WorldWideScience

Sample records for anaphylatoxins

  1. Anaphylatoxins - Their role in bacterial infection and inflammation

    NARCIS (Netherlands)

    Haas, Pieter-Jan; van Strijp, Jos

    2007-01-01

    Activation of the complement system plays a crucial role in the pathogenesis of infection and inflammation. Especially the complement activation products C3a and C5a, known as the anaphylatoxins, are potent proinflammatory mediators. In addition to their evident role in innate immunity, it is clear

  2. THE NATURE OF ANAPHYLATOXIN : STUDIES ON IMMUNITY. II.

    Science.gov (United States)

    Bronfenbrenner, J

    1915-05-01

    1. The union of fresh serum of pregnant or immunized animals with the corresponding boiled protein (substratum) is accompanied by the formation of poisonous substances. 2. The poison originates from the serum as a result of its autodigestion, and not from the substratum. 3. The process of autodigestion may be determined by the specific or non-specific removal of the antitrypsin of the serum. 4. The poisons originating from the serum are toxic only for homologous animals. 5. The autodigestion of the serum, if allowed to proceed far enough, may go beyond the toxic stage. 6. The biological properties of these poisons indicate their close similarity to the anaphylatoxin, and suggest that the anaphylatoxin of Friedberger is a product of the autodigestion of serum, and not of the protein outside of the serum.

  3. Interleukin-1β and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes

    Directory of Open Access Journals (Sweden)

    Patte Christine

    2006-04-01

    Full Text Available Abstract C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection. In this study, we used RT-PCR and ribonuclease protection assays (RPA to investigate the role of anaphylatoxins on neurotrophin expression by the human glioblastoma cell line T98G and by rat astrocytes. Our data show that for both cell types, anaphylatoxins upregulate expression of NGF mRNA. This response depended on a G protein-coupled pathway since pre-treatment of cells with pertussis toxin (PTX completely blocked NGF mRNA increases. This effect was anaphylatoxin-specific since pre-incubation with anti-C3a or anti-C5aR antibodies abolished the effects of C3a and C5a, respectively. The regulation of NGF mRNA by anaphylatoxins was not accompanied by translation into protein expression, but there was a significant synergic effect of anaphylatoxins/IL-1b costimulation. Our demonstration of involvement of anaphylatoxins in the NGF release process by astrocytes suggests that C3a and C5a could modulate neuronal survival in the CNS.

  4. Radioimmunoassay for anaphylatoxins: a sensitive method for determining complement activation products in biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.L.; Hugli, T.E.

    1984-01-01

    Activation of the blood complement system generates bioactive fragments called anaphylatoxins. The three anaphylatoxins C3a, C4a, and C5a are released during classical pathway activation while only C3a and C5a are released when the alternative pathway of complement is activated. Radioimmunoassays were designed to individually detect and quantitate the activation fragments C3a, C4a, and C5a in biological fluids without interference from the precursor molecules C3, C4, and C5. Kinetics of complement activation in fresh human serum exposed to the activators zymosan, heat-aggregated immunoglobulin, or cobra venom factor were monitored using the radioimmunoassay technique. For the first time, activation of components C3, C4, and C5 was followed simultaneously in a single serum sample. Analysis of the patterns and extent of anaphylatoxin formation during activation in serum may be used to screen for deficiencies or defects in the complement cascade. Levels of the anaphylatoxins in freshly drawn serum were much higher than levels detected in EDTA-plasma. Detection of low-level complement activation in patient's blood, urine, or synovial fluid, using anaphylatoxin formation as an indicator, may prove useful in signaling numerous forms of inflammatory reactions. The demonstration of anaphylatoxins in clinical samples is being recognized as a valuable diagnostic tool in monitoring the onset of immune disease.

  5. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  6. DMPD: Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and parenchymal cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11367531 Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnon...rect and indirect actions onnonparenchymal and parenchymal cells. PubmedID 113675...31 Title Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and paren

  7. Structural and functional characterization of human and murine C5a anaphylatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Schatz-Jakobsen, Janus Asbjørn; Yatime, Laure, E-mail: lay@mb.au.dk; Larsen, Casper [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark); Petersen, Steen Vang [Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus (Denmark); Klos, Andreas [Medical School Hannover, Hannover (Germany); Andersen, Gregers Rom, E-mail: lay@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark)

    2014-06-01

    The structure of the human C5aR antagonist, C5a-A8, reveals a three-helix bundle conformation similar to that observed for human C5a-desArg, whereas murine C5a and C5a-desArg both form the canonical four-helix bundle. These conformational differences are discussed in light of the differential C5aR activation properties observed for the human and murine complement anaphylatoxins across species. Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8{sup Δ71–73}, and of murine C5a and C5a-desArg are reported. Whereas A8{sup Δ71–73} adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.

  8. The anaphylatoxin C3a downregulates the Th2 response to epicutaneously introduced antigen.

    Science.gov (United States)

    Kawamoto, Seiji; Yalcindag, Ali; Laouini, Dhafer; Brodeur, Scott; Bryce, Paul; Lu, Bao; Humbles, Alison A; Oettgen, Hans; Gerard, Craig; Geha, Raif S

    2004-08-01

    Mechanical injury to the skin results in activation of the complement component C3 and release of the anaphylatoxin C3a. C3a binds to a seven-transmembrane G protein-coupled receptor, C3aR. We used C3aR(-/-) mice to examine the role of C3a in a mouse model of allergic inflammation induced by epicutaneous sensitization with OVA. C3aR(-/-) mice exhibited an exaggerated Th2 response to epicutaneous but not to intraperitoneal sensitization with OVA, as evidenced by significantly elevated levels of serum OVA-specific IgG1 and significantly increased secretion of the Th2 cytokines IL-4, IL-5, and IL-10 by antigen-stimulated splenocytes. Presentation of OVA peptide by C3aR(-/-) APCs caused significantly more IL-4 and IL-5 secretion by T cells from OVA-T cell receptor (OVA-TCR) transgenic mice compared with presentation by WT APCs. C3a inhibited the ability of splenocytes, but not of highly purified T cells, to secrete Th2 cytokines in response to TCR ligation. This inhibition was mediated by IL-12 secreted by APCs in response to C3a. These results suggest that C3a-C3aR interactions inhibit the ability of APCs to drive Th2 cell differentiation in response to epicutaneously introduced antigen and may have important implications for allergic skin diseases.

