WorldWideScience

Sample records for anaphylatoxins

  1. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  2. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  3. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Phieler, Julia; Chung, Kyoung-Jin; Chatzigeorgiou, Antonios; Klotzsche-von Ameln, Anne; Garcia-Martin, Ruben; Sprott, David; Moisidou, Maria; Tzanavari, Theodora; Ludwig, Barbara; Baraban, Elena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Mziaut, Hassan; Solimena, Michele; Karalis, Katia P; Economopoulou, Matina; Lambris, John D; Chavakis, Triantafyllos

    2013-10-15

    Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.

  4. C5a of Cynoglossus semilaevis has anaphylatoxin-like properties and promotes antibacterial and antiviral defense.

    Science.gov (United States)

    Li, Mo-fei; Hu, Yong-hua

    2016-07-01

    Activation of the complement system leads to the cleavage of component factor C5 into C5a and C5b. C5a can induce chemotaxis and inflammatory responses in mammals. The function of C5a in fish is poorly understood. In this study, we report the identification and analysis of a C5 homologue, CsC5, from tongue sole (Cynoglossus semilaevis). CsC5 is composed of 1683 amino acid residues that include an anaphylatoxin homologous domain. Expression of CsC5 could be detected in a variety of tissues and was up-regulated by bacterial or viral pathogen infection. Purified recombinant CsC5a (rCsC5a) could bind to peripheral blood leukocytes (PBL) and stimulate PBL chemotaxis, proliferation, respiratory burst, acid phosphatase activity, and phagocytosis. Tongue sole administered rCsC5a exhibited enhanced resistance against bacterial and viral infections. These results indicate that CsC5a is an anaphylatoxin with a role in innate immune defense against bacterial and viral infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DMPD: Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and parenchymal cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available nnonparenchymal and parenchymal cells. Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Int Immunopharmac...31 Title Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and paren...chymal cells. Authors Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Publication Int Immunopharmacol. 2

  6. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars

    2006-01-01

    liposome-induced complement activation in normal as well as C1q-deficient human sera, using DPPC vesicles bearing the classical as well as newly synthesized lipid-mPEG conjugates. With PEGylated DPPC vesicles, the net anionic charge on the phosphate moiety of phospholipid-mPEG conjugate played a key role...... anaphylatoxin production through complement activation. Despite the general view that vesicle surface camouflaging with mPEG should dramatically suppress complement activation, here we show that bilayer enrichment of noncomplement activating liposomes [di-palmitoylphosphatidylcholine (DPPC) vesicles......] with phospholipid-mPEG conjugate induces complement activation resulting in vesicle recognition by macrophage complement receptors. The extent of vesicle uptake, however, is dependent on surface mPEG density. We have delineated the likely structural features of phospholipid-mPEG conjugate responsible for PEGylated...

  7. GPCR Interaction: 319 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available Predicted interfaces of C3a anaphylatoxin by using the SCD with the alignment provided in GPCR...DB A Anaphylatoxin C3a anaphylatoxin C3a anaphylatoxin ... Prediction ... 15593372 SCD for GPCRDB subtype 001_002_004_003 ...

  8. GPCR Interaction: 318 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available Predicted interfaces of C5a anaphylatoxin C5L2 by using the SCD with the alignment provided in GPCR...DB A Anaphylatoxin C5a anaphylatoxin C5L2 C5a anaphylatoxin C5L2 ... Prediction ... 15593372 SCD for GPCRDB subtype 001_002_004_002 ...

  9. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Poppelaars, Felix; van Werkhoven, Maaike B; Kotimaa, Juha; Veldhuis, Zwanida J; Ausema, Albertina; Broeren, Stefan G M; Damman, Jeffrey; Hempel, Julia C.; Leuvenink, Henri G D; Daha, Mohamed R; van Son, Willem J; van Kooten, Cees; van Os, Ronald P; Hillebrands, Jan-Luuk; Seelen, Marc A

    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR

  10. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade.

    Directory of Open Access Journals (Sweden)

    Giselle Pidde-Queiroz

    Full Text Available BACKGROUND: Snake Venom Metalloproteinases (SVMPs are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. RESULTS: Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. CONCLUSION: We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation.

  11. P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade

    Science.gov (United States)

    Pidde-Queiroz, Giselle; Magnoli, Fábio Carlos; Portaro, Fernanda C. V.; Serrano, Solange M. T.; Lopes, Aline Soriano; Paes Leme, Adriana Franco; van den Berg, Carmen W.; Tambourgi, Denise V.

    2013-01-01

    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. PMID:24205428

  12. Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Robinson, Joshua T.; Dai, Hongjie

    2013-01-01

    circulation profiles of CNTs, activates the complement system differently, depending on the amphiphile structure. CNTs with linear poly(ethylene glycol) amphiphiles trigger the lectin pathway of the complement through both l-ficolin and mannan-binding lectin recognition. The lectin pathway activation, however......, did not trigger the amplification loop of the alternative pathway. An amphiphile with branched poly(ethylene glycol) architecture also activated the lectin pathway but only through l-ficolin recognition. Importantly, this mode of activation neither generated anaphylatoxins nor induced triggering...

