Sample records for anaphylatoxins

  1. Complement anaphylatoxins as immune regulators in cancer. (United States)

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T


    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Complement anaphylatoxins as immune regulators in cancer


    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T


    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediat...

  3. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D


    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  4. Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51 (United States)

    Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.


    Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754

  5. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia


    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  6. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. (United States)

    Phieler, Julia; Chung, Kyoung-Jin; Chatzigeorgiou, Antonios; Klotzsche-von Ameln, Anne; Garcia-Martin, Ruben; Sprott, David; Moisidou, Maria; Tzanavari, Theodora; Ludwig, Barbara; Baraban, Elena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Mziaut, Hassan; Solimena, Michele; Karalis, Katia P; Economopoulou, Matina; Lambris, John D; Chavakis, Triantafyllos


    Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.

  7. Anaphylatoxin C3a induced mediator release from mast cells

    International Nuclear Information System (INIS)

    Herrscher, R.; Hugli, T.E.; Sullivan, T.J.


    The authors investigated the biochemical and functional consequences of the binding of highly purified human C3a to isolated rat serosal mast cells. C3a caused a dose-dependent (1-30 μM), noncytotoxic release of up to 64% (+/- 7 SEM) of the mast cell histamine content. C3a (10μM) increased 45 Ca ++ uptake 8.2- fold (+/- 2.2 SEM) above unstimulated control values within 10 minutes. Arachidonyl-diacylglycerol and arachidonyl-monoacylglycerol levels increased significantly within 2 minutes after C3a (10 μM) stimulation. Turnover of phosphatidylinositol, phosphatidic acid, and phosphatidylcholine were increased within 15 minutes. In contrast to antigen, C3a stimulation (10 μM) was not enhanced by exogenous phosphatidylserine, and was not inhibited by ethanol (100 μmM). C3a suppressed arachidonic acid (AA) release to 38% (+/- 9 SEM) below baseline, and did not cause PGD 2 formation. C3a and the desarginine form of C3a caused identical responses in all experiments. These studies indicate that C3a stimulation activates mast cell preformed mediator release in a manner very similar to antigen-IgE stimulation, but C3a suppresses free AA levels and does not stimulate PGD 2 synthesis

  8. DMPD: Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and parenchymal cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available nnonparenchymal and parenchymal cells. Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Int Immunopharmac...chymal cells. Authors Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Publication Int Immunopharmacol. 2

  9. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars


    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from...... to PEGylated liposome-mediated complement activation. Our findings provide a rational conceptual basis for development of safer vesicles for site-specific drug delivery and controlled release at pathological sites....

  10. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Poppelaars, Felix; van Werkhoven, Maaike B; Kotimaa, Juha; Veldhuis, Zwanida J; Ausema, Albertina; Broeren, Stefan G M; Damman, Jeffrey; Hempel, Julia C.; Leuvenink, Henri G D; Daha, Mohamed R; van Son, Willem J; van Kooten, Cees; van Os, Ronald P; Hillebrands, Jan-Luuk; Seelen, Marc A

    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR

  11. P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade (United States)

    Pidde-Queiroz, Giselle; Magnoli, Fábio Carlos; Portaro, Fernanda C. V.; Serrano, Solange M. T.; Lopes, Aline Soriano; Paes Leme, Adriana Franco; van den Berg, Carmen W.; Tambourgi, Denise V.


    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. PMID:24205428

  12. Acidosis activates complement system in vitro.


    Emeis, M; Sonntag, J; Willam, C; Strauss, E; Walka, M M; Obladen, M


    We investigated the in vitro effect of different forms of acidosis (pH 7.0) on the formation of anaphylatoxins C3a and C5a. Metabolic acidosis due to addition of hydrochloric acid (10 micromol/ml blood) or lactic acid (5.5 micromol/ml) to heparin blood (N=12) caused significant activation of C3a and C5a compared to control (both p=0.002). Respiratory acidosis activated C3a (p=0.007) and C5a (p=0.003) compared to normocapnic controls. Making blood samples with lactic acidosis hypocapnic result...