  9. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity.

    Science.gov (United States)

    Bielecka, Ewa; Scavenius, Carsten; Kantyka, Tomasz; Jusko, Monika; Mizgalska, Danuta; Szmigielski, Borys; Potempa, Barbara; Enghild, Jan J; Prossnitz, Eric R; Blom, Anna M; Potempa, Jan

    2014-11-21

    Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.

  10. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Thomas Sunil

    2008-01-01

    Full Text Available Abstract Background The complement system is thought to be involved in the pathogenesis of numerous neurological diseases. We previously reported that pre-treatment of murine cortico-hippocampal neuronal cultures with the complement derived anaphylatoxin C5a, protects against glutamate mediated apoptosis. Our present study with C5a receptor knock out (C5aRKO mice corroborates that the deficiency of C5a renders C5aRKO mouse more susceptible to apoptotic injury in vivo. In this study we explored potential upstream mechanisms involved in C5a mediated neuroprotection in vivo and in vitro. Methods Based on evidence suggesting that reduced expression of glutamate receptor subunit 2 (GluR2 may influence apoptosis in neurons, we studied the effect of human recombinant C5a on GluR2 expression in response to glutamate neurotoxicity. Glutamate analogs were injected into C5aRKO mice or used to treat in vitro neuronal culture and GluR2 expression were assessed in respect with cell death. Results In C5aRKO mice we found that the neurons are more susceptible to excitotoxicity resulting in apoptotic injury in the absence of the C5a receptor compared to WT control mice. Our results suggest that C5a protects against apoptotic pathways in neurons in vitro and in vivo through regulation of GluR2 receptor expression. Conclusion Complement C5a neuroprotects through regulation of GluR2 receptor subunit.

  11. Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis.

    Science.gov (United States)

    Zhang, Lingjun; Bell, Brent A; Yu, Minzhong; Chan, Chi-Chao; Peachey, Neal S; Fung, John; Zhang, Xiaoming; Caspi, Rachel R; Lin, Feng

    2016-03-01

    Recent studies have suggested that reagents inhibiting complement activation could be effective in treating T cell mediated autoimmune diseases such as autoimmune uveitis. However, the precise role of the complement anaphylatoxin receptors (C3a and C5a receptors) in the pathogenesis of autoimmune uveitis remains elusive and controversial. We induced experimental autoimmune uveitis in mice deficient or sufficient in both C3a and C5a receptors and rigorously compared their retinal phenotype using various imaging techniques, including indirect ophthalmoscopy, confocal scanning laser ophthalmoscopy, spectral domain optical coherence tomography, topical endoscopic fundus imaging, and histopathological analysis. We also assessed retinal function using electroretinography. Moreover, we performed Ag-specific T cell recall assays and T cell adoptive transfer experiments to compare pathogenic T cell activity between wild-type and knockout mice with experimental autoimmune uveitis. These experiments showed that C3a receptor/C5a receptor-deficient mice developed much less severe uveitis than did control mice using all retinal examination methods and that these mice had reduced pathogenic T cell responses. Our data demonstrate that both complement anaphylatoxin receptors are important for the development of experimental autoimmune uveitis, suggesting that targeting these receptors could be a valid approach for treating patients with autoimmune uveitis.

  12. Effect of anaphylatoxin C3a, C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; QIU Hong-yu; WEI Da-peng; GOU Rong; HUANG Jun; FU Ping; CHEN Feng; FAN Wen-xing; HUANG You-qun; ZANG Li; WU Min

    2011-01-01

    Background Tubulointerstitial renal fibrosis is the common end point of progressive kidney diseases,and tubular epithelial-myofibroblast transdifferentiation (TEMT) plays a key role in the progress of tubulointerstitial renal fibrosis.Anaphylatoxin C3a and C5a are identified as novel profibrotic factors in renal disease and as potential new therapeutic targets.The aim of this study was to investigate whether C3a,C5a can regulate TEMT by transforming growth factor-β31 (TGF-β1)/connective tissue growth factor (CTGF) signaling pathway and the effects of C3a and C5a receptor antagonists (C3aRA and C5aRA) on C3a- and C5a-induced TEMT.Methods HK-2 cells were divided into C3a and C5a groups which were subdivided into four subgroups:control group,10 ng/ml TGF-β1 group,50 nmol/L C3a group,50 nmol/L C3a plus 1 μmol/L C3aRA group; control group,10 ng/ml TGF-β31 group,50 nmol/L C5a group,50 nmol/L C5a plus 2.5 μmol/L C5aRA group.TGF-β1 receptor antagonist (TGF-β1 RA) 10 μg/ml was used to investigate the mechanism of C3a- and C5a-induced TEMT.Electron microscopy was used to observe the morphological changes.Immunocytochemistry staining,real-time PCR and Western blotting were used to detect the expressions of α smooth muscle actin (α-SMA),E-cadherin,Col-I,C3a receptor (C3aR),C5aR,CTGF and TGF-β1.Results HK-2 cells cultured with C3a and C5a for 72 hours exhibited strong staining of α-SMA,lost the positive staining of E-cadherin,and showed a slightly spindle-like shape and loss of microvilli on the cell surface.The expressions of α-SMA,E-cadherin,Col-I,C3aR,C5aR,TGF-β1 and CTGF in C3a- and C5a-treated groups were higher than normal control group (P <0.05).C3aRA and C5aRA inhibited the expressions of α-SMA,Col-I,C3aR,C5aR,and up-regulated the expression of E-cadherin (P <0.05).TGF-β1 and CTGF mRNA expressions induced by C3a and C5a were partly blocked by TGF-β1 RA (P <0.05).Conclusion C3a and C5a can induce TEMT via the up-regulations of C3aR and C5aR m

  13. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.

  14. Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins

    NARCIS (Netherlands)

    Bestebroer, Jovanka; van Kessel, Kok P. M.; Azouagh, Hafida; Walenkamp, Annemiek M.; Boer, Ingrid G. J.; Romijn, Roland A.; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2009-01-01

    Staphylococcus aureus secretes several virulence factors modulating immune responses. Staphylococcal superantigen-like (SSL) proteins are a family of 14 exotoxins with homology to superantigens, but with generally unknown function. Recently, we showed that SSL5 binds to P-selectin glycoprotein ligan

  15. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars;

    2006-01-01

    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from...