  13. Glucose-based dialysis fluids inhibit innate defense against Staphylococcus aureus.

    Science.gov (United States)

    Kumar, Parvathi S; Mauriello, Clifford T; Hair, Pamela S; Rister, Nicholas S; Lawrence, Courtney; Raafat, Reem H; Cunnion, Kenji M

    2015-10-01

    Staphylococcus aureus peritonitis is a serious complication of Chronic Peritoneal Dialysis (CPD) and associated with a higher risk for severe and recurrent infections compared with other bacteria. We have previously shown that complement-mediated effectors essential for optimal opsonophagocytosis of S. aureus are inhibited by high glucose concentrations. Since most commonly used peritoneal dialysis (PD) fluids are glucose-based, we hypothesized that glucose-based PD fluids likely inhibit complement host defenses against S. aureus. Commercially available PD fluids were tested: glucose-based (Dianeal), Dianeal supplemented with amino acids, icodextrin-based (Extraneal) and amino acid-based (Nutrineal). Control PD fluid was generated to simulate Dianeal excluding the glucose. Three commercially available glucose concentrations were tested: Dianeal 1.5% (15 gm/1000 ml), Dianeal 2.5% (25 gm/1000 ml) and Dianeal 4.25% (42.5 gm/1000 ml). Complement effectors against S. aureus were analyzed including opsonization with C3-fragments, anaphylatoxin generation, and phagocytosis efficiency. We also evaluated clinical strains, including MRSA strains, and specific complement activation pathways. Glucose-based PD fluids inhibited complement opsonization of S. aureus (≥7-fold reduction) and inhibited S. aureus-induced generation of anaphylatoxins C3a and C5a (>10-fold reduction) compared to non-glucose based PD fluids. Dianeal 1.5%, 2.5% and 4.25%, all similarly inhibited C3-mediated opsonization. Glucose-based PD fluids showed a ≥4-fold reduction in opsonization of clinical strains of S.aureus, including MRSA strains. Decreased opsonization of S.aureus in the glucose-based PD fluid compared with non-glucose based fluids correlated with decreased phagocytosis by neutrophils. Complement-mediated opsonophagocytosis of S. aureus and anaphylatoxin generation were severely inhibited in glucose-based PD fluids compared with non-glucose-based PD fluids. By inhibiting complement host

  14. Decreased synthesis of serum carboxypeptidase N (SCPN) in familial SCPN deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.P.; Curd, J.G.; Hugli, T.E.

    1986-01-01

    Serum carboxypeptidase N (SCPN) is the primary inactivator of the C3a, C4a, and C5a anaphylatoxins as well as an inactivator of bradykinin. Thus, SCPN deficiency potentially could result in significant pathophysiologic consequences. Previous studies identified a deficient subject afflicted with frequent episodes of angioedema, and other family members also had SCPN deficiency. To delineate this abnormality further, the fractional catabolic rate (FRC) and enzyme synthesis were determined in three members of the afflicted kindred as well as in five normal persons following the infusion of homogeneous /sup 125/I-SCPN. The mean FCR and synthesis rates for SCPN in the normal subjects were 1.3%/hr and 20,793 U/kg/hr, respectively. Reduced synthesis was concluded to be primarily responsible for the low SCPN levels in the afflicted kindred. The high FRC of SCPN discourages attempted maintenance therapy with infusions of enriched SCPN preparations.

  15. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran

    2015-01-01

    The complement system is the major effector of innate immunity. It is the body’s first defense against pathogens recognizing and tagging them for subsequent elimination. Complement is a germline-encoded system of more than 50 circulating and membrane-bound proteins that recognize molecular patterns...... on one side and to host cell receptors on the other. This elicits inflammatory responses directing immune cells to the place of infection, tagging of pathogens for phagocytosis, their subsequent lysis and stimulation of adaptive immunity. The C3 molecule is cleaved into a large fragment C3b and a small...... fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens...

  16. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Uller, Lena; Mathiesen, Jesper Mosolff; Alenmyr, Lisa

    2007-01-01

    , mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist...... receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology...... in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. CONCLUSION: This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway...

  17. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species

    Science.gov (United States)

    Boshra, Hani; Li, Jun; Peters, Rodney; Hansen, John; Matlapudi, Anjan; Sunyer, J. Oriol

    2004-01-01

    C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.

  18. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  19. A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator.

    Directory of Open Access Journals (Sweden)

    Isadora Maria Villas Boas

    Full Text Available The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called "Pararamose", characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa's bristles extract could interfere with the human complement system.The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly interfere

  20. Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice.

