenetic and network analyses showed that a total of 10 haplotypes identified in the present study clustered into two clades, in which clade I harbored the ancestral haplotypes that inferred two independent glacial refugia in the middle of Qaidam Basin and the western Inner Mongolia. The existence of regional evolutionary differences was supported by GENETREE, which revealed that one of the population in Qaidam Basin and the two populations in Tarim Basin had experienced rapid expansion, and the other populations retained relatively stable population size during the Pleistocene . Given the results of long-term gene flow and pairwise differences, strong gene flow was insufficient to reduce the genetic differentiation among populations or within populations, probably due to the genetic composition containing a common haplotype and the high number of private haplotypes fixed for most of the population. The divergence times of different lineages were consistent with the rapid uplift phases of the Qinghai-Tibetan Plateau and the initiation and expansion of deserts in northern China, suggesting that the origin and evolution of L. ruthenicum were strongly influenced by Quaternary environment changes. (author)

  16. Visual system evolution and the nature of the ancestral snake.

    Science.gov (United States)

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  17. The Complete Chloroplast Genome of Ginkgo biloba Reveals the Mechanism of Inverted Repeat Contraction

    Science.gov (United States)

    Wu, Chung-Shien; Huang, Ya-Yi; Chaw, Shu-Miaw

    2012-01-01

    We determined the complete chloroplast genome (cpDNA) of Ginkgo biloba (common name: ginkgo), the only relict of ginkgophytes from the Triassic Period. The cpDNA molecule of ginkgo is quadripartite and circular, with a length of 156,945 bp, which is 6,458 bp shorter than that of Cycas taitungensis. In ginkgo cpDNA, rpl23 becomes pseudo, only one copy of ycf2 is retained, and there are at least five editing sites. We propose that the retained ycf2 is a duplicate of the ancestral ycf2, and the ancestral one has been lost from the inverted repeat A (IRA). This loss event should have occurred and led to the contraction of IRs after ginkgos diverged from other gymnosperms. A novel cluster of three transfer RNA (tRNA) genes, trnY-AUA, trnC-ACA, and trnSeC-UCA, was predicted to be located between trnC-GCA and rpoB of the large single-copy region. Our phylogenetic analysis strongly suggests that the three predicted tRNA genes are duplicates of trnC-GCA. Interestingly, in ginkgo cpDNA, the loss of one ycf2 copy does not significantly elevate the synonymous rate (Ks) of the retained copy, which disagrees with the view of Perry and Wolfe (2002) that one of the two-copy genes is subjected to elevated Ks when its counterpart has been lost. We hypothesize that the loss of one ycf2 is likely recent, and therefore, the acquired Ks of the retained copy is low. Our data reveal that ginkgo possesses several unique features that contribute to our understanding of the cpDNA evolution in seed plants. PMID:22403032

  18. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    Full Text Available Abstract Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales, Scenedesmus (Sphaeropleales, and Stigeoclonium (Chaetophorales revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade. Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales. Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns, and displays 99 different conserved genes and four long open reading frames (ORFs, three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members

  19. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.

    Science.gov (United States)

    Thompson, M D; Copertino, D W; Thompson, E; Favreau, M R; Hallick, R B

    1995-01-01

    The origin of present day introns is a subject of spirited debate. Any intron evolution theory must account for not only nuclear spliceosomal introns but also their antecedents. The evolution of group II introns is fundamental to this debate, since group II introns are the proposed progenitors of nuclear spliceosomal introns and are found in ancient genes from modern organisms. We have studied the evolution of chloroplast introns and twintrons (introns within introns) in the genus Euglena. Our hypothesis is that Euglena chloroplast introns arose late in the evolution of this lineage and that twintrons were formed by the insertion of one or more introns into existing introns. In the present study we find that 22 out of 26 introns surveyed in six different photosynthesis-related genes from the plastid DNA of Euglena gracilis are not present in one or more basally branching Euglena spp. These results are supportive of a late origin for Euglena chloroplast group II introns. The psbT gene in Euglena viridis, a basally branching Euglena species, contains a single intron in the identical position to a psbT twintron from E.gracilis, a derived species. The E.viridis intron, when compared with 99 other Euglena group II introns, is most similar to the external intron of the E.gracilis psbT twintron. Based on these data, the addition of introns to the ancestral psbT intron in the common ancester of E.viridis and E.gracilis gave rise to the psbT twintron in E.gracilis. Images PMID:8532514

  20. Chloroplasts in anther endothecium of Zea mays (Poaceae).

    Science.gov (United States)

    Murphy, Katherine M; Egger, Rachel L; Walbot, Virginia

    2015-11-01

    Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium. © 2015 Botanical Society of America.

  1. Chloroplast: the Trojan horse in plant-virus interaction.

    Science.gov (United States)

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2018-02-01

    The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  2. Programmed cell death in plants: A chloroplastic connection.

    Science.gov (United States)

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field.

  3. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya

    Directory of Open Access Journals (Sweden)

    Junling Cao

    2018-01-01

    Full Text Available Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs. Seventy simple sequence repeats (SSRs were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.

  4. How Do Ancestral Traits Shape Family Trees Over Generations?

    Science.gov (United States)

    Fu, Siwei; Dong, Hao; Cui, Weiwei; Zhao, Jian; Qu, Huamin

    2018-01-01

    Whether and how does the structure of family trees differ by ancestral traits over generations? This is a fundamental question regarding the structural heterogeneity of family trees for the multi-generational transmission research. However, previous work mostly focuses on parent-child scenarios due to the lack of proper tools to handle the complexity of extending the research to multi-generational processes. Through an iterative design study with social scientists and historians, we develop TreeEvo that assists users to generate and test empirical hypotheses for multi-generational research. TreeEvo summarizes and organizes family trees by structural features in a dynamic manner based on a traditional Sankey diagram. A pixel-based technique is further proposed to compactly encode trees with complex structures in each Sankey Node. Detailed information of trees is accessible through a space-efficient visualization with semantic zooming. Moreover, TreeEvo embeds Multinomial Logit Model (MLM) to examine statistical associations between tree structure and ancestral traits. We demonstrate the effectiveness and usefulness of TreeEvo through an in-depth case-study with domain experts using a real-world dataset (containing 54,128 family trees of 126,196 individuals).

  5. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  7. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  8. Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.

    Science.gov (United States)

    Yang, Ji Y; Motilal, Lambert A; Dempewolf, Hannes; Maharaj, Kamaldeo; Cronk, Q C B

    2011-12-01

    Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.

  9. Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae.

    Science.gov (United States)

    Ng, Poh-Kheng; Lin, Showe-Mei; Lim, Phaik-Eem; Liu, Li-Chia; Chen, Chien-Ming; Pai, Tun-Wen

    2017-01-06

    The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined. The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support. Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of

  10. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    Science.gov (United States)

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  11. Comparative assessment of chloroplast transcriptional responses highlights conserved and unique patterns across Triticeae members under salt stress.

    Science.gov (United States)

    Mirzaei, Saeid; Mansouri, Mehdi; Mohammadi-Nejad, Ghasem; Sablok, Gaurav

    2017-12-11

    Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF 0 CF 1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.

  12. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.

    Science.gov (United States)

    Stanne, Tara M; Sjögren, Lars L E; Koussevitzky, Shai; Clarke, Adrian K

    2009-01-01

    The ATP-dependent Clp protease in plant chloroplasts consists of a heterogeneous proteolytic core containing multiple ClpP and ClpR paralogues. In this study, we have examined in detail the only viable knockout mutant to date of one of these subunits in Arabidopsis thaliana, ClpR1. Loss of ClpR1 caused a slow-growth phenotype, with chlorotic leaves during early development that later partially recovered upon maturity. Analysis of the Clp proteolytic core in the clpR1 mutant (clpR1-1) revealed approx. 10% of the wild-type levels remaining, probably due to a relative increase in the closely related ClpR3 protein and its partial substitution of ClpR1 in the core complex. A proteomic approach using an in organello proteolytic assay revealed 19 new potential substrates for the chloroplast Clp protease. Many of these substrates were constitutive enzymes involved in different metabolic pathways, including photosynthetic carbon fixation, nitrogen metabolism and chlorophyll/haem biosynthesis, whereas others function in housekeeping roles such as RNA maturation, protein synthesis and maturation, and recycling processes. In contrast, degradation of the stress-related chloroplast proteins Hsp21 (heat-shock protein 21) and lipoxygenase 2 was unaffected in the clpR1-1 line and thus not facilitated by the Clp protease. Overall, we show that the chloroplast Clp protease is principally a constitutive enzyme that degrades numerous stromal proteins, a feature that almost certainly underlies its vital importance for chloroplast function and plant viability.

  13. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    International Nuclear Information System (INIS)

    McCarty, R. E.

    2004-01-01

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied

  14. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    Science.gov (United States)

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species.

  15. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome.

    Directory of Open Access Journals (Sweden)

    Alison Gonçalves Nazareno

    Full Text Available Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq. L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp and a small single copy region (SSC, 17,586 bp separated by inverted repeat regions (IRs, 25,789 bp. In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering

  16. Basic features of the ancestral chordate brain: a protochordate perspective.

    Science.gov (United States)

    Lacalli, Thurston C

    2008-03-18

    Basic features of the anterior nerve cord in amphioxus larvae are summarized to highlight its essential similarity with the vertebrate brain. Except for a pineal homolog, the amphioxus brain consists of a much simplified version of the ventral brainstem, including a region probably homologous with the hypothalamus, and a locomotory control center roughly comparable to the vertebrate tegmentum and reticulospinal system. Amphioxus has direct pathways for activating its locomotory circuits in response to mechanical stimuli via epithelial sensory cells, but this response is evidently modulated by inputs from diverse sensory-type cells located in the putative hypothalamic homolog, and from the lamellar body, the pineal homolog. This implies that a basic function of the amphioxus brain is to switch between locomotory activities, of which there are several, and the principal non-locomotory one, namely feeding. A similar involvement in switching between behavioral modes may thus have been a core brain function in ancestral chordates. Currently, however, incomplete knowledge of the physiology and behavior of amphioxus limits how effectively it can be used as an evolutionary model. Eye evolution is briefly discussed to illustrate how a better understanding of living forms can inform the evolutionary debate. An account of recent data on dorsoventral inversion is also included, as this bears directly on the question of where the chordate brain originated in relation to other structures. It now appears likely that key components of the ancestral brain were originally located around the mouth. A secondary repositioning of the latter would therefore have been required before a unitary brain could be assembled and internalized. This association between the mouth and the evolving brain reinforces the idea of a fundamental early connection between core brain structures and the control of feeding activity.

  17. Chloroplast microsatellite markers for Pseudotaxus chienii developed from the whole chloroplast genome of Taxus chinensis var. mairei (Taxaceae).

    Science.gov (United States)

    Deng, Qi; Zhang, Hanrui; He, Yipeng; Wang, Ting; Su, Yingjuan

    2017-03-01

    Pseudotaxus chienii (Taxaceae) is an old rare species endemic to China that has adapted well to ecological heterogeneity with high genetic diversity in its nuclear genome. However, the genetic variation in its chloroplast genome is unknown. Eighteen chloroplast microsatellite markers (cpSSRs) were developed from the whole chloroplast genome of Taxus chinensis var. mairei and successfully amplified in four P. chienii populations and one T. chinensis var. mairei population. Of these loci, 10 were polymorphic in P. chienii , whereas six were polymorphic in T. chinensis var. mairei . The unbiased haploid diversity per locus ranged from 0.000 to 0.641 and 0.000 to 0.545 for P. chienii and T. chinensis var. mairei , respectively. The 18 cpSSRs will be used to further investigate the chloroplast genetic structure and adaptive evolution in P. chienii populations.

  18. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales) and a chloroplast phylogenomic analysis of the Campanulidae

    OpenAIRE

    Yao, Xin; Liu, Ying-Ying; Tan, Yun-Hong; Song, Yu; Corlett, Richard T.

    2016-01-01

    Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species) subclass Campanulidae in order to inves...

  19. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  20. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-04-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC remains uncertain. The five complete chloroplast DNA (cpDNA sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR, have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12 relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single

  1. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Jean-Simon Brouard

    2016-10-01

    Full Text Available Background The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA structure, size, gene order, and intron content have been observed. The large inverted repeat (IR, an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum. Methods The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. Results The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium, it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold

  2. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency.

    Science.gov (United States)

    Jacobs, Matthew; Lopez-Garcia, Martin; Phrathep, O-Phart; Lawson, Tracy; Oulton, Ruth; Whitney, Heather M

    2016-10-24

    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture 1,2 . Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses 3,4 , but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia 5 , notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found 5,6 . A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts 7-9 , suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts 10,11 , our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry.

  3. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    Science.gov (United States)

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  4. Modeling X-linked ancestral origins in multiparental populations.

    Science.gov (United States)

    Zheng, Chaozhi

    2015-03-04

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes in a mapping population, which is necessary for developing hidden Markov models in the reconstruction of ancestry blocks for X-linked quantitative trait locus mapping. The model accounts for the joint recombination pattern, the asymmetry between maternally and paternally derived X chromosomes, and the finiteness of population size. The model can be applied to various mapping populations such as the advanced intercross lines (AIL), the Collaborative Cross (CC), the heterogeneous stock (HS), the Diversity Outcross (DO), and the Drosophila synthetic population resource (DSPR). We further derive the map expansion, density (per Morgan) of recombination breakpoints, in advanced intercross populations with L inbred founders under the limit of an infinitely large population size. The analytic results show that for X chromosomes the genetic map expands linearly at a rate (per generation) of two-thirds times 1 - 10/(9L) for the AIL, and at a rate of two-thirds times 1 - 1/L for the DO and the HS, whereas for autosomes the map expands at a rate of 1 - 1/L for the AIL, the DO, and the HS. Copyright © 2015 Zheng.

  5. Allatotropin: an ancestral myotropic neuropeptide involved in feeding.

    Directory of Open Access Journals (Sweden)

    María Eugenia Alzugaray

    Full Text Available Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms.A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies.AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion.Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.

  6. Possible rules for the ancestral origin of Hox gene collinearity.

    Science.gov (United States)

    Gaunt, Stephen J; Gaunt, Alexander L

    2016-12-07

    The Hox gene cluster is believed to have formed from a single ProtoHox gene by repeated cycles of the following events: tandem gene duplication, mutation to generate a new expression boundary along the embryonic axis, and acquisition of a new Hox patterning function. The Hox cluster in Bilateria evolved in compliance with the so-called collinearity rule. That is, the order of the genes along the chromosome corresponds with the order of their embryonic expression domains along the head-tail axis. Gaunt (2015) suggested that collinearity may have arisen as a mechanism to minimise the incidence of boundaries between active and inactive genes within the Hox cluster. We now attempt to clarify the model by presenting it in the form of three rules: 1) no two Hox genes may persist in the same cluster with the same anterior boundary of activity in the same tissue; 2) an inactive Hox gene must not be flanked by two active Hox genes; 3) an active Hox gene must not be flanked by two inactive genes. We provide evidence and illustrative computer simulations to show that these rules, which can apply only to partially overlapping patterns of Hox activity, may account for the ancestral origin of Hox gene collinearity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  8. Ancestral fertility in "Ponciá Vivêncio"

    Directory of Open Access Journals (Sweden)

    Ana Ximenes Gomes de Oliveira

    2015-12-01

    Full Text Available The literature of Conceição Evaristo presents in its characters a rescue and a sort of re­writing of Brazilian historical records, mainly experienced by the black skinned people. Therefore, a literature work as such goes beyond the intentions and canonical places to be destined, because it is a fictional production that acts interposing the discourse of literary authoritarianism. Conceição Evaristo is an author who symbolizes this multiplicity of inherited experiences of the slavery period and post-colonialism in Brazil. Whence, the purpose of this study is to explore the reflections on the historical memory in the novel Ponciá Vicêncio, as well as the issues of ancestrally and how it is con­figured in the maternity of two feminine characters in the novel: the protagonist Ponciá Vicêncio and the wise Nêngua Kainda. Therefore, the considerations of Verena Alberti (2004 on memory and orality; and Reginaldo Prandi (2001 on the representation of mythology of deities in this narrative, it will be used as theoretical framework.

  9. Treatment with Antibiotics that Interfere with Peptidoglycan Biosynthesis Inhibits Chloroplast Division in the Desmid Closterium

    Science.gov (United States)

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum–strigosum–littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death. PMID:22815801

  10. The complete chloroplast genome sequence of Chrysanthemum indicum.

    Science.gov (United States)

    Xia, Ye; Hu, Zhigang; Li, Xiwen; Wang, Ping; Zhang, Xiuqiao; Li, Qing; Lu, Chaolong

    2016-11-01

    Chrysanthemum indicum, an important medicinal plant of Asteraceae, had a long history in use for medicine in China. In this study, the complete chloroplast genome of C. indicum was sequenced by a 454 sequencing platform, and the structure of the obtained chloroplast genome was also analyzed. The complete chloroplast genome of C. indicum was 150 972 bp in length and had a pair of inverted repeats (IR, 24 956 bp) separated by a large (LSC, 82 741 bp) and small single copy (SSC, 18 319 bp) regions. Its total GC content was 37.48%. There were 126 chloroplast genes including 83 protein-coding genes, 35 tRNAs and eight rRNAs were successfully annotated. Sixteen genes contained one or two introns. Phylogenetic analyses declared that the chloroplast genome could distinguish C. indicum from its closely related species and might become a potential super barcode for the identification of these species.

  11. Chloroplasts Isolation from Chlamydomonas reinhardtii under Nitrogen Stress

    Directory of Open Access Journals (Sweden)

    Miao Yang

    2017-08-01

    Full Text Available Triacylglycerols are produced in abundance through chloroplast and endoplasmic reticulum pathways in some microalgae exposed to stress, though the relative contribution of either pathway remains elusive. Characterization of these pathways requires isolation of the organelles. In this study, an efficient and reproducible approach, including homogenous batch cultures of nitrogen-deprived algal cells in photobioreactors, gentle cell disruption using a simple custom-made disruptor with mechanical shear force, optimized differential centrifugation and Percoll density gradient centrifugation, was developed to isolate chloroplasts from Chlamydomonas reinhardtii subjected to nitrogen stress. Using this approach, the maximum limited stress duration was 4 h and the stressed cells exhibited 19 and 32% decreases in intracellular chlorophyll and nitrogen content, respectively. Chloroplasts with 48 – 300 μg chlorophyll were successfully isolated from stressed cells containing 10 mg chlorophyll. These stressed chloroplasts appeared intact, as monitored by ultrastructure observation and a novel quality control method involving the fatty acid biomarkers. This approach can provide sufficient quantities of intact stressed chloroplasts for subcellular biochemical studies in microalgae.

  12. The chloroplast view of the evolution of polyploid wheat.

    Science.gov (United States)

    Gornicki, Piotr; Zhu, Huilan; Wang, Junwei; Challa, Ghana S; Zhang, Zhengzhi; Gill, Bikram S; Li, Wanlong

    2014-11-01

    Polyploid wheats comprise four species: Triticum turgidum (AABB genomes) and T. aestivum (AABBDD) in the Emmer lineage, and T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m) A(m) ) in the Timopheevi lineage. Genetic relationships between chloroplast genomes were studied to trace the evolutionary history of the species. Twenty-five chloroplast genomes were sequenced, and 1127 plant accessions were genotyped, representing 13 Triticum and Aegilops species. The A. speltoides (SS genome) diverged before the divergence of T. urartu (AA), A. tauschii (DD) and the Aegilops species of the Sitopsis section. Aegilops speltoides forms a monophyletic clade with the polyploid Emmer and Timopheevi wheats, which originated within the last 0.7 and 0.4 Myr, respectively. The geographic distribution of chloroplast haplotypes of the wild tetraploid wheats and A. speltoides illustrates the possible geographic origin of the Emmer lineage in the southern Levant and the Timopheevi lineage in northern Iraq. Aegilops speltoides is the closest relative of the diploid donor of the chloroplast (cytoplasm), as well as the B and G genomes to Timopheevi and Emmer lineages. Chloroplast haplotypes were often shared by species or subspecies within major lineages and between the lineages, indicating the contribution of introgression to the evolution and domestication of polyploid wheats. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere.

    Science.gov (United States)

    Akanuma, Satoshi

    2017-08-06

    Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.

  14. "I Ulu No Ka Lala I Ke Kumu", The Branches Grow Because of the Trunk: Ancestral Knowledge as Refusal

    Science.gov (United States)

    Chandler, Kapua L.

    2018-01-01

    This paper will discuss the ways that Native Hawaiian scholars are engaging in innovative strategies that incorporate ancestral knowledges into the academy. Ancestral knowledges are highly valued as Indigenous communities strive to pass on such wisdom and lessons from generation to generation. Ancestral knowledges are all around us no matter where…

  15. Comparative chloroplast genomes of camellia species.

    Directory of Open Access Journals (Sweden)

    Jun-Bo Yang

    Full Text Available BACKGROUND: Camellia, comprising more than 200 species, is a valuable economic commodity due to its enormously popular commercial products: tea leaves, flowers, and high-quality edible oils. It is the largest and most important genus in the family Theaceae. However, phylogenetic resolution of the species has proven to be difficult. Consequently, the interspecies relationships of the genus Camellia are still hotly debated. Phylogenomics is an attractive avenue that can be used to reconstruct the tree of life, especially at low taxonomic levels. METHODOLOGY/PRINCIPAL FINDINGS: Seven complete chloroplast (cp genomes were sequenced from six species representing different subdivisions of the genus Camellia using Illumina sequencing technology. Four junctions between the single-copy segments and the inverted repeats were confirmed and genome assemblies were validated by PCR-based product sequencing using 123 pairs of primers covering preliminary cp genome assemblies. The length of the Camellia cp genome was found to be about 157kb, which contained 123 unique genes and 23 were duplicated in the IR regions. We determined that the complete Camellia cp genome was relatively well conserved, but contained enough genetic differences to provide useful phylogenetic information. Phylogenetic relationships were analyzed using seven complete cp genomes of six Camellia species. We also identified rapidly evolving regions of the cp genome that have the potential to be used for further species identification and phylogenetic resolution. CONCLUSIONS/SIGNIFICANCE: In this study, we wanted to determine if analyzing completely sequenced cp genomes could help settle these controversies of interspecies relationships in Camellia. The results demonstrate that cp genome data are beneficial in resolving species definition because they indicate that organelle-based "barcodes", can be established for a species and then used to unmask interspecies phylogenetic relationships. It

  16. Evolutionary divergence of chloroplast FAD synthetase proteins

    Directory of Open Access Journals (Sweden)

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  17. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    Science.gov (United States)

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  18. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43 Is Required for Chloroplast Development and Photosynthesis.

    Directory of Open Access Journals (Sweden)

    Xiang-guang Lv

    Full Text Available A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS-induced IR64 (Oryza sativa L. ssp. indica mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43 with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43 was required for the normal development of chloroplasts and photosynthesis in rice.

  19. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L.