  16. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  17. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    Science.gov (United States)

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  18. In-vitro activation of complement system by lactic acidosis in newborn and adults

    Directory of Open Access Journals (Sweden)

    Friederike Hecke

    2001-01-01

    Full Text Available Introduction: Complement activation occurs secondary to a variety of external stimuli. Lactic acidosis has been previously shown to activate the complement factors C3a and C5a. In the present investigation we examined the differential effect of lactic acidosis on anaphylatoxin levels in cord and adult blood. Furthermore we aimed to determine if the entire complement cascade could be activated by lactic acidosis.

  19. AcEST: BP913178 [AcEST

    Lifescience Database Archive (English)

    Full Text Available sculus GN=Tns4 PE=2 SV=1 32 0.76 sp|Q29L39|POE_DROPS Protein purity of essence OS=Drosophila pseu... 31 1.7 ...|P79175|C5AR_GORGO C5a anaphylatoxin chemotactic receptor (Fra... 29 6.4 sp|Q9VLT5|POE_DROME Protein purity of essence...RGSFGLALKVQE 471 >sp|Q29L39|POE_DROPS Protein purity of essence OS=Drosophila pse

  20. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri i.p. vaccination

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    The immune response in rainbow trout against a bacterin of Yersinia ruckeri, a bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout were immunized by i.p. injection of a Y. ruckeri (serotype O1) water based bacterin and compared to control...... and higher at high water temperature with major expression at 25° C. The pro-inflammatory cytokine IL-1ß and INF¿ was significantly up-regulated in all immunized groups whereas the cytokine IL-10 was merely up-regulated in fish kept at 15 and 25° C. The gene encoding the C5a (anaphylatoxin) receptor...

  1. The Classical and Regulatory Functions of C1q in Immunity and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    Jinhua Lu; Boon King Teh; Linda Wang; Yinan Wang; Yen Seah Tan; Min Chern Lai; Kenneth B.M.Reid

    2008-01-01

    A classical function of Clq is to bind immune complexes and initiate complement activation producing membrane lytic complexes. opsonins and anaphylatoxins. This classical pathway of complement activation is also elicited when Clq binds some other ligands. Besides complement activation, Clq also regulates cell differentiation, adhesion, migration. activation and survival. Clq deficiency is associated with autoimmunity as well as increased susceptibility to infections. In this article. we discuss the basic properties of Clq, its expression, and classical and regulatory functions. Cellular & Molecular Immunology.2008;5(1):9-21.

  2. Emerging concepts in dengue pathogenesis: interplay between plasmablasts, platelets, and complement in triggering vasculopathy.

    Science.gov (United States)

    Nascimento, Eduardo J M; Hottz, Eugenio D; Garcia-Bates, Tatiana M; Bozza, Fernando; Marques, Ernesto T A; Barratt-Boyes, Simon M

    2014-01-01

    Dengue is a mosquito-borne disease caused by infection with dengue virus (DENV) that represents a serious and expanding global health threat. Most DENV infections are inapparent or produce mild and self-limiting illness; however a significant proportion results in severe disease characterized by vasculopathy and plasma leakage that may culminate in shock and death. The cause of dengue-associated vasculopathy is likely to be multifactorial but remains essentially unknown. Severe disease is manifest during a critical phase from 4 to 7 days after onset of symptoms, once the virus has disappeared from the circulation but before the peak of T-cell activation, suggesting that other factors mediate vasculopathy. Here, we present evidence for a combined role of plasmablasts, complement, and platelets in driving severe disease in DENV infection. Massive expansion of virus-specific plasmablasts peaks during the critical phase of infection, coincident with activation of complement and activation and depletion of platelets. We propose a step-wise model in which virus-specific antibodies produced by plasmablasts form immune complexes, leading to activation of complement and release of vasoactive anaphylatoxins. Platelets become activated through binding of complement- and antibody-coated virus, as well as direct binding of virus to DC-SIGN, leading to the release of inflammatory microparticles and cytokines and sequestration of platelets in the microvasculature. We suggest that the combined effects of anaphylatoxins, inflammatory microparticles, and platelet sequestration serve as triggers of vasculopathy in severe dengue.

  3. In-vitro activation of complement system by lactic acidosis in newborn and adults.

    Science.gov (United States)

    Hecke, F; Hoehn, T; Strauss, E; Obladen, M; Sonntag, J

    2001-01-01

    INTRODUCTION: Complement activation occurs secondary to a variety of external stimuli. Lactic acidosis has been previously shown to activate the complement factors C3a and C5a. In the present investigation we examined the differential effect of lactic acidosis on anaphylatoxin levels in cord and adult blood. Furthermore we aimed to determine if the entire complement cascade could be activated by lactic acidosis. METHODS: Cord and adult blood samples (n = 20 each) were collected and incubated for one hour in either untreated condition or with the addition of lactate in two concentrations (5.5 mmol/l vs. 22 mmol/l). Following incubation, levels of C3a, C5a and sC5b-9, and blood gas parameters were determined. RESULTS: Anaphylatoxin (C3a and C5a) and sC5b-9 levels increased with the addition of lactate in a dose-dependent manner in cord and adult blood (C3a: 1 h, 5.5 mmo/l, 22 mmol/l: 418/498/622 microg/l in cord blood; 1010/1056/1381 microg/l in adult blood, p<0,05; similar results were found for C5a and sC5b-9). CONCLUSION: Lactic acidosis leads to an activation of the entire complement system in neonates and in adults. This activation is dose-dependent and more pronounced in adults as compared to neonates. PMID:11324901

  4. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function.

    Science.gov (United States)

    Arbore, Giuseppina; Kemper, Claudia

    2016-07-01

    The inflammasomes are intracellular multiprotein complexes that induce and regulate the generation of the key pro-inflammatory cytokines IL-1β and IL-18 in response to infectious microbes and cellular stress. The activation of inflammasomes involves several upstream signals including classic pattern or danger recognition systems such as the TLRs. Recently, however, the activation of complement receptors, such as the anaphylatoxin C3a and C5a receptors and the complement regulator CD46, in conjunction with the sensing of cell metabolic changes, for instance increased amino acid influx and glycolysis (via mTORC1), have emerged as additional critical activators of the inflammasome. This review summarizes recent advances in our knowledge about complement-mediated inflammasome activation, with a specific focus on a novel "complement - metabolism - NLRP3 inflammasome axis."