    Science.gov (United States)

    Na, Manli; Jarneborn, Anders; Ali, Abukar; Welin, Amanda; Magnusson, Malin; Stokowska, Anna; Pekna, Marcela; Jin, Tao

    2016-04-01

    The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3(-/-)), complement factor B (fB(-/-)), and receptor for C3-derived anaphylatoxin C3a (C3aR(-/-)) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3(-/-)mice than in WT controls, whereas fB(-/-)mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3(-/-)sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB(-/-)sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus. Copyright © 2016 Na et al.

  1. Modern Radiobiology: Contention Of Concepts: Advanced Technology And Development Of Effective Prophylaxis, Prevention And Treatment Of Biological Consequences After Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey

    "Alle Ding' sind Gift, und nichts ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist." Paracelsus Philippus Aureolus Theophrastus Bombastus von Hohenheim. Key worlds: Apoptosis, Necrosis, Domains associated with Cell Death, Caspase (catalytic) Domains, Death Domains (DDs), Death Effector Domains (DEDs), Caspase-Associated Recruitment Domains (CARDs, BIR Domains (IAPs), Bcl-2 Homology (BH) Domains, death ligands - TRAIL (TNF-Related Apoptosis-Inducing Ligand), FasL (Fas Ligand), TNFalpha (Tumor Necrosis Factor alpha), Toll-like receptors (TLR), Systemic inflammatory response syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndromes (TMODS), Toxic Multiple Organ Failure (TMOF), Anaphylatoxins, or complement peptides; membrane attack complex (MAC), ROS - Reactive Oxygen Species; ASMase, acid sphingomyelinase; Neurotoxins, Cytotoxins, Haemotoxins. Introduction: Radiation affects many cell structures, organelles and metabolic pathways. Different doses and types of radiation ( gamma-radiation, neutron, heavy ion radiation) progress to reversible and irreversible forms of cell injury. Consideration: Apoptosis and Necrosis, major forms of post-radiation cell death, can be initiated and modulated by programmed control and proceed by similar or different pathways.[Akadi et al.,1993, Dunlacht J., et al. 1999] Radiation induced cell death by triggering apoptosis pathways was described in many articles and supported by many scientists. [Rio et al. 2002, Rakesh et al. 1997.] However some authors present results that two distinct pathways can initiate or apoptotic or necrotic responses: the death receptors and mitochondrial pathways.

  2. Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins.

    Science.gov (United States)

    Bera, Monali M; Lu, Bao; Martin, Thomas R; Cui, Shun; Rhein, Lawrence M; Gerard, Craig; Gerard, Norma P

    2011-10-15

    Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. In this paper, we show RSV-infected wild-type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production also has been implicated in RSV pathophysiology, and tachykinin receptor-null mice were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in mice deficient in C3aR, whereas C3a levels were unchanged in tachykinin receptor-null animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets.

  3. Th17 cytokines are critical for RSV associated airway hyperreponsiveness through regulation by complement C3a and tachykinins1

    Science.gov (United States)

    Bera, Monali M.; Lu, Bao; Martin, Thomas R; Cui, Shun; Rhein, Lawrence M.; Gerard, Craig; Gerard, Norma P.

    2011-01-01

    Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. Here we show RSV infected wild type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR (C3aR1−/−) fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production has also been implicated in RSV pathophysiology, and tachykinin receptor null mice (TACR1−/−) were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in C3aR1−/− mice, while C3a levels were unchanged in TACR1−/− animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets. PMID:21918196

  4. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri i.p. vaccination

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    and higher at high water temperature with major expression at 25° C. The pro-inflammatory cytokine IL-1ß and INF¿ was significantly up-regulated in all immunized groups whereas the cytokine IL-10 was merely up-regulated in fish kept at 15 and 25° C. The gene encoding the C5a (anaphylatoxin) receptor......M in the head-kidney and Y. ruckeri specific antibodies in plasma measured by ELISA. However, no regulation of the teleost specific immunoglobulin IgT, which was generally expressed at a much lower level than IgM, could be detected. The study indicated that both innate and specific adaptive immune response......The immune response in rainbow trout against a bacterin of Yersinia ruckeri, a bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout were immunized by i.p. injection of a Y. ruckeri (serotype O1) water based bacterin and compared to control...

  5. Successful use of eculizumab for treatment of an acute hemolytic reaction after ABO-incompatible red blood cell transfusion.