    Directory of Open Access Journals (Sweden)

    Shun Kimura

    2016-09-01

    Full Text Available The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C, chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented.

  20. The complete chloroplast genome of Lilium distichum Nakai (Liliaceae).

    Science.gov (United States)

    Hwang, Yoon-Jung; Lee, Sang-Choon; Kim, Kyunghee; Choi, Beom-Soon; Park, Jee Young; Yang, Tae-Jin; Lim, Ki-Byung

    2016-11-01

    Lilium distichum is a native lily species in Korea, northeastern China and far eastern Russia. The complete chloroplast genome sequence of L. distichum was generated by de novo assembly using whole genome next generation sequences. The chloroplast genome of L. distichum was 152 598 bp in length and divided into four distinct regions, such as large single copy region (82 031 bp), small single copy region (17 487 bp) and a pair of inverted repeat regions (26 540 bp). The genome annotation predicted a total of 112 genes, including 78 protein-coding genes, 30 tRNA genes,and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. distichum is most closely related to L. superbum (Turk's-cap lily).

  1. Conformational changes in spinach (Spinacia oleracea leaves chloroplasts in vivo

    Directory of Open Access Journals (Sweden)

    Janina Godziemba-Czyż

    2015-01-01

    Full Text Available Changes in the surface area of chloroplasts from intact cells of spinach leaves (\tSpinacia oleracea induced by blue (370—500 nm and red (600- 850 nm light of various intensity (102 - 5x105 erg cm-1s-1 were investigated. The changes are deseribed in terms of mean surface area in , μm2 and frequency of oocurrence of surface size classes. Low intensity blue light caused enlargement of the chloroplast surface (as compared with that in darkness, whereas high intensity light markedly reduced it. Exposure of chloroplasts to red light produces an increase of the surface in proportion to the intensity of the light and irradiation time.

  2. Light-reactivation of (Tris-washed)-DPIP-treated chloroplasts

    International Nuclear Information System (INIS)

    Yamashita, Takashi; Tomita, Giiti

    1976-01-01

    Incorporation of 54 Mn into Tris (pH8.8, 1hr)-washed chloroplasts and oxygen evolving activity were stimulated by DPIP treatment and light-reactivation, but inhibited by atebrin, DCCD, gramicidin J, DCMU and EDTA. Omission of DTT on the light-reactivation resulted in accumulation or deposit of Mn in chloroplasts which had no function for the recovery of oxygen-evolving activity. The chlorophyll fluorescence quenched by Tris-washing was restored by DPIP-treatment and light-reactivation. The chloroplast structure, monitored by its packed volume and optical density at 750mm, changed reversibly with inhibition and DPIP-treatment. The action spectrum of light-reactivation suggested that the effective light-receptor might be photosystem II. (auth.)

  3. STUDIES ON CHLOROPLAST DEVELOPMENT AND REPLICATION IN EUGLENA

    Science.gov (United States)

    Carell, Edgar F.

    1969-01-01

    When Euglena gracilis is grown under vitamin B12 deficiency conditions, the amount of protein and of chlorophyll per cell increase with decrease of B12 in the medium and consequently in the cell. The increase in cell protein is proportional to and precedes an increase in the number of chloroplasts per cell. This replication of the chloroplasts under deficiency conditions is not accompanied by nuclear or cell division. It is concluded that chloroplast replication in Euglena gracilis is independent of nuclear and cellular replication, at least under B12 deficiency conditions. We established a graph of the growth of Euglena under different concentrations of vitamin B12 added to the growth medium, which permitted us to calculate that at least 22,000 molecules of vitamin B12 per cell are required to give normal growth. PMID:5783865

  4. Maternal inheritance of chloroplasts in the horsetail Equisetum variegatum (Schleich.).

    Science.gov (United States)

    Guillon, J M; Raquin, C

    2000-01-01

    Reliable data concerning the transmission of chloroplasts in the Pteridophyta are needed both for phylogenies based on chloroplast DNA (cpDNA) sequences and in order to study the evolution of this trait in conjunction with the evolution of the life cycle and the sexual reproduction of land plants. For the first time, this paper describes organelle transmission in the division Sphenophyta, represented by the extant genus Equisetum. By following the fate of polymorphic cpDNA during three intraspecific reciprocal crosses we found no trace of paternal transmission in Equisetum variegatum. The seemingly strict maternal transmission of cpDNA in this species suggests that uniparental chloroplast inheritance preceded the evolution of heterospory in the seed-plant lineage.

  5. Genome-wide inference of ancestral recombination graphs.

    Directory of Open Access Journals (Sweden)

    Matthew D Rasmussen

    Full Text Available The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG, a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of [Formula: see text] chromosomes conditional on an ARG of [Formula: see text] chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking, although we cannot rule out a contribution from recurrent selective

  6. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids.

    Science.gov (United States)

    Mims, Meryl C; Darrin Hulsey, C; Fitzpatrick, Benjamin M; Streelman, J Todd

    2010-03-01

    Phenotypically diverse Lake Malawi cichlids exhibit similar genomes. The extensive sharing of genetic polymorphism among forms has both intrigued and frustrated biologists trying to understand the nature of diversity in this and other rapidly evolving systems. Shared polymorphism might result from hybridization and/or the retention of ancestrally polymorphic alleles. To examine these alternatives, we used new genomic tools to characterize genetic differentiation in widespread, geographically structured populations of Labeotropheus fuelleborni and Metriaclima zebra. These phenotypically distinct species share mitochondrial DNA (mtDNA) haplotypes and show greater mtDNA differentiation among localities than between species. However, Bayesian analysis of nuclear single nucleotide polymorphism (SNP) data revealed two distinct genetic clusters corresponding perfectly to morphologically diagnosed L. fuelleborni and M. zebra. This result is a function of the resolving power of the multi-locus dataset, not a conflict between nuclear and mitochondrial partitions. Locus-by-locus analysis showed that mtDNA differentiation between species (F(CT)) was nearly identical to the median single-locus SNP F(CT). Finally, we asked whether there is evidence for gene flow at sites of co-occurrence. We used simulations to generate a null distribution for the level of differentiation between co-occurring populations of L. fuelleborni and M. zebra expected if there was no hybridization. The null hypothesis was rejected for the SNP data; populations that co-occur at rock reef sites were slightly more similar than expected by chance, suggesting recent gene flow. The coupling of numerous independent markers with extensive geographic sampling and simulations utilized here provides a framework for assessing the prevalence of gene flow in recently diverged species.

  7. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  8. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  9. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  10. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  11. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  12. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  13. The chloroplast-to-chromoplast transition in tomato fruit

    OpenAIRE

    Bian, Wanping

    2012-01-01

    L'un des phénomènes les plus importants survenus pendant la maturation du fruit de tomate est le changement de couleur du vert au rouge. Ce changement a lieu dans les plastes et correspond à la différenciation des plastes photosynthétiques, les chloroplastes, en plastes non-photosynthétiques qui accumulent des caroténoïdes, les chromoplastes. Dans cette thèse, nous présentons d'abord une introduction bibliographique sur le domaine de la transition chloroplaste-chromoplaste, en décrivant les m...

  14. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY.

    Science.gov (United States)

    Bieri, Philipp; Leibundgut, Marc; Saurer, Martin; Boehringer, Daniel; Ban, Nenad

    2017-02-15

    Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo-EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid-specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid-specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light- and temperature-dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A-site and P-site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non-rotated state, in which the intersubunit bridges to the large subunit are stabilized. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  15. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia.

  16. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?

    NARCIS (Netherlands)

    Donovan, L.A.; Rosenthal, D.R.; Sanchez-Velenosi, M.; Rieseberg, L.H.; Ludwig, F.

    2010-01-01

    Hybrid speciation is thought to be facilitated by escape of early generation hybrids into new habitats, subsequent environmental selection and adaptation. Here, we ask whether two homoploid hybrid plant species (Helianthus anomalus, H. deserticola) diverged sufficiently from their ancestral parent

  17. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States1

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-01-01

    Premise of the study: Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. Methods and Results: A set of command line–based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. Conclusions: WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion. PMID:26949580

  18. Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.).

    Science.gov (United States)

    Lumaret, R; Mir, C; Michaud, H; Raynal, V

    2002-11-01

    Variation in the lengths of restriction fragments (RFLPs) of the whole chloroplast DNA molecule was studied in 174 populations of Quercus ilex L. sampled over the entire distribution of this evergreen and mainly Mediterranean oak species. By using five endonucleases, 323 distinct fragments were obtained. From the 29 and 17 cpDNA changes identified as site and length mutations, respectively, 25 distinct chlorotypes were distinguished, mapped and treated cladistically with a parsimony analysis, using as an outgroup Q. alnifolia Poech, a closely related evergreen oak species endemic to Cyprus where Q. ilex does not grow. The predominant role of Q. ilex as maternal parent in hybridization with other species was reflected by the occurrence of a single very specific lineage of related chlorotypes, the most ancestral and recent ones being located in the southeastern and in the northwestern parts of the species' geographical distribution, respectively. The lineage was constituted of two clusters of chlorotypes observed in the 'ilex' morphotyped populations of the Balkan and Italian Peninsulas (including the contiguous French Riviera), respectively. A third cluster was divided into two subclusters identified in the 'rotundifolia' morphotyped populations of North Africa, and of Iberia and the adjacent French regions, respectively. Postglacial colonization probably started from three distinct southerly refugia located in each of the three European peninsulas, and a contact area between the Italian and the Iberian migration routes was identified in the Rhône valley (France). Chlorotypes identical or related to those of the Iberian cluster were identified in the populations from Catalonia and the French Languedoc region, which showed intermediate morphotypes, and in the French Atlantic populations which possessed the 'ilex' morphotype, suggesting the occurrence of adaptive morphological changes in the northern part of the species' distribution.

  19. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  20. Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm.

    Science.gov (United States)

    Goolsby, Eric W

    2017-04-01

    Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars

  1. An Allele of an Ancestral Transcription Factor Dependent on a Horizontally Acquired Gene Product

    OpenAIRE

    Chen, H. Deborah; Jewett, Mollie W.; Groisman, Eduardo A.

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the...

  2. CGAP: a new comprehensive platform for the comparative analysis of chloroplast genomes.

    Science.gov (United States)

    Cheng, Jinkui; Zeng, Xu; Ren, Guomin; Liu, Zhihua

    2013-03-14

    Chloroplast is an essential organelle in plants which contains independent genome. Chloroplast genomes have been widely used for plant phylogenetic inference recently. The number of complete chloroplast genomes increases rapidly with the development of various genome sequencing projects. However, no comprehensive platform or tool has been developed for the comparative and phylogenetic analysis of chloroplast genomes. Thus, we constructed a comprehensive platform for the comparative and phylogenetic analysis of complete chloroplast genomes which was named as chloroplast genome analysis platform (CGAP). CGAP is an interactive web-based platform which was designed for the comparative analysis of complete chloroplast genomes. CGAP integrated genome collection, visualization, content comparison, phylogeny analysis and annotation functions together. CGAP implemented four web servers including creating complete and regional genome maps of high quality, comparing genome features, constructing phylogenetic trees using complete genome sequences, and annotating draft chloroplast genomes submitted by users. Both CGAP and source code are available at http://www.herbbol.org:8000/chloroplast. CGAP will facilitate the collection, visualization, comparison and annotation of complete chloroplast genomes. Users can customize the comparative and phylogenetic analysis using their own unpublished chloroplast genomes.

  3. Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Dubey, R.S. [Banaras Hindhu University, Varanasi (India). Dept. of Biochemistry; Pandey, K.D. [Banaras Hindhu University, Varanasi (India). Dept. of Botany

    1999-08-01

    Reverse micelles were used for the enhanced rate of photoproduction of hydrogen using the coupled system of Halobacterium halobium and chloroplasts organelles. Different combinations of organic solvents and surfactants were used for generating reverse micelles. A several fold enhancement in the rate of H{sub 2} production was observed when the coupled system was entrapped within reverse micelles as compared to the aqueous suspension where no detectable H{sub 2} was produced. The coupled system immobilized in reverse micelles formed by sodium lauryl sulfate and carbon tetrachloride yielded maximum rate of H{sub 2} evolution. The optimum temperature for such hydrogen production was 40{sup o}C using light of 520-570 nm wavelength and 100 lux intensity. (author)

  4. Contribution of chloroplast DNA in the biodiversity of some Aegilops ...

    African Journals Online (AJOL)

    user

    2011-03-21

    Mar 21, 2011 ... Key words: Aegilops, chloroplast DNA, biodiversity, systematic. INTRODUCTION. Several recent traditional and molecular studies reviewed the taxonomic consequences of the family to which. Aegilops belongs. Kawahara (2009) stated that Triticeae is a taxonomically controversial group at both the species.

  5. Comparative studies on codon usage pattern of chloroplasts and ...

    Indian Academy of Sciences (India)

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in ...

  6. Contribution of chloroplast DNA in the biodiversity of some Aegilops ...

    African Journals Online (AJOL)

    Four Aegilops species (Aegilops longissima, Aegilops speltoides, Aegilops searsii and Aegilops caudata) belonging to the family Poaceae were used in this study. Nucleotides of 1651 bp from 5.8 S rRNA gene and the intergenic spacers trnT-trnL and trnL-trnF from the chloroplast DNA were combined together in order to ...

  7. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. The TOC complex: preprotein gateway to the chloroplast.

    Science.gov (United States)

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  9. Abscisic acid represses the transcription of chloroplast genes

    Czech Academy of Sciences Publication Activity Database

    Yamburenko, M.V.; Zubo, Y.O.; Vaňková, Radomíra; Kusnetsov, V.; Kulaeva, O.N.; Borner, T.

    2013-01-01

    Roč. 64, č. 14 (2013), s. 4491-4502 ISSN 0022-0957 R&D Projects: GA ČR GA522/09/2058 Institutional research plan: CEZ:AV0Z50380511 Keywords : Abscisic acid (ABA) * chloroplast * cytokinin Subject RIV: ED - Physiology Impact factor: 5.794, year: 2013

  10. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica

    Directory of Open Access Journals (Sweden)

    Qinhua Gan

    2018-04-01

    Full Text Available Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation. Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.

  11. Comparative studies on codon usage pattern of chloroplasts and ...

    Indian Academy of Sciences (India)

    Unknown

    applied to several eukaryotes such as Saccharomyces cerevisiae (Sharp et al. ... e.g. 70 S ribosomes, tRNAs and basal translation factors, is known to be .... More importantly, there existed four signifi-. Table 1. Base composition of chloroplast and host genes. Number of sequences. GC First position. GC Second position.

  12. Current trends in chloroplast genome research | Khan | African ...

    African Journals Online (AJOL)

    Therefore, cpDNA sequence information has been instrumental in phylogenetic studies and molecular taxonomy of plants. Chloroplast genome sequencing efforts have being initiated with conventional cloning and chain-termination sequencing technologies. Dedicated databases such as CGDB and GOBASE among ...

  13. Expression of recombinant interferon α-2a in tobacco chloroplasts ...

    African Journals Online (AJOL)

    Chloroplast transformation was accomplished upon bombardment of fully expanded 4 to 6 weeks-old tobacco leaves using helium gun. Green shoots regenerated from single antibiotic resistant cells were subjected to further rounds of selection and regeneration to develop homoplasmic clones. The molecular analysis of ...

  14. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants.

    Directory of Open Access Journals (Sweden)

    Vivien eRolland

    2016-02-01

    Full Text Available Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM, principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM. At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ~37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92-115 amino acids, containing a cleavable chloroplast transit peptide (cTP and a membrane protein leader (MPL, was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope.

  15. Genetic diversity in breonadia salicina based on intra-species sequence variation of chloroplast dna spacer sequence

    International Nuclear Information System (INIS)

    Qurainy, F.A.; Gaafar, A.R.Z.

    2014-01-01

    Assessment and knowledge of the genetic diversity and variation within and between populations of rare and endangered plants is very important for effective conservation. Intergenic spacer sequences variation of psbA-trnH locus of chloroplast genome was assessed within Breonadia salicina (Rubiaceae), a critically endangered and endemic plant species to South western part of Kingdom of Saudi Arabia. The obtained sequence data from 19 individuals in three populations revealed nine haplotypes. The aligned sequences obtained from the overall Saudi accessions extended to 355 bp, revealing nine haplotypes. A high level of haplotype diversity (Hd = 0.842) and low level of nucleotide diversity (Pi = 0.0058) were detected. Consistently, both hierarchical analysis of molecular variance (AMOVA) and constructed neighbor-joining tree indicated null genetic differentiation among populations. This level of differentiation between populations or between regions in psbA-trnH sequences may be due to effects of the abundance of ancestral haplotype sharing and the presence of private haplotypes fixed for each population. Furthermore, the results revealed almost the same level of genetic diversity in comparison with Yemeni accessions, in which Saudi accessions were sharing three haplotypes from the four haplotypes found in Yemeni accessions. (author)

  16. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  17. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  18. Manipulation of Glutathione and Amino Acid Biosynthesis in the Chloroplast1

    Science.gov (United States)

    Noctor, Graham; Arisi, Ana-Carolina M.; Jouanin, Lise; Foyer, Christine H.

    1998-01-01

    Poplars (Populus tremula × Populus alba) were transformed to overexpress Escherichia coli γ-glutamylcysteine synthetase (γ-ECS) or glutathione synthetase in the chloroplast. Five independent lines of each transformant strongly expressed the introduced gene and possessed markedly enhanced activity of the gene product. Glutathione (GSH) contents were unaffected by high chloroplastic glutathione synthetase activity. Enhanced chloroplastic γ-ECS activity markedly increased γ-glutamylcysteine and GSH levels. These effects are similar to those previously observed in poplars overexpressing these enzymes in the cytosol. Similar to cytosolic γ-ECS overexpression, chloroplastic overexpression did not deplete foliar cysteine or methionine pools and did not lead to morphological changes. Light was required for maximal accumulation of GSH in poplars overexpressing γ-ECS in the chloroplast. High chloroplastic, but not cytosolic, γ-ECS activities were accompanied by increases in amino acids synthesized in the chloroplast. We conclude that (a) GSH synthesis can occur in the chloroplast and the cytosol and may be up-regulated in both compartments by increased γ-ECS activity, (b) interactions between GSH synthesis and the pathways supplying the necessary substrates are similar in both compartments, and (c) chloroplastic up-regulation of GSH synthesis is associated with an activating effect on the synthesis of specific amino acids formed in the chloroplast. PMID:9765532

  19. Completion of the Chloroplast Genomes of Five ChineseJuglansand Their Contribution to Chloroplast Phylogeny.

    Science.gov (United States)

    Hu, Yiheng; Woeste, Keith E; Zhao, Peng

    2016-01-01

    Juglans L. (walnuts and butternuts) is an economically and ecologically important genus in the family Juglandaceae. All Juglans are important nut and timber trees. Juglans regia (Common walnut), J. sigillata (Iron walnut), J. cathayensis (Chinese walnut), J. hopeiensis (Ma walnut), and J. mandshurica (Manchurian walnut) are native to or naturalized in China. A strongly supported phylogeny of these five species is not available due to a lack of informative molecular markers. We compared complete chloroplast genomes and determined the phylogenetic relationships among the five Chinese Juglans using IIumina sequencing. The plastid genomes ranged from 159,714 to 160,367 bp encoding 128 functional genes, including 88 protein-coding genes and 40 tRNA genes each. A complete map of the variability across the genomes of the five Juglans species was produced that included single nucleotide variants, indels (insertions and deletions), and large structural variants, as well as differences in simple sequence repeats (SSR) and repeat sequences. Molecular phylogeny strongly supported division of the five walnut species into two previously recognized sections ( Juglans/Dioscaryon and Cardiocaryon ) with a 100% bootstrap (BS) value using the complete cp genomes, protein coding sequences (CDS), and the introns and spacers (IGS) data. The availability of these genomes will provide genetic information for identifying species and hybrids, taxonomy, phylogeny, and evolution in Juglans , and also provide insight into utilization of Juglans plants.

  20. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and

  1. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Maureen [Cornell Univ., Ithaca, NY (United States)

    2016-11-03

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts in relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line

  2. Ancestral effect on HOMA-IR levels quantitated in an American population of Mexican origin.

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Lu, Yang; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B

    2012-12-01

    An elevated insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) is more commonly seen in the Mexican American population than in European populations. We report quantitative ancestral effects within a Mexican American population, and we correlate ancestral components with HOMA-IR. We performed ancestral analysis in 1,551 participants of the Cameron County Hispanic Cohort by genotyping 103 ancestry-informative markers (AIMs). These AIMs allow determination of the percentage (0-100%) ancestry from three major continental populations, i.e., European, African, and Amerindian. We observed that predominantly Amerindian ancestral components were associated with increased HOMA-IR (β = 0.124, P = 1.64 × 10(-7)). The correlation was more significant in males (Amerindian β = 0.165, P = 5.08 × 10(-7)) than in females (Amerindian β = 0.079, P = 0.019). This unique study design demonstrates how genomic markers for quantitative ancestral information can be used in admixed populations to predict phenotypic traits such as insulin resistance.

  3. Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences.

    Science.gov (United States)

    Gardner, Elliot M; Laricchia, Kristen M; Murphy, Matthew; Ragone, Diane; Scheffler, Brian E; Simpson, Sheron; Williams, Evelyn W; Zerega, Nyree J C

    2015-09-01

    Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. Fifteen simple sequence repeats (SSRs) were identified in chloroplast sequences from four Artocarpus transcriptome assemblies. The markers were evaluated using capillary electrophoresis in A. odoratissimus (105 accessions) and A. altilis (73). They were also evaluated in silico in A. altilis (10), A. camansi (6), and A. altilis × A. mariannensis (7) transcriptomes. All loci were polymorphic in at least one species, with all 15 polymorphic in A. camansi. Per species, average alleles per locus ranged between 2.2 and 2.5. Three loci had evidence of fragment-length homoplasy. These markers will complement existing nuclear markers by enabling confident identification of maternal and clone lines, which are often important in vegetatively propagated crops such as breadfruit.

  4. On the Accuracy of Ancestral Sequence Reconstruction for Ultrametric Trees with Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2018-04-01

    We examine a mathematical question concerning the reconstruction accuracy of the Fitch algorithm for reconstructing the ancestral sequence of the most recent common ancestor given a phylogenetic tree and sequence data for all taxa under consideration. In particular, for the symmetric four-state substitution model which is also known as Jukes-Cantor model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that for any ultrametric phylogenetic tree and a symmetric model, the Fitch parsimony method using all terminal taxa is more accurate, or at least as accurate, for ancestral state reconstruction than using any particular terminal taxon or any particular pair of taxa. This conjecture had so far only been answered for two-state data by Fischer and Thatte. Here, we focus on answering the biologically more relevant case with four states, which corresponds to ancestral sequence reconstruction from DNA or RNA data.

  5. CHLOROPLAST STRUCTURAL AND FUNCTIONAL CHANGES AS BIOMARKERS OF HEAVY METAL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    M. V.