  5. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran

    2015-01-01

    associated with microbes and apoptotic or necrotic cells. Complement not only protects against pathogens but also maintains body homeostasis. Activation of complement leads to cleavage of the complement proteins C4, C3 and C5, and their fragments have effector functions through binding to pathogen surfaces...... fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens...... and their clearance by dendritic cells is mediated by αMβ2. The central molecule in my project, αMβ2 integrin, recognizes many diverse ligands including iC3b, but the molecular basis for such recognition was lacking. During my PhD I have obtained a major breakthrough in the dissection of iC3b interaction with αMβ2. I...

  6. Decreased synthesis of serum carboxypeptidase N (SCPN) in familial SCPN deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.P.; Curd, J.G.; Hugli, T.E.

    1986-01-01

    Serum carboxypeptidase N (SCPN) is the primary inactivator of the C3a, C4a, and C5a anaphylatoxins as well as an inactivator of bradykinin. Thus, SCPN deficiency potentially could result in significant pathophysiologic consequences. Previous studies identified a deficient subject afflicted with frequent episodes of angioedema, and other family members also had SCPN deficiency. To delineate this abnormality further, the fractional catabolic rate (FRC) and enzyme synthesis were determined in three members of the afflicted kindred as well as in five normal persons following the infusion of homogeneous /sup 125/I-SCPN. The mean FCR and synthesis rates for SCPN in the normal subjects were 1.3%/hr and 20,793 U/kg/hr, respectively. Reduced synthesis was concluded to be primarily responsible for the low SCPN levels in the afflicted kindred. The high FRC of SCPN discourages attempted maintenance therapy with infusions of enriched SCPN preparations.

  7. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  8. Acidosis activates complement system in vitro

    Directory of Open Access Journals (Sweden)

    Michael Emeis

    1998-01-01

    Full Text Available We investigated the in vitro effect of different form s of acidosis (pH 7.0 on the formation of anaphylatoxins C3a and C5a. Metabolic acidosis due to addition of hydrochloric acid (10 μ mol/ml blood or lactic acid (5.5 μ mol/ml to heparin blood (N=12 caused significant activation of C3a and C5a compared to control (both p=0.002. Respiratory acidosis activated C3a (p=0.007 and C5a (p=0.003 compared to normocapnic controls. Making blood samples with lactic acidosis hypocapnic resulted in a median pH of 7.37. In this respiratory compensated metabolic acidosis, C3a and C5a were not increased. These experiments show that acidosis itself and not lactate trigger for activation of complement components C3 and C5.

  9. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    Science.gov (United States)

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  10. Acidosis activates complement system in vitro.

    Science.gov (United States)

    Emeis, M; Sonntag, J; Willam, C; Strauss, E; Walka, M M; Obladen, M

    1998-01-01

    We investigated the in vitro effect of different forms of acidosis (pH 7.0) on the formation of anaphylatoxins C3a and C5a. Metabolic acidosis due to addition of hydrochloric acid (10 micromol/ml blood) or lactic acid (5.5 micromol/ml) to heparin blood (N=12) caused significant activation of C3a and C5a compared to control (both p=0.002). Respiratory acidosis activated C3a (p=0.007) and C5a (p=0.003) compared to normocapnic controls. Making blood samples with lactic acidosis hypocapnic resulted in a median pH of 7.37. In this respiratory compensated metabolic acidosis, C3a and C5a were not increased. These experiments show that acidosis itself and not lactate trigger for activation of complement components C3 and C5. PMID:9927235

  11. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species

    Science.gov (United States)

    Boshra, Hani; Li, Jun; Peters, Rodney; Hansen, John; Matlapudi, Anjan; Sunyer, J. Oriol

    2004-01-01

    C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.

  12. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  13. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Science.gov (United States)

    Uller, Lena; Mathiesen, Jesper Mosolff; Alenmyr, Lisa; Korsgren, Magnus; Ulven, Trond; Högberg, Thomas; Andersson, Gunnar; Persson, Carl GA; Kostenis, Evi

    2007-01-01

    Background Mast cell-derived prostaglandin D2 (PGD2), may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban. PMID:17328802

  14. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  15. Different activation signals induce distinct mast cell degranulation strategies

    Science.gov (United States)

    Sibilano, Riccardo; Marichal, Thomas; Reber, Laurent L.; Cenac, Nicolas; McNeil, Benjamin D.; Dong, Xinzhong; Hernandez, Joseph D.; Sagi-Eisenberg, Ronit; Hammel, Ilan; Roers, Axel; Valitutti, Salvatore; Tsai, Mindy

    2016-01-01

    Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation. PMID:27643442

  16. Complement activated granulocytes can cause autologous tissue destruction in man

    Directory of Open Access Journals (Sweden)

    E. Löhde

    1992-01-01

    Full Text Available Activation of polymorphonuclear granulocytes (PMNs by C5a is thought to be important in the pathogenesis of multiple organ failure during sepsis and after trauma. In our experiment exposure of human PMNs to autologous zymosan activated plasma (ZAP leads to a rapid increase in chemiluminescence. Heating the ZAP at 56°C for 30 min did not alter the changes, while untreated plasma induced only baseline activity. The respiratory burst could be completely abolished by decomplementation and preincubation with rabbit antihuman C5a antibodies. Observation of human omentum using electron microscopy showed intravascular aggregation of PMNs, with capillary thrombosis and diapedesis of the cells through endothelial junctions 90 s after exposure to ZAP. PMNs caused disruption of connections between the mesothelial cells. After 4 min the mesothelium was completely destroyed, and connective tissue and fat cells exposed. Native plasma and minimum essential medium did not induce any morphological changes. These data support the concept that C5a activated PMNs can cause endothelial and mesothelial damage in man. Even though a causal relationship between anaphylatoxins and organ failure cannot be proved by these experiments C5a seems to be an important mediator in the pathogenesis of changes induced by severe sepsis and trauma in man.