  13. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran


    fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens...... and their clearance by dendritic cells is mediated by αMβ2. The central molecule in my project, αMβ2 integrin, recognizes many diverse ligands including iC3b, but the molecular basis for such recognition was lacking. During my PhD I have obtained a major breakthrough in the dissection of iC3b interaction with αMβ2. I...

  14. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  15. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species (United States)

    Boshra, Hani; Li, Jun; Peters, Rodney; Hansen, John; Matlapudi, Anjan; Sunyer, J. Oriol


    C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.

  16. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas


    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  17. Demonstration of a specific C3a receptor on guinea pig platelets

    International Nuclear Information System (INIS)

    Fukuoka, Y.; Hugli, T.E.


    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin

  18. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Sebastian Weckbach


    Full Text Available Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group were anesthetized and exposed to chest trauma (ChT, closed head injury (CHI, or Tib/Fib fracture including a soft tissue trauma (Fx + STT or to the following combination of injuries: (1 ChT; (2 ChT + Fx + STT; (3 ChT + CHI; (4 CHI; (5 polytrauma (PT = ChT + CHI + Fx + STT. Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL fluid samples. Results. Polytraumatized (PT rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma.

  19. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response (United States)

    Weckbach, Sebastian; Perl, Mario; Heiland, Tim; Braumüller, Sonja; Stahel, Philip F.; Flierl, Michael A.; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus


    Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. Results. Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma. PMID:22481866

  20. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. (United States)

    Lodovicho, Marina E; Costa, Tássia R; Bernardes, Carolina P; Menaldo, Danilo L; Zoccal, Karina F; Carone, Sante E; Rosa, José C; Pucca, Manuela B; Cerni, Felipe A; Arantes, Eliane C; Tytgat, Jan; Faccioli, Lúcia H; Pereira-Crott, Luciana S; Sampaio, Suely V


    Cysteine-rich secretory proteins (CRISPs) are commonly described as part of the protein content of snake venoms, nevertheless, so far, little is known about their biological targets and functions. Our study describes the isolation and characterization of Bj-CRP, the first CRISP isolated from Bothrops jararaca snake venom, also aiming at the identification of possible targets for its actions. Bj-CRP was purified using three chromatographic steps (Sephacryl S-200, Source 15Q and C18) and showed to be an acidic protein of 24.6kDa with high sequence identity to other snake venom CRISPs. This CRISP was devoid of proteolytic, hemorrhagic or coagulant activities, and it did not affect the currents from 13 voltage-gated potassium channel isoforms. Conversely, Bj-CRP induced inflammatory responses characterized by increase of leukocytes, mainly neutrophils, after 1 and 4h of its injection in the peritoneal cavity of mice, also stimulating the production of IL-6. Bj-CRP also acted on the human complement system, modulating some of the activation pathways and acting directly on important components (C3 and C4), thus inducing the generation of anaphylatoxins (C3a, C4a and C5a). Therefore, our results for Bj-CRP open up prospects for better understanding this class of toxins and its biological actions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Role of C5 Activation Products in Sepsis

    Directory of Open Access Journals (Sweden)

    Peter A. Ward


    Full Text Available Complement activation products are known to be generated in the setting of both experimental and human sepsis. C5 activation products (C5a anaphylatoxin and the membrane attack complex [MAC] C5b-9 are generated during sepsis following infusion of endotoxin, or after cecal ligation and puncture (CLP, which produces polymicrobial sepsis. C5a reacts with its receptors C5aR and C5L2 in a manner that creates the “cytokine storm”, and is associated with development of multiorgan failure (MOF. A number of other complications arising from the interaction of C5a with its receptors include apoptosis of lymphoid cells, loss of innate immune functions of neutrophils (PMNs, polymorphonuclear leukocytes, cardiomyopathy, disseminated intravascular coagulation, and complications associated with MOF. Neutralization of C5a in vivo or absence/blockade of C5a receptors greatly reduces the adverse events in the setting of sepsis, markedly attenuates MOF, and greatly improves survival. Regarding the possible role of C5b-9 in sepsis, the literature is conflicting. Some studies suggest that C5b-9 is protective, while other studies suggest the contrary. Clearly, in human sepsis, C5a and its receptors may be logical targets for interception.