    Science.gov (United States)

    Weinstock, Christof; Möhle, Robert; Dorn, Christiane; Weisel, Katja; Höchsmann, Britta; Schrezenmeier, Hubert; Kanz, Lothar

    2015-03-01

    Transfusion of ABO major-incompatible red blood cells (RBCs) can activate the complement system and can cause severe and even lethal acute hemolytic reactions. The activation of the complement system with formation of C3a and C5a (anaphylatoxins) and the release of hemoglobin from the lysed RBCs are thought to mediate clinical signs like fever, hypotension, pain, and acute renal failure. Therapeutic inhibition of the complement cascade in case of ABO-incompatible RBC transfusion would be desirable to ameliorate the signs and symptoms and to improve the outcome of the reaction. A patient with blood group B was erroneously transfused with a unit of group A2 RBCs. Within 1 hour after transfusion she received eculizumab, a monoclonal antibody that binds to the complement component C5 and blocks its cleavage. Clinical and immunohematologic observations are reported here. Hemoglobinemia and hemoglobinuria were present for several hours after transfusion, but she developed no hypotension, no renal failure, and no disseminated intravascular coagulation. As shown by flow cytometry, group A cells survived in the peripheral blood for more than 75 days. No immunoglobulin G was detectable by column agglutination technique on these cells. A low isoagglutinin titer and blood group A2 of the erroneously transfused cells most likely were the reason for the absence of clinical signs during and immediately after the ABO-incompatible transfusion. In the further course, eculizumab successfully protected the incompatible RBCs from hemolysis for several weeks. © 2014 AABB.

  6. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom.

    Science.gov (United States)

    Lodovicho, Marina E; Costa, Tássia R; Bernardes, Carolina P; Menaldo, Danilo L; Zoccal, Karina F; Carone, Sante E; Rosa, José C; Pucca, Manuela B; Cerni, Felipe A; Arantes, Eliane C; Tytgat, Jan; Faccioli, Lúcia H; Pereira-Crott, Luciana S; Sampaio, Suely V

    2017-01-04

    Cysteine-rich secretory proteins (CRISPs) are commonly described as part of the protein content of snake venoms, nevertheless, so far, little is known about their biological targets and functions. Our study describes the isolation and characterization of Bj-CRP, the first CRISP isolated from Bothrops jararaca snake venom, also aiming at the identification of possible targets for its actions. Bj-CRP was purified using three chromatographic steps (Sephacryl S-200, Source 15Q and C18) and showed to be an acidic protein of 24.6kDa with high sequence identity to other snake venom CRISPs. This CRISP was devoid of proteolytic, hemorrhagic or coagulant activities, and it did not affect the currents from 13 voltage-gated potassium channel isoforms. Conversely, Bj-CRP induced inflammatory responses characterized by increase of leukocytes, mainly neutrophils, after 1 and 4h of its injection in the peritoneal cavity of mice, also stimulating the production of IL-6. Bj-CRP also acted on the human complement system, modulating some of the activation pathways and acting directly on important components (C3 and C4), thus inducing the generation of anaphylatoxins (C3a, C4a and C5a). Therefore, our results for Bj-CRP open up prospects for better understanding this class of toxins and its biological actions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Complement Component 3C3 and C3a Receptor Are Required in Chitin-Dependent Allergic Sensitization to Aspergillus fumigatus but Dispensable in Chitin-Induced Innate Allergic Inflammation

    Science.gov (United States)

    Roy, René M.; Paes, Hugo C.; Nanjappa, Som G.; Sorkness, Ron; Gasper, David; Sterkel, Alana; Wüthrich, Marcel; Klein, Bruce S.

    2013-01-01

    ABSTRACT Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells. PMID:23549917

  8. Thrombin activatable fibrinolysis inhibitor (TAFI) - A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS).

    Science.gov (United States)

    Grosso, Giorgia; Vikerfors, Anna; Woodhams, Barry; Adam, Mariette; Bremme, Katarina; Holmström, Margareta; Ågren, Anna; Eelde, Anna; Bruzelius, Maria; Svenungsson, Elisabet; Antovic, Aleksandra

    2017-10-01

    Thrombosis and complement activation are pathogenic features of antiphospholipid syndrome (APS). Their molecular link is Plasma carboxypeptidase-B, also known as thrombin activatable fibrinolysis inhibitor (TAFIa), which plays a dual role: anti-fibrinolytic, by cleaving carboxyl-terminal lysine residues from partially degraded fibrin, and anti-inflammatory, by downregulating complement anaphylatoxins C3a and C5a. To investigate the levels of TAFI (proenzyme) and TAFIa (active enzyme) in relation to complement activation, fibrin clot permeability and fibrinolytic function in clinical and immunological subsets of 52 APS patients and 15 controls. TAFI (pAPS patients compared to controls. Furthermore, TAFIa was increased (pAPS patients affected by arterial thrombosis compared to other APS-phenotypes. Positive associations were found between TAFI and age, fibrinogen and C5a, and between TAFIa and age, fibrinogen and thrombomodulin. TAFI and TAFIa levels were increased in patients with APS as a potential response to complement activation. Interestingly, TAFI activation was associated with arterial thrombotic APS manifestations. Thus, TAFIa may be considered a novel biomarker for arterial thrombosis in APS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mechanisms of the Innate Defense Regulator Peptide-1002 Anti-Inflammatory Activity in a Sterile Inflammation Mouse Model.