    2016-02-01

    Full Text Available The aim was to confirm the hypothesis of possibility to use the chloroplast structural and functional changes in higher plants as biomarkers to assess heavy metal contamination. Chloroplast ultra-structural changes of Pisum sativum L were detected using the transmission electron microscopy. This work deals with studies of chloroplast structure responses to a high content of copper (250 μmМ and zinc (400 μmМ. Data on changes in the structure of chloroplasts in particular, heterogeneity in the grain thylakoid packing, increase of interthylakoid gaps and thickness of chloroplast grain thylakoids in comparison with controls were obtained. The results of studies on structural and functional chloroplasts changes offer challenges for their use as markers for an early diagnostics of abiotic stress effects and in biotechnological studies to produce novel advanced varieties of crops resistant to stress.

  6. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  7. Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)

    Science.gov (United States)

    Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu

    2017-01-01

    The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...

  8. DeCoSTAR: Reconstructing the Ancestral Organization of Genes or Genomes Using Reconciled Phylogenies

    Science.gov (United States)

    Anselmetti, Yoann; Patterson, Murray; Ponty, Yann; B�rard, S�verine; Chauve, Cedric; Scornavacca, Celine; Daubin, Vincent; Tannier, Eric

    2017-01-01

    DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neighborhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which DeCoSTAR is integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann–Gibbs distribution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeCoLT, ART-DeCo, and DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria. Availability: http://pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017). PMID:28402423

  9. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    International Nuclear Information System (INIS)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-01-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  10. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  11. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  12. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    Science.gov (United States)

    Greenbaum, Elias

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  13. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  14. AT2G21280 Only Has a Minor Role in Chloroplast Division

    Directory of Open Access Journals (Sweden)

    Yiqiong Li

    2017-12-01

    Full Text Available Chloroplast division is an important cellular process, which involves complicated coordination of multiple proteins. In mutant plants with chloroplast division defects, chloroplasts are usually found to be with enlarged size and reduced numbers. Previous studies have shown that AT2G21280, which was named as GC1 (GIANT CHLOROPLAST 1 or AtSulA, was an important chloroplast division gene, because either reduced expression or overexpression of the gene could result in an apparent chloroplast division phenotype (Maple et al., 2004; Raynaud et al., 2004. To further study the function of AT2G21280, we obtained mutants of this gene by CRISPR/Cas9-mediated gene editing and T-DNA insertion. Most of the chloroplasts in the mutants were similar to that of the wild type in size. Larger chloroplasts were rarely found in the mutants. Moreover, we obtained transgenic plants overexpressing AT2G21280, analyzed the chloroplast division phenotype, and found there were no significant differences between the wild type and various overexpressing plants. Phylogenetic analysis clearly indicated that AT2G21280 was not in the family of bacterial cell division protein SulA. Instead, BLAST analysis suggested that AT2G21280 is an NAD dependent epimerase/dehydratase family enzyme. Since the main results of the previous studies that AT2G21280 is an important chloroplast division gene cannot be confirmed by our intensive study and large chloroplasts are rarely found in the mutants, we think the previous names of AT2G21280 are inappropriate. Localization study results showed that AT2G21280 is a peripheral protein of the inner envelope of chloroplasts in the stroma side. AT2G21280 is well conserved in plants and cyanobacteria, suggesting its function is important, which can be revealed in the future study.

  15. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    Science.gov (United States)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  16. Glycolate oxidation in A. thaliana chloroplasts improves biomass production

    Directory of Open Access Journals (Sweden)

    Alexandra eMaier

    2012-02-01

    Full Text Available A complete glycolate catabolic cycle was established in chloroplasts of the C3-model plant Arabidopsis thaliana by which one molecule of glycolate is completely oxidized within the chloroplast to two molecules of CO2. Genes coding for glycolate oxidase, malate synthase, and catalase were introduced into the nuclear genome of A. thaliana by step-wise transformation. Other genes required for a fully operational pathway are the endogenous NADP-malic enzyme and pyruvate dehydrogenase. Transgenic lines expressing the complete novel pathway produced rossettes with more leaves and higher fresh and dry weight but individual leaves were flatter and thinner than the wild type. The photosynthetic rates of the transgenic plants were higher on a dry weight and chlorophyll basis, but there were no differences in the compensation point. In addition, transgenic plants showed a lower glycine/serine ratio than the wild type indicating a reduction of the flux through the photorespiratory pathway. In this way, due to the increased oxidation of glycolate inside the chloroplasts, a photorespiratory bypass was created, which resulted in higher CO2 assimilation and enhanced biomass production.

  17. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states.

    Science.gov (United States)

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M

    2015-09-01

    Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were

  18. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis.

    Science.gov (United States)

    Sugliani, Matteo; Abdelkefi, Hela; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano; Field, Ben

    2016-03-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  20. Phosphorus compounds, proteins, nuclease and acid phosphatase activities in isolated spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    E. Mikulska

    2015-01-01

    Full Text Available This paper deals with attempts to elaborate a simple method of spinach chloroplast isolation ensuring a high proportion of intact chloroplasts. We obtained 3 preparations of isolated chloroplasts. Several preliminary analyses of the obtained chloroplast fraction were also performed. Phosphorus compounds, total protein and the enzyme activities of RNase, DNase and GPase were determined. We found: 0,36-0,59% of RNA, 0,19-0,24% of DNA, 2,1-2,9% of phospholipids and 26-28% of protein. RNase activity was very high.

  1. Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?

    Science.gov (United States)

    Solti, Ádám; Kovács, Krisztina; Müller, Brigitta; Vázquez, Saúl; Hamar, Éva; Pham, Hong Diep; Tóth, Brigitta; Abadía, Javier; Fodor, Ferenc

    2016-12-01

    Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd 2+ , Zn 2+ , and Mn 2+ ) enhanced, whereas oxoanions (NO 3 - , SO 4 2- , and BO 3 3- ) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe 2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.

  2. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  3. Inheritance of the 8.1 ancestral haplotype in recurrent pregnancy loss

    DEFF Research Database (Denmark)

    Kolte, Astrid M; Nielsen, Henriette S; Steffensen, Rudi

    2015-01-01

    BACKGROUND AND OBJECTIVES: The 8.1 ancestral haplotype (AH) (HLA-A1, C7, B8, C4AQ0, C4B1, DR3, DQ2) is a remarkably long and conserved haplotype in the human major histocompatibility complex. It has been associated with both beneficial and detrimental effects, consistent with antagonistic...

  4. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

    Science.gov (United States)

    Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson

    2015-01-01

    Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...

  5. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European

    DEFF Research Database (Denmark)

    Olalde, Inigo; Allentoft, Morten E.; Sanchez-Quinto, Federico

    2014-01-01

    to the Mesolithic. The La Brana individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated...

  6. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa[C][W

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A.; Wang, Xiaowu

    2013-01-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers. PMID:23653472

  7. A skull might lie: modelling ancestral ranges and diet from genes and shape of tree squirrels

    Czech Academy of Sciences Publication Activity Database

    Pečnerová, Patrícia; Moravec, Jiří C.; Martínková, Natália

    2015-01-01

    Roč. 64, č. 6 (2015), s. 1074-1088 ISSN 1063-5157 EU Projects: European Commission(XE) CZ.1.07/2.4.00/17.0138 Institutional support: RVO:68081766 Keywords : Sciurini * multilocus phylogeny * geometric morphometry * speciation * ancestral range reconstruction * diet modelling Subject RIV: EG - Zoology Impact factor: 8.225, year: 2015

  8. Language Shift and Maintenance in Multilingual Mauritius: The Case of Indian Ancestral Languages

    Science.gov (United States)

    Bissoonauth, Anu

    2011-01-01

    This paper reports on a research study conducted in Mauritius between June and July 2009. The aim of this research was to investigate the use of Indian ancestral languages in the domestic domain by the younger generations. The data were collected in the field by means of a questionnaire and interviews from a quota sample of secondary school…

  9. GENETIC POLYMORPHISM IN GYMNODINIUM GALATHEANUM CHLOROPLAST DNA SEQUENCES AND DEVELOPMENT OF A MOLECULAR DETECTION ASSAY. (R827084)

    Science.gov (United States)

    Nuclear and chloroplast-encoded small subunit ribosomal DNA sequences were obtainedfrom several strains of the toxic dinoflagellate Gymnodinium galatheanum. Phylogenetic analyses andcomparison of sequences indicate that the chloroplast sequences show a higher degree of se...

  10. RidgeRace: ridge regression for continuous ancestral character estimation on phylogenetic trees.

    Science.gov (United States)

    Kratsch, Christina; McHardy, Alice C

    2014-09-01

    Ancestral character state reconstruction describes a set of techniques for estimating phenotypic or genetic features of species or related individuals that are the predecessors of those present today. Such reconstructions can reach into the distant past and can provide insights into the history of a population or a set of species when fossil data are not available, or they can be used to test evolutionary hypotheses, e.g. on the co-evolution of traits. Typical methods for ancestral character state reconstruction of continuous characters consider the phylogeny of the underlying data and estimate the ancestral process along the branches of the tree. They usually assume a Brownian motion model of character evolution or extensions thereof, requiring specific assumptions on the rate of phenotypic evolution. We suggest using ridge regression to infer rates for each branch of the tree and the ancestral values at each inner node. We performed extensive simulations to evaluate the performance of this method and have shown that the accuracy of its reconstructed ancestral values is competitive to reconstructions using other state-of-the-art software. Using a hierarchical clustering of gene mutation profiles from an ovarian cancer dataset, we demonstrate the use of the method as a feature selection tool. The algorithm described here is implemented in C++ as a stand-alone program, and the source code is freely available at http://algbio.cs.uni-duesseldorf.de/software/RidgeRace.tar.gz. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  11. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from total DNA Sequences.

    NARCIS (Netherlands)

    Izan, Shairul; Esselink, G.; Visser, R.G.F.; Smulders, M.J.M.; Borm, T.J.A.

    2017-01-01

    Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This

  12. Effect of alkyl-N-phenylcarbamates on photochemical activity of spinach chloroplasts

    International Nuclear Information System (INIS)

    Sersen, F.; Kralova, K.; Macho, V.

    1999-01-01

    This study is aimed to investigate the effect of alkyl-N-phenylcarbamates on photosynthetic electron transport in spinach chloroplasts, to determine site of action in the photosynthetic apparatus of spinach chloroplasts and to find correlations between their structure and biological activity. (authors)

  13. Genetic analysis of a Microseris douglasii (Asteraceae) population polymorphic for an alien chloroplast type

    NARCIS (Netherlands)

    Roelofs, Dick; Bachmann, Konrad

    1997-01-01

    Recent evidence suggests chloroplast introgression from Microseris bigelovii into M. douglasii. We have examined 23 plants from a population of M. douglasii polymorphic for M. douglasii and M. bigelovii chloroplast types. All 23 plants were completely homozygous for morphological and RAPD markers,

  14. Designing specific chloroplast markers for black walnut from a set of universal primers

    Science.gov (United States)

    Erin Victory; Rodney L. Robichaud; Keith Woeste

    2003-01-01

    Chloroplasts are a valuable source of genetic information because their sequence is highly conserved, they undergo little or no recombination, and they are uniparentally inherited. Chloroplast polymorphisms are powerful genetic tools for identifying matrilineal family groups, studying gene flow from seed versus pollen movement, reconstructing phylogeographic...

  15. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  16. Reference-Free Comparative Genomics of 174 Chloroplasts

    Science.gov (United States)

    Kua, Chai-Shian; Ruan, Jue; Harting, John; Ye, Cheng-Xi; Helmus, Matthew R.; Yu, Jun; Cannon, Charles H.

    2012-01-01

    Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ∼18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied

  17. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  18. The complete chloroplast genome sequence of Hibiscus syriacus.

    Science.gov (United States)

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes.

  19. Chloroplast Movement May Impact Plant Phenotyping and Photochemistry Results

    Science.gov (United States)

    Malas, J.; Pleban, J. R.; Wang, D. R.; Riley, C.; Mackay, D. S.

    2017-12-01

    Investigating phenotypic responses of crop species across environmental conditions is vital to improving agricultural productivity. Crop production is closely linked with photosynthetic activity, which can be evaluated using parameters such as relative chlorophyll, SPAD, and variable chlorophyll fluorescence. Recently, a handheld device known as the MultispeQ emerged on the market as an open-source instrument that aims to provide high-output, high-quality field data at a low cost to the plant research community. MultispeQ takes measurements of both environmental conditions (light intensity, temperature, humidity, etc.) and photosynthetic parameters (relative chlorophyll, SPAD, photosystem II quantum efficiency (FII), and non-photochemical quenching (NPQ)). Data are automatically backed up and shared on the PhotosynQ network, which serves as a collaborative platform for researchers and professionals. Here, we used the instrument to quantify photosynthetic time-courses of two Brassica rapa genotypes in response to two contrasting nutrient management strategies (Control; High Nitrogen). Previous research found that chloroplast movement is one strategy plants use to optimize photosynthesis across varying light conditions. We were able to detect chloroplast movement throughout the day using the MultispeQ device. Our results support the idea that chloroplast movement serves both as an intrinsic feature of the circadian clock and as a light avoidance strategy. Under low light conditions (PAR 0-300) more light at the near-infrared and red regions was absorbed than under higher light conditions (PAR 500-800). In one genotype by treatment combination, absorbance at 730nm was around 60% at low light, versus only 30% at high light conditions. In light of our results that relative chlorophyll may change throughout a day, we suggest that it is important to take note of these effects when collecting photosynthesis efficiency data in order to avoid bias in measurements. We also

  20. Hartmut Lichtenthaler: an authority on chloroplast structure and isoprenoid biochemistry.

    Science.gov (United States)

    Sharkey, Thomas D; Govindjee

    2016-05-01

    We pay tribute to Hartmut Lichtenthaler for making important contributions to the field of photosynthesis research. He was recently recognized for ground-breaking discoveries in chloroplast structure and isoprenoid biochemistry by the Rebeiz Foundation for Basic Research (RFBR; http://vlpbp.org/ ), receiving a 2014 Lifetime Achievement Award for Photosynthesis. The ceremony, held in Champaign, Illinois, was attended by many prominent researchers in the photosynthesis field. We provide below a brief note on his education, and then describe some of the areas in which Hartmut Lichtenthaler has been a pioneer.

  1. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  2. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  3. The evolution of blue-greens and the origins of chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  4. Chloroplast transformation of Platymonas (Tetraselmis subcordiformis with the bar gene as selectable marker.

    Directory of Open Access Journals (Sweden)

    Yulin Cui

    Full Text Available The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left and trnA-rrn23S (right as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga.

  5. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  6. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  7. The complete chloroplast genome of banana (Musa acuminata, Zingiberales: insight into plastid monocotyledon evolution.

    Directory of Open Access Journals (Sweden)

    Guillaume Martin

    Full Text Available BACKGROUND: Banana (genus Musa is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp and a Small Single Copy region (SSC, 10,768 bp separated by Inverted Repeat regions (IRs, 35,433 bp. Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1 and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  8. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution.

    Science.gov (United States)

    Dünschede, Beatrix; Träger, Chantal; Schröder, Christine Vera; Ziehe, Dominik; Walter, Björn; Funke, Silke; Hofmann, Eckhard; Schünemann, Danja

    2015-05-22

    In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco

    Czech Academy of Sciences Publication Activity Database

    Polanská, Lenka; Vičánková, Anna; Nováková, Marie; Malbeck, Jiří; Dobrev, Petre; Brzobohatý, Břetislav; Vaňková, Radomíra; Macháčková, Ivana

    2007-01-01

    Roč. 58, č. 3 (2007), s. 637-649 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA ČR GA206/06/1306; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040507 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : abscisic acid * auxin * chloroplast ultrastructure Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  10. The molecular architecture of the chloroplast thylakoid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Stefansson, H.

    1996-08-01

    Non-detergent procedure for isolation of sub-thylakoid vesicle populations derived from different structural domains of the chloroplast thylakoid membrane has been developed. Sub-thylakoid vesicles representing the grana, grana core, stroma lamellae, and the grana margins have been isolated and their protein composition has been investigated. Furthermore a novel non-detergent procedure for investigating the pigment composition of photosynthetic complexes located in the different structural domains has been developed. This procedure circumvents selective extractions, an perturbing effect often combined with detergent isolations of membrane bound protein complexes. The fractionation experiments show that the NADPH dehydrogenase, suggested to operate as NADPH or ferredoxin-plastoquinone oxidoreductase in cyclic electron transport around photosystem I, is stoichiometrically depleted on photosystem I basis in the grana domain. The fractionation studies are consistent with the model of the thylakoid membrane where the photosystems in the grana are operating in a linear electron transport whereas the site of cyclic electron transport is in the stroma lamellae. It is suggested that partial destacking of grana, as a result of light-induced protein phosphorylation, may promote the exposure of the granal photosystem I centers to the chloroplast stroma and thereby enhance their participation in cyclic electron transport activity. 146 refs, 18 figs

  11. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  12. Chloroplast protein synthesis: thylakoid bound polysomes synthesize thylakoid proteins

    Energy Technology Data Exchange (ETDEWEB)

    Hurewitz, J.; Jagendorf, A.T.

    1986-04-01

    Previous work indicated more polysomes bound to pea thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus the major effect of light in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus translation initiation and termination probably control the cycling of bound ribosomes. While only 3 to 6% of total RNA is in bound polysomes the incorporation of /sup 3/H-Leu into thylakoids was proportional to the amount of this bound RNA. When Micrococcal nuclease-treated thylakoids were added to labeled runoff translation products of stroma ribosomes, less than 1% of the label adhered to the added membranes; but 37% of the labeled products made by thylakoid polysomes were bound. These data support the concept that stroma ribosomes are recruited into thylakoid proteins.

  13. Global chloroplast phylogeny and biogeography of bracken (Pteridium; Dennstaedtiaceae).

    Science.gov (United States)

    Der, Joshua P; Thomson, John A; Stratford, Jeran K; Wolf, Paul G

    2009-05-01

    Bracken ferns (genus Pteridium) represent an ancient species complex with a natural worldwide distribution. Pteridium has historically been treated as comprising a single species, but recent treatments have recognized several related species. Phenotypic plasticity, geographically structured morphological variation, and geographically biased sampling have all contributed to taxonomic confusion in the genus. We sampled bracken specimens worldwide and used variable regions of the chloroplast genome to investigate phylogeography and reticulate evolution within the genus. Our results distinguish two major clades within Pteridium, a primarily northern hemisphere Laurasian/African clade, which includes all taxa currently assigned to P. aquilinum, and a primarily southern hemisphere Austral/South American clade, which includes P. esculentum and P. arachnoideum. All European accessions of P. aquilinum subsp. aquilinum appear in a monophyletic group and are nested within a clade containing the African P. aquilinum taxa (P. aquilinum subsp. capense and P. aquilinum subsp. centrali-africanum). Our results allow us to hypothesize the maternal progenitors of two allotetraploid bracken species, P. caudatum and P. semihastatum. We also discuss the biogeography of bracken in the context of the chloroplast phylogeny. Our study is one of the first to take a worldwide perspective in addressing variation in a broadly distributed species complex.

  14. The complete chloroplast genome sequence of Dioscorea zingiberensis (Dioscoreceae).

    Science.gov (United States)

    Zhou, Wen; Chen, Chen; Hua, Wen-Ping; Wang, Zhe-Zhi

    2016-07-01

    Dioscorea zingiberensis (Dioscoreceae) is an important medicinal plant endemic to China. Here, its chloroplast genome sequence is reconstructed from the whole-genome Illumina sequencing data. The circular genome is 153,970 bp in length, and comprises a pair of inverted repeat (IR) regions of 25,491 bp each, a large single-copy (LSC) region of 83,950 bp and a small single-copy (SSC) region of 19,038 bp. The chloroplast genome contains 132 genes, including 86 protein-coding genes (79 PCG species), 8 ribosomal RNA genes (four rRNA species) and 38 transfer RNA genes (30 tRNA species). Out of these genes, 10 harbor a single intron, and 7 contain a couple of introns. The overall A + T content of the whole genome is 62.8%, while the corresponding values of the LSC, SSC and IR regions are 64.9%, 68.8% and 57.0%, respectively.

  15. Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications.

    Science.gov (United States)

    Onimaru, Koh; Kuraku, Shigehiro

    2018-03-16

    Inferring the phenotype of the last common ancestor of living vertebrates is a challenging problem because of several unresolvable factors. They include the lack of reliable out-groups of living vertebrates, poor information about less fossilizable organs and specialized traits of phylogenetically important species, such as lampreys and hagfishes (e.g. secondary loss of vertebrae in adult hagfishes). These factors undermine the reliability of ancestral reconstruction by traditional character mapping approaches based on maximum parsimony. In this article, we formulate an approach to hypothesizing ancestral vertebrate phenotypes using information from the phylogenetic and functional properties of genes duplicated by genome expansions in early vertebrate evolution. We named the conjecture as 'chronological reconstruction of ohnolog functions (CHROF)'. This CHROF conjecture raises the possibility that the last common ancestor of living vertebrates may have had more complex traits than currently thought.

  16. Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W. (Emory-MED); (Harvard); (Oregon)

    2012-03-16

    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and

  17. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  18. Hermeneutic Inquiry: Paying Heed to History and Hermes An Ancestral, Substantive, and Methodological Tale

    Directory of Open Access Journals (Sweden)

    Nancy J. Moules

    2002-09-01

    Full Text Available Hermeneutic or interpretive inquiry is a living tradition of interpretation with a rich legacy of theory, philosophy, and practice. This paper is not intended to be a treatise on the right way to view and practice this tradition, but an exploration of the legacies that inform the philosophy of practice as the author has taken it up. In this explication, the author examines the ancestral, philosophical, and methodological histories that inform a current practice of hermeneutic inquiry.

  19. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures...

  20. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  1. Something for nothing? Reconstruction of ancestral character states in asterinid sea star development.

    Science.gov (United States)

    Keever, Carson C; Hart, Michael W

    2008-01-01

    Traits from early development mapped onto phylogenetic trees can potentially offer insight into the evolutionary history of development by inferring the states of those characters among ancestors at nodes in the phylogeny. A key and often-overlooked aspect of such mapping is the underlying model of character evolution. Without a well-supported and realistic model ("nothing"), character mapping of ancestral traits onto phylogenetic trees might often return results ("something") that lack a sound basis. Here we reconsider a challenging case study in this area of evolutionary developmental biology: the inference of ancestral states for ecological and morphological characters in the reproduction and larval development of asterinid sea stars. We apply improved analytical methods to an expanded set of asterinid phylogenetic data and developmental character states. This analysis shows that the new methods might generally offer some independent insight into choice of a model of character evolution, but that in the specific case of asterinid sea stars the quantitative features of the model (especially the relative probabilities of different directions of change) have an important effect on the results. We suggest caution in applying ancestral state reconstructions in the absence of an independently corroborated model of character evolution, and highlight the need for such modeling in evolutionary developmental biology.

  2. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.