  2. Complement activated granulocytes can cause autologous tissue destruction in man

    Directory of Open Access Journals (Sweden)

    E. Löhde


    Full Text Available Activation of polymorphonuclear granulocytes (PMNs by C5a is thought to be important in the pathogenesis of multiple organ failure during sepsis and after trauma. In our experiment exposure of human PMNs to autologous zymosan activated plasma (ZAP leads to a rapid increase in chemiluminescence. Heating the ZAP at 56°C for 30 min did not alter the changes, while untreated plasma induced only baseline activity. The respiratory burst could be completely abolished by decomplementation and preincubation with rabbit antihuman C5a antibodies. Observation of human omentum using electron microscopy showed intravascular aggregation of PMNs, with capillary thrombosis and diapedesis of the cells through endothelial junctions 90 s after exposure to ZAP. PMNs caused disruption of connections between the mesothelial cells. After 4 min the mesothelium was completely destroyed, and connective tissue and fat cells exposed. Native plasma and minimum essential medium did not induce any morphological changes. These data support the concept that C5a activated PMNs can cause endothelial and mesothelial damage in man. Even though a causal relationship between anaphylatoxins and organ failure cannot be proved by these experiments C5a seems to be an important mediator in the pathogenesis of changes induced by severe sepsis and trauma in man.

  3. Improvement of Renal Function by Long-Term Sustained Eculizumab Treatment in a Patient with Paroxysmal Nocturnal Hemoglobinuria

    Directory of Open Access Journals (Sweden)

    Haruhiko Ninomiya


    Full Text Available Chronic kidney disease (CKD is one of the major manifestations of paroxysmal nocturnal hemoglobinuria (PNH. CKD in PNH is induced mainly by intravascular hemolysis of PNH-affected red blood cells (RBC missing the glycosylphosphatidylinositol-anchored proteins with complement-regulatory activities, CD55 and CD59. CKD develops by heme absorption in the proximal tubules resulting in the interstitial deposition of iron in the kidneys. We administered eculizumab to a patient with PNH, who was one of 29 patients enrolled in the AEGIS clinical trial, an open-label study of eculizumab in Japan. The patient was complicated by stage 3 CKD with impaired estimated glomerular filtration rate (eGFR, at grade G3b, and had obvious proteinuria (2-3+, 1-2 g/day. In a two-year extension to the 12-week AEGIS study, eGFR improved significantly, and the eGFR has since been maintained at grade G2 without proteinuria by sustained eculizumab treatment (>6 years. Renal function improved and maintained by long-term sustained eculizumab treatment, presumably by clearance of iron from the kidney as well as inhibition of the production of anaphylatoxin C5a, even in advanced stages of CKD, is one of the benefits of eculizumab treatment in PNH.

  4. Thrombin activatable fibrinolysis inhibitor (TAFI) - A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS). (United States)

    Grosso, Giorgia; Vikerfors, Anna; Woodhams, Barry; Adam, Mariette; Bremme, Katarina; Holmström, Margareta; Ågren, Anna; Eelde, Anna; Bruzelius, Maria; Svenungsson, Elisabet; Antovic, Aleksandra