  17. C5a receptor (CD88) inhibition improves hypothermia-induced neuroprotection in an in vitro ischemic model.

    Science.gov (United States)

    Thundyil, John; Pavlovski, Dale; Hsieh, Yu-Hsuan; Gelderblom, Mathias; Magnus, Tim; Fairlie, David P; Arumugam, Thiruma V

    2012-03-01

    The concept of 'salvageble penumbra' has prompted both scientists and physicians to explore various neuroprotective approaches that could be beneficial during stroke therapy. Unfortunately, most of them have proved ineffective in targeting multiple cellular death cascades incited within the ischemic penumbra. Hypothermia has been shown to be capable of addressing this problem to some extent. Although many studies have shown that hypothermia targets several cellular processes, its effects on innate immune receptor-mediated apoptotic death still remain unclear. Moreover, whether inhibiting the signaling of innate immune receptors like complement anaphylatoxin C5a receptor (CD88) plays a role in this hypothermic neuroprotection still need to be deciphered. Using various types of ischemic insults in different neuronal cells, we confirm that hypothermia does indeed attenuate apoptotic neuronal cell death in vitro and this effect can be further enhanced by pharmacologically blocking or knocking out CD88. Thus, our study raises a promising therapeutic possibility of adding CD88 antagonists along with hypothermia to improve stroke outcomes.

  18. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway.

    Science.gov (United States)

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg(2+). We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance.

  19. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway.

    Directory of Open Access Journals (Sweden)

    Esin Güven

    Full Text Available Al(OH3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH3 involves the three major pathways by monitoring complement components in Al(OH3-treated serum and in Al(OH3-containing precipitates. Al(OH3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg(2+. We thus confirm that Al(OH3 activates the complement system and show that the alternative pathway is of major importance.

  20. Aluminum Hydroxide Adjuvant Differentially Activates the Three Complement Pathways with Major Involvement of the Alternative Pathway

    Science.gov (United States)

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg2+. We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance. PMID:24040248

  1. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Sebastian Weckbach

    2012-01-01

    Full Text Available Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group were anesthetized and exposed to chest trauma (ChT, closed head injury (CHI, or Tib/Fib fracture including a soft tissue trauma (Fx + STT or to the following combination of injuries: (1 ChT; (2 ChT + Fx + STT; (3 ChT + CHI; (4 CHI; (5 polytrauma (PT = ChT + CHI + Fx + STT. Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL fluid samples. Results. Polytraumatized (PT rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma.

  2. Innate immune induction and influenza protection elicited by a response-selective agonist of human C5a.

    Directory of Open Access Journals (Sweden)

    Sam D Sanderson

    Full Text Available The anaphylatoxin C5a is an especially potent mediator of both local and systemic inflammation. However, C5a also plays an essential role in mucosal host defense against bacterial, viral, and fungal infection. We have developed a response-selective agonist of human C5a, termed EP67, which retains the immunoenhancing activity of C5a at the expense of its inflammatory, anaphylagenic properties. EP67 insufflation results in the rapid induction of pulmonary cytokines and chemokines. This is followed by an influx of innate immune effector cells, including neutrophils, NK cells, and dendritic cells. EP67 exhibits both prophylactic and therapeutic protection when tested in a murine model of influenza A infection. Mice treated with EP67 within a twenty-four hour window of non-lethal infection were significantly protected from influenza-induced weight loss. Furthermore, EP67 delivered twenty-four hours after lethal infection completely blocked influenza-induced mortality (0% vs. 100% survival. Since protection based on innate immune induction is not restricted to any specific pathogen, EP67 may well prove equally efficacious against a wide variety of possible viral, bacterial, and fungal pathogens. Such a strategy could be used to stop the worldwide spread of emergent respiratory diseases, including but not limited to novel strains of influenza.

  3. Hemolytic Transfusion Reactions

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Azık

    2011-12-01

    Full Text Available The prevalence of fatal hemolytic transfusion reactions (HTRs is approximately 1:200000 per unit. Acute HTRs occur during or within 24 h after administration of a blood product. Transfusion of incompatible red blood cells (RBCs, and, more rarely, of a large volume of incompatible plasma usually are the causative agents. Delayed HTRs are caused by a secondary immune response to an antigen on the donor’s RBCs. Different mechanisms lead to intra- and extravascular hemolysis, such as complete complement activation, phagocytosis of RBCs covered with C3b by macrophages after incomplete complement activation, or destruction of RBCs covered only with IgG by direct cell to cell contact with K cells. The clinical consequences of HTRs are triggered via several pathophysiological pathways. Formation of anaphylatoxins, release of cytokines causing a systemic inflammatory response syndrome, activation of the kinin system, the intrinsic clotting cascade and fibrinolysis result in hypotension, disseminated intravascular coagulation, diffuse bleeding, and disruption of microcirculation leading to renal failure and shock. In this review, the symptoms of HTR are introduced, laboratory investigations and treatment are described, and some recommendations for prevention are given. (Journal of Current Pediatrics 2011; 9: 127-32

  4. Modern Radiobiology: Contention Of Concepts: Advanced Technology And Development Of Effective Prophylaxis, Prevention And Treatment Of Biological Consequences After Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey

    "Alle Ding' sind Gift, und nichts ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist." Paracelsus Philippus Aureolus Theophrastus Bombastus von Hohenheim. Key worlds: Apoptosis, Necrosis, Domains associated with Cell Death, Caspase (catalytic) Domains, Death Domains (DDs), Death Effector Domains (DEDs), Caspase-Associated Recruitment Domains (CARDs, BIR Domains (IAPs), Bcl-2 Homology (BH) Domains, death ligands - TRAIL (TNF-Related Apoptosis-Inducing Ligand), FasL (Fas Ligand), TNFalpha (Tumor Necrosis Factor alpha), Toll-like receptors (TLR), Systemic inflammatory response syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndromes (TMODS), Toxic Multiple Organ Failure (TMOF), Anaphylatoxins, or complement peptides; membrane attack complex (MAC), ROS - Reactive Oxygen Species; ASMase, acid sphingomyelinase; Neurotoxins, Cytotoxins, Haemotoxins. Introduction: Radiation affects many cell structures, organelles and metabolic pathways. Different doses and types of radiation ( gamma-radiation, neutron, heavy ion radiation) progress to reversible and irreversible forms of cell injury. Consideration: Apoptosis and Necrosis, major forms of post-radiation cell death, can be initiated and modulated by programmed control and proceed by similar or different pathways.[Akadi et al.,1993, Dunlacht J., et al. 1999] Radiation induced cell death by triggering apoptosis pathways was described in many articles and supported by many scientists. [Rio et al. 2002, Rakesh et al. 1997.] However some authors present results that two distinct pathways can initiate or apoptotic or necrotic responses: the death receptors and mitochondrial pathways.