    Science.gov (United States)

    Gao, Nan; Zhang, Yan; Feng, Bing; Tang, Jijun

    2015-01-01

    Recent advances of technology have made it easy to obtain and compare whole genomes. Rearrangements of genomes through operations such as reversals and transpositions are rare events that enable researchers to reconstruct deep evolutionary history among species. Some of the popular methods need to search a large tree space for the best scored tree, thus it is desirable to have a fast and accurate method that can score a given tree efficiently. During the tree scoring procedure, the genomic structures of internal tree nodes are also provided, which provide important information for inferring ancestral genomes and for modeling the evolutionary processes. However, computing tree scores and ancestral genomes are very difficult and a lot of researchers have to rely on heuristic methods which have various disadvantages. In this paper, we describe the first genetic algorithm for tree scoring and ancestor inference, which uses a fitness function considering co-evolution, adopts different initial seeding methods to initialize the first population pool, and utilizes a sorting-based approach to realize evolution. Our extensive experiments show that compared with other existing algorithms, this new method is more accurate and can infer ancestral genomes that are much closer to the true ancestors.

  3. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  4. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity.

    Science.gov (United States)

    King, Benedict; Lee, Michael S Y

    2015-05-01

    Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM to predict individuals' continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of structure informative markers, efficient detection of population substructure and ancestral inference.

  6. Evolutionary history of versatile-lipases from Agaricales through reconstruction of ancestral structures.

    Science.gov (United States)

    Barriuso, Jorge; Martínez, María Jesús

    2017-01-03

    Fungal "Versatile carboxylic ester hydrolases" are enzymes with great biotechnological interest. Here we carried out a bioinformatic screening to find these proteins in genomes from Agaricales, by means of searching for conserved motifs, sequence and phylogenetic analysis, and three-dimensional modeling. Moreover, we reconstructed the molecular evolution of these enzymes along the time by inferring and analyzing the sequence of ancestral intermediate forms. The properties of the ancestral candidates are discussed on the basis of their three-dimensional structural models, the hydrophobicity of the lid, and the substrate binding intramolecular tunnel, revealing all of them featured properties of these enzymes. The evolutionary history of the putative lipases revealed an increase on the length and hydrophobicity of the lid region, as well as in the size of the substrate binding pocket, during evolution time. These facts suggest the enzymes' specialization towards certain substrates and their subsequent loss of promiscuity. These results bring to light the presence of different pools of lipases in fungi with different habitats and life styles. Despite the consistency of the data gathered from reconstruction of ancestral sequences, the heterologous expression of some of these candidates would be essential to corroborate enzymes' activities.

  7. Lack of Social Support Raises Stress Vulnerability in Rats with a History of Ancestral Stress.

    Science.gov (United States)

    Faraji, Jamshid; Soltanpour, Nabiollah; Lotfi, Hamid; Moeeini, Reza; Moharreri, Ali-Reza; Roudaki, Shabnam; Hosseini, S Abedin; Olson, David M; Abdollahi, Ali-Akbar; Soltanpour, Nasrin; Mohajerani, Majid H; Metz, Gerlinde A S

    2017-07-13

    Stress is a primary risk factor for psychiatric disorders. However, it is not fully understood why some stressed individuals are more vulnerable to psychiatric disorders than others. Here, we investigated whether multigenerational ancestral stress produces phenotypes that are sensitive to depression-like symptoms in rats. We also examined whether social isolation reveals potentially latent sensitivity to depression-like behaviours. F4 female rats born to a lineage of stressed mothers (F0-F3) received stress in adulthood while housed in pairs or alone. Social isolation during stress induced cognitive and psychomotor retardation only in rats exposed to ancestral stress. Social isolation also hampered the resilience of the hypothalamic-pituitary-adrenal axis to chronic stress and reduced hippocampal volume and brain-derived neurotrophic factor (BDNF) expression. Thus, synergy between social isolation and stress may unmask a latent history of ancestral stress, and raises vulnerability to mental health conditions. The findings support the notion that social support critically promotes stress coping and resilience.

  8. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales) and a chloroplast phylogenomic analysis of the Campanulidae.

    Science.gov (United States)

    Yao, Xin; Liu, Ying-Ying; Tan, Yun-Hong; Song, Yu; Corlett, Richard T

    2016-01-01

    Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica , the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species) subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR) regions of 25,996 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  9. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales and a chloroplast phylogenomic analysis of the Campanulidae

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-11-01

    Full Text Available Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR regions of 25,996 bp separated by a large single-copy (LSC region and a small single-copy (SSC region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  10. Complete chloroplast genome sequences of Lilium: insights into evolutionary dynamics and phylogenetic analyses.

    Science.gov (United States)

    Du, Yun-Peng; Bi, Yu; Yang, Feng-Ping; Zhang, Ming-Fang; Chen, Xu-Qing; Xue, Jing; Zhang, Xiu-Hai

    2017-07-18

    Lilium is a large genus that includes approximately 110 species distributed throughout cold and temperate regions of the Northern Hemisphere. The species-level phylogeny of Lilium remains unclear; previous studies have found universal markers but insufficient phylogenetic signals. In this study, we present the use of complete chloroplast genomes to explore the phylogeny of this genus. We sequenced nine Lilium chloroplast genomes and retrieved seven published chloroplast genomes for comparative and phylogenetic analyses. The genomes ranged from 151,655 bp to 153,235 bp in length and had a typical quadripartite structure with a conserved genome arrangement and moderate divergence. A comparison of sixteen Lilium chloroplast genomes revealed ten mutation hotspots. Single nucleotide polymorphisms (SNPs) for any two Lilium chloroplast genomes ranged from 8 to 1,178 and provided robust data for phylogeny. Except for some of the shortest internodes, phylogenetic relationships of the Lilium species inferred from the chloroplast genome obtained high support, indicating that chloroplast genome data will be useful to help resolve the deeper branches of phylogeny.

  11. The chloroplast genome of a symbiodinium sp. clade C3 isolate

    KAUST Repository

    Barbrook, Adrian C.

    2014-01-01

    Dinoflagellate algae of the genus Symbiodinium form important symbioses within corals and other benthic marine animals. Dinoflagellates possess an extremely reduced plastid genome relative to those examined in plants and other algae. In dinoflagellates the plastid genes are located on small plasmids, commonly referred to as \\'minicircles\\'. However, the chloroplast genomes of dinoflagellates have only been extensively characterised from a handful of species. There is also evidence of considerable variation in the chloroplast genome organisation across those species that have been examined. We therefore characterised the chloroplast genome from an environmental coral isolate, in this case containing a symbiont belonging to the Symbiodinium sp. clade C3. The gene content of the genome is well conserved with respect to previously characterised genomes. However, unlike previously characterised dinoflagellate chloroplast genomes we did not identify any \\'empty\\' minicircles. The sequences of this chloroplast genome show a high rate of evolution relative to other algal species. Particularly notable was a surprisingly high level of sequence divergence within the core polypeptides of photosystem I, the reasons for which are currently unknown. This chloroplast genome also possesses distinctive codon usage and GC content. These features suggest that chloroplast genomes in Symbiodinium are highly plastic. © 2013 Adrian C. Barbrook.

  12. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  13. Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    Science.gov (United States)

    Dorrell, Richard G.; Drew, James; Nisbet, R. Ellen R.; Howe, Christopher J.

    2014-01-01

    It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. PMID:24453981

  14. Illumina sequencing of the chloroplast genome of common ragweed (Ambrosia artemisiifolia L.

    Directory of Open Access Journals (Sweden)

    Erzsébet Nagy

    2017-12-01

    Full Text Available Common ragweed (Ambrosia artemisiifolia L. is the most widespread weed and the most dangerous pollen allergenic plant in large areas of the temperate zone. Since herbicides like PSI and PSII inhibitors have their target genes in the chloroplast genome, understanding the chloroplast genome may indirectly support the exploration of herbicide resistance and development of novel control methods. The aim of the present study was to sequence and reconstruct for the chloroplast genome of A. artemisiifolia and establish a molecular dataset. We used an Illumina MiSeq protocol to sequence the chloroplast genome of isolated intact organelles of ragweed plants grown in our experimental garden. The assembled chloroplast genome was found to be 152,215 bp (GC: 37.6% in a quadripartite structure, where 80 protein coding genes, 30 tRNA and 4 rRNA genes were annotated in total. We also report the complete sequence of 114 genes encoded in A. artemisiifolia chloroplast genome supported by both MIRA and Velvet de novo assemblers and ordered to Helianthus annuus L. using the Geneious software. Keywords: Illumina sequencing, Chloroplast genome, cpDNA, Common ragweed, Ambrosia artemisiifolia

  15. Reversible pH-dependent activation/inactivation of CF(1-ATPase of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. P. Khomochkin

    2017-08-01

    Full Text Available The aim of the work was to study the reverse pH-dependent regulation of the enzymatic activity of the catalytic part of ATP synthase (EC 3.6.3.14 of chloroplast – coupling factor CF1. It was shown that the short-term incubation of isolated CF1 in the media with pH 4.5 or 3.5 leads to inactivation of Ca2+-ATPase, which is rapidly (t1/2 ~ 1 min restored in the medium containing 0.5-10 mM bicarbonate at pH 7.8. After acid treatment, the rate of Mg2+-ATPase reaction was also stimulated in the presence of 1 mM bicarbonate (рН 7.8; 37 °С. The increase in Ca2+– and Mg2+-АТР activity of CF1 associated with the addition of NaHCO3 solution was completely eliminated after the introduction of 50 mM acetazolamide – a specific inhibitor of carbonic anhydrase. The obtained results suggest the existence of the bound bicarbonate in the CF1 structure, which apparently participates in proton transfer.

  16. Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty, and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.

  17. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  18. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  19. Photoreduction of Sulfur Dioxide by Spinach Leaves and Isolated Spinach Chloroplasts

    Science.gov (United States)

    Silvius, John E.; Baer, Charles H.; Dodrill, Sherman; Patrick, Homer

    1976-01-01

    Labeled sulfur dioxide was found to be extensively absorbed by spinach (Spinacea oleracea L.) leaves. Labeled sulfides detected in leaf blades following fumigations with sulfur dioxide in light indicated that photoreduction of sulfur dioxide had occurred. Measurable proportions of this labeled sulfur was localized within the chloroplast fraction. Suspensions of isolated chloroplasts supplied with labeled sulfur dioxide contained labeled sulfides following a 30-minute illumination period in water-cooled reaction vessels. With reference to recent studies of the chloroplast sulfur reduction pathway, probable points of entry for sulfur dioxide and the subsequent release of hydrogen sulfide are discussed. PMID:16659572

  20. Destruction of pigments and lipids in isolated chloroplasts under the effect of visible radiation

    International Nuclear Information System (INIS)

    Merzlyak, M.N.; Pogosyan, S.I.

    1988-01-01

    The results of experiments on the effect of light radiation on lipid and pigment destruction in isolated chloroplasts are generalized. Substrates and products of oxidation destruction of lipid and pigments, the role of photosynthetic electron transport in photodestruction, the participation of activated oxygen and free-radical intermediate forms in it are considered. The role of antioxidants, carotenoids and enzymatic systems in protection of chloroplast membranes from destructive light effect is discussed. A general scheme of possible ways of photodestruction in chloroplasts is presented. 53 refs

  1. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials

    OpenAIRE

    Su?rez-Villota, Elkin Y.; Haro, Ronie E.; Vargas, Rodrigo A.; Gallardo, Milton H.

    2016-01-01

    Background The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials? cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GIS...

  2. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    Science.gov (United States)

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP.

  3. Photosynthetic production of diterpenoids in chloroplasts and cyanobacteria

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos

    on the potential of using plant chloroplasts and cyanobacteria as biosynthetic vessels, with a focus on diterpenoid production, and on the potential direct linking of photosynthesis to drive electron-consuming enzymes, such as the monooxygenases cytochrome P450s. I subsequently present the full localization...... be further modified by cyclizing enzymes, and be decorated by the addition of chemical groups. Even though they are mainly plant-derived compounds, diterpenoid production in photosynthetic organisms is rather unexplored, with a few successful studies reported in the literature. In this thesis, I elaborate...... and be assembled correctly by its native homologous recombination mechanisms. This theoretical and experimental work puts together the existing knowledge on terpenoid production and photosynthetic biotechnology, reveals the existing limitations and potential bottlenecks, and paves the way for future work towards...

  4. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  5. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO2] environments

    International Nuclear Information System (INIS)

    Major, J.E.; Barsi, D.C.; Mosseler, A.; Campbell, M.

    2007-01-01

    A significant decline has been noted in the red spruce component of the Acadian forest region in eastern Canada and the northeastern United States as a result of excessive harvesting, acid rain, and global warming. Two experiments were performed to acquire benchmark adaptive traits for information from a red spruce (RS) (Picea rubens Sargand) and black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex grown in ambient carbon dioxide concentration ([CO 2 ]). The first experiment involved RS-BS seed sources from across the RS geographical range, while the second experiment involved an intra- and interspecific controlled-cross experiment to determine if RS and BS have unique chloroplast pigment concentrations and traits that reflect adaptations to different ecological niches. The objective was to determine species origin and hybrid variations in chloroplast pigment concentrations; examine the effect of elevated [CO 2 ] on chloroplast pigments; determine the inheritance of chloroplast pigments and examine the relationship of chloroplast pigment concentrations of trees grown at ambient [CO 2 ] with productivity traits and nitrogen concentrations. The traits related to light-energy processing have pronounced ecological implications for plant health. Results from the species origin experiment showed that total chlorophyll concentration was about 15 per cent higher in ambient [CO 2 ] than in elevated [CO 2 ]. In ambient [CO 2 ], BS populations had 11 per cent higher total chlorophyll and carotenoid concentrations than RS populations. Results from the controlled-cross experiment showed that families with a hybrid index of 25 per cent RS had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had the lowest amounts. A predominant male effect for chlorophyll concentration was noted. In ambient and elevated [CO 2 ] environments, crosses with BS males had 10.6 and 17.6 per cent higher total chlorophyll concentrations than crosses

  7. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Karolina Fučíková

    2016-06-01

    Full Text Available The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta. We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in “Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta reveal complex patterns of sequence evolution” (Fučíková et al., In review [1].

  8. Light absorption by isolated chloroplasts and leaves: effects of scattering and 'packing'.

    Science.gov (United States)

    Merzlyak, Mark N; Chivkunova, Olga B; Zhigalova, Tatiana V; Naqvi, K Razi

    2009-10-01

    Light absorption was quantified in the following systems: isolated chloroplasts and leaves of spinach (Spinacea oleracea L.), a mutant of geranium (Pelargonium zonale L.) widely differing in pigment content, and coleus (Coleus blumei Benth.) at different stages of leaf ontogenesis. For these species and pea (Pisum sativum L.), scattering-compensated absorption spectra of chloroplast suspensions are presented. Comparison of leaf and chloroplast spectra showed considerable changes in the extent of the 'package' effect and the lengthening of the effective optical path in a leaf. The difference between leaf and isolated chloroplast absorption could be quantitatively described by adapting Duysens's treatment of flattening. It was found that the accumulation of chlorophyll in leaves is accompanied by a monotonous enhancement of the package effect. The results are discussed with special reference to the role of light scattering in leaf optics, light utilization in photosynthesis and wavelength-dependent light gradients in a leaf.

  9. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  10. Localization of Five Antibiotic Resistances at the Subunit Level in Chloroplast Ribosomes of Chlamydomonas

    Science.gov (United States)

    Schlanger, Gladys; Sager, Ruth

    1974-01-01

    The chloroplast ribosomes from five antibiotic resistant strains of Chlamydomonas, each carrying one mutant gene mapping in chloroplast DNA, have been shown to be resistant to the corresponding antibiotic in a poly(U)-directed amino-acid incorporating assay system. The alteration conferring resistance was localized to the 30S subunit in ribosomes from streptomycin, neamine, and spectinomycin resistant strains, and to the 50S subunit in ribosomes from cleocin and carbomycin resistant strains. Spectinomycin resistant ribosomes showed no cross-resistance to any other drugs, but limited cross-resistance was noted with the other mutant ribosomes. The similarity between these findings and results reported by others with bacterial ribosomes supports our hypothesis that at least some chloroplast ribosomal proteins are coded by genes in chloroplast DNA. Images PMID:4275942

  11. Genetic polymorphism in Gymnodinium galatheanum chloroplast DNA sequences and development of a molecular detection assay.

    Science.gov (United States)

    Tengs, T; Bowers, H A; Ziman, A P; Stoecker, D K; Oldach, D W

    2001-02-01

    Nuclear and chloroplast-encoded small subunit ribosomal DNA sequences were obtained from several strains of the toxic dinoflagellate Gymnodinium galatheanum. Phylogenetic analyses and comparison of sequences indicate that the chloroplast sequences show a higher degree of sequence divergence than the nuclear homologue. The chloroplast sequences were chosen as targets for the development of a 5'--3' exonuclease assay for detection of the organism. The assay has a very high degree of specificity and has been used to screen environmental water samples from a fish farm where the presence of this dinoflagellate species has previously been associated with fish kills. Various hypotheses for the derived nature of the chloroplast sequences are discussed, as well as what is known about the toxicity of the species.

  12. The complete chloroplast genome sequence of Cynanchum auriculatum Royle ex Wight (Apocynaceae).

    Science.gov (United States)

    Jang, Woojong; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Park, Hyun-Seung; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-11-01

    Cynanchum auriculatum is a climbing vine belonging to the Apocynaceae family and shows very similar morphology to Cynanchum wilfordii, a medicinal plant. The complete chloroplast genome of C. auriculatum was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. auriculatum was 160 840 bp in length and consisted of four distinct regions, such as large single copy region (91 973 bp), small single copy region (19 667 bp), and a pair of inverted repeat regions (24 600 bp). The overall GC contents of the chloroplast genome were 37.8%. A total of 114 genes were predicted and included 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. auriculatum is most closely related to Cynanchum wilfordii, a medicinal plant.

  13. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    Science.gov (United States)

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily.

  14. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts

    NARCIS (Netherlands)

    Boekema, EJ; van Breemen, JFL; van Roon, H; Dekker, JP; Dekker, Jan P.

    2000-01-01

    The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained

  15. Chloroplast and mitochondrial microsatellites for Millettia pinnata (Fabaceae) and cross-amplification in related species 1

    OpenAIRE

    Wang, Yanling; Xie, Hongxian; Yang, Yi; Huang, Yelin; Wang, Jianwu; Tan, Fengxiao

    2017-01-01

    Premise of the study: Chloroplast and mitochondrial microsatellites were identified to study the population genetics of Millettia pinnata (Fabaceae). Methods and Results: Based on publicly available plastid genome sequence data of M. pinnata, 42 primer pairs were developed, of which 17 displayed polymorphisms across 89 individuals from four populations. For chloroplast loci, two to six alleles were recovered and the unbiased haploid diversity per locus ranged from 0.391 to 0.857. For mitochon...

  16. Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing

    Science.gov (United States)

    Martínez de Alba, A. E.; Flores, R.; Hernández, C.

    2002-01-01

    In plants, posttranscriptional gene silencing (PTGS) has been reported for cytoplasmic RNAs from endogenous nuclear genes, transgenes, viruses, and, recently, for a viroid with nuclear replication and accumulation. However, phenomena of this kind have not been described for mitochondrial or chloroplastic RNAs. Here we show that viroids that replicate and accumulate in the chloroplast are also targets of PTGS and this process may control viroid titer. PMID:12438638

  17. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    Science.gov (United States)

    Alban, Claude; Tardif, Marianne; Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.

  18. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    Directory of Open Access Journals (Sweden)

    Claude Alban

    Full Text Available Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division. Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.

  19. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  20. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  1. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  2. Characterisation of components and mechanisms involved in redox-regulation of protein import into chloroplasts

    OpenAIRE

    Stengel, Anna

    2009-01-01

    The vast majority of chloroplast proteins is encoded in the nucleus and thus has to be posttranslationally imported into the organelle, a process that is facilitated by two multimeric protein machineries, the Toc and Tic complexes (translocon at the outer/inner envelope of chloroplasts). Regulation of protein import, e.g. by redox signals, is a crucial step to adapt the protein content to the biochemical requirements of the organelle. In particular, one subunit of the Tic complex, Tic62, has ...

  3. Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts

    Directory of Open Access Journals (Sweden)

    Naoki eSato

    2016-02-01

    Full Text Available Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  4. Release of Proteins from Intact Chloroplasts Induced by Reactive Oxygen Species during Biotic and Abiotic Stress

    Science.gov (United States)

    Singh, Nameirakpam D.; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  5. Do Père David's deer lose memories of their ancestral predators?

    Science.gov (United States)

    Li, Chunwang; Yang, Xiaobo; Ding, Yuhua; Zhang, Linyuan; Fang, Hongxia; Tang, Songhua; Jiang, Zhigang

    2011-01-01

    Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound) and domestic dogs (familiar non-predators), of tigers and wolves (ancestral predators), and of lions (potential naïve predator) to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  6. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra

    Directory of Open Access Journals (Sweden)

    Azevedo Nathália F

    2012-03-01

    Full Text Available Abstract Background Xenarthra (sloths, armadillos and anteaters represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome. B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4. The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.

  7. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra

    Science.gov (United States)

    2012-01-01

    Background Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly. PMID:22429690

  8. Contrasting determinants of abundance in ancestral and colonized ranges of an invasive brood parasite

    Science.gov (United States)

    Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.

    2002-01-01

    Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.

  9. Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients.

    Directory of Open Access Journals (Sweden)

    Maria Carmen Cenit

    Full Text Available CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis.The CD5 SNPs rs2241002 (C/T; Pro224Leu and rs2229177 (C/T; Ala471Val were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed.T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC haplotype, compared to the more recently derived Pro224-Val471 (CT. The same allelic combination was statistically associated with Lupus nephritis.The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.

  10. Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification.

    Science.gov (United States)

    Harrington, S; Reeder, T W

    2017-02-01

    The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  11. Ancestral benzo[a]pyrene exposure affects bone integrity in F3 adult fish (Oryzias latipes).

    Science.gov (United States)

    Seemann, Frauke; Jeong, Chang-Bum; Zhang, Ge; Wan, Miles Teng; Guo, Baosheng; Peterson, Drew Ryan; Lee, Jae-Seong; Au, Doris Wai-Ting

    2017-02-01

    Benzo[a]pyrene (BaP) at an environmentally relevant concentration (1μg/L) has previously been shown to affect bone development in a transgenerational manner in F3 medaka (Oryzias latipes) larvae (17dph). Here, we provide novel histomorphometric data demonstrating that the impaired bone formation at an early life stage is not recoverable and can result in a persistent transgenerational impairment of bone metabolism in F3 adult fish. A decrease in bone thickness and the occurrence of microcracks in ancestrally BaP-treated adult male fish (F3) were revealed by MicroCt measurement and histopathological analysis. The expression of twenty conserved bone miRNAs were screened in medaka and their relative expression (in the F3 ancestral BaP treatment vs the F3 control fish) were determined by quantitative real-time PCR. Attempt was made to link bone miRNA expression with the potential target bone mRNA expression in medaka. Five functional pairs of mRNA/miRNA were identified (Osx/miR-214, Col2a1b/miR-29b, Runx2/miR-204, Sox9b/miR-199a-3p, APC/miR-27b). Unique knowledge of bone-related miRNA expression in medaka in response to ancestral BaP-exposure in the F3 generation is presented. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant which exerts a far-reaching impact on fish survival and fitness. Given that the underlying mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on skeletal disorders in mammals/humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  13. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  14. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  15. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Allelic Lineages of the Ficolin Genes (FCNs) Are Passed from Ancestral to Descendant Primates

    DEFF Research Database (Denmark)

    Hummelshøj, Tina; Nissen, Janna; Fog, Lea Munthe

    2011-01-01

    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, res...... serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species....