    Thrombosis and complement activation are pathogenic features of antiphospholipid syndrome (APS). Their molecular link is Plasma carboxypeptidase-B, also known as thrombin activatable fibrinolysis inhibitor (TAFIa), which plays a dual role: anti-fibrinolytic, by cleaving carboxyl-terminal lysine residues from partially degraded fibrin, and anti-inflammatory, by downregulating complement anaphylatoxins C3a and C5a. To investigate the levels of TAFI (proenzyme) and TAFIa (active enzyme) in relation to complement activation, fibrin clot permeability and fibrinolytic function in clinical and immunological subsets of 52 APS patients and 15 controls. TAFI (pAPS patients compared to controls. Furthermore, TAFIa was increased (pAPS patients affected by arterial thrombosis compared to other APS-phenotypes. Positive associations were found between TAFI and age, fibrinogen and C5a, and between TAFIa and age, fibrinogen and thrombomodulin. TAFI and TAFIa levels were increased in patients with APS as a potential response to complement activation. Interestingly, TAFI activation was associated with arterial thrombotic APS manifestations. Thus, TAFIa may be considered a novel biomarker for arterial thrombosis in APS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modern Radiobiology: Contention Of Concepts: Advanced Technology And Development Of Effective Prophylaxis, Prevention And Treatment Of Biological Consequences After Irradiation. (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey

    "Alle Ding' sind Gift, und nichts ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist." Paracelsus Philippus Aureolus Theophrastus Bombastus von Hohenheim. Key worlds: Apoptosis, Necrosis, Domains associated with Cell Death, Caspase (catalytic) Domains, Death Domains (DDs), Death Effector Domains (DEDs), Caspase-Associated Recruitment Domains (CARDs, BIR Domains (IAPs), Bcl-2 Homology (BH) Domains, death ligands - TRAIL (TNF-Related Apoptosis-Inducing Ligand), FasL (Fas Ligand), TNFalpha (Tumor Necrosis Factor alpha), Toll-like receptors (TLR), Systemic inflammatory response syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndromes (TMODS), Toxic Multiple Organ Failure (TMOF), Anaphylatoxins, or complement peptides; membrane attack complex (MAC), ROS - Reactive Oxygen Species; ASMase, acid sphingomyelinase; Neurotoxins, Cytotoxins, Haemotoxins. Introduction: Radiation affects many cell structures, organelles and metabolic pathways. Different doses and types of radiation ( gamma-radiation, neutron, heavy ion radiation) progress to reversible and irreversible forms of cell injury. Consideration: Apoptosis and Necrosis, major forms of post-radiation cell death, can be initiated and modulated by programmed control and proceed by similar or different pathways.[Akadi et al.,1993, Dunlacht J., et al. 1999] Radiation induced cell death by triggering apoptosis pathways was described in many articles and supported by many scientists. [Rio et al. 2002, Rakesh et al. 1997.] However some authors present results that two distinct pathways can initiate or apoptotic or necrotic responses: the death receptors and mitochondrial pathways.

  6. Controlling the complement system in inflammation. (United States)

    Kirschfink, M


    Inappropriate or excessive activation of the complement system can lead to harmful, potentially life-threatening consequences due to severe inflammatory tissue destruction. These consequences are clinically manifested in various disorders, including septic shock, multiple organ failure and hyperacute graft rejection. Genetic complement deficiencies or complement depletion have been proven to be beneficial in reducing tissue injury in a number of animal models of severe complement-dependent inflammation. It is therefore believed that therapeutic inhibition of complement is likely to arrest the process of certain diseases. Attempts to efficiently inhibit complement include the application of endogenous soluble complement inhibitors (C1-inhibitor, recombinant soluble complement receptor 1- rsCR1), the administration of antibodies, either blocking key proteins of the cascade reaction (e.g. C3, C5), neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium. In addition, incorporation of membrane-bound complement regulators (DAF-CD55, MCP-CD46, CD59) has become possible by transfection of the correspondent cDNA into xenogeneic cells. Thereby, protection against complement-mediated inflammatory tissue damage could be achieved in various animal models of sepsis, myocardial as well as intestinal ischemia/reperfusion injury, adult respiratory distress syndrome, nephritis and graft rejection. Supported by results from first clinical trials, complement inhibition appears to be a suitable therapeutic approach to control inflammation. Current strategies to specifically inhibit complement in inflammation have been discussed at a recent meeting on the 'Immune Consequences of Trauma, Shock and Sepsis', held from March 4-8, 1997, in Munich, Germany. The Congress (chairman: E. Faist, Munich, Germany), which was held in close cooperation with various

  7. A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum. (United States)

    Jensen, J A


    A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.