    Science.gov (United States)

    Wu, Bing Catherine; Lee, Amy Huei-Yi; Hancock, Robert E W

    2017-11-15

    Innate defense regulator (IDR) peptide-1002 is a synthetic host defense peptide derivative with strong anti-inflammatory properties. Extending previous data, IDR-1002 suppressed in vitro inflammatory responses in RAW 264.7 murine monocyte/macrophage cells challenged with the TLR4 agonist LPS and TLR2 agonists lipoteichoic acid and zymosan. To investigate the anti-inflammatory mechanisms of IDR-1002 in vivo, the PMA-induced mouse ear inflammation model was used. Topical IDR-1002 treatment successfully dampened PMA-induced ear edema, proinflammatory cytokine production, reactive oxygen and nitrogen species release, and neutrophil recruitment in the ears of CD1 mice. Advanced RNA transcriptomic analysis on the mouse ear transcriptome revealed that IDR-1002 reduced sterile inflammation by suppressing the expression of transmembrane G protein-coupled receptors (class A/1 rhodopsin-like), including receptors for chemokines, PGs, histamine, platelet activating factor, and anaphylatoxin. IDR-1002 also dampened the IFN-γ response and repressed the IFN regulatory factor 8-regulated network that controls central inflammatory pathways. This study demonstrates that IDR-1002 exhibits strong in vitro and in vivo anti-inflammatory activities, informs the underlying anti-inflammatory mechanisms, and reveals its potential as a novel therapeutic for inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Macrophage Matrix Metalloproteinase-12 Dampens Inflammation and Neutrophil Influx in Arthritis

    Directory of Open Access Journals (Sweden)

    Caroline L. Bellac

    2014-10-01

    Full Text Available Resolution of inflammation reduces pathological tissue destruction and restores tissue homeostasis. Here, we used a proteomic protease substrate discovery approach, terminal amine isotopic labeling of substrates (TAILS, to analyze the role of the macrophage-specific matrix metalloproteinase-12 (MMP12 in inflammation. In murine peritonitis, MMP12 inactivates antithrombin and activates prothrombin, prolonging the activated partial thromboplastin time. Furthermore, MMP12 inactivates complement C3 to reduce complement activation and inactivates the chemoattractant anaphylatoxins C3a and C5a, whereas iC3b and C3b opsonin cleavage increases phagocytosis. Loss of these anti-inflammatory activities in collagen-induced arthritis in Mmp12−/− mice leads to unresolved synovitis and extensive articular inflammation. Deep articular cartilage loss is associated with massive neutrophil infiltration and abnormal DNA neutrophil extracellular traps (NETs. The NETs are rich in fibrin and extracellular actin, which TAILS identified as MMP12 substrates. Thus, macrophage MMP12 in arthritis has multiple protective roles in countering neutrophil infiltration, clearing NETs, and dampening inflammatory pathways to prepare for the resolution of inflammation.

  11. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten

    1985-01-01

    clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence......We have used available protein sequence data for the anaphylatoxin (C5a) portion of the fifth component of human complement (residues 19-25) to synthesize a mixed-sequence oligonucleotide probe. The labeled oligonucleotide was then used to screen a human liver cDNA library, and a single candidate cDNA...... obtained further predicted an arginine-rich sequence (RPRR) immediately upstream of the N-terminal threonine of C5a, indicating that the promolecule form of C5 is synthesized with a beta alpha-chain orientation as previously shown for pro-C3 and pro-C4. The C5 cDNA clone was sheared randomly by sonication...

  12. Complement activated granulocytes can cause autologous tissue destruction in man

    Directory of Open Access Journals (Sweden)

    E. Löhde

    1992-01-01

    Full Text Available Activation of polymorphonuclear granulocytes (PMNs by C5a is thought to be important in the pathogenesis of multiple organ failure during sepsis and after trauma. In our experiment exposure of human PMNs to autologous zymosan activated plasma (ZAP leads to a rapid increase in chemiluminescence. Heating the ZAP at 56°C for 30 min did not alter the changes, while untreated plasma induced only baseline activity. The respiratory burst could be completely abolished by decomplementation and preincubation with rabbit antihuman C5a antibodies. Observation of human omentum using electron microscopy showed intravascular aggregation of PMNs, with capillary thrombosis and diapedesis of the cells through endothelial junctions 90 s after exposure to ZAP. PMNs caused disruption of connections between the mesothelial cells. After 4 min the mesothelium was completely destroyed, and connective tissue and fat cells exposed. Native plasma and minimum essential medium did not induce any morphological changes. These data support the concept that C5a activated PMNs can cause endothelial and mesothelial damage in man. Even though a causal relationship between anaphylatoxins and organ failure cannot be proved by these experiments C5a seems to be an important mediator in the pathogenesis of changes induced by severe sepsis and trauma in man.

  13. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  14. Complement C3 is a novel modulator of the anti-factor VIII immune response.