  5. Role of C5 Activation Products in Sepsis

    Directory of Open Access Journals (Sweden)

    Peter A. Ward

    2010-01-01

    Full Text Available Complement activation products are known to be generated in the setting of both experimental and human sepsis. C5 activation products (C5a anaphylatoxin and the membrane attack complex [MAC] C5b-9 are generated during sepsis following infusion of endotoxin, or after cecal ligation and puncture (CLP, which produces polymicrobial sepsis. C5a reacts with its receptors C5aR and C5L2 in a manner that creates the “cytokine storm”, and is associated with development of multiorgan failure (MOF. A number of other complications arising from the interaction of C5a with its receptors include apoptosis of lymphoid cells, loss of innate immune functions of neutrophils (PMNs, polymorphonuclear leukocytes, cardiomyopathy, disseminated intravascular coagulation, and complications associated with MOF. Neutralization of C5a in vivo or absence/blockade of C5a receptors greatly reduces the adverse events in the setting of sepsis, markedly attenuates MOF, and greatly improves survival. Regarding the possible role of C5b-9 in sepsis, the literature is conflicting. Some studies suggest that C5b-9 is protective, while other studies suggest the contrary. Clearly, in human sepsis, C5a and its receptors may be logical targets for interception.

  6. Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice.

    Science.gov (United States)

    Na, Manli; Jarneborn, Anders; Ali, Abukar; Welin, Amanda; Magnusson, Malin; Stokowska, Anna; Pekna, Marcela; Jin, Tao

    2016-04-01

    The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3(-/-)), complement factor B (fB(-/-)), and receptor for C3-derived anaphylatoxin C3a (C3aR(-/-)) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3(-/-)mice than in WT controls, whereas fB(-/-)mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3(-/-)sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB(-/-)sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus.

  7. Cloning and Sequence Analysis of the Promoter Region of Mongolian Sheep GDF11 Gene%蒙古羊GDF11基因启动子区克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    何小龙; 李蓓; 刘永斌; 王峰; 田春英; 荣威恒

    2012-01-01

    In order to analysis the relationship between growth differentiate factor 11 (GDF11) and the traits of more vertebras of Mongolian sheep, the gene promoter region was cloned firstly and analysised by the bioinformatics software. The results showed that the GDF11 gene promoter region length was 512 bp and bases proportion were A 10. 55%, G 16. 80%, T 31. 84% , C 40. 82% . The proportion of G+C was 57. 62%. The results of bioinformatics analysis showed no CpG island and TATA box or CAAT box found in the Mongolian sheep GDF11 gene promoter region, but existed one transcription initiation site, 5 transcription factors: HSF2, HSF2, GATA-1, AML-1a, MZF1, and 5 motifs: EGF_1, CTCK_1, ANAPHYLATOX-IN_1, VWFC_1, DEFENSIN. The research provided theoretical basis for the Mongolian sheep vertebra regulation mechanism by GDF11 gene.%为了研究生长分化因子11 (growth differentiation factor,GDF11)基因与蒙古羊多脊椎性状间的关系,本研究首先克隆了该基因启动子区序列,并采用相关生物信息学软件对该序列进行了分析.结果得到512 bp的蒙古羊GDF11基因启动子区序列,整个序列碱基构成为A占10.55%,G占16.80%,T占31.84%,C占40.82%,整个序列G+C含量百分比为57.620%.通过在线软件对蒙古羊GDF11基因启动子区生物信息学分析结果表明,该区域未找到符合条件的CpG岛,也未发现TATA box或CAAT box结构,但存在一处潜在的转录起始位点和HSF2、HSF2、GATA-1、AML-1a和MZF1 5个潜在转录因子,并且具有5种基序结构:EGF_1、CTCK_1、ANAPHYLATOXIN 1、VWFC_1和DEFENSIN.本研究结果为进一步揭示该基因对蒙古羊脊椎数的调控机理提供了重要的理论依据.

  8. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  9. Molecules Great and Small: The Complement System.

    Science.gov (United States)

    Mathern, Douglas R; Heeger, Peter S

    2015-09-04

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  10. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis.

    Science.gov (United States)

    Orsini, Franca; De Blasio, Daiana; Zangari, Rosalia; Zanier, Elisa R; De Simoni, Maria-Grazia

    2014-01-01

    The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.

  11. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice.

    Science.gov (United States)

    Fluiter, Kees; Opperhuizen, Anne Loes; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2014-03-01

    Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. We generated a C6 antisense oligonucleotide that blocks MAC formation by inhibiting C6, and we compared its therapeutic effect to that of Ornithodoros moubata complement inhibitor (OmCI), a known inhibitor of C5 activation that blocks generation of the anaphylatoxin C5a and C5b, an essential component of MAC. Severe closed head injury in mice induced abundant MAC deposition in the brain. Treatment with C6 antisense reduced C6 synthesis (85%) and serum levels (90%), and inhibited MAC deposition in the injured brain (91-96%). Treatment also reduced accumulation of microglia/macrophages (50-88%), neuronal apoptosis, axonal loss and weight loss (54-93%), and enhanced neurologic performance (84-92%) compared with placebo-treated controls after injury. These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.

  12. VERSATILITY OF THE COMPLEMENT SYSTEM IN NEUROINFLAMMATION, NEURODEGENERATION AND BRAIN HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Franca eOrsini

    2014-11-01

    Full Text Available The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury. This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement

  13. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief

    Science.gov (United States)

    Moriconi, Alessio; Cunha, Thiago M.; Souza, Guilherme R.; Lopes, Alexandre H.; Cunha, Fernando Q.; Carneiro, Victor L.; Pinto, Larissa G.; Brandolini, Laura; Aramini, Andrea; Bizzarri, Cinzia; Bianchini, Gianluca; Beccari, Andrea R.; Fanton, Marco; Bruno, Agostino; Costantino, Gabriele; Bertini, Riccardo; Galliera, Emanuela; Locati, Massimo; Ferreira, Sérgio H.; Teixeira, Mauro M.; Allegretti, Marcello

    2014-01-01

    Chronic pain resulting from inflammatory and neuropathic disorders causes considerable economic and social burden. Pharmacological therapies currently available for certain types of pain are only partially effective and may cause severe adverse side effects. The C5a anaphylatoxin acting on its cognate G protein-coupled receptor (GPCR), C5aR, is a potent pronociceptive mediator in several models of inflammatory and neuropathic pain. Although there has long been interest in the identification of C5aR inhibitors, their development has been complicated, as for many peptidomimetic drugs, mostly by poor drug-like properties. Herein, we report the de novo design of a potent and selective C5aR noncompetitive allosteric inhibitor, DF2593A, guided by the hypothesis that an allosteric site, the “minor pocket,” previously characterized in CXC chemokine receptors-1 and -2, is functionally conserved in the GPCR class. In vitro, DF2593A potently inhibited C5a-induced migration of human and rodent neutrophils. In vivo, oral administration of DF2593A effectively reduced mechanical hyperalgesia in several models of acute and chronic inflammatory and neuropathic pain, without any apparent side effects. Mechanical hyperalgesia after spared nerve injury was also reduced in C5aR−/− mice compared with WT mice. Furthermore, treatment of C5aR−/− mice with DF2593A did not produce any further antinociceptive effect compared with C5aR−/− mice treated with vehicle. The successful medicinal chemistry strategy confirms that a conserved minor pocket is amenable for the rational design of selective inhibitors and the pharmacological results support that the allosteric blockade of the C5aR represents a highly promising therapeutic approach to control chronic inflammatory and neuropathic pain. PMID:25385614

  14. The membrane-bound ectopeptidase CPM as a marker of macrophage maturation in vitro and in vivo.

    Science.gov (United States)

    Rehli, M; Krause, S W; Andreesen, R

    2000-01-01

    During terminal maturation of human blood monocytes into macrophages, a multitude of phenotypic and functional changes occurs: cells increase in size, they enhance their capacity for phagocytosis and tumor cytotoxicity but decrease their ability for T-lymphocyte stimulation. The pattern of secreted cytokines is shifted as is the profile of surface antigens. We recently identified carboxypeptidase M (CPM) as a macrophage maturation-associated antigen detected by mAb MAX. 1/MAX. 11. CPM, a phosphoinositol-linked ectopeptidase, is able to process a multitude of different substrates, among them immunologically important peptides like bradykinin, anaphylatoxins and enkephalins. It was previously shown to be expressed in placenta, lung, and kidney. CPM as detected by MAX. 1/11 shows a strong expression on monocyte-derived macrophages in vitro and on macrophages in vivo accompanying T-lymphocyte activation like during allogeneic transplant rejection or allergic alveolitis. In contrast, its expression is suppressed on macrophages by some types of tumor cells. CPM expression seems to correlate with macrophage cytotoxic functions. However, the biological importance of CPM expression in human macrophages in vivo is difficult to predict. A wide range of biologically active peptides are cleaved by CPM, and the relevance of CPM peptide processing during an immune reaction is only poorly understood. The generation and analysis of CPM-deficient animals might improve our understanding of CPM function. Therefore we cloned a cDNA for the murine homologue of CPM. However, expression of mCPM was undetectable in murine primary macrophages and macrophage cell-lines, suggesting that CPM expression and function is not conserved between human and mouse macrophages.

  15. Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma.

    Directory of Open Access Journals (Sweden)

    Nina-Emily Hengartner

    Full Text Available Multipotent mesenchymal stromal cells (MSC exert immune-modulatory effects and support tissue regeneration in various local trauma models. In case of a polytrauma, high amounts of danger-associated molecular patterns are released, leading to a systemic increase of inflammatory mediators. The influence of such a complex inflammatory microenvironment on human MSC is mainly unknown so far. Therefore, we investigated the effects of a defined serum-free polytrauma "cocktail" containing IL beta, IL6, IL8 and the anaphylatoxins C3a and C5a, in concentrations corresponding to those measured in the blood of polytrauma patients, on human MSC in vitro. The polytrauma cocktail induced directed migration of MSC with C3a representing its major soluble chemoattractive agent. Furthermore, the polytrauma cocktail and IL1beta upregulated the expression of MMP1 indicating a potential role of IL1beta to enhance MSC migration in the tissue context. COX2, PTGES and TSG6 were also found to be upregulated upon stimulation with the polytrauma cocktail or IL1beta, but not through other single factors of the polytrauma cocktail in pathophysiologically relevant concentrations. An RNA expression array of 84 inflammation-related genes revealed that both the polytrauma cocktail and IL1beta induced C3, CSF1, TLR3 and various chemokines without major qualitative or quantitative differences. These results indicate that IL1beta is a crucial mediator of the polytrauma cocktail in terms of immune-modulation and MMP1 expression. Thus, upon encountering the primary sterile, inflammatory milieu of a polytrauma, endogenous or systemically transfused MSC might be able to migrate to sites of injury, secrete TSG6 and PGE2 and to influence macrophage biology as observed in local trauma models.

  16. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells.

    Directory of Open Access Journals (Sweden)

    Hariharan Subramanian

    Full Text Available BACKGROUND: The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na(+/H(+ exchange regulatory factor (NHERF1 and NHERF2 have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1 motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2 and CD34(+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. CONCLUSION/SIGNIFICANCE: This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.