  8. Complement System Part II: Role in Immunity (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.


    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  9. Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma.

    Directory of Open Access Journals (Sweden)

    Nina-Emily Hengartner

    Full Text Available Multipotent mesenchymal stromal cells (MSC exert immune-modulatory effects and support tissue regeneration in various local trauma models. In case of a polytrauma, high amounts of danger-associated molecular patterns are released, leading to a systemic increase of inflammatory mediators. The influence of such a complex inflammatory microenvironment on human MSC is mainly unknown so far. Therefore, we investigated the effects of a defined serum-free polytrauma "cocktail" containing IL beta, IL6, IL8 and the anaphylatoxins C3a and C5a, in concentrations corresponding to those measured in the blood of polytrauma patients, on human MSC in vitro. The polytrauma cocktail induced directed migration of MSC with C3a representing its major soluble chemoattractive agent. Furthermore, the polytrauma cocktail and IL1beta upregulated the expression of MMP1 indicating a potential role of IL1beta to enhance MSC migration in the tissue context. COX2, PTGES and TSG6 were also found to be upregulated upon stimulation with the polytrauma cocktail or IL1beta, but not through other single factors of the polytrauma cocktail in pathophysiologically relevant concentrations. An RNA expression array of 84 inflammation-related genes revealed that both the polytrauma cocktail and IL1beta induced C3, CSF1, TLR3 and various chemokines without major qualitative or quantitative differences. These results indicate that IL1beta is a crucial mediator of the polytrauma cocktail in terms of immune-modulation and MMP1 expression. Thus, upon encountering the primary sterile, inflammatory milieu of a polytrauma, endogenous or systemically transfused MSC might be able to migrate to sites of injury, secrete TSG6 and PGE2 and to influence macrophage biology as observed in local trauma models.

  10. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  11. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus. (United States)

    Higuchi, Shigesada; Murayama, Nobuhiro; Saguchi, Ken-ichi; Ohi, Hiroaki; Fujita, Yoshiaki; da Silva, Nelson Jorge; de Siqueira, Rodrigo José Bezerra; Lahlou, Saad; Aird, Steven D


    In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.

  12. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA. (United States)

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F


    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.

  13. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003 (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.


    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  14. The Complement C3a-C3aR Axis Promotes Development of Thoracic Aortic Dissection via Regulation of MMP2 Expression. (United States)

    Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie


    Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells.

    Directory of Open Access Journals (Sweden)

    Hariharan Subramanian

    Full Text Available BACKGROUND: The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na(+/H(+ exchange regulatory factor (NHERF1 and NHERF2 have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1 motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2 and CD34(+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. CONCLUSION/SIGNIFICANCE: This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.

  16. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. (United States)

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W


    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  17. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction. (United States)

    Waters, Stephen M; Brodbeck, Robbin M; Steflik, Jeremy; Yu, Jianying; Baltazar, Carolyn; Peck, Amy E; Severance, Daniel; Zhang, Lu Yan; Currie, Kevin; Chenard, Bertrand L; Hutchison, Alan J; Maynard, George; Krause, James E


    Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.

  18. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation.

    Directory of Open Access Journals (Sweden)

    Shelley F Stone

    Full Text Available BACKGROUND: Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper and antivenom treatment. METHODOLOGY/PRINCIPAL FINDINGS: Plasma concentrations of Interleukin (IL-6, IL-10, tumor necrosis factor α (TNFα, soluble TNF receptor I (sTNFRI, anaphylatoxins (C3a, C4a, C5a; markers of complement activation, mast cell tryptase (MCT, and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%, satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%. Pyrogenic reactions were observed in 32/120 patients (27%. All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high

  19. Shark complement: an assessment. (United States)

    Smith, S L


    The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.

  20. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. (United States)

    Alawieh, Ali; Elvington, Andrew; Zhu, Hong; Yu, Jin; Kindy, Mark S; Atkinson, Carl; Tomlinson, Stephen


    Complement promotes neuroinflammation and injury in models of stroke. However, complement is also being increasingly implicated in repair and regeneration after central nervous system (CNS) injury, and some complement deficiencies have been shown to provide acute, but not subacute, protection after murine stroke. Here, we investigate the dual role of complement in injury and repair after cerebral ischemia and reperfusion. We used complement-deficient mice and different complement inhibitors in a model of transient middle cerebral artery occlusion to investigate complement-dependent cellular and molecular changes that occur through the subacute phase after stroke. C3 deficiency and site-targeted complement inhibition with either CR2-Crry (inhibits all pathways) or CR2-fH (inhibits alternative pathway) significantly reduced infarct size, reduced apoptotic cell death, and improved neurological deficit score in the acute phase after stroke. However, only in CR2-fH-treated mice was there sustained protection with no evolution of injury in the subacute phase. Whereas both inhibitors significantly reduced microglia/macrophage activation and astrogliosis in the subacute phase, only CR2-fH improved neurological deficit and locomotor function, maintained neurogenesis markers, enhanced neuronal migration, and increased VEGF expression. These findings in CR2-fH-treated mice correlated with improved performance in spatial learning and passive avoidance tasks. The complement anaphylatoxins have been implicated in repair and regenerative mechanisms after CNS injury, and in this context CR2-fH significantly reduced, but did not eliminate the generation of C5a within the brain, unlike CR2-Crry that completely blocked C5a generation. Gene expression profiling revealed that CR2-fH treatment downregulated genes associated with apoptosis, TGFβ signaling, and neutrophil activation, and decreased neutrophil infiltration was confirmed by immunohistochemistry. CR2-fH upregulated genes for

  1. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice. (United States)

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing


    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Relationship of Circulating C5a and Complement Factor H Levels With Disease Control in Pregnant Women With Asthma. (United States)

    Bohács, Anikó; Bikov, András; Ivancsó, István; Czaller, Ibolya; Böcskei, Renáta; Müller, Veronika; Rigó, János; Losonczy, György; Tamási, Lilla


    Asthma often complicates pregnancy and represents a risk of serious pregnancy complications. The complement system contributes to asthma pathogenesis and is up-regulated in healthy gestation as well. The anaphylatoxin C5a has a major pro-inflammatory role, and the complement factor H is a main soluble regulator protein both in asthma and during pregnancy; however, peripheral levels of these complement factors and their relationship to disease control have not yet been evaluated in pregnant subjects with asthma. The present study aimed to investigate circulating C5a and complement factor H levels in asthma (non-pregnant subjects with asthma; n = 19) and in pregnancy with asthma (pregnant subjects with asthma; n = 22), compared with healthy non-pregnant (n = 21) and healthy pregnant women (n = 13) and to test their relationship to clinical parameters of asthma (lung function, airway inflammation, and symptoms). Circulating C5a levels were higher in the pregnant asthma subject group compared with the healthy non-pregnant, healthy pregnant, and non-pregnant asthma groups: median 2.629 (interquartile range [IQR] 2.257-3.052) ng/mL versus 1.84 (IQR 1.576-2.563), 1.783 (IQR 0.6064-2.786), and 2.024 (IQR 1.232-2.615) ng/mL, respectively (P = .02 in all cases). C5a correlated negatively with FEV1 (r = -0.44, P = .039) and FVC values (r = -0.64, P = .001) in the pregnant asthma group and positively with fraction of exhaled nitric oxide levels in the non-pregnant asthma group (n = 12, r = 0.78, P = .004). Complement factor H levels were elevated in both the healthy pregnant and pregnant asthma subject groups compared with the healthy non-pregnant group (median 1,082 [IQR 734.9-1,224] and 910.7 [IQR 614.5-1076] μg/mL vs. 559.7 [IQR 388.7-783.1] μg/mL, P = .002 and P = .004, respectively) but not in the pregnant asthma group compared with the non-pregnant asthma group (median 687.4 [IQR 441.6-947.6] μg/mL, P = .10). Asthma during pregnancy increases the circulating level of