    Science.gov (United States)

    Rayes, Julie; Ing, Mathieu; Delignat, Sandrine; Peyron, Ivan; Gilardin, Laurent; Vogel, Carl-Wilhelm; Fritzinger, David C; Frémeaux-Bacchi, Véronique; Kaveri, Srinivas V; Roumenina, Lubka T; Lacroix-Desmazes, Sébastien

    2018-02-01

    Development of neutralizing antibodies against therapeutic Factor VIII (FVIII) is the most serious complication of the treatment of hemophilia A. There is growing evidence to show the multifactorial origin of the anti-FVIII immune response, combining both genetic and environmental factors. While a role for the complement system on innate as well as adaptive immunity has been documented, the implication of complement activation on the onset of the anti-FVIII immune response is unknown. Here, using in vitro assays for FVIII endocytosis by human monocyte-derived dendritic cells and presentation to T cells, as well as in vivo complement depletion in FVIII-deficient mice, we show a novel role for complement C3 in enhancing the immune response against therapeutic FVIII. In vitro , complement C3 and its cleavage product C3b enhanced FVIII endocytosis by dendritic cells and presentation to a FVIII-specific CD4 + T-cell hybridoma. The C1 domain of FVIII had previously been shown to play an important role in FVIII endocytosis, and alanine substitutions of the K2092, F2093 and R2090 C1 residues drastically reduce FVIII uptake in vitro Interestingly, complement activation rescued the endocytosis of the FVIII C1 domain triple mutant. In a mouse model of severe hemophilia A, transient complement C3 depletion by humanized cobra venom factor, which does not generate anaphylatoxin C5a, significantly reduced the primary anti-FVIII immune response, but did not affect anti-FVIII recall immune responses. Taken together, our results suggest an important adjuvant role for the complement cascade in the initiation of the immune response to therapeutic FVIII. Copyright© 2018 Ferrata Storti Foundation.

  15. Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma.

    Directory of Open Access Journals (Sweden)

    Nina-Emily Hengartner

    Full Text Available Multipotent mesenchymal stromal cells (MSC exert immune-modulatory effects and support tissue regeneration in various local trauma models. In case of a polytrauma, high amounts of danger-associated molecular patterns are released, leading to a systemic increase of inflammatory mediators. The influence of such a complex inflammatory microenvironment on human MSC is mainly unknown so far. Therefore, we investigated the effects of a defined serum-free polytrauma "cocktail" containing IL beta, IL6, IL8 and the anaphylatoxins C3a and C5a, in concentrations corresponding to those measured in the blood of polytrauma patients, on human MSC in vitro. The polytrauma cocktail induced directed migration of MSC with C3a representing its major soluble chemoattractive agent. Furthermore, the polytrauma cocktail and IL1beta upregulated the expression of MMP1 indicating a potential role of IL1beta to enhance MSC migration in the tissue context. COX2, PTGES and TSG6 were also found to be upregulated upon stimulation with the polytrauma cocktail or IL1beta, but not through other single factors of the polytrauma cocktail in pathophysiologically relevant concentrations. An RNA expression array of 84 inflammation-related genes revealed that both the polytrauma cocktail and IL1beta induced C3, CSF1, TLR3 and various chemokines without major qualitative or quantitative differences. These results indicate that IL1beta is a crucial mediator of the polytrauma cocktail in terms of immune-modulation and MMP1 expression. Thus, upon encountering the primary sterile, inflammatory milieu of a polytrauma, endogenous or systemically transfused MSC might be able to migrate to sites of injury, secrete TSG6 and PGE2 and to influence macrophage biology as observed in local trauma models.

  16. Renal C3 complement component: feed forward to diabetic kidney disease.

    Science.gov (United States)

    Kelly, Katherine J; Liu, Yunlong; Zhang, Jizhong; Dominguez, Jesus H

    2015-01-01

    Diabetic nephropathy is the main cause of end-stage renal disease and has reached epidemic proportions. Comprehensive genomic profiling (RNAseq) was employed in the ZS (F1 hybrids of Zucker and spontaneously hypertensive heart failure) model of diabetic nephropathy. Controls were lean littermates. Diabetic nephropathy in obese, diabetic ZS was accelerated by a single episode of renal ischemia (DI). This rapid renal decline was accompanied by the activation of the renal complement system in DI, and to a lesser extent in sham-operated diabetic rats (DS). In DI there were significant increases in renal mRNA encoding C3, C4, C5, C6, C8, and C9 over sham-operated lean normal controls (LS). Moreover, mRNAs encoding the receptors for the anaphylatoxins C3a and C5a were also significantly increased in DI compared to LS. The classic complement pathway was activated in diabetic kidneys with significant increases of C1qa, C1qb, and C1qc mRNAs in DI over LS. In addition, critical regulators of complement activation were significantly attenuated in DI and DS. These included mRNAs encoding CD55, decay accelerating factor, and CD59, which inhibit the membrane attack complex. C3, C4, and C9 proteins were demonstrated in renal tubules and glomeruli. The complement RNAseq data were incorporated into a gene network showing interactions among C3-generating renal tubular cells and other immune competent migratory cells. We conclude that local activation of the complement system mediates renal injury in diabetic nephropathy. © 2015 S. Karger AG, Basel.