  17. Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates

    DEFF Research Database (Denmark)

    Hummelshøj, Tina; Nissen, Janna; Munthe-Fog, Lea

    2011-01-01

    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, res...... serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species....

  18. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Zhebentyayeva Tatyana

    2006-04-01

    Full Text Available Abstract Background Due to the lack of availability of large genomic sequences for peach or other Prunus species, the degree of synteny conservation between the Prunus species and Arabidopsis has not been systematically assessed. Using the recently available peach EST sequences that are anchored to Prunus genetic maps and to peach physical map, we analyzed the extent of conserved synteny between the Prunus and the Arabidopsis genomes. The reconstructed pseudo-ancestral Arabidopsis genome, existed prior to the proposed recent polyploidy event, was also utilized in our analysis to further elucidate the evolutionary relationship. Results We analyzed the synteny conservation between the Prunus and the Arabidopsis genomes by comparing 475 peach ESTs that are anchored to Prunus genetic maps and their Arabidopsis homologs detected by sequence similarity. Microsyntenic regions were detected between all five Arabidopsis chromosomes and seven of the eight linkage groups of the Prunus reference map. An additional 1097 peach ESTs that are anchored to 431 BAC contigs of the peach physical map and their Arabidopsis homologs were also analyzed. Microsyntenic regions were detected in 77 BAC contigs. The syntenic regions from both data sets were short and contained only a couple of conserved gene pairs. The synteny between peach and Arabidopsis was fragmentary; all the Prunus linkage groups containing syntenic regions matched to more than two different Arabidopsis chromosomes, and most BAC contigs with multiple conserved syntenic regions corresponded to multiple Arabidopsis chromosomes. Using the same peach EST datasets and their Arabidopsis homologs, we also detected conserved syntenic regions in the pseudo-ancestral Arabidopsis genome. In many cases, the gene order and content of peach regions was more conserved in the ancestral genome than in the present Arabidopsis region. Statistical significance of each syntenic group was calculated using simulated

  19. Sustainability of ancestral methods of agricultural production in Perú: ¿keep or replace?

    Directory of Open Access Journals (Sweden)

    Dani Eduardo Vargas Huanca

    2016-09-01

    Full Text Available Based on the success of some Andean products such as quinoa, potatoes or maca in international food trade and the growing environmental degradation facing developing countries, resulting from intensive exploitation activities; Our research seeks to show the trend that is assumed from the academic / scientific community and public officials in the food sector in Peru, against the need to maintain sustainable various ancestral modes of agricultural production (case quinoa, for it analyze quantitative and qualitative obtained from public institutions and Peruvian universities.

  20. Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells.

    Science.gov (United States)

    Wang, Zhen; Wang, Fuxing; Hong, Yechun; Huang, Jirong; Shi, Huazhong; Zhu, Jian-Kang

    2016-12-01

    Chloroplast as the site for photosynthesis is an essential organelle in plants, but little is known about its role in stomatal regulation and drought resistance. In this study, we show that two chloroplastic proteins essential for thylakoid formation negatively regulate drought resistance in Arabidopsis (Arabidopsis thaliana). By screening a mutant pool with T-DNA insertions in nuclear genes encoding chloroplastic proteins, we identified an HCF106 knockdown mutant exhibiting increased resistance to drought stress. The hcf106 mutant displayed elevated levels of reactive oxygen species (ROS) in guard cells, improved stomatal closure, and reduced water loss under drought conditions. The HCF106 protein was found to physically interact with THF1, a previously identified chloroplastic protein crucial for thylakoid formation. The thf1 mutant phenotypically resembled the hcf106 mutant and displayed more ROS accumulation in guard cells, increased stomatal closure, reduced water loss, and drought resistant phenotypes compared to the wild type. The hcf106thf1 double mutant behaved similarly as the thf1 single mutant. These results suggest that HCF106 and THF1 form a complex to modulate chloroplast function and that the complex is important for ROS production in guard cells and stomatal control in response to environmental stresses. Our results also suggest that modulating chloroplastic proteins could be a way for improving drought resistance in crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Chloroplast genome analysis of Australian eucalypts--Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).

    Science.gov (United States)

    Bayly, Michael J; Rigault, Philippe; Spokevicius, Antanas; Ladiges, Pauline Y; Ades, Peter K; Anderson, Charlotte; Bossinger, Gerd; Merchant, Andrew; Udovicic, Frank; Woodrow, Ian E; Tibbits, Josquin

    2013-12-01

    We present a phylogenetic analysis and comparison of structural features of chloroplast genomes for 39 species of the eucalypt group (genera Eucalyptus, Corymbia, Angophora, and outgroups Allosyncarpia and Stockwellia). We use 41 complete chloroplast genome sequences, adding 39 finished-quality chloroplast genomes to two previously published genomes. Maximum parsimony and Bayesian analyses, based on >7000 variable nucleotide positions, produced one fully resolved phylogenetic tree (35 supported nodes, 27 with 100% bootstrap support). Eucalyptus and its sister lineage Angophora+Corymbia show a deep divergence. Within Eucalyptus, three lineages are resolved: the 'eudesmid', 'symphyomyrt' and 'monocalypt' groups. Corymbia is paraphyletic with respect to Angophora. Gene content and order do not vary among eucalypt chloroplasts; length mutations, especially frame shifts, are uncommon in protein-coding genes. Some non-synonymous mutations are highly incongruent with the overall phylogenetic signal, notably in rbcL, and may be adaptive. Application of custom informatics pipelines (GYDLE Inc.) enabled direct chloroplast genome assembly, resolving each genome to finished-quality with no need for PCR gap-filling or contig order resolution. Analysis of whole chloroplast genomes resolved major eucalypt clades and revealed variable regions of the genome that will be useful in lower-level genetic studies (including phylogeography and geneflow). Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A database of PCR primers for the chloroplast genomes of higher plants

    Science.gov (United States)

    Heinze, Berthold

    2007-01-01

    Background Chloroplast genomes evolve slowly and many primers for PCR amplification and analysis of chloroplast sequences can be used across a wide array of genera. In some cases 'universal' primers have been designed for the purpose of working across species boundaries. However, the essential information on these primer sequences is scattered throughout the literature. Results A database is presented here which assembles published primer information for chloroplast DNA. Additional primers were designed to fill gaps where little or no primer information could be found. Amplicons are either the genes themselves (typically useful in studies of sequence variation in higher-order phylogeny) or they are spacers, introns, and intergenic regions (for studies of phylogeographic patterns within and among species). The current list of 'generic' primers consists of more than 700 sequences. Wherever possible, we give the locations of the primers in the thirteen fully sequenced chloroplast genomes (Nicotiana tabacum, Atropa belladonna, Spinacia oleracea, Arabidopsis thaliana, Populus trichocarpa, Oryza sativa, Pinus thunbergii, Marchantia polymorpha, Zea mays, Oenothera elata, Acorus calamus, Eucalyptus globulus, Medicago trunculata). Conclusion The database described here is designed to serve as a resource for researchers who are venturing into the study of poorly described chloroplast genomes, whether for large- or small-scale DNA sequencing projects, to study molecular variation or to investigate chloroplast evolution. PMID:17326828

  3. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions.

    Science.gov (United States)

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L; Guerinot, Mary Lou

    2008-07-29

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than wild-type chloroplasts. This decreased iron content is presumably responsible for the observed defects in photosynthetic electron transport. When germinated in alkaline soil, fro7 seedlings show severe chlorosis and die without setting seed unless watered with high levels of soluble iron. Overall, our results provide molecular evidence that FRO7 plays a role in chloroplast iron acquisition and is required for efficient photosynthesis in young seedlings and for survival under iron-limiting conditions.

  5. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    Science.gov (United States)

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria. © 2014 Institute of Botany, Chinese Academy of Sciences.

  6. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 pro...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  7. Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure

    Science.gov (United States)

    DeGiorgio, Michael; Rosenberg, Noah A.

    2016-01-01

    In the last few years, several statistically consistent consensus methods for species tree inference have been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in unstructured ancestral populations. One source of gene tree discordance that has only recently been identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this article, we describe a general model of ancestral population structure, and by relying on a single carefully constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR, R* Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are statistically inconsistent under the model. We find that among the consensus methods evaluated, the only method that is statistically consistent in the presence of ancestral population structure is GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods in a model with ancestral population structure, showing that as the number of gene trees increases, estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of the level of population structure, whereas estimates based on the remaining methods only approach the true species tree topology if the level of structure is low. However, through simulations using species trees both with and without ancestral population structure, we show that GLASS/Maximum Tree performs unusually poorly on gene trees inferred from alignments with little information. This practical limitation of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both further testing of additional existing methods and development of novel methods under conditions that incorporate ancestral population structure. PMID:27086043

  8. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold.

    Science.gov (United States)

    Henriques de Jesus, Maria Perestrello Ramos; Zygadlo Nielsen, Agnieszka; Busck Mellor, Silas; Matthes, Annemarie; Burow, Meike; Robinson, Colin; Erik Jensen, Poul

    2017-11-01

    Photosynthesis drives the production of ATP and NADPH, and acts as a source of carbon for primary metabolism. NADPH is also used in the production of many natural bioactive compounds. These are usually synthesized in low quantities and are often difficult to produce by chemical synthesis due to their complex structures. Some of the crucial enzymes catalyzing their biosynthesis are the cytochromes P450 (P450s) situated in the endoplasmic reticulum (ER), powered by electron transfers from NADPH. Dhurrin is a cyanogenic glucoside and its biosynthesis involves a dynamic metabolon formed by two P450s, a UDP-glucosyltransferase (UGT) and a P450 oxidoreductase (POR). Its biosynthetic pathway has been relocated to the chloroplast where ferredoxin, reduced through the photosynthetic electron transport chain, serves as an efficient electron donor to the P450s, bypassing the involvement of POR. Nevertheless, translocation of the pathway from the ER to the chloroplast creates other difficulties, such as the loss of metabolon formation and intermediate diversion into other metabolic pathways. We show here that co-localization of these enzymes in the thylakoid membrane leads to a significant increase in product formation, with a concomitant decrease in off-pathway intermediates. This was achieved by exchanging the membrane anchors of the dhurrin pathway enzymes to components of the Twin-arginine translocation pathway, TatB and TatC, which have self-assembly properties. Consequently, we show 5-fold increased titers of dhurrin and a decrease in the amounts of intermediates and side products in Nicotiana benthamiana. Further, results suggest that targeting the UGT to the membrane is a key factor to achieve efficient substrate channeling. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  9. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species.

    Science.gov (United States)

    McKibbin, Rowan S; Wilkinson, Mark D; Bailey, Paul C; Flintham, John E; Andrew, Lucy M; Lazzeri, Paul A; Gale, Mike D; Lenton, John R; Holdsworth, Michael J

    2002-07-23

    The maize (Zea mays) Viviparous 1 (Vp1) transcription factor has been shown previously to be a major regulator of seed development, simultaneously activating embryo maturation and repressing germination. Hexaploid bread wheat (Triticum aestivum) caryopses are characterized by relatively weak embryo dormancy and are susceptible to preharvest sprouting (PHS), a phenomenon that is phenotypically similar to the maize vp1 mutation. Analysis of Vp-1 transcript structure in wheat embryos during grain development showed that each homeologue produces cytoplasmic mRNAs of different sizes. The majority of transcripts are spliced incorrectly, contain insertions of intron sequences or deletions of coding region, and do not have the capacity to encode full-length proteins. Several VP-1-related lower molecular weight protein species were present in wheat embryo nuclei. Embryos of a closely related tetraploid species (Triticum turgidum) and ancestral diploids also contained misspliced Vp-1 transcripts that were structurally similar or identical to those found in modern hexaploid wheat, which suggests that compromised structure and expression of Vp-1 transcripts in modern wheat are inherited from ancestral species. Developing embryos from transgenic wheat grains expressing the Avena fatua Vp1 gene showed enhanced responsiveness to applied abscisic acid compared with the control. In addition, ripening ears of transgenic plants were less susceptible to PHS. Our results suggest that missplicing of wheat Vp-1 genes contributes to susceptibility to PHS in modern hexaploid wheat varieties and identifies a possible route to increase resistance to this environmentally triggered disorder.

  10. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple.

    Science.gov (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.

  11. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations.

    Science.gov (United States)

    Omberg, Larsson; Salit, Jacqueline; Hackett, Neil; Fuller, Jennifer; Matthew, Rebecca; Chouchane, Lotfi; Rodriguez-Flores, Juan L; Bustamante, Carlos; Crystal, Ronald G; Mezey, Jason G

    2012-06-26

    Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  12. A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.

    Science.gov (United States)

    Lartillot, Nicolas

    2014-02-15

    Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.

  13. Evolution of domain promiscuity in eukaryotic genomes—a perspective from the inferred ancestral domain architectures†

    Science.gov (United States)

    Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth

    2012-01-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809

  14. Evolution of domain promiscuity in eukaryotic genomes--a perspective from the inferred ancestral domain architectures.

    Science.gov (United States)

    Cohen-Gihon, Inbar; Fong, Jessica H; Sharan, Roded; Nussinov, Ruth; Przytycka, Teresa M; Panchenko, Anna R

    2011-03-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution.

  15. Evidence for Ancestral Programming of Resilience in a Two-Hit Stress Model

    Directory of Open Access Journals (Sweden)

    Jamshid Faraji

    2017-05-01

    Full Text Available In a continuously stressful environment, the effects of recurrent prenatal stress (PS may accumulate across generations and alter stress vulnerability and resilience. Here, we report in female rats that a family history of recurrent ancestral PS facilitates certain aspects of movement performance, and that these benefits are abolished by the experience of a second hit, induced by a silent ischemia during adulthood. Female F4-generation rats with and without a family history of cumulative multigenerational PS (MPS were tested for skilled motor function before and after the induction of a minor ischemic insult by endothelin-1 infusion into the primary motor cortex. MPS resulted in improved skilled motor abilities and blunted hypothalamic-pituitary-adrenal (HPA axis function compared to non-stressed rats. Deep sequencing revealed downregulation of miR-708 in MPS rats along with upregulation of its predicted target genes Mapk10 and Rasd2. Through miR-708 stress may regulate mitogen-activated protein kinase (MAPK pathway activity. Hair trace elemental analysis revealed an increased Na/K ratio, which suggests a chronic shift in adrenal gland function. The ischemic lesion activated the HPA axis in MPS rats only; the lesion, however, abolished the advantage of MPS in skilled reaching. The findings indicate that MPS generates adaptive flexibility in movement, which is challenged by a second stressor, such as a neuropathological condition. Thus, a second “hit” by a stressor may limit behavioral flexibility and neural plasticity associated with ancestral stress.

  16. Bearing the unbearable: ancestral transmission through dreams and moving metaphors in the analtyic field.

    Science.gov (United States)

    Pickering, Judith

    2012-11-01

    This paper explores how untold and unresolved intergenerational trauma may be transmitted through unconscious channels of communication, manifesting in the dreams of descendants. Unwitting carriers for that which was too horrific for their ancestors to bear, descendants may enter analysis through an unconscious need to uncover past secrets, piece together ancestral histories before the keys to comprehending their terrible inheritance die with their forebears. They seek the relational containment of the analytic relationship to provide psychological conditions to bear the unbearable, know the unknowable, speak the unspeakable and redeem the unredeemable. In the case of 'Rachael', initial dreams gave rise to what Hobson (1984) called 'moving metaphors of self' in the analytic field. Dream imagery, projective and introjective processes in the transference-countertransference dynamics gradually revealed an unknown ancestral history. I clarify the back and forth process from dream to waking dream thoughts to moving metaphors and differentiate the moving metaphor from a living symbol. I argue that the containment of the analytic relationship nested within the security of the analytic space is a necessary precondition for such healing processes to occur. © 2012, The Society of Analytical Psychology.

  17. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis[OPEN

    Science.gov (United States)

    Sugliani, Matteo; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano

    2016-01-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. PMID:26908759

  18. RNA transcription in isolated chloroplasts during senescence and rejuvenation of intact cotyledons of CUCURBITA PEPO L. (ZUCCHINI)

    International Nuclear Information System (INIS)

    Mishev, K.; Ananiev, E.; Denev, L.; Radeva, G.

    2006-01-01

    RNA transcription was studied in intact chloroplasts isolated from cotyledons of Cucurbita pepoL. (zucchini) during their growth and development including natural senescence and rejuvenation. Rejuvenation of cotyledons was studied after decapitation of the epicotyl above the senescing yellow cotyledons. Maximal incorporation of [32P] UTP into overall chloroplast RNA was measured two days after exposure of seedlings to light (day 6 th after the onset of germination), followed by a gradual decrease reaching minimal values at the age of 25-28 days when cotyledons began to yellow and eventually die. Rejuvenation of cotyledons completely restored chloroplast RNA synthesis and fifteen days after decapitation (at the age of 40 days), the values of chloroplast transcription even exceeded that of the maximal transcriptional activity in young cotyledons. Inhibitory analysis with tagetitoxin (a specific inhibitor of plastid encoded chloroplast RNA polymerase (PEP)) showed that in young and rejuvenated cotyledons about 85% of chloroplast RNA polymerase activity was due to PEP and only 15% corresponded to the nuclear encoded plastid RNA polymerase (NEP). Definite regions of two chloroplast encoded genes were amplified by means of PCR technique using specific DNA primers for Rubisco large subunit gene (rbcL) and the housekeeping gene for chloroplast 16S rRNA as well as chloroplast DNA as a template. The appropriate lengths of the amplified DNA fragments were checked by restriction analysis

  19. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  20. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Science.gov (United States)

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  1. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.

    Science.gov (United States)

    Baier, Margarete; Dietz, Karl-Josef

    2005-06-01

    During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.

  2. Chloroplast Phylogenomics Indicates that Ginkgo biloba Is Sister to Cycads

    Science.gov (United States)

    Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi

    2013-01-01

    Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo–cycad sister-group hypothesis. PMID:23315384

  3. Radiation inactivation analysis of chloroplast CF0-CF1 ATPase

    International Nuclear Information System (INIS)

    Wang, M.Y.; Chien, L.F.; Pan, R.L.

    1988-01-01

    Radiation inactivation technique was employed to measure the functional size of adenosine triphosphatase of spinach chloroplasts. The functional size for acid-base-induced ATP synthesis was 450 +/- 24 kilodaltons; for phenazine methosulfate-mediated ATP synthesis, 613 +/- 33 kilodaltons; and for methanol-activated ATP hydrolysis, 280 +/- 14 kilodaltons. The difference (170 +/- 57 kilodaltons) between 450 +/- 24 and 280 +/- 14 kilodaltons is explained to be the molecular mass of proton channel (coupling factor 0) across the thylakoid membrane. Our data suggest that the stoichiometry of subunits I, II, and III of coupling factor 0 is 1:2:15. Ca2+- and Mg2+-ATPase activated by methanol, heat, and trypsin digestion have a similar functional size. However, anions such as SO 3 (2-) and CO 3 (2-) increased the molecular mass for both ATPase's (except trypsin-activated Mg2+-ATPase) by 12-30%. Soluble coupling factor 1 has a larger target size than that of membrane-bound. This is interpreted as the cold effect during irradiation

  4. Stromal serine protein kinase activity in spinach chloroplasts

    International Nuclear Information System (INIS)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-01-01

    At least twelve 32 P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with 32 Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with [gamma- 32 P]ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma

  5. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  6. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  7. Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model

    DEFF Research Database (Denmark)

    Mailund, Thomas; Dutheil, Julien; Hobolth, Asger

    2011-01-01

    event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may......, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus......) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report...

  8. Breadth of T cell responses after immunization with adenovirus vectors encoding ancestral antigens or polyvalent papillomavirus antigens

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Pedersen, Anders Gorm; Holst, Peter Johannes

    2017-01-01

    - either by inducing cross-reactive T cells or by administering a polyvalent vaccine. To test these strategies, we designed 3 ancestral and 2 circulating sequences based on the two domains of the E1 and E2 proteins of papillomaviruses (PVs) that exhibit the highest degree of conservation in comparison...... circulating strains and a putative ancestor of oncogenic HPVs, we showed that the ancestral vaccine antigen has to be approximately 90% identical to the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses ensues. Interestingly, the combination of two or three type-specific PV vaccines did...... not induce a significant decrease of the CD8+ T cell response to the individual targeted PV types. Polyvalent HPV vaccine based on the E1 and E2 proteins seem to be capable of triggering responses towards more than one type of PV while the cross-reactivity of ancestral vaccine seems insufficient...

  9. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Cousens, Brian L.

    2013-01-01

    Ongoing arc magmatism along western North America was preceded by ancestral arc magmatism that began ca. 45 Ma and evolved into modern arc volcanism. The southern ancestral arc segment, active from ca. 30 to 3 Ma, adjoins the northern segment in northern California across a proposed subducted slab tear. The east edge of the Walker Lane approximates the east edge of the southern arc whose products, mostly erupted from stratovolcanoes and lava dome complexes arrayed along the crest of the ancestral arc, extend down the west flank of the Sierra Nevada. Southern arc segment rocks include potassic, calc-alkaline intermediate- to silicic-composition lava flows, lava dome complexes, and associated volcaniclastic deposits.

  10. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis

    Science.gov (United States)

    Fondi, Marco; Brilli, Matteo; Emiliani, Giovanni; Paffetti, Donatella; Fani, Renato

    2007-01-01

    Background It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution. Results The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted. Conclusion The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single

  11. Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions.