  17. Differential Contributions of the Complement Anaphylotoxin Receptors C5aR1 and C5aR2 to the Early Innate Immune Response against Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Sarah A. Horst

    2015-10-01

    Full Text Available The complement anaphylatoxin C5a contributes to host defense against Staphylococcus aureus. In this study, we investigated the functional role of the two known C5a receptors, C5aR1 and C5aR2, in the host response to S. aureus. We found that C5aR1−/− mice exhibited greater susceptibility to S. aureus bloodstream infection than wild type and C5aR2−/− mice, as demonstrated by the significantly higher bacterial loads in the kidneys and heart at 24 h of infection, and by the higher levels of inflammatory IL-6 in serum. Histological and immunohistochemistry investigation of infected kidneys at 24 h after bacterial inoculation revealed a discrete infiltration of neutrophils in wild type mice but already well-developed abscesses consisting of bacterial clusters surrounded by a large number of neutrophils in both C5aR1−/− and C5aR2−/− mice. Furthermore, blood neutrophils from C5aR1−/− mice were less efficient than those from wild type or C5aR2−/− mice at killing S. aureus. The requirement of C5aR1 for efficient killing of S. aureus was also demonstrated in human blood after disrupting C5a-C5aR1 signaling using specific inhibitors. These results demonstrated a role for C5aR1 in S. aureus clearance as well as a role for both C5aR1 and C5aR2 in the orchestration of the inflammatory response during infection.

  18. Complement system part II: role in immunity

    Directory of Open Access Journals (Sweden)

    Nicolas S. Merle

    2015-05-01

    Full Text Available The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS, C3 glomerulopathies (C3G and systemic lupus erythematosus (SLE. Age related macular degeneration (AMD and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.

  19. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  20. Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis.

    Science.gov (United States)

    Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas; Baums, Christoph G

    2014-06-01

    Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.

  1. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease.

    Science.gov (United States)

    Yang, Yue; Cudaback, Eiron; Jorstad, Nikolas L; Hemingway, Jake F; Hagan, Catherine E; Melief, Erica J; Li, Xianwu; Yoo, Tom; Khademi, Shawn B; Montine, Kathleen S; Montine, Thomas J; Keene, C Dirk

    2013-09-01

    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein-expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT-recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT-recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease.

  2. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth.

    Directory of Open Access Journals (Sweden)

    Pearl M Swe

    2014-06-01

    Full Text Available BACKGROUND: Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4 inhibits the complement-mediated blood killing of S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA. SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. CONCLUSIONS/SIGNIFICANCE: We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a

  3. 视神经脊髓炎的发病机制%The Pathogensis of Neuromyelitis Optica

    Institute of Scientific and Technical Information of China (English)

    蒋雨平

    2015-01-01

    After the break down of aquaporin-4(AQP4) periperal tolerance leading to neuromyelitis optica immunoglobulin G (NMO-IgG)/anti-AQP4 antibody production, a beach in the blood-brain barriar (BBB), allows NMO-IgG to reach the CNS, bind AQP4 and induce pathogenic fuction. Anti-AQP4 antibodies induce the internalization of AQP4 and EAAT2 astrocyte proteins, and result in excitetoxicity, and increase BBB permeability. Anti-AQP4 antibodies can result in astrocyte injury by antibody dependent cellular cytotocity. Chemotactic factors such as anaphylatoxins C3a and C5a are released and induce the recruitment and activation of inlfammatory cells. All these mechanisms futher contribute to BBB disruption, enhancing antibody and cell entry to the CNS, and propagating NMO lesion formation.%视神经脊髓炎免疫球蛋白G(NMO-IgG)作用于水通道蛋白-4(AQP4),使AQP4含量减少并产生抗AQP4抗体。透过受损的血脑屏障,使NMO-IgG进入中枢神经系统内,抗AQP4抗体损害了AQP4和Na+-依赖兴奋性氨基酸转运体复合物,引起谷氨酸兴奋性毒性和血脑屏障破坏。抗AQP4抗体通过细胞免疫毒性和补体依赖性细胞毒性、化学因素(过敏毒素如C3a、C5a)引起星形细胞损害。所有机制综合性损害血脑屏障,增加抗体,各种细胞(淋巴细胞和粒细胞)侵入中枢神经系统,造成视神经脊髓炎。

  4. Quantitative proteomic analysis on the serum of patients with medicamentose-like dermatitis induced by occupational trichloroethylene exposure%职业性三氯乙烯药疹样皮炎患者血清蛋白质差异表达分析

    Institute of Scientific and Technical Information of China (English)

    黄振烈; 越飞; 黄汉林; 杨杏芬; 夏丽华; 陈慈珊; 邱新香; 黄建勋; 李来玉

    2011-01-01

    Objective To compare the proteome of the serum of patients with medicamentose-like dermatitis due to occupational trichloroethylene exposure(OMDTE) in acute and recovery stages. Methods After the samples were collected and pretreated, the expression of protein in serum was analyzed by 2-dimensional electrophoresis (2-DE) and differentially expressed protein spots were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry ( MALDI-TOF-TOF/ MS). Results 31 proteins with altered modifications were separated and identified by 2-DE combined with MALDI-TOF-TOF/ MS. Compared with the serum proteome in the recovery stage, proteins showed up-regulated expression in acute stage included S100 cal-cium-binding protein A8, calprotectin, amyloid related serum protein SAA, leucine aminopeptidase, plasma glutathione peroxidase, etc. However, retinol binding protein, acetyl-CoA carboxylase and carboxypeptidase N were down-regulated. The function of these proteins involved in inflammatory responses, oxidative stress, retinol metabolism, fatty acid metabolism and regulation of kinins and anaphylatoxins. Conclusion The identified proteins provided target molecules for the further study on mechanisms of OMDTE and can be used as potential biomarkers for the disease.%目的 比较职业性三氯乙烯药疹样皮炎(OMDTE)患者发病急性期与治愈后的血清蛋白质表达谱.方法 患者血清经前处理后,双向凝胶电泳分离蛋白质,软件分析凝胶图像,基质辅助激光解吸电离飞行时间串联质谱鉴定差异表达蛋白斑点.结果 与治愈后的血清蛋白质表达谱比较,在发病急性期发现41个明显差异表达的蛋白斑点,鉴定出31个蛋白.上调的蛋白有S100钙结合蛋白A8、钙网蛋白、血清淀粉样蛋白A、亮氨酸氨基肽酶、谷胱甘肤过氧化物酶等;下调的蛋白有视黄醇结合蛋白、乙酰辅酶A羧化酶、羧肽酶N等;涉及的功能通路包括炎症反应、氧