  17. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation.

    Directory of Open Access Journals (Sweden)

    Shelley F Stone

    Full Text Available BACKGROUND: Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper and antivenom treatment. METHODOLOGY/PRINCIPAL FINDINGS: Plasma concentrations of Interleukin (IL-6, IL-10, tumor necrosis factor α (TNFα, soluble TNF receptor I (sTNFRI, anaphylatoxins (C3a, C4a, C5a; markers of complement activation, mast cell tryptase (MCT, and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%, satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%. Pyrogenic reactions were observed in 32/120 patients (27%. All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high

  18. Endothelial Cells Elicit Immune-Enhancing Responses to Dengue Virus Infection

    Science.gov (United States)

    Dalrymple, Nadine A.

    2012-01-01

    Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Preexisting antibodies to dengue virus disposes patients to immune-enhanced edema (DSS) or hemorrhagic (DHF) disease following infection by a discrete dengue virus serotype. Although the endothelium is the primary vascular fluid barrier, direct effects of dengue virus on endothelial cells (ECs) have not been considered primary factors in pathogenesis. Here, we show that dengue virus infection of human ECs elicits immune-enhancing EC responses. Our results suggest that rapid early dengue virus proliferation within ECs is permitted by dengue virus regulation of early, but not late, beta interferon (IFN-β) responses. The analysis of EC responses following synchronous dengue virus infection revealed the high-level induction and secretion of immune cells (T cells, B cells, and mast cells) as well as activating and recruiting cytokines BAFF (119-fold), IL-6/8 (4- to 7-fold), CXCL9/10/11 (45- to 338-fold), RANTES (724-fold), and interleukin-7 (IL-7; 128-fold). Moreover, we found that properdin factor B, an alternative pathway complement activator that directs chemotactic anaphylatoxin C3a and C5a production, was induced 34-fold. Thus, dengue virus-infected ECs evoke key inflammatory responses observed in dengue virus patients which are linked to DHF and DSS. Our findings suggest that dengue virus-infected ECs directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These data implicate EC responses in dengue virus pathogenesis and further rationalize therapeutic targeting of the endothelium as a means of reducing the severity of dengue virus disease. PMID:22496214

  19. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.

    Science.gov (United States)

    Fattahi, Fatemeh; Kalbitz, Miriam; Malan, Elizabeth A; Abe, Elizabeth; Jajou, Lawrence; Huber-Lang, Markus S; Bosmann, Markus; Russell, Mark W; Zetoune, Firas S; Ward, Peter A

    2017-09-01

    Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. © FASEB.

  20. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury.

    Directory of Open Access Journals (Sweden)

    Cristiana C Garcia

    Full Text Available Influenza virus A (IAV causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 10(4 PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1 or inoculated with PBS (Mock. We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.

  1. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells.

    Directory of Open Access Journals (Sweden)

    Hariharan Subramanian

    Full Text Available BACKGROUND: The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na(+/H(+ exchange regulatory factor (NHERF1 and NHERF2 have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1 motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2 and CD34(+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. CONCLUSION/SIGNIFICANCE: This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.

  2. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction.

    Science.gov (United States)

    Waters, Stephen M; Brodbeck, Robbin M; Steflik, Jeremy; Yu, Jianying; Baltazar, Carolyn; Peck, Amy E; Severance, Daniel; Zhang, Lu Yan; Currie, Kevin; Chenard, Bertrand L; Hutchison, Alan J; Maynard, George; Krause, James E

    2005-12-09

    Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.

  3. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions.

    Science.gov (United States)

    Swe, Pearl M; Christian, Lindsay D; Lu, Hieng C; Sriprakash, Kadaba S; Fischer, Katja

    2017-03-01

    On a global scale scabies is one of the most common dermatological conditions, imposing a considerable economic burden on individuals, communities and health systems. There is substantial epidemiological evidence that in tropical regions scabies is often causing pyoderma and subsequently serious illness due to invasion by opportunistic bacteria. The health burden due to complicated scabies causing cellulitis, bacteraemia and sepsis, heart and kidney diseases in resource-poor communities is extreme. Co-infections of group A streptococcus (GAS) and scabies mites is a common phenomenon in the tropics. Both pathogens produce multiple complement inhibitors to overcome the host innate defence. We investigated the relative role of classical (CP), lectin (LP) and alternative pathways (AP) towards a pyodermic GAS isolate 88/30 in the presence of a scabies mite complement inhibitor, SMSB4. Opsonophagocytosis assays in fresh blood showed baseline immunity towards GAS. The role of innate immunity was investigated by deposition of the first complement components of each pathway, specifically C1q, FB and MBL from normal human serum on GAS. C1q deposition was the highest followed by FB deposition while MBL deposition was undetectable, suggesting that CP and AP may be mainly activated by GAS. We confirmed this result using sera depleted of either C1q or FB, and serum deficient in MBL. Recombinant SMSB4 was produced and purified from Pichia pastoris. SMSB4 reduced the baseline immunity against GAS by decreasing the formation of CP- and AP-C3 convertases, subsequently affecting opsonisation and the release of anaphylatoxin. Our results indicate that the complement-inhibitory function of SMSB4 promotes the survival of GAS in vitro and inferably in the microenvironment of the mite-infested skin. Understanding the tripartite interactions between host, parasite and microbial pathogens at a molecular level may serve as a basis to develop improved intervention strategies targeting scabies