    Science.gov (United States)

    Lande, Nilesh Vikram; Subba, Pratigya; Barua, Pragya; Gayen, Dipak; Keshava Prasad, T S; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-08-08

    Chloroplast, the energy organelle unique to plant cells, is a dynamic entity which integrates an array of metabolic pathways and serves as first level for energy conversion for the entire ecological hierarchy. Increasing amount of sequence data and evolution of mass spectrometric approaches has opened up new avenues for opportune exploration of the global proteome of this organelle. In our study, we aimed at generation of a comprehensive catalogue of chloroplast proteins in a grain legume, chickpea and provided a reference proteome map. To accurately assign the identified proteins, purity of chloroplast-enriched fraction was stringently monitored by multiple chemical and immunological indexes, besides pigment and enzyme analyses. The proteome analysis led to the identification of 2451 proteins, including 27 isoforms, which include predicted and novel chloroplast constituents. The identified proteins were validated through their sequence analysis. Extensive sequence based localization prediction revealed more than 50% proteins to be chloroplast resident by at least two different algorithms. Chromosomal distribution of identified proteins across nuclear and chloroplast genome unveiled the presence of 55 chloroplast encoded gene. In depth comparison of our dataset with the non-redundant set of chloroplast proteins identified so far across other species revealed novel as well as overlapping candidates. Pulses add large amount of nitrogen to the soil and has very low water footprint and therefore, contributes to fortification of sustainable agriculture. Chickpea is one of the earliest cultivated legumes and serves as an energy and protein source for humans and animals. Chloroplasts are the unique organelles which conduct photosynthesis. Investigation on chloroplast proteome is of particular significance, especially to plant biologists, as it would allow a better understanding of chloroplast function in plants. Generation of a saturated proteome map would not only

  12. Expression of the Native Cholera Toxin B Subunit Gene and Assembly as Functional Oligomers in Transgenic Tobacco Chloroplasts

    Science.gov (United States)

    Daniell, Henry; Lee, Seung-Bum; Panchal, Tanvi; Wiebe, Peter O.

    2012-01-01

    The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expresssion levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast-synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast- synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of

  13. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Jungeun Lee

    Full Text Available BACKGROUND: Antarctic hairgrass (Deschampsia antarctica Desv. is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. RESULTS: The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp and small (SSC: 12,519 bp single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp. It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. CONCLUSIONS: We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers

  14. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Ye, Jia; Li, Songgang

    2005-01-01

    We describe an algorithm, ReAS, to recover ancestral sequences for transposable elements (TEs) from the unassembled reads of a whole genome shotgun. The main assumptions are that these TEs must exist at high copy numbers across the genome and must not be so old that they are no longer recognizable...... in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences. Udgivelsesdato: 2005-Sep...

  15. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  16. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  17. Enhanced green fluorescent protein (egfp) gene expression in Tetraselmis subcordiformis chloroplast with endogenous regulators.

    Science.gov (United States)

    Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song

    2016-05-01

    On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.

  18. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  19. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  20. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  1. Effects of ancestral x irradiation followed by random mating on body weight of rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1977-01-01

    Effects of nine generations of 450R per generation of ancestral spermatogonial x irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence--obtained during the irradiation phase of the experiment--this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines

  2. A phenol-enriched cuticle is ancestral to lignin evolution in land plants.

    Science.gov (United States)

    Renault, Hugues; Alber, Annette; Horst, Nelly A; Basilio Lopes, Alexandra; Fich, Eric A; Kriegshauser, Lucie; Wiedemann, Gertrud; Ullmann, Pascaline; Herrgott, Laurence; Erhardt, Mathieu; Pineau, Emmanuelle; Ehlting, Jürgen; Schmitt, Martine; Rose, Jocelyn K C; Reski, Ralf; Werck-Reichhart, Danièle

    2017-03-08

    Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.

  3. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    Science.gov (United States)

    Baldwin, Maude W.; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, Takumi; Edwards, Scott V.; Liberles, Stephen D.

    2015-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. PMID:25146290

  4. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    Science.gov (United States)

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. Copyright © 2014, American Association for the Advancement of Science.

  5. Hagfish (cyclostomata, vertebrata): searching for the ancestral developmental plan of vertebrates.

    Science.gov (United States)

    Kuratani, Shigeru; Ota, Kinya G

    2008-02-01

    The phylogenetic position of the hagfish remains enigmatic. In contrast to molecular data that suggest monophyly of the cyclostomes, several morphological features imply a more ancestral state of this animal compared with the lampreys. To resolve this question requires an understanding of the embryology of the hagfish, especially of the neural crest. The early development of the hagfish has long remained a mystery. We collected a shallow-water-dwelling hagfish, Eptatretus burgeri, set up an aquarium tank designed to resemble its habitat, and successfully obtained several embryos. By observing the histology and expression of genes known to play fundamental roles in the neural crest, we found that the hagfish crest develops as delaminating migratory cells, as in other vertebrates. We conclude that the delaminating neural crest is a vertebrate synapomorphy that seems to have appeared from the beginning of their evolutionary history, before the splitting away of the hagfish lineage. (c) 2008 Wiley Periodicals, Inc.

  6. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Science.gov (United States)

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  7. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Directory of Open Access Journals (Sweden)

    Tobias Lehmann

    Full Text Available The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora and Limulus polyphemus (Xiphosura. This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  8. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    Science.gov (United States)

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  9. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family

    Directory of Open Access Journals (Sweden)

    Teesta Naskar

    2018-02-01

    Full Text Available Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu] result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

  10. Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations

    Directory of Open Access Journals (Sweden)

    Omberg Larsson

    2012-06-01

    Full Text Available Abstract Background Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. Results Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. Conclusions By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.

  11. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family.

    Science.gov (United States)

    Naskar, Teesta; Faruq, Mohammed; Banerjee, Priyajit; Khan, Massarat; Midha, Rashi; Kumari, Renu; Devasenapathy, Subhashree; Prajapati, Bharat; Sengupta, Sanghamitra; Jain, Deepti; Mukerji, Mitali; Singh, Nandini Chatterjee; Sinha, Subrata

    2018-02-01

    Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A>C [p.Ile154Leu], c.541G>A [p.Ala181Thr], c.2036G>C [p.Arg679Pro] and c.2059A>G [p.Lys687Glu]) result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    Science.gov (United States)

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  13. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  14. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

    Science.gov (United States)

    C. Mae Culumber; Steve R. Larson; Kevin B. Jensen; Thomas A. Jones

    2011-01-01

    Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve...

  15. β-Carotene as a factor in the reconstitution of cyclic phospho rylation in damaged chloroplast membranes

    Directory of Open Access Journals (Sweden)

    Anna Tukendorf

    2014-01-01

    Full Text Available Phenazine methosulphate mediated cyclic phosphorylation suppressed by heptane extraction or galactolipase treatment of spinach chloroplasts is restored by β -carotene, in 100% and 50%, respectively. Xanthophylls are not able to reconstitute this reaction. β-Carotene replaces galactolipids in reactivation of galactolipase treated chloroplasts, indicating a nonspecific effect of lipids in photosystem I dependent reactions.

  16. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  17. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences.

    Science.gov (United States)

    Schäferhoff, Bastian; Fleischmann, Andreas; Fischer, Eberhard; Albach, Dirk C; Borsch, Thomas; Heubl, Günther; Müller, Kai F

    2010-11-12

    In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales.

  18. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Directory of Open Access Journals (Sweden)

    Heubl Günther

    2010-11-01

    Full Text Available Abstract Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a

  19. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Science.gov (United States)

    2010-01-01

    Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of

  20. The complete chloroplast genome sequence of Lilium hansonii Leichtlin ex D.D.T.Moore.

    Science.gov (United States)

    Kim, Kyunghee; Hwang, Yoon-Jung; Lee, Sang-Choon; Yang, Tae-Jin; Lim, Ki-Byung

    2016-09-01

    Lilium hansonii is a lily species native to Korea and an important wild species for lily breeding. The chloroplast genome of L. hansonii was completed by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. hansonii was 152 655 bp long and consisted of large single copy region (82 051 bp), small single copy region (17 620 bp) and a pair of inverted repeat regions (26 492 bp). A total of 115 genes were annotated, which included 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. hansonii is most closely related to L. superbum (Turk's-cap lily) and L. longiflorum (Easter lily).

  1. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.

    Science.gov (United States)

    Aslan, Selcuk; Sun, Chuanxin; Leonova, Svetlana; Dutta, Paresh; Dörmann, Peter; Domergue, Frédéric; Stymne, Sten; Hofvander, Per

    2014-09-01

    In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  3. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions

    Directory of Open Access Journals (Sweden)

    Yiyong Chen

    2018-02-01

    Full Text Available Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.

  4. Development of 12 chloroplast microsatellite markers in Vigna unguiculata (Fabaceae) and amplification in Phaseolus vulgaris.

    Science.gov (United States)

    Pan, Lei; Li, Yi; Guo, Rui; Wu, Hua; Hu, Zhihui; Chen, Chanyou

    2014-03-01

    Vigna unguiculata is an economically important legume, and the complexity of its variability and evolution needs to be further understood. Based on publicly available databases, we developed chloroplast microsatellite primers to investigate genetic diversity within V. unguiculata and its related species Phaseolus vulgaris. • Twelve polymorphic chloroplast microsatellite markers were developed and characterized in 62 V. unguiculata individuals. The number of alleles per locus varied between two and four, the unbiased haploid diversity per locus ranged from 0.123 to 0.497, and the polymorphism information content varied from 0.114 to 0.369. In cross-species amplifications, nine of these markers showed polymorphism in 29 P. vulgaris individuals. • The newly developed chloroplast microsatellite markers exhibit variation in V. unguiculata as well as their transferability in P. vulgaris. These markers can be used to investigate genetic diversity and evolution in V. unguiculata and P. vulgaris.

  5. Development of 12 chloroplast microsatellite markers in Vigna unguiculata (Fabaceae) and amplification in Phaseolus vulgaris1

    Science.gov (United States)

    Pan, Lei; Li, Yi; Guo, Rui; Wu, Hua; Hu, Zhihui; Chen, Chanyou

    2014-01-01

    • Premise of the study: Vigna unguiculata is an economically important legume, and the complexity of its variability and evolution needs to be further understood. Based on publicly available databases, we developed chloroplast microsatellite primers to investigate genetic diversity within V. unguiculata and its related species Phaseolus vulgaris. • Methods and Results: Twelve polymorphic chloroplast microsatellite markers were developed and characterized in 62 V. unguiculata individuals. The number of alleles per locus varied between two and four, the unbiased haploid diversity per locus ranged from 0.123 to 0.497, and the polymorphism information content varied from 0.114 to 0.369. In cross-species amplifications, nine of these markers showed polymorphism in 29 P. vulgaris individuals. • Conclusions: The newly developed chloroplast microsatellite markers exhibit variation in V. unguiculata as well as their transferability in P. vulgaris. These markers can be used to investigate genetic diversity and evolution in V. unguiculata and P. vulgaris. PMID:25202608

  6. Development of 12 Chloroplast Microsatellite Markers in Vigna unguiculata (Fabaceae and Amplification in Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2014-03-01

    Full Text Available Premise of the study: Vigna unguiculata is an economically important legume, and the complexity of its variability and evolution needs to be further understood. Based on publicly available databases, we developed chloroplast microsatellite primers to investigate genetic diversity within V. unguiculata and its related species Phaseolus vulgaris. Methods and Results: Twelve polymorphic chloroplast microsatellite markers were developed and characterized in 62 V. unguiculata individuals. The number of alleles per locus varied between two and four, the unbiased haploid diversity per locus ranged from 0.123 to 0.497, and the polymorphism information content varied from 0.114 to 0.369. In cross-species amplifications, nine of these markers showed polymorphism in 29 P. vulgaris individuals. Conclusions: The newly developed chloroplast microsatellite markers exhibit variation in V. unguiculata as well as their transferability in P. vulgaris. These markers can be used to investigate genetic diversity and evolution in V. unguiculata and P. vulgaris.

  7. CHLOROPLASTS ULTRASTRUCTURAL CHANGES AS BIOMARKERS OF ACID RAIN AND HEAVY METALS POLLUTION

    Directory of Open Access Journals (Sweden)

    Vodka M. V.

    2017-06-01

    Full Text Available The aim of the work was to confirm the possibility of structural changes of Spinacea olearacea L. chloroplasts usage as biomarkers for assessing of environmental pollution by acid rain and heavy metals. Chloroplasts ultrastructural changes were recorded by transmission electron microscopy. Data on changes in the structure of chloroplasts under the influence of these factors are obtained, in particular the heterogeneity of thylakoid grana packing, the membranes thickness, the starch grains presence, and the lumen space increase as compared with the control. These structural changes can be applied as markers of abiotic stresses influence, notably acid rain and heavy metals, and for the creation of new sustainable high-tech varieties of agricultural crops.

  8. Light harvesting and chloroplast electron transport in NADP-malic enzyme type C4 plants.

    Science.gov (United States)

    Nakajima Munekage, Yuri

    2016-06-01

    The structure of thylakoids in chloroplasts and the organization of the electron transport chain changed dynamically during the evolution of C4 photosynthesis, especially in the nicotinamide adenine dinucleotide phosphate (NADP)-malic enzyme type C4 species. Stacked grana membranes are strongly reduced in the bundle sheath chloroplasts of these plants, where photosystem II activity is diminished and cyclic electron transport around photosystem I mainly occurs. This change optimizes the ATP/NADPH production ratio in bundle sheath chloroplasts to drive the metabolic cycle of C4 photosynthesis. This review summarizes the current model of light harvesting and electron transport in the NADP-malic enzyme type C4 plants and discusses how it changed during the evolution of C4 photosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Cd and UV-B radiation on polypeptide composition and photosystem activities of Vigna unguiculata chloroplasts

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Kulandaivelu, G.

    1995-01-01

    Rates of whole chain and photosystem 2 activities in chloroplasts isolated from Vigna unguiculata L. seedlings grown under ultraviolet-B (UV-B) enhanced radiation were less affected by 3, 6 and 9 mM CdCl2 for 60 min at 0 degrees C in the dark than the rates in chloroplasts from control plants grown under normal irradiation. The results are in agreement with changes in contents of chloroplast 55, 47, 43, 33, 29, 27-25, 23 and 17 kDa polypeptides that were significantly lowered at 3, 6 and 9 mM CdCl2 only in chloroplasts from control plants. On the other hand, in the simultaneous treatment of chloroplast isolated from control plants the UV-B supported the inhibitory effect of all applied concentrations of CdCl2. The photosystem 1 activity was only marginally affected in the all experimental variants

  10. Slugs' last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda).

    Science.gov (United States)

    Händeler, Katharina; Wägele, Heike; Wahrmund, Ute; Rüdinger, Mareike; Knoop, Volker

    2010-11-01

    Some sacoglossan sea slugs have become famous for their unique capability to extract and incorporate functional chloroplasts from algal food organisms (mainly Ulvophyceae) into their gut cells. The functional incorporation of the so-called kleptoplasts allows the slugs to rely on photosynthetic products for weeks to months, enabling them to survive long periods of food shortage over most of their life-span. The algal food spectrum providing kleptoplasts as temporary, non-inherited endosymbionts appears to vary among sacoglossan slugs, but detailed knowledge is sketchy or unavailable. Accurate identification of algal donor species, which provide the chloroplasts for long-term retention is of primary importance to elucidate the biochemical mechanisms allowing long-term functionality of the captured chloroplast in the foreign animal cell environment. Whereas some sacoglossans forage on a variety of algal species, (e.g. Elysia crispata and E. viridis) others are more selective. Hence, characterizing the range of functional sacoglossan-chloroplast associations in nature is a prerequisite to understand the basis of this enigmatic endosymbiosis. Here, we present a suitable chloroplast gene (tufA) as a marker, which allows identification of the respective algal kleptoplast donor taxa by analysing DNA from whole animals. This novel approach allows identification of donor algae on genus or even species level, thus providing evidence for the taxonomic range of food organisms. We report molecular evidence that chloroplasts from different algal sources are simultaneously incorporated in some species of Elysia. NeigborNet analyses for species assignments are preferred over tree reconstruction methods because the former allow more reliable statements on species identification via barcoding, or rather visualize alternative allocations not to be seen in the latter. © 2010 Blackwell Publishing Ltd.

  11. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Science.gov (United States)

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  12. Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts.

    Science.gov (United States)

    Andersson, Mats X; Goksör, Mattias; Sandelius, Anna Stina

    2007-01-12

    Eukaryote cells depend on membrane lipid trafficking from biogenic membranes, like the endoplasmic reticulum (ER), to other membranes in the cell. Two major routes for membrane lipid transport are recognized: vesicular trafficking and lipid transfer at zones of close contact between membranes. Specific ER regions involved in such membrane contact sites (MCSs) have been isolated, and lipid transfer at MCSs as well as protein-protein interactions between the partaking membranes have been demonstrated (reviewed by Holthuis, J. C. M., and Levine, T. P. (2005) Nat. Rev. 6, 209-220). Here we present the first demonstration of the physical association between membranes involved in MCSs: by using optical imaging and manipulation, strong attracting forces between ER and chloroplasts are revealed. We used Arabidopsis thaliana expressing green fluorescent protein in the ER lumen and observed leaf protoplasts by confocal microscopy. The ER network was evident, with ER branch end points apparently localized at chloroplast surfaces. After rupture of a protoplast using a laser scalpel, the cell content was released. ER fragments remained attached to the released chloroplasts and could be stretched out by optical tweezers. The applied force, 400 pN, could not drag a chloroplast free from its attached ER, which could reflect protein-protein interactions at the ER-chloroplast MCSs. As chloroplasts rely on import of ER-synthesized lipids, we propose that lipid transfer occurs at these MCSs. We suggest that lipid transfer at the MCSs also occurs in the opposite direction, for example to channel plastid-synthesized acyl groups to supply substrates for ER-localized synthesis of membrane and storage lipids.

  13. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    Science.gov (United States)

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgC Δ1-160 , showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgC Δ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgC Δ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  15. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    Science.gov (United States)

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our

  16. The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Kumar, Amit; Moriyama, Hideaki

    2016-01-01

    the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background...

  17. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate

    OpenAIRE

    Heimberg, Alysha M.; Cowper-Sallari, Richard; Semon, Marie; Donoghue, Philip C. J.; Peterson, Kevin J.

    2010-01-01

    Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclosto...

  18. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions

    OpenAIRE

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L.; Guerinot, Mary Lou

    2008-01-01

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloropla...

  19. Chloroplast group III twintron excision utilizing multiple 5'- and 3'-splice sites.

    OpenAIRE

    Copertino, D W; Shigeoka, S; Hallick, R B

    1992-01-01

    The chloroplast genes of Euglena gracilis contain more than 60 group II and 47 group III introns. Some Euglena chloroplast genes also contain twintrons, introns-within-introns. Two types of twintrons have previously been described, a group II twintron and a mixed group II/group III twintron. We report that four introns, three within the RNA polymerase subunit gene rpoC1 and one within ribosomal protein gene rpl16, with mean lengths twice typical group III introns, are a new type of twintron. ...

  20. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis.

    Science.gov (United States)

    Terry, Matthew J; Smith, Alison G

    2013-01-01

    Chloroplast biogenesis involves the co-ordinated expression of the chloroplast and nuclear genomes, requiring information to be sent from the developing chloroplasts to the nucleus. This is achieved through retrograde signaling pathways and can be demonstrated experimentally using the photobleaching herbicide, norflurazon, which in seedlings results in chloroplast damage and the reduced expression of many photosynthesis-related, nuclear genes. Genetic analysis of this pathway points to a major role for tetrapyrrole synthesis in retrograde signaling, as well as a strong interaction with light signaling pathways. Currently, the best model to explain the genetic data is that a specific heme pool generated by flux through ferrochelatase-1 functions as a positive signal to promote the expression of genes required for chloroplast development. We propose that this heme-related signal is the primary positive signal during chloroplast biogenesis, and that treatments and mutations affecting chloroplast transcription, RNA editing, translation, or protein import all impact on the synthesis and/or processing of this signal. A positive signal is consistent with the need to provide information on chloroplast status at all times. We further propose that GUN1 normally serves to restrict the production of the heme signal. In addition to a positive signal re-enforcing chloroplast development under normal conditions, aberrant chloroplast development may produce a negative signal due to accumulation of unbound chlorophyll biosynthesis intermediates, such as Mg-porphyrins. Under these conditions a rapid shut-down of tetrapyrrole synthesis is required. We propose that accumulation of these intermediates results in a rapid light-dependent inhibition of nuclear gene expression that is most likely mediated via singlet oxygen generated by photo-excitation of Mg-porphyrins. Thus, the tetrapyrrole pathway may provide both positive and inhibitory signals to control expression of nuclear genes.

  1. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis

    Directory of Open Access Journals (Sweden)

    Matthew J. Terry

    2013-02-01

    Full Text Available Chloroplast biogenesis involves the co-ordinated expression of the chloroplast and nuclear genomes, requiring information to be sent from the developing chloroplasts to the nucleus. This is achieved through retrograde signaling pathways and can be demonstrated experimentally using the photobleaching herbicide, Norflurazon, which results in chloroplast damage and the reduced expression of many photosynthesis-related, nuclear genes in seedlings. Genetic analysis of this pathway points to a major role for tetrapyrrole synthesis in retrograde signaling, as well as a strong interaction with light-signaling pathways. Currently, the best model to explain the genetic data is that a specific heme pool generated by flux through ferrochelatase-1 functions as a positive signal to promote the expression of genes required for chloroplast development. We propose that this heme-related signal is the primary positive signal during chloroplast biogenesis, and that treatments and mutations affecting chloroplast transcription, RNA editing, translation, or protein import all impact on the synthesis and/or processing of this signal. A positive signal is consistent with the need to provide information on chloroplast status at all times. We further propose that GUN1 normally serves to restrict the production of the heme signal. In addition to a positive signal re-enforcing chloroplast development under normal conditions, aberrant chloroplast development may produce a negative signal due to accumulation of unbound chlorophyll biosynthesis intermediates, such as Mg-porphyrins. Under these conditions a rapid shut-down of tetrapyrrole synthesis is required. We propose that accumulation of these intermediates results in a rapid light-dependent inhibition of nuclear gene expression that is most likely mediated via singlet oxygen generated by photo-excitation of Mg-porphyrins. Thus, the tetrapyrrole pathway may provide both positive and inhibitory signals to control

  2. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    Science.gov (United States)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method

  3. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    cues and adjusting it to the plant internal status. The two major types of GS include cytosolic GS1 (five isoforms in Arabidopsis, GLN1;1 to GLN1;5) and a single chloroplastic GS2. GS draws its substrates from carbon skeletons to synthesize amino acids. Thus, carbon and nitrogen metabolisms are closely...

  4. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    Science.gov (United States)

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  5. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin

    2015-01-01

    necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from...... the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral...... evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants....

  6. Molecular phylogenetics of the species-rich angiosperm genus Goniothalamus (Annonaceae) inferred from nine chloroplast DNA regions: Synapomorphies and putative correlated evolutionary changes in fruit and seed morphology.

    Science.gov (United States)

    Tang, Chin Cheung; Thomas, Daniel C; Saunders, Richard M K

    2015-11-01

    A phylogenetic study of the genus Goniothalamus (Annonaceae) is presented using maximum parsimony, maximum likelihood and Bayesian approaches, with 65 species sampled (48.5% of the genus) based on sequences of nine chloroplast DNA regions (11,214 aligned positions). The resultant phylogeny clearly indicates that Goniothalamus is monophyletic. Preliminary research initially focused on identifying synapomorphies and estimating the phylogenetic signal of selected morphological characters based on parsimony and likelihood ancestral character state reconstructions. This prescreening of characters enabled 40 to be selected for further study, and of these 15 are shown here to demonstrate significant phylogenetic signal and to provide clear synapomorphies for several infrageneric clades. Although floral structure in Goniothalamus is comparatively uniform, suggesting a common basic pattern of pollination ecology, fruit and seed morphology in the genus is very diverse and is presumably associated with different patterns of frugivory. The present study assesses correlations amongst fruit and seed characters which are putatively of functional importance with regard to frugivory and dispersal. One-way phylogenetic ANOVA indicates significant phylogenetically independent correlation between the following fruit and seed characters: fruits borne on older branches and/or on the main trunk have larger monocarps than fruits borne on young branches; and monocarps that contain seeds with a hairy testa are larger than those with glabrous seeds. We discuss fruit morphologies and potential explanations for the inferred correlations, and suggest that they may be the result of adaptation to different frugivores (birds, larger non-volant animal and primate seed dispersers, respectively). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family.

    Science.gov (United States)

    Silva, Saura R; Diaz, Yani C A; Penha, Helen Alves; Pinheiro, Daniel G; Fernandes, Camila C; Miranda, Vitor F O; Michael, Todd P; Varani, Alessandro M

    2016-01-01

    Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the

  8. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family.

    Directory of Open Access Journals (Sweden)

    Saura R Silva

    Full Text Available Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(PH-dehydrogenase (ndh gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G

  9. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4.

    Directory of Open Access Journals (Sweden)

    Harinder Manku

    Full Text Available We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls, African-Americans (AA (1529, 2048 and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122. The best evidence of association comes from two adjacent markers: rs2205960-T (P=1.71 × 10(-34 , OR=1.43[1.26-1.60] and rs1234317-T (P=1.16 × 10(-28 , OR=1.38[1.24-1.54]. Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5' region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3 imputation. Conditional regression analyses delineate the 5' risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data

  10. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  11. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2011-01-01

    Full Text Available Abstract Background As one of the most widely used parsimony methods for ancestral reconstruction, the Fitch method minimizes the total number of hypothetical substitutions along all branches of a tree to explain the evolution of a character. Due to the extensive usage of this method, it has become a scientific endeavor in recent years to study the reconstruction accuracies of the Fitch method. However, most studies are restricted to 2-state evolutionary models and a study for higher-state models is needed since DNA sequences take the format of 4-state series and protein sequences even have 20 states. Results In this paper, the ambiguous and unambiguous reconstruction accuracy of the Fitch method are studied for N-state evolutionary models. Given an arbitrary phylogenetic tree, a recurrence system is first presented to calculate iteratively the two accuracies. As complete binary tree and comb-shaped tree are the two extremal evolutionary tree topologies according to balance, we focus on the reconstruction accuracies on these two topologies and analyze their asymptotic properties. Then, 1000 Yule trees with 1024 leaves are generated and analyzed to simulate real evolutionary scenarios. It is known that more taxa not necessarily increase the reconstruction accuracies under 2-state models. The result under N-state models is also tested. Conclusions In a large tree with many leaves, the reconstruction accuracies of using all taxa are sometimes less than those of using a leaf subset under N-state models. For complete binary trees, there always exists an equilibrium interval [a, b] of conservation probability, in which the limiting ambiguous reconstruction accuracy equals to the probability of randomly picking a state. The value b decreases with the increase of the number of states, and it seems to converge. When the conservation probability is greater than b, the reconstruction accuracies of the Fitch method increase rapidly. The reconstruction

  12. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences

    Directory of Open Access Journals (Sweden)

    Shairul Izan

    2017-08-01

    Full Text Available Whole Genome Shotgun (WGS sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This re-sequencing approach may select against structural differences between the genomes especially in non-model species for which no close relatives have been sequenced before. The alternative approach is to de novo assemble the chloroplast genome from total genomic DNA sequences. In this study, we used k-mer frequency tables to identify and extract the chloroplast reads from the WGS reads and assemble these using a highly integrated and automated custom pipeline. Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left due to coverage variation in the WGS dataset. We have successfully de novo assembled three complete chloroplast genomes from plant species with a range of nuclear genome sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb, Aegilops tauschii (4 Gb and Paphiopedilum henryanum (25 Gb. We also highlight the need to optimize the choice of k and the amount of data used. This new and cost-effective method for de novo short read assembly will facilitate the study of complete chloroplast genomes with more accurate analyses and inferences, especially in non-model plant genomes.

  13. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  14. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase.

    Science.gov (United States)

    Molina-Serrano, Diego; Marqués, Jorge; Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-03-01

    Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.

  15. Confocal microscopy of chloroplast morphology and ontogeny in three strains of Dictyochloropsis (Trebouxiophyceae, Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Škaloud, P.; Neustupa, J.; Radochová, Barbora; Kubínová, Lucie

    2005-01-01

    Roč. 44, č. 3 (2005), s. 261-269 ISSN 0031-8884 Grant - others:FRVŠ(CZ) 2826/2003; IGA MŠk(CZ) 139/2002/B Institutional research plan: CEZ:AV0Z5011922 Keywords : chloroplast ontogeny * confocal microscopy * Dichtyochloropsis Subject RIV: EF - Botanics Impact factor: 1.271, year: 2005

  16. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    Science.gov (United States)

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  17. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies.

    Science.gov (United States)

    Hansen, A Katie; Escobar, Linda K; Gilbert, Lawrence E; Jansen, Robert K

    2007-01-01

    Patterns of inheritance of the chloroplast genome in Passiflora were analyzed by examining the progeny from both interspecific and intraspecific crosses. Artificial crosses of field-collected material were performed in greenhouses at The University of Texas at Austin. DNA from fresh leaf material was analyzed by Southern blot techniques to identify the donor of the chloroplast genome. Initially, single progeny were analyzed for 11 crosses; two intraspecific crosses demonstrated maternal inheritance, whereas the nine interspecific crosses had paternal inheritance. Subsequently, the donor of the chloroplast genome was determined for multiple progeny in seven crosses. Passiflora oerstedii × P. retipetala showed strict paternal inheritance in all of 17 progeny. A series of five crosses and backcrosses between P. oerstedii and P. menispermifolia demonstrated strictly paternal inheritance. Finally, when 15 progeny were analyzed for the P. costaricensis × P. costaricensis cross, 12 of the 15 showed maternal inheritance, whereas the remaining three were biparental. Interestingly, all interspecific crosses had primarily paternal inheritance, whereas all intraspecific crosses had primarily maternal inheritance. The implications of heteroplasmy on phylogenetic analyses of chloroplast DNA are discussed.

  18. Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation.

    Science.gov (United States)

    Matthew E. Horning; Richard C. Cronn

    2006-01-01

    Phylogeographic and population genetic screens of chloroplast DNA (cpDNA) provide insights into seedbased gene flow in angiosperms, yet studies are frequently hampered by the low mutation rate of this genome. Detection methods for intraspecific variation can be either direct (DNA sequencing) or indirect (PCR-RFLP), although no single method incorporates the best...

  19. Photoactivation of electrogenic activity in chloroplasts and its relation to photoinduced swelling of thylakoids

    NARCIS (Netherlands)

    Bulychev, A.A.; Vredenberg, W.J.

    2000-01-01

    In patch-clamp experiments on isolated chloroplasts of Peperomia metallica Lind. et Rodig. (Piperaceae), the replacement of 50 mM KCl in a medium with 50 mM NH4Cl strongly influenced the parameters of photocurrent known to reflect the generation of electric potential in thylakoids. The addition of

  20. Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts

    NARCIS (Netherlands)

    Böttcher, Bettina; Gräber, Peter; Boekema, Egbert J.; Lücken, Uwe

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified. Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  1. ELECTRON CRYOMICROSCOPY OF 2-DIMENSIONAL CRYSTALS OF THE H+-ATPASE FROM CHLOROPLASTS

    NARCIS (Netherlands)

    BOTTCHER, B; GRABER, P; BOEKEMA, EJ; LUCKEN, U

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified, Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  2. Electrochromic effects in relation to energy transduction and energy coupling in chloroplast membranes

    NARCIS (Netherlands)

    Peters, R.L.A.

    1986-01-01

    A study was made on the kinetics of the flash-induced P515 electrochromic bandshift signal in spinach leaves and isolated chloroplasts. It was found that part of the signal (i.e. the slow component, also called reaction 2), normally present in dark-adapted membranes is absent from the signal under

  3. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Science.gov (United States)

    Matthew Parks; Richard Cronn; Aaron Liston

    2009-01-01

    We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using multiplexed massively parallel sequencing. We found that 30/33 ingroup nodes resolved wlth > 95-percent bootstrap support; this is a substantial improvement relative...

  4. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    Science.gov (United States)

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico.

  5. Changes in Chloroplast Ultrastructure in Pssu-ipt Tobacco During Plant Ontogeny

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Pechová, Renáta; Valcke, R.

    2003-01-01

    Roč. 41, č. 1 (2003), s. 117-126 ISSN 0300-3604 R&D Projects: GA ČR GA206/01/1061 Institutional research plan: CEZ:AV0Z5038910 Keywords : chloroplast ultrastructure * cytokinins * transgenic tobacco Subject RIV: EF - Botanics Impact factor: 0.661, year: 2003

  6. Characterization of the complete chloroplast genome of wheel wingnut (Cyclocarya paliurus), an endemic in China

    Science.gov (United States)

    Yiheng Hu; Jing Yan; Xiaojia Feng; Meng Dang; Keith E. Woeste; Peng. Zhao

    2017-01-01

    The wheel wingnut (Cyclocarya paliurus) is an endemic species distributed in eastern and central China. Cyclocarya is a woody genus in the Juglandaceae used in medicine and horticulture. The complete chloroplast genome of C. paliurus was sequenced using the Illumina Hiseq 2500 platform. The total genome...

  7. Analysis of chloroplast ribosomal subunit S16 (rpS16) intron ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... In this study, the chloroplast rps16 sequence variation of Morus was examined. Sequence data were obtained from 18 mulberry individuals belonging to 13 species and three varieties, and two accessions of Broussonetia papyrifera and Ficus carica of the related Moraceae, designed as outgroup were.

  8. Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance.

    Science.gov (United States)

    Königer, Martina; Bollinger, Nicole

    2012-08-01

    It is well known that chloroplasts move in response to changes in blue light intensity in order to optimize light interception, however, little is known about interspecific variation and the relative importance of this mechanism for the high light stress tolerance of plants. We characterized chloroplast movement behavior as changes in light transmission through a leaf in a variety of species ranging from ferns to monocots and eudicots and found a wide spectrum of responses. Most species exhibited a distinct accumulation response compared to the dark positioning, and all species showed a distinct avoidance response. The speed with which transmission values changed during the avoidance response was consistently faster than that during the accumulation response and speeds varied greatly between species. Plants thriving in higher growth light intensities showed greater degrees of accumulation responses and faster changes in transmission than those that prefer lower light intensities. In some species, the chloroplasts on both the adaxial and abaxial leaf surfaces changed their positioning in response to light, while in other species only the chloroplasts on one leaf side responded. No correlation was found between high light stress tolerance and the speed or degree of transmission changes, indicating that plants can compensate for slow and limited transmission changes using other photoprotective mechanisms.

  9. Euglena gracilis chloroplast transfer RNA transcription units. I. Physical map of the transfer RNA gene loci.

    Science.gov (United States)

    Orozco, E M; Hallick, R B

    1982-03-25

    The locations of transfer RNA genes with respect to the restriction endonuclease cleavage map of Euglena gracilis Klebs, strain Z Pringsheim chloroplast DNA have been determined. Purified chloroplast tRNAs were treated with snake venom phosphodiesterase to remove the 3'-CCA terminus, and radioactively labeled by the action of Escherichia coli tRNA nucleotidyltransferase in the presence of [alpha-32P]CTP. Chloroplast DNA was treated individually and with combinations of the enzymes Bal I, Bam HI, Eco RI, Pst I, Pvu II, Sal I, and Xho I. The location of tRNA genes with respect to the cleavage sites for these enzymes was determined by hybridization of the 32P-labeled tRNAs to membrane filter blots of the chloroplast DNA restriction nuclease fragments following gel electrophoresis. The 145-kilobase pair genome was resolved into nine areas of strong tRNA hybridization, separated by areas of weak or no tRNA hybridization. The loci of tRNA genes are within the Eco RI fragments Eco A, B, G, H, I, J', P, Q, and V.

  10. The Clp protease system; a central component of the chloroplast protease network.

    Science.gov (United States)

    Olinares, Paul Dominic B; Kim, Jitae; van Wijk, Klaas J

    2011-08-01

    Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. The Chloroplast Genome of Hyoscyamus niger and a Phylogenetic Study of the Tribe Hyoscyameae (Solanaceae)

    Science.gov (United States)

    Sanchez-Puerta, M. Virginia; Abbona, Cinthia Carolina

    2014-01-01

    The tribe Hyoscyameae (Solanaceae) is restricted to Eurasia and includes the genera Archihyoscyamus, Anisodus, Atropa, Atropanthe, Hyoscyamus, Physochlaina, Przewalskia and Scopolia. Even though the monophyly of Hyoscyameae is strongly supported, the relationships of the taxa within the tribe remain unclear. Chloroplast markers have been widely used to elucidate plant relationships at low taxonomic levels. Identification of variable chloroplast intergenic regions has been developed based on comparative genomics of chloroplast genomes, but these regions have a narrow phylogenetic utility. In this study, we present the chloroplast genome sequence of Hyoscyamus niger and make comparisons to other solanaceous plastid genomes in terms of gene order, gene and intron content, editing sites, origins of replication, repeats, and hypothetical open reading frames. We developed and sequenced three variable plastid markers from eight species to elucidate relationships within the tribe Hyoscyameae. The presence of a horizontally transferred intron in the mitochondrial cox1 gene of some species of the tribe is considered here a likely synapomorphy uniting five genera of the Hyoscyameae. Alternatively, the cox1 intron could be a homoplasious character acquired twice within the tribe. A homoplasious inversion in the intergenic plastid spacer trnC-psbM was recognized as a source of bias and removed from the data set used in the phylogenetic analyses. Almost 12 kb of plastid sequence data were not sufficient to completely resolve relationships among genera of Hyoscyameae but some clades were identified. Two alternative hypotheses of the evolution of the genera within the tribe are proposed. PMID:24851862

  12. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity

    Science.gov (United States)

    Zhihao Su; Mingli Zhang; Stewart C. Sanderson

    2011-01-01

    Two chloroplast intergenic spacers (trnD-trnT and rps16-trnK) were used to study the phylogeographical structure of Helianthemum songaricum in northwestern China, with 12 haplotypes detected. Phylogenetic analysis showed that H. songaricum comprised two lineages, one distributed in the Yili Valley and the other in the western Ordos Plateau. Nested clade phylogeographic...

  13. Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris

    Czech Academy of Sciences Publication Activity Database

    Štorchová, Helena; Olson, M.

    2004-01-01

    Roč. 13, č. 10 (2004), s. 2909-2919 ISSN 0962-1083 Grant - others:Fulbright Scholar Fellowship(US) EPSCoR; Healther McIntyre(US) NSF DEB0317115 Institutional research plan: CEZ:AV0Z5038910 Keywords : Caryophyllaceae * chloroplast * Europe Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.375, year: 2004

  14. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.

    Science.gov (United States)

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-09-16

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  16. Regulation of photosynthetic electron flow in isolated chloroplasts by bicarbonate, formate and herbicides

    NARCIS (Netherlands)

    Snel, J.F.H.

    1985-01-01

    This thesis describes some efforts that were made to gain a better understanding of the processes involved in the regulation of photosynthetic electron flow by bicarbonate, formate and herbicides in chloroplasts. In the past decade a large amount of research has been devoted to get insight into the

  17. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing

    Science.gov (United States)

    Wambui Njunguna; Aaron Liston; Richard Cronn; Tia-Lynn Ashman; Nahla Bassil

    2013-01-01

    The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria...

  18. The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber.

    Science.gov (United States)

    Liu, Bang; Zhang, Dan; Gao, Li-Zhi

    2016-11-01

    The complete chloroplast genome sequence of wild cucumber (Cucumis sativus var. hardwickii) was determined and characterized in this study. The genome is of 155 277 bp in length, containing a pair of inverted repeats regions (IRs) of 25 198 bp, which are separated by a large single-copy region of 86 618 bp and a small single-copy region of 18 263 bp. The wild cucumber chloroplast genome has 130 known genes, including 85 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. Among these genes, 19 comprise one or two introns. There are 11 tRNA genes present in the IR of the chloroplast genome. Phylogenomic analysis showed that C. sativus var. hardwickii forms a cluster with other Cucumis species with strong bootstrap supports and is closely related to C. sativus var. sativus. This newly sequenced chloroplast genome sequence may provide useful genetic information to explore wild cucumber germplasms for cucumber breeding programs.

  19. Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts

    NARCIS (Netherlands)

    Tzvetkova-Chevolleau, Tzvetelina; Hutin, Claire; Noël, Laurent D; Goforth, Robyn; Carde, Jean-Pierre; Caffarri, Stephano; Sinning, Irmgard; Groves, Matthew; Teulon, Jean-Marie; Hoffman, Neil E; Henry, Ralph; Havaux, Michel; Nussaume, Laurent

    The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) target proteins both cotranslationally and posttranslationally to the thylakoids. This dual function enables cpSRP to utilize its posttranslational activities for targeting a family of nucleus-encoded light-harvesting

  20. Chloroplast genomes of Byrsonima species (Malpighiaceae): comparative analysis and screening of high divergence sequences.

    Science.gov (United States)

    Menezes, Alison P A; Resende-Moreira, Luciana C; Buzatti, Renata S O; Nazareno, Alison G; Carlsen, Monica; Lobo, Francisco P; Kalapothakis, Evanguedes; Lovato, Maria Bernadete

    2018-02-02

    Byrsonima is the third largest genus (about 200 species) in the Malpighiaceae family, and one of the most common in Brazilian savannas. However, there is no molecular phylogeny available for the genus and taxonomic uncertainties at the generic and family level still remain. Herein, we sequenced the complete chloroplast genome of B. coccolobifolia and B. crassifolia, the first ones described for Malpighiaceae, and performed comparative analyses with sequences previously published for other families in the order Malpighiales. The chloroplast genomes assembled had a similar structure, gene content and organization, even when compared with species from other families. Chloroplast genomes ranged between 160,212 bp in B. crassifolia and 160,329 bp in B. coccolobifolia, both containing 115 genes (four ribosomal RNA genes, 28 tRNA genes and 83 protein-coding genes). We also identified sequences with high divergence that might be informative for phylogenetic inferences in the Malpighiales order, Malpighiaceae family and within the genus Byrsonima. The phylogenetic reconstruction of Malpighiales with these regions highlighted their utility for phylogenetic studies. The comparative analyses among species in Malpighiales provided insights into the chloroplast genome evolution in this order, including the presence/absence of three genes (infA, rpl32 and rps16) and two pseudogenes (ycf1 and rps19).

  1. The chloroplast genome sequence of an important medicinal plant Dioscorea nipponica.

    Science.gov (United States)

    Wu, Lan; Wang, Bo; Yang, Jun; Song, Chi; Wang, Ping; Chen, Shilin; Sun, Wei

    2016-07-01

    Dioscorea nipponica is an important medicinal plant belonging to Dioscoreaceae, a family which is vital for the evolution of monocotyledon. In the present study, the nucleotide sequence of the D. nipponica chloroplast genome was determined. It was an AT-rich (63.3%) chloroplast genome with 152,946 bp in length, containing a pair of 23,113 bp inverted repeats, which were separated by a large and a small single copy region of 83,557 bp and 23,064 bp in length, respectively. It encodes 120 unique genes, including 89 protein-coding genes, 27 tRNA genes and 4 rRNA genes. The predicted gene-coding regions covered 58.7% of the genome sequences. Ten genes contained one intron, while two genes had two introns. Phylogenetic analyses showed the present chloroplast genome can be used as a potential supper barcode to distinguish D. nipponica from its closely related species. Furthermore, the chloroplast genome provides a molecular base for the next investigation on this important medicinal species.

  2. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  3. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2018-02-01

    Full Text Available Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.

  4. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism.

    Science.gov (United States)

    Exposito-Rodriguez, Marino; Laissue, Pierre Philippe; Yvon-Durocher, Gabriel; Smirnoff, Nicholas; Mullineaux, Philip M

    2017-06-29

    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H 2 O 2 ) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H 2 O 2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H 2 O 2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H 2 O 2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H 2 O 2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H 2 O 2 accumulation and high light-responsive gene expression. This is because the H 2 O 2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H 2 O 2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H 2 O 2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.

  5. Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts.

    Science.gov (United States)

    Xavier, Raquel; Santos, Joana L; Veríssimo, Ana

    2018-03-16

    Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.

  6. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia.

    Science.gov (United States)

    Gold, David A; Runnegar, Bruce; Gehling, James G; Jacobs, David K

    2015-01-01

    Despite numerous attempts, classification of the Precambrian fossil Dickinsonia has eluded scientific consensus. This is largely because Dickinsonia and its relatives are structurally simple, lacking morphological synapomorphies to clarify their relationship to modern taxa. However, there is increasing precedence for using ontogeny to constrain enigmatic fossils, and growth of the type species Dickinsonia costata is well understood. This study formalizes the connection between ontogeny in Dickinsonia-which grows by the addition of metameric units onto one end of its primary axis-with terminal addition, defined as growth and patterning from a posterior, subtermial growth zone. We employ ancestral state reconstruction and stochastic character mapping to conclude that terminal addition is a synapomorphy of bilaterian animals. Thus, terminal addition allies Dickinsonia with the bilaterians, providing evidence that large stem- or crown-group bilaterians made up a significant proportion of the Precambrian biota. This study also illustrates the potential for combining developmental and phylogenetic data in constraining the placement of ancient problematic fossil taxa on the evolutionary tree. © 2015 Wiley Periodicals, Inc.

  7. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  8. Determination of ancestral proportions in synthetic bovine breeds using commonly employed microsatellite markers.

    Science.gov (United States)

    Bicalho, H M S; Pimenta, C G; Mendes, I K P; Pena, H B; Queiroz, E M; Pena, S D J

    2006-07-31

    The International Society of Animal Genetics (ISAG) has chosen nine microsatellites (international marker set) as a standard that should be included in all cattle parentage studies. They are BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, and ETH225. We decided to ascertain whether this microsatellite set could be used to determine ancestral proportions in individual animals of synthetic breeds produced by crossing zebu and taurine cattle. Since the genotypes of these markers are routinely available, this would constitute a practical and cost-free method to estimate the ancestry of synthetic breed animals. Genotypes of 100 Gir and 100 Holstein animals were examined for this ISAG marker set. As expected, there were very significant allele frequency differences between the two breeds at most loci. We also typed 20 Girolando animals for which there was complete genealogical information. "Structure" software easily distinguished Holstein and Gir animals based on their microsatellite genotypes; it also attributed the genomic proportion of zebu and taurine of each of the 20 Girolando animals. The proportion of Holstein ancestry was then regressed on the genealogical data; there was a highly significant correlation (r = 0.84, P Girolando animals within narrow confidence limits. This microsatellite set might also be useful for estimating the proportions of taurine and zebu origins in commercial meat products.

  9. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.

    Science.gov (United States)

    Hoang, Phuong T N; Schubert, Ingo

    2017-12-01

    The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.

  10. Origins and Spread of Machado-Joseph Disease Ancestral Mutations Events.

    Science.gov (United States)

    Martins, Sandra; Sequeiros, Jorge

    2018-01-01

    Machado-Joseph disease (MJD) is the most common autosomal dominant spinocerebellar ataxia reported worldwide, but it shows marked geographic differences in prevalence. The study of ancestral origins and spreading routes of MJD mutational events has contributed to explain such differences. During human evolution, at least two independent de novo MJD expansions occurred in distinct haplotype backgrounds: TTACAC and GTGGCA (named Joseph and Machado lineages). The most ancient Joseph lineage, probably of Asian origin, has been introduced recently in Europe, where founder effects are responsible for the high MJD prevalence, as occurs in the Portuguese/Azorean island of Flores and Northeastern mainland. The Machado lineage is geographically more restricted, with most known families in Portugal (island of São Miguel and along the Tagus valley). The hypothesis of other mutational origins has been raised, namely to explain the disease among Australian aborigines; however, a comprehensive haplotype study suggested the introduction of the Joseph lineage in that community via Asia. Also, additional SNP-based haplotypes (TTAGAC, TTGGAC and GTGCCA) were observed in other MJD families, but phylogenetic analysis with more polymorphic flanking markers did not point to independent mutational events, reinforcing the hypothesis of a very low mutation rate underlying this repeat expansion locus.

  11. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  12. The evolution of brachiation in ateline primates, ancestral character states and history.

    Science.gov (United States)

    Jones, Andrea L

    2008-10-01

    This study examines how brachiation locomotion evolved in ateline primates using recently-developed molecular phylogenies and character reconstruction algorithms, and a newly-collected dataset including the fossils Protopithecus, Caipora, and Cebupithecia. Fossils are added to two platyrrhine molecular phylogenies to create several phylogenetic scenarios. A generalized least squares algorithm reconstructs ateline and atelin ancestral character states for 17 characters that differentiate between ateline brachiators and nonbrachiators. Histories of these characters are mapped out on these phylogenies, producing two scenarios of ateline brachiation evolution that have four commonalities: First, many characters change towards the Ateles condition on the ateline stem lineage before Alouatta splits off from the atelins, suggesting that an ateline energy-maximizing strategy began before the atelines diversified. Second, the ateline last common ancestor is always reconstructed as an agile quadruped, usually with suspensory abilities. It is never exactly like Alouatta and many characters reverse and change towards the Alouatta condition after Alouatta separates from the atelins. Third, most characters undergo homoplastic change in all ateline lineages, especially on the Ateles and Brachyteles terminal branches. Fourth, ateline character evolution probably went through a hindlimb suspension with tail-bracing phase. The atelines most likely diversified via a quick adaptive radiation, with bursts of punctuated change occurring in their postcranial skeletons, due to changing climatic conditions, which may have caused competition among the atelines and between atelines and pitheciines.

  13. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  14. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  15. Counting all possible ancestral configurations of sample sequences in population genetics.

    Science.gov (United States)

    Song, Yun S; Lyngsø, Rune; Hein, Jotun

    2006-01-01

    Given a set D of input sequences, a genealogy for D can be constructed backward in time using such evolutionary events as mutation, coalescent, and recombination. An ancestral configuration (AC) can be regarded as the multiset of all sequences present at a particular point in time in a possible genealogy for D. The complexity of computing the likelihood of observing D depends heavily on the total number of distinct ACs of D and, therefore, it is of interest to estimate that number. For D consisting of binary sequences of finite length, we consider the problem of enumerating exactly all distinct ACs. We assume that the root sequence type is known and that the mutation process is governed by the infinite-sites model. When there is no recombination, we construct a general method of obtaining closed-form formulas for the total number of ACs. The enumeration problem becomes much more complicated when recombination is involved. In that case, we devise a method of enumeration based on counting contingency tables and construct a dynamic programming algorithm for the approach. Last, we describe a method of counting the number of ACs that can appear in genealogies with less than or equal to a given number R of recombinations. Of particular interest is the case in which R is close to the minimum number of recombinations for D.

  16. Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula.

    Science.gov (United States)

    Smith, Martin R

    2012-10-22

    The Middle Cambrian lophotrochozoans Odontogriphus omalus and Wiwaxia corrugata have been interpreted as stem-group members of either the Mollusca, the Annelida, or a group containing Mollusca + Annelida. The case for each classification rests on the organisms' unusual mouthparts, whose two to three tooth-rows resemble both the molluscan radula and the jaws of certain annelid worms. Despite their potential significance, these mouthparts have not previously been described in detail. This study examined the feeding apparatuses of over 300 specimens from the 505-million-year-old Burgess Shale, many of which were studied for the first time. Rather than denticulate plates, each tooth row comprises a single axial tooth that is flanked on each side by eight to 16 separate shoehorn-shaped teeth. Tooth rows sat on a grooved basal tongue, and two large lobes flanked the apparatus. New observations--the shape, distribution and articulation of the individual teeth, and the mouthparts' mode of growth--are incompatible with an annelid interpretation, instead supporting a classification in Mollusca. The ancestral molluscan radula is best reconstructed as unipartite with a symmetrical medial tooth, and Odontogriphus and Wiwaxia as grazing deposit-feeders.

  17. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  18. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Science.gov (United States)

    Manikkam, Mohan; Guerrero-Bosagna, Carlos; Tracey, Rebecca; Haque, Md M; Skinner, Michael K

    2012-01-01

    Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm) that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET), a plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8). After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation). Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR) were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  19. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.

    Directory of Open Access Journals (Sweden)

    Mohan Manikkam

    Full Text Available Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET, a plastic mixture (bisphenol A and phthalates, dioxin (TCDD and a hydrocarbon mixture (jet fuel, JP8. After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation. Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.

  20. Bacterial community composition and diversity in an ancestral ant fungus symbiosis.

    Science.gov (United States)

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G

    2015-07-01

    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Cranial morphological variation among contemporary Mexicans: Regional trends, ancestral affinities, and genetic comparisons.

    Science.gov (United States)

    Hughes, Cris E; Tise, Meredith L; Trammell, Lindsay H; Anderson, Bruce E

    2013-08-01

    Genetic research has documented geographical variation within Mexico that corresponds to trends in ancestry admixture from postcolonial times on. The purpose of this study is to determine whether craniometric variation among contemporary Mexicans is comparable to that reported in genetic studies. Standard osteometric measurements were taken on 82 male crania derived from forensic cases, with geographic origins of the specimens spanning over two-thirds of Mexico's states. To study similarities in regional clustering patterns with genetic data, k-means clustering analyses were performed, followed by chi-square tests of association between cluster assignments and geographic region of origin. Normal mixtures analyses were performed, centered on three "ancestral" sample proxies to estimate classification probability to each ancestry. The results demonstrate that the cranial morphological sample data cluster similarly to the regional groupings inferred from the genetic data. Additionally, the results indicate a gradient trend in population structure for contemporary Mexicans, with the proportion of Amerindian ancestry increasing from North to South while, conversely, European ancestry proportion estimates increase from South to North. Furthermore, the probabilities for classification of African ancestry remained low across the regions, again reflecting the results for the genetic data. Cranial morphological variation is well aligned with the genetic data for describing broad trends among Mexican populations, as well as yielding comparable estimates of general ancestry affiliations that reflect Mexico's history of Spanish contact and colonialism. Copyright © 2013 Wiley Periodicals, Inc.

  2. A Skull Might Lie: Modeling Ancestral Ranges and Diet from Genes and Shape of Tree Squirrels.

    Science.gov (United States)

    Pečnerová, Patrícia; Moravec, Jiří C; Martínková, Natália

    2015-11-01

    Tropical forests of Central and South America represent hotspots of biological diversity. Tree squirrels of the tribe Sciurini are an excellent model system for the study of tropical biodiversity as these squirrels disperse exceptional distances, and after colonizing the tropics of the Central and South America, they have diversified rapidly. Here, we compare signals from DNA sequences with morphological signals using pictures of skulls and computational simulations. Phylogenetic analyses reveal step-wise geographic divergence across the Northern Hemisphere. In Central and South America, tree squirrels form two separate clades, which split from a common ancestor. Simulations of ancestral distributions show western Amazonia as the epicenter of speciation in South America. This finding suggests that wet tropical forests on the foothills of Andes possibly served as refugia of squirrel diversification during Pleistocene climatic oscillations. Comparison of phylogeny and morphology reveals one major discrepancy: Microsciurus species are a single clade morphologically but are polyphyletic genetically. Modeling of morphology-diet relationships shows that the only group of species with a direct link between skull shape and diet are the bark-gleaning insectivorous species of Microsciurus. This finding suggests that the current designation of Microsciurus as a genus is based on convergent ecologically driven changes in morphology. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  4. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    Full Text Available Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity. Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the implications of gene duplication, the three mechanisms co-occur and intertwine.

  5. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea).

    Science.gov (United States)

    Shelomi, Matan; Heckel, David G; Pauchet, Yannick

    2016-04-01

    The Phasmatodea (stick insects) have multiple, endogenous, highly expressed copies of glycoside hydrolase family 9 (GH9) genes. The purpose for retaining so many was unknown. We cloned and expressed the enzymes in transfected insect cell lines, and tested the individual proteins against different plant cell wall component poly- and oligosaccharides. Nearly all isolated enzymes were active against carboxymethylcellulose, however most could also degrade glucomannan, and some also either xylan or xyloglucan. The latter two enzyme groups were each monophyletic, suggesting the evolution of these novel substrate specificities in an early ancestor of the order. Such enzymes are highly unusual for Metazoa, for which no xyloglucanases had been reported. Phasmatodea gut extracts could degrade multiple plant cell wall components fully into sugar monomers, suggesting that enzymatic breakdown of plant cell walls by the entire Phasmatodea digestome may contribute to the Phasmatodea nutritional budget. The duplication and neofunctionalization of GH9s in the ancestral Phasmatodea may have enabled them to specialize as folivores and diverge from their omnivorous ancestors. The structural changes enabling these unprecedented activities in the cellulases require further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-04-01

    Full Text Available Abstract Background The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA. Results We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. Conclusions We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.

  7. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  8. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.

    Science.gov (United States)

    Schopp, Pascal; Müller, Dominik; Technow, Frank; Melchinger, Albrecht E

    2017-01-01

    Synthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.) lines taken from an ancestral population with either short- or long-range linkage disequilibrium (LD). In eight scenarios differing in relatedness of the training and prediction sets and in the types of data used to calculate the relationship matrix (QTL, SNPs, tag markers, and pedigree), we investigated the prediction accuracy (PA) of Genomic best linear unbiased prediction (GBLUP) and analyzed contributions from pedigree relationships captured by SNP markers, as well as from cosegregation and ancestral LD between QTL and SNPs. The effects of training set size [Formula: see text] and marker density were also studied. Sampling few parents ([Formula: see text]) generates substantial sample LD that carries over into synthetics through cosegregation of alleles at linked loci. For fixed [Formula: see text], [Formula: see text] influences PA most strongly. If the training and prediction set are related, using [Formula: see text] parents yields high PA regardless of ancestral LD because SNPs capture pedigree relationships and Mendelian sampling through cosegregation. As [Formula: see text] increases, ancestral LD contributes more information, while other factors contribute less due to lower frequencies of closely related individuals. For unrelated prediction sets, only ancestral LD contributes information and accuracies were poor and highly variable for [Formula: see text] due to large sample LD. For large [Formula: see text], achieving moderate accuracy requires

  9. Chloroplast Glutamine Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its Subunits

    Directory of Open Access Journals (Sweden)

    Edit Németh

    2018-02-01

    Full Text Available Glutamine synthetase (GS is of central interest as the main route of ammonia assimilation in plants, and as a connection point between the organic and inorganic worlds. Even though GS activity is critical for producing high yields of crop plants, the autoregulation of substrate consumption of wheat GS remained unknown until now. Here we show kinetic evidence, that the chloroplast localized GS isoform (GS2 of wheat (Triticum aestivum L. cv. Jubilejnaja-50 takes place at the carbon-nitrogen metabolic branch point, where it is a mediator, and its enzymatic activity is regulated in a negatively cooperative allosteric manner. We have discovered that GS2 activity is described by a tetraphasic kinetic curve in response to increasing levels of glutamate supply. We constructed a model that explains the kinetic properties of glutamate consumption and this unique allosteric behavior. We also studied the subunit composition of both wheat leaf GS isoenzymes by a combination of two dimensional gel electrophoresis and protein blotting. Both leaf isozymes have homogeneous subunit composition. Glutamate is both a substrate, and an allosteric regulator of the biosynthetic reaction. We have concluded on the basis of our results and previous reports, that wheat GS2 is probably a homooctamer, and that it processes its substrate in a well-regulated, concentration dependent way, as a result of its negatively cooperative, allosteric activity. Thus, GS2 has a central role as a regulator between the nitrogen and the carbon cycles via maintaining glutamine-glutamate pool in the chloroplast on the level of substrates, in addition to its function in ammonia assimilation.

  10. The Complete Chloroplast Genome Sequences of the Medicinal Plant Forsythia suspensa (Oleaceae

    Directory of Open Access Journals (Sweden)

    Wenbin Wang

    2017-10-01

    Full Text Available Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae. The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp region, and a small single-copy (SSC; 17,811 bp region interspersed between inverted repeat (IRa/b; 25,717 bp regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8% and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%, and 54 simple sequence repeats (SSRs with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species.

  11. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species

    Science.gov (United States)

    Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038

  12. A dynamic phase microscopic study of optical characteristics of individual chloroplasts.

    Science.gov (United States)

    Tychinsky, V P; Kretushev, A V; Vyshenskaya, T V; Tikhonov, A N

    2004-10-11

    Dynamic phase microscopy (DPM) allows the monitoring of optical path difference (or phase height), h(x,y,t) approximately integraln(x,y,z,t)dz, an integral refractive index projection of the medium, n(x,y,z,t), in optically transparent biological specimens at high spatial and temporal resolutions. In this study, DPM was used for the analysis of fluctuations in the optical characteristics of individual bean chloroplasts in various metabolic states. A "phase image" of an individual chloroplast, which represents a three-dimensional plot of the "phase height", was obtained for the first time, and the frequency spectra of the fluctuations of h(x,y,t) were investigated. The fluctuation patterns, i.e., the intensity and the frequency spectra of phase height fluctuations in bean chloroplasts (Class B) were found to depend on their metabolic state. Under conditions of noncyclic (or pseudocyclic) electron transport, the fluctuations displayed characteristic frequencies in the range of 0.25-0.6 Hz and were space-time-correlated in the chloroplast domains with the cross sizes of approximately 2 microm. The fluctuation intensity decreased in the presence of uncouplers (nigericin and valinomycin, 20 microM). A stronger (in comparison with 20 microM valinomycin) effect of 20 microM nigericin suggests that the light-induced generation of the transmembrane pH difference (DeltapH) makes the main contribution to the increment of space-correlated fluctuations of h(x,y,t). Studies of chloroplasts incubated in media of various osmolarity (50-500 mM sucrose) have shown that structural changes in thylakoids are among other factors responsible for phase height fluctuations.

  13. Mitochondria, Chloroplasts in Animal and Plant Cells: Significance of Conformational Matching.

    Science.gov (United States)

    Stefano, George B; Snyder, Christopher; Kream, Richard M

    2015-07-17

    Many commonalities between chloroplasts and mitochondria exist, thereby suggesting a common origin via a bacterial ancestor capable of enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Accordingly, the molecular evolution/retention of the catalytic Qo quinol oxidation site of cytochrome b complexes as the tetrapeptide PEWY sequence functionally underlies the common retention of a chemiosmotic proton gradient mechanism for ATP synthesis in cellular respiration and photosynthesis. Furthermore, the dual regulatory targeting of mitochondrial and chloroplast gene expression by mitochondrial transcription termination factor (MTERF) proteins to promote optimal energy production and oxygen consumption further advances these evolutionary contentions. As a functional consequence of enhanced oxygen utilization and production, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammationary conditions. Interestingly, both types of organelles have been identified in selected animal cells, most notably specialized digestive cells lining the gut of several species of Sacoglossan sea slugs. Termed kleptoplasty or kleptoplastic endosymbiosis, functional chloroplasts from algal food sources are internalized and stored within digestive cells to provide the host with dual energy sources derived from mitochondrial and photosynthetic processes. Recently, the observation of internalized algae within embryonic tissues of the spotted salamander strongly suggest that developmental processes within a vertebrate organism may require photosynthetic endosymbiosis as an internal regulator. The dual presence of mitochondria and functional chloroplasts within specialized animal cells indicates a high degree of biochemical identity, stereoselectivity, and conformational matching that are the likely

  14. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts.

    Science.gov (United States)

    Chen, Lih-Jen; Li, Hsou-Min

    2017-10-01

    Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.

    Science.gov (United States)

    Daniell, Henry

    2006-10-01

    Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.

  16. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an Alpine Tibetan Herb.

    Science.gov (United States)

    Ni, Lianghong; Zhao, Zhili; Dorje, Gaawe; Ma, Mi

    2016-01-01

    Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae). The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

  17. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae, an Alpine Tibetan Herb.

    Directory of Open Access Journals (Sweden)

    Lianghong Ni

    Full Text Available Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM. However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae. The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs of 25,523 bp that separate a large single copy (LSC region of 84,058 bp and a small single copy (SSC region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs. The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

  18. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species.

    Science.gov (United States)

    Tian, Na; Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular.

  19. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles.

    Science.gov (United States)

    Alboresi, Alessandro; Perin, Giorgio; Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric; Morosinotto, Tomas

    2016-08-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles1[OPEN

    Science.gov (United States)

    Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric

    2016-01-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666

  1. Effectiveness of ancestral irradiation on the direct and correlated responses to selection for body weight in rats

    International Nuclear Information System (INIS)

    Gianola, D.

    1975-01-01

    The effects of ancestral irradiation of rat spermatogonia (a cumulative total of 4050 r of x-rays) were studied in a highly inbred line of rats to explore the feasibility of using irradiation to enhance the effectiveness of selection. Six generations after irradiation was terminated, a selection experiment for body weight at six weeks of age was started in both ancestrally irradiated and non-irradiated populations. There were two non-contemporaneous replicates in each of the populations. Within each of the ancestral treatment-replicate combinations one line was selected for high, one for low body weight at six weeks of age, and a third line was maintained by random selection. In each line, avoidance of mating of animals with grandparents in common was attempted. Data on the first ten progeny generations of selection were included in this study. Five types of covariances among relatives were used to estimate causal components of variance for five different genetic models within the ''non-irradiated'' and ''irradiated'' randomly selected models. The parameters in the genetic models were estimated by generalized least-squares. This analysis suggested that a genetic model including direct genetic and maternal genetic effects was adequate to describe the body weights at 3, 6 and 10 weeks of age and the weight gains between these ages. Ancestral irradiation seemed to have enhanced the maternal genetic variance and the covariance between the direct genetic and the maternal genetic effects. On the basis of the above analysis, it was deduced that mass selection should have been more effective in the descendants of irradiated males than in those of the non-irradiated males as a consequence of greater phenotypic variability in their progeny and an enhancement in the regression of the genetic value on the selection criterion

  2. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D.

    Directory of Open Access Journals (Sweden)

    Daniel E Adkins

    Full Text Available Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient's unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE (n = 765 and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D (n = 1892. Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples. Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient's unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions.

  3. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D

    2008-09-01

    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  4. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    International Nuclear Information System (INIS)

    Rapacz, J.; Hasler-Rapacz, J.O.; Chen, L.; Wu, Mingjiuan; Schumaker, V.N.; Butler-Brunner, E.; Butler, R.

    1991-01-01

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes

  5. Identification of the ancestral haplotype for apolipoprotein B suggests an African origin of Homo sapiens sapiens and traces their subsequent migration to Europe and the Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Rapacz, J.; Hasler-Rapacz, J.O. (Univ. of Wisconsin, Madison (United States)); Chen, L.; Wu, Mingjiuan; Schumaker, V.N. (Univ. of California, Los Angeles (United States)); Butler-Brunner, E.; Butler, R. (Swiss Red Cross Blood Transfusion Service, Bern (Switzerland))

    1991-02-15

    The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes.

  6. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation

    Directory of Open Access Journals (Sweden)

    Masato eMurakawa

    2014-06-01

    Full Text Available Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess.

  7. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials.

    Science.gov (United States)

    Suárez-Villota, Elkin Y; Haro, Ronie E; Vargas, Rodrigo A; Gallardo, Milton H

    2016-01-01

    The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials' cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. Although the lack of interstitial signals in D. gliroides' karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition.

  8. Unexpectedly High Proportion of Ancestral Manu Genotype Mycobacterium tuberculosis Strains Cultured from Tuberculosis Patients in Egypt ▿

    Science.gov (United States)

    Helal, Zeinab H.; El-Din Ashour, Mohamed Seif; Eissa, Somaia A.; Abd-Elatef, Ghanem; Zozio, Thierry; Babapoor, Sankhiros; Rastogi, Nalin; Khan, Mazhar I.

    2009-01-01

    Tuberculosis is one of the important public health problems in Egypt. However, limited information on the Mycobacterium tuberculosis genotypes circulating in Egypt is available. A total of 151 M. tuberculosis strains were characterized by spoligotyping. The results revealed that 74.8% of M. tuberculosis isolates grouped into 13 different clusters, while 25.2% had unique spoligotype patterns. Comparison with an international spoligotyping database (the SITVIT2 database) showed that types SIT53 (T1 variant) and SIT54 (Manu2 variant) were the most common types between cluster groups. In addition, new shared types SIT2977, SIT2978, and SIT2979 were observed. The results identified for the first time an unusually high proportion of ancestral Manu strains of M. tuberculosis from patients in Egypt. The percentage of the Manu clade in this study (27.15%) was significantly higher than its overall representation of 0.4% in the SITVIT2 database. We show that in Egypt tuberculosis is caused by a predominant M. tuberculosis genotype belonging to the ancestral Manu lineage which could be a missing link in the split between ancestral and modern tubercle bacilli during the evolution of M. tuberculosis. PMID:19553569

  9. When ancestral heritage is a source of discomfort: culture, pre-object relatedness, and self-alienation.

    Science.gov (United States)

    Kradin, Richard L

    2012-04-01

    The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered. 2012, The Society of Analytical Psychology.

  10. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Chen

    2015-07-01

    Full Text Available While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.

  11. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    International Nuclear Information System (INIS)

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-01-01

    Highlights: ► BoNT and NTNHA proteins share a similar protein architecture. ► NTNHA and BoNT were both identified as zinc-binding proteins. ► NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. ► Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X 35 -D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  12. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gori