  4. Genome expression profiling predicts the molecular mechanism of peripheral myelination.

    Science.gov (United States)

    Wu, Xiaoming

    2018-03-01

    The present study aimed to explore the molecular mechanism of myelination in the peripheral nervous system (PNS) based on genome expression profiles. Microarray data (GSE60345) was acquired from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were integrated and subsequently subjected to pathway and term enrichment analysis. A protein‑protein interaction network was constructed and the top 200 DEGs according to their degree value were further subjected to pathway enrichment analysis. A microRNA (miR)‑target gene regulatory network was constructed to explore the role of miRs associated with PNS myelination. A total of 783 upregulated genes and 307 downregulated genes were identified. The upregulated DEGs were significantly enriched in the biological function of complement and coagulation cascades, cytokine‑cytokine receptor interactions and cell adhesion molecules. Pathways significantly enriched by the downregulated DEGs included the cell cycle, oocyte meiosis and the p53 signaling pathway. In addition, the upregulated DEGs among the top 200 DEGs were significantly enriched in natural killer (NK) cell mediated cytotoxicity and the B cell receptor (BCR) signaling pathway, in which Fc γ receptor (FCGR), ras‑related C3 botulinum toxin substrate 2 (RAC2) and 1‑phosphatidylinositol‑4,5‑bisphosphate phosphodiesterase γ‑2 (PLCG2) were involved. miR‑339‑5p, miR‑10a‑5p and miR‑10b‑5p were identified as having a high degree value and may regulate the target genes TOX high mobility group box family member 4 (Tox4), DNA repair protein XRCC2 (Xrcc2) and C5a anaphylatoxin chemotactic receptor C5a2 (C5ar2). NK cell mediated cytotoxicity and the BCR pathway may be involved in peripheral myelination by targeting FCGR, RAC2 and PLCG2. The downregulation of oocyte meiosis, the cell cycle and the cellular tumor antigen p53 signaling pathway suggests decreasing schwann cell proliferation following the initiation of

  5. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth.

    Directory of Open Access Journals (Sweden)

    Pearl M Swe

    2014-06-01

    Full Text Available BACKGROUND: Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4 inhibits the complement-mediated blood killing of S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA. SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. CONCLUSIONS/SIGNIFICANCE: We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a

  6. Cloning, sequencing, and in silico characterization of Omp 28 of Salmonella Typhi (strain MTCC 733) to develop r-DNA vaccine for typhoid fever.

    Science.gov (United States)

    Saxena, Anjani; Tamuly, Shantanu; Saxena, M K

    2012-07-01

    Typhoid is one of the most important diseases of human beings caused by Salmonella Typhi. There are many vaccine reported against Salmonella Typhi, but search for new candidate vaccine antigens is still going on because presently available vaccines have several limitations such as short-term immunity, high cost, and allergic reaction. Several approaches such as subunit vaccines, Vi polysaccharide, mutant vaccines, and r-DNA vaccines have been tested. r- DNA vaccines have shown some promising potential (targeted Omp). Omp 28 had shown very promising results and suggests that it should be used in further studies of animal protection against the disease. Cloning, Sequencing and In silico analysis of Omp 28 gene to develop r-DNA vaccine of S. Typhi. Omp 28 is made up of three identical subunits of 9.6 kDa showing PCR amplicon of 330 bp which has been cloned in the pJET vector. Recombinant clones has been sequenced, and data submitted to NCBI. Secondary structure was deduced by the Chou Fasman and Garnier method. The sequence of Omp 28 was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatics tool. The sequence of Omp 28 has been assigned accession no GQ 907044.1 by NCBI. Secondary structure has shown it has more alpha region. Hydrophobic plot and surface probability plot shows most amino acids are surface exposed which is a requirement to develop a r-DNA vaccine. Antigenic sites are located within surface exposed regions and eight antigenic determinants are present in Omp 28. On Prosite analysis of Protein shown two motifs i.e. anaphylatoxin domain signature motif at position 219-252 and other one was iron sulphur binding region signature motif at position 36-44. On epitope analysis total six major B cell epitopes were observed which can provoke humoral immunity. On T cell epitope mapping several major epitopes has been found in case of MHC class I and MHC class II. It indicates that Omp 28 can provoke cell mediated as well as

  7. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth.

    Science.gov (United States)

    Swe, Pearl M; Fischer, Katja

    2014-06-01

    Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable