WorldWideScience

Sample records for anandamide membrane transporter

  1. Exploiting nanotechnologies and TRPV1 channels to investigate the putative anandamide membrane transporter.

    Directory of Open Access Journals (Sweden)

    Alessia Ligresti

    Full Text Available BACKGROUND: Considerable efforts have been made to characterize the pathways regulating the extracellular levels of the endocannabinoid anandamide. However, none of such pathways has been so argued as the existence of a carrier-mediated transport of anandamide across the membrane. Apart from the lack of molecular evidence for such a carrier, the main reasons of this controversy lie in the methodologies currently used to study anandamide cellular uptake. Furthermore, the main evidence in favor of the existence of an "anandamide transporter" relies on synthetic inhibitors of this process, the selectivity of which has been questioned. METHODOLOGY/PRINCIPAL FINDINGS: We used the cytosolic binding site for anandamide on TRPV1 channels as a biosensor to detect anandamide entry into cells, and exploited nanotechnologies to study anandamide membrane transport into intact TRPV1-overexpressing HEK-293 cells. Both fluorescence and digital holographic (DH quantitative phase microscopy were used to study TRPV1 activation. Poly-epsilon-caprolactone nanoparticles (PCL-NPs were used to incorporate anandamide, which could thus enter the cell and activate TRPV1 channels bypassing any possible specific protein(s involved in the uptake process. We reasoned that in the absence of such protein(s, pharmacological tools previously shown to inhibit the "anandamide transporter" would affect in the same way the uptake of anandamide and PCL-NP-anandamide, and hence the activation of TRPV1. However, when masked into PCL-NPs, anandamide cellular uptake became much less sensitive to these agents, although it maintained the same pharmacokinetics and pharmacodynamics as that of "free" anandamide. CONCLUSIONS: We found here that several agents previously reported to inhibit anandamide cellular uptake lose their efficacy when anandamide is prevented from interacting directly with plasma membrane proteins, thus arguing in favor of the specificity of such agents for the putative

  2. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent.

    Directory of Open Access Journals (Sweden)

    Eric Di Pasquale

    Full Text Available BACKGROUND: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters. This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide. METHODOLOGY/PRINCIPAL FINDINGS: Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM on cholesterol monolayers, and ii the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters

  3. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...... very rapidly, within seconds. At a molar ratio of anandamide to BSA of...

  4. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol : conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Stelt, M. van der; Kuik, J.A. van; Zadelhoff, G. van; Leeflang, B.R.; Veldink, G.A.; Finazzi Agrò, A.; Maccarrone, M.

    2002-01-01

    This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hyd

  5. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  6. Binding of anandamide to bovine serum albumin

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2003-01-01

    with anandamide bound to BSA inside resealed human red cell membranes at low molar ratios below one. Data were obtained at 0°C, 10°C, 23°C, and 37°C. The equilibrium dissociation constant (K ) increases with temperature from 6.87 ± 0.53 nM at 0°C to 54.92 ± 1.91 nM at 37°C. Regression analyses of the data suggest......The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because...... a water-phase shuttle of monomers mediates such transfers. We have used our method based upon the use of albumin-filled red cell ghosts as a dispersed biological "reference binder" to measure the water-phase concentrations of anandamide. These concentrations were measured in buffer (pH 7.3) in equilibrium...

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  8. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  9. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  10. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  12. Composite oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  13. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  14. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  15. Anandamide and analogous endocannabinoids: a lipid self-assembly study

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Mulet, Xavier; Drummond, Calum J.

    2014-09-24

    Anandamide, the endogenous agonist of the cannabinoid receptors, has been widely studied for its interesting biological and medicinal properties and is recognized as a highly significant lipid signaling molecule within the nervous system. Few studies have, however, examined the effect of the physical conformation of anandamide on its function. The study presented herein has focused on characterizing the self-assembly behaviour of anandamide and four other endocannabinoid analogues of anandamide, viz., 2-arachidonyl glycerol, arachidonyl dopamine, 2-arachidonyl glycerol ether (noladin ether), and o-arachidonyl ethanolamide (virodhamine). Molecular modeling of the five endocannabinoid lipids indicates that the highly unsaturated arachidonyl chain has a preference for a U or J shaped conformation. Thermal phase studies of the neat amphiphiles showed that a glass transition was observed for all of the endocannabinoids at {approx} -110 C with the exception of anandamide, with a second glass transition occurring for 2-arachidonyl glycerol, 2-arachidonyl glycerol ether, and virodhamine (-86 C, -95 C, -46 C respectively). Both anandamide and arachidonyl dopamine displayed a crystal-isotropic melting point (-4.8 and -20.4 C respectively), while a liquid crystal-isotropic melting transition was seen for 2-arachidonyl glycerol (-40.7 C) and 2-arachidonyl glycerol ether (-71.2 C). No additional transitions were observed for virodhamine. Small angle X-ray scattering and cross polarized optical microscopy studies as a function of temperature indicated that in the presence of excess water, both 2-arachidonyl glycerol and anandamide form co-existing Q{sub II}{sup G} (gyroid) and Q{sub II}{sup D} (diamond) bicontinuous cubic phases from 0 C to 20 C, which are kinetically stable over a period of weeks but may not represent true thermodynamic equilibrium. Similarly, 2-arachidonyl glycerol ether acquired an inverse hexagonal (HII) phase in excess water from 0 C to 40 C, while

  16. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  17. Water Transport through Multinanopores Membranes

    Institute of Scientific and Technical Information of China (English)

    ZENG Li; GUO Hong-Kai; ZUO Guang-Hong; WAN Rong-Zheng; FANG Hai-Ping

    2009-01-01

    We investigate the influence of correlation between water molecules transport through the neighbouring nanopores,whose centres are at a distance of only 6.2A,using the molecular dynamics simulations.Water molecule distribution in nanopore and average water flow are obtained.It is found that the average water molecule number and water flow are slightly different between a system made of the neighbouring nanopores and a system of a single pore.This indicates that transport of water chains in neighbouring pores do no show significant influence each other.These findings should be helpful in designing efficient artificial membrane made of nanopores and providing an insight into effects of the biological channel structure on the water permeation.

  18. Membrane transport of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Schjoerring, Jan K; Jahn, Thomas P

    2006-08-01

    Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular level of H2O2 is likely to be subjected to tight regulation via processes involved in production, distribution and removal. Substantial progress has been made exploring the formation and scavenging of H2O2, whereas little is known about how this signal molecule is transported from its site of origin to the place of action or detoxification. From work in yeast and bacteria it is clear that the diffusion of H2O2 across membranes is limited. We have now obtained direct evidence that selected aquaporin homologues from plants and mammals have the capacity to channel H2O2 across membranes. The main focus of this review is (i) to summarize the most recent evidence for a signalling role of H2O2 in various pathways in plants and mammals and (ii) to discuss the relevance of specific transport of H2O2.

  19. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  20. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  1. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  2. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  3. Inactivation of Anandamide Signaling: A Continuing Debate

    Directory of Open Access Journals (Sweden)

    Wael E. Houssen

    2010-10-01

    Full Text Available Since the first endocannabinoid anandamide was identified in 1992, extensive research has been conducted to characterize the elements of the tightly controlled endocannabinoid signaling system. While it was established that the activity of endocannabinoids are terminated by a two-step process that includes cellular uptake and degradation, there is still a continuing debate about the mechanistic role of these processes in inactivating anandamide signals.

  4. The endocannabinoid anandamide impairs in vitro decidualization of human cells.

    Science.gov (United States)

    Almada, M; Amaral, C; Diniz-da-Costa, M; Correia-da-Silva, G; Teixeira, N A; Fonseca, B M

    2016-10-01

    Endocannabinoids (eCBs) are endogenous mediators that along with the cannabinoid receptors (CB1 and CB2), a membrane transporter and metabolic enzymes form the endocannabinoid system (ECS). Several eCBs have been discovered with emphasis on anandamide (AEA). They are involved in several biological processes such as energy balance, immune response and reproduction. Decidualization occurs during the secretory phase of human menstrual cycle, which involves proliferation and differentiation of endometrial stromal cells into decidual cells and is crucial for the establishment and progression of pregnancy. In this study, a telomerase-immortalized human endometrial stromal cell line (St-T1b) and non-differentiated primary cultures of human decidual fibroblasts from term placenta were used to characterize the ECS using immunoblotting and qRT-PCR techniques. It was shown that St-T1b cells express CB1, but not CB2, and that both receptors are expressed in HdF cells. Furthermore, the expression of fatty acid amide hydrolase (FAAH), the main degrading enzyme of AEA, increased during stromal cell differentiation. AEA inhibited cell proliferation, through deregulation of cell cycle progression and induced polyploidy. Moreover, through CB1 binding receptor, AEA also impaired cell differentiation. Therefore, AEA is proposed as a modulator of human decidualization. Our findings may provide wider implications, as deregulated levels of AEA, due to Cannabis sativa consumption or altered expression of the metabolic enzymes, may negatively regulate human endometrial stromal cell decidualization with an impact on human (in)fertility.Free Portuguese abstract: A Portuguese translation of this abstract is freely available at http://www.reproduction-online.org/content/152/4/351/suppl/DC1. PMID:27568210

  5. Liners for ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  6. Transport and sorting of membrane lipids

    NARCIS (Netherlands)

    van Meer, G.

    1993-01-01

    The lipid composition of cellular membranes may seem unnecessarily complex. However, the lipid composition of each membrane is carefully regulated by local metabolism and specificity in transport, marking the functional significance for the cell. Recent research has revealed unexpected discoveries c

  7. Membrane transporters and new drug development

    Institute of Scientific and Technical Information of China (English)

    EndoH

    2002-01-01

    Molecular biology has made it possible to identify membrane transporter molecules that transport hydrophilic endogenous and exogenous compounds across cellular membranes.Ther are two possibilities on transporters relevant to new drug development,drug targets and pharmacokinetics.Human genome database predicts that more than 10% of common diseases may be tightly related with membrane transporter dysfunction.Thus,membrane transporters would be possible molecular targets for new drug development.As an example,I will talk on our discovery of L-type amino acid transporter 1(LAT1) being oncofetal and upregulated in cancers for their rapid growth and metastasis.We provide evidence that inhibition of LAT1 functions may become novel types of anticancer tools.As another example in human pharmacokinetics,application of stable expressing cell lines of human drug transporters will be proposed including organic anion and cation transporters which are distributed in various organs including the liver and kidney.These transporters are multispecific in their substrate recognition,and better molecules to anticipate drug-drug interactions in human bodies before new drug candidates are given in clinical trials.This in vitro technique may contribute to decide suitable compounds in particular by high throughout screening strategy.

  8. Lithium transport across biological membranes

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1990-01-01

    Li+ is actively transported out of cells, and across different epithelia of both mammalian and amphibian origin. Due to the low affinity of the Na+/K(+)-ATPase for Li+, the transport is most likely energized by exchange and/or cotransport processes. The detailed mechanism by which Li+ is reabsorbed...

  9. Understanding transport in model water desalination membranes

    Science.gov (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  10. Polyene antibiotic that inhibits membrane transport proteins.

    Science.gov (United States)

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains. PMID:22733749

  11. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    Directory of Open Access Journals (Sweden)

    Erich D. Steinle

    2007-11-01

    Full Text Available This paper describes the use of several characterization methods to examinealumina nanotubule membranes that have been modified with specific silanes. The functionof these silanes is to alter the transport properties through the membrane by changing thelocal environment inside the alumina nanotube. The presence of alkyl groups, either long(C18 or short and branched (isopropyl hydrocarbon chains, on these silanes significantlydecreases the rate of transport of permeant molecules through membranes containingalumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionicsurfactant can alter the polarity of these modified nanotubes, which correlates to anincreased transport of ions. Fluorescent spectroscopy is also utilized to enhance thesensitivity of detecting these permeant molecules. Confirmation of the alkylsilaneattachment to the alumina membrane is achieved with traditional infrared spectroscopy,which can also examine the lifetime of the modified membrane. The physical parameters ofthese silane-modified porous alumina membranes are studied via scanning electronmicroscopy. The alumina nanotubes are not physically closed off or capped by the silanesthat are attached to the alumina surfaces.

  12. Development of stable oxygen transport membranes

    NARCIS (Netherlands)

    Donkelaar, ten S.F.P.

    2015-01-01

    Chapter 1 provides an introduction of relevant developments in the field of oxygen transport membranes, and presents the aims of the work described in this thesis. In Chapter 2, the development of a versatile one-pot auto-combustion method for the synthesis of powders of the perovskite oxide titani

  13. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  14. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  15. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  16. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  17. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Neelamegan Dhamodharan

    2012-06-01

    Full Text Available Abstract Background Anandamide (Arachidonoyl ethanolamide is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH. In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide. Results A putative FAAH DNA sequence coding for a conserved amidase signature motif was identified in the Dictyostelium genome database and the corresponding cDNA was isolated and expressed as an epitope tagged fusion protein in either E.coli or Dictyostelium. Wild type Dictyostelium cells express FAAH throughout their development life cycle and the protein was found to be predominantly membrane associated. Production of recombinant HIS tagged FAAH protein was not supported in E.coli host, but homologous Dictyostelium host was able to produce the same successfully. Recombinant FAAH protein isolated from Dictyostelium was shown to hydrolyze anandamide and related synthetic fatty acid amide substrates. Conclusions This study describes the first identification and characterisation of an anandamide hydrolyzing enzyme from Dictyostelium discoideum, suggesting the potential of Dictyostelium as a simple eukaryotic model system for studying mechanisms of action of any FAAH inhibitors as drug targets.

  18. Transport through track etched polymeric blend membrane

    Indian Academy of Sciences (India)

    Kamlendra Awasthi; Vaibhav Kulshreshtha; B Tripathi; N K Acharya; M Singh; Y K Vijay

    2006-06-01

    Polymer blends of polycarbonate (PC) and polysulphone (PSF) having thickness, 27 m, are prepared by solution cast method. The transport properties of pores in a blend membrane are examined. The pores were produced in this membrane by a track etching technique. For this purpose, a thin polymer membrane was penetrated by a single heavy ion of Ni7+ of 100 MeV, followed by preferential chemical etching of the ion track. Ion permeation measurements show that pores in polymeric membrane are charged or neutralized, which depends upon the variation in concentration of the solvent. The – curve at concentration, N/10, shows that the pores are negatively charged, whereas at concentration, N/20, the linear nature of – curve indicates that the pores approach towards neutralized state and on further concentration, N/40, the pores become fully neutralized, consequently the rectifier behaviour of pores has been omitted. The gas permeability of hydrogen and carbon dioxide of this membrane was measured with increasing etching time. The permeability was measured from both the sides. Permeability at the front was larger than the permeability at the back which shows asymmetric behaviour of membranes.

  19. Molecular Transport Studies Through Unsupported Lipid Membranes

    Science.gov (United States)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  20. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  1. N-acylethanolamines, anandamide and food intake

    DEFF Research Database (Denmark)

    Hansen, Harald S; Diep, Thi Ai

    2009-01-01

    Anandamide and the other N-acylethanolamines, e.g. oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA), may be formed by several enzymatic pathways from their precursors, which are the N-acylated ethanolamine phospholipids. The exact enzymatic pathways involved ...... OEA is less clear. Prolonged intake of dietary fat (45 energy%) may promote over-consumption of food by decreasing the endogenous levels of OEA, PEA and LEA in the intestine....... in their biosynthesis in specific tissues are not clarified. It has been suggested that endogenous anandamide could stimulate food intake by activation of cannabinoid receptors in the brain and/or in the intestinal tissue. On the other hand, endogenous OEA and PEA have been suggested to inhibit food intake by acting...... on receptors in the intestine. At present, there is no clear role for endogenous anandamide in controlling food intake via cannabinoid receptors, neither centrally nor in the gastrointestinal tract. However, OEA, PEA and perhaps also LEA may be involved in regulation of food intake by selective prolongation...

  2. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats

    OpenAIRE

    Jamshidi, Nazila; Taylor, David A.

    2001-01-01

    This investigation reports the possible role of the endocannabinoid anandamide in modulating appetitive behaviour. Given that cannabinoids have been used clinically to stimulate appetite in HIV and cancer chemotherapy patients, there has been a renewed interest in the involvement of cannabinoids in appetite modulation. This is the first report on the administration of anandamide into the ventromedial hypothalamus. Pre-satiated rats received an intrahypothalamic injection of anandamide (50 ng ...

  3. Air gap membrane distillation: 1. Modelling and mass transport properties for hollow fibre membranes

    NARCIS (Netherlands)

    Guijt, C.M.; Meindersma, G.W.; Reith, T.; Haan, de A.B.

    2005-01-01

    A predictive model for air gap membrane distillation in a counter current flow configuration using fibre membranes is presented. The water vapour transport across the membrane is described by the dusty-gas model that uses constant membrane mass transport parameters to describe simultaneous Knudsen d

  4. Transport of ions across peritoneal membrane.

    Science.gov (United States)

    Islam, Nurul; Bulla, Nisar A; Islam, Shahina

    2004-12-15

    The electrical conductance of ions across the peritoneal membrane of young buffalo (approximately 18-24 months old) has been recorded. Aqueous solutions of NaF, NaNO3, NaCl, Na2SO4, KF, KNO3, KCl, K2SO4, MgCl2, CaCl2, CrCl3, MnCl2, FeCl3, CoCl2, and CuCl2 were used. The conductance values have been found to increase with increase in concentration as well as with temperature (15 to 35 degrees C) in these cases. The slope of plots of specific conductance, kappa, versus concentration exhibits a decrease in its values at relatively higher concentrations compared to those in extremely dilute solutions. Also, such slopes keep on increasing with increase in temperature. In addition, the conductance also attains a maximum limiting value at higher concentrations in the said cases. This may be attributed to a progressive accumulation of ionic species within the membrane. The kappa values of electrolytes follow the sequence for the anions: SO4(2-)>Cl->NO3->F- while that for the cations: K+>Na+>Ca2+>Mn2+>Co2+>Cu2+>Mg2+>Cr3+>Fe3+. In addition, the diffusion of ions depends upon the charge on the membrane and its porosity. The membrane porosity in relation to the size of the hydrated species diffusing through the membrane appears to determine the above sequence. As the diffusional paths in the membrane become more difficult in aqueous solutions, the mobility of large hydrated ions gets impeded by the membrane framework and the interaction with the fixed charge groups on the membrane matrix. Consequently, the membrane pores reduce the conductance of small ions, which are much hydrated. An increase in conductance with increase in temperature may be due to the state of hydration, which implies that the energy of activation for the ionic transport across the membrane follows the sequence of crystallographic radii of ions accordingly. The Eyring's equation, kappa=(RT/Nh)exp[-DeltaH*/RT]exp[DeltaS*/R], has been found suitable for explaining the temperature dependence of conductance in

  5. Collective motor dynamics in membrane transport in vitro

    NARCIS (Netherlands)

    Shaklee, Paige Marie

    2009-01-01

    Key cellular processes such as cell division, internal cellular organization, membrane compartmentalization and intracellular transport rely on motor proteins. Motor proteins, ATP-based mechanoenzymes, actively transport cargo throughout the cell by walking on cytoskeletal filaments. Motors have bee

  6. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  7. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  8. Altered Anandamide Degradation in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-06-01

    Full Text Available Anandamide (AEA metabolism was investigated in 15 drug-free boys with ADHD (aged 6.5-13 years and 15 age- and gender-matched healthy controls, in a study at Universita Tor Vergata, Rome, Italy.

  9. Transport phenomena in gas-selective silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio

    Upcoming technology platforms for green fuel production require the development of advanced molecular separation processes for recovering dry liquid biofuels [1,2], biomethane [2] and hydrogen [3]. Replacement of extractive distillation, cryodistillation and adsorption processes by membrane units...... of ultramicroporous silica membranes [5-6] and the transport mechanisms occurring in the different membrane layers [5-7] including viscous flow, Knudsen diffusion and activated transport....

  10. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  11. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  12. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  13. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  14. Barriers to Superfast Water Transport in Carbon Nanotube Membranes

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Ritos, Konstantinos; Cruz-Chu, Eduardo R.;

    2013-01-01

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each...

  15. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  16. Facilitated oxygen transport in liquid membranes: review and new concepts

    NARCIS (Netherlands)

    Figoli, A.; Sager, W.F.C.; Mulder, M.H.V.

    2001-01-01

    In this paper, an overview is given on membranes with oxygen facilitated transport properties to enrich the oxygen content in air. Special emphasis is paid to recent developments of oxygen carrier systems and carrier containing membranes. Concepts leading to a structural evolution of supported liqui

  17. Development of active-transport membrane devices

    Energy Technology Data Exchange (ETDEWEB)

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  18. Hydroxide Solvation and Transport in Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [Univ. of Chicago, IL (United States); Wuhan Univ. (China); Tse, Ying-Lung Steve [Univ. of Chicago, IL (United States); Lindberg, Gerrick E. [Northern Arizona Univ., Flagstaff, AZ (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Voth, Gregory A. [Univ. of Chicago, IL (United States)

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  19. Hijacking membrane transporters for arsenic phytoextraction.

    Science.gov (United States)

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  20. Current topics in membranes and transport

    Energy Technology Data Exchange (ETDEWEB)

    Kleinzeller, A.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: Expression of the Oxytocin and Vasopressin Genes; Steroid Effects on Excitable Membranes: The Secretory Vesicle in Processing and Secretion of Neuropeptides: and Steroid Hormone Influences on Cyclic AMP-Generating Systems.

  1. Structure and Water Transport in Nafion Nanocomposite Membranes

    Science.gov (United States)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  2. Proton transport in proton exchange membranes

    OpenAIRE

    Schmeisser, Jennifer Mary

    2007-01-01

    This work investigated several proton exchange membranes (PEMs): perfluorosulfonic acid-based polymers (Nafion®), sulfonated poly(ether ether ketone) (S-PEEK), radiation-grafted ethylenetetrafluoroethylene-grafted-poly(styrene sulfonic) acid (ETFE-g-PSSA), sulfonated trifluorostyrene-co-substituted trifluorostyrene (BAM®), sulfonated polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene triblock copolymer (S-SEBS), and a series of novel photocurable polyelectrolytes. These polymer systems dif...

  3. Membrane Transporters: Structure, Function and Targets for Drug Design

    Science.gov (United States)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  4. THE GAS TRANSPORT BEHAVIOR IN AROMATIC POLYESTER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; SUN Qiushi; HOU Xiaohuai

    1996-01-01

    Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30℃ and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.

  5. Membranes with functionalized carbon nanotube pores for selective transport

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  6. Experimental extrusion of tubular multilayer materials for Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan

    Inorganic oxygen transport membranes (OTMs) are of interest for high purity oxygen production and for integration into membrane reactors where oxygen is required at high temperatures. Doped ceria is an interesting material for an OTM due to its high phase stability under both oxidizing and reducing...... atmospheres and its high ionic conductivity. Designing and developing a high performance oxygen transport membrane involves scientific challenges associated with material development, ceramic processing and integration of materials in a multi-layer structure. In this work an asymmetric based oxygen transport....... An optimization of the thermoplastic feedstock has been carried out with the aim of improving gas permeability and mechanical properties of the resulting MgO supports. The influence of three types of pore former (graphite with different shapes and sizes, and polymethyl methacrylate (PMMA)) on the mechanical...

  7. Does hindered transport theory apply to desalination membranes?

    Science.gov (United States)

    Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav

    2014-10-01

    As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in desalination membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning.

  8. Method of making a hydrogen transport membrane, and article

    Science.gov (United States)

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  9. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  10. Plasma membrane electron transport in frog blood vessels

    Indian Academy of Sciences (India)

    Rashmi P Rao; K Nalini; J Prakasa Rao

    2009-12-01

    In an attempt to see if frog blood vessels possess a plasma membrane electron transport system, the postcaval vein and aorta isolated from Rana tigrina were tested for their ability to reduce ferricyanide, methylene blue, and 2,6-dichloroindophenol. While the dyes remained unchanged, ferricyanide was reduced to ferrocyanide. This reduction was resistant to inhibition by cyanide and azide. Heptane extraction or formalin fixation of the tissues markedly reduced the capability to reduce ferricyanide. Denuded aortas retained only 30% of the activity of intact tissue. Our results indicate that the amphibian postcaval vein and aorta exhibit plasma membrane electron transport

  11. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  12. Molecular level water and solute transport in reverse osmosis membranes

    Science.gov (United States)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  13. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.

  14. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    Science.gov (United States)

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane. PMID:17501931

  15. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  16. Using membrane transporters to improve crops for sustainable food production

    Science.gov (United States)

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  17. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  18. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes

    NARCIS (Netherlands)

    van Dam, V.; Sijbrandi, R.; Kol, M.A.; Swiezewska, E.; de Kruijff, B.; Breukink, E.J.

    2007-01-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced b

  19. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  20. Mechanical reliability of geometrically imperfect tubular oxygen transport membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin;

    2014-01-01

    operation. This paper investigates numerically the failure risk of tubular oxygen transport membranes under industrial operating conditions using finite element modeling and Weibull strength analysis. The effects of component manufacturing defects on fracture probability are elucidated by explicit modeling......Mixed ionic and electronic conductors have potential applications as oxygen transport membranes. Realization of the technology is challenged by mechanical reliability of the components which are subjected to stresses arising from oxygen stoichiometry gradients and external overpressure during...... of external pressure, ovality may lead to dramatic stress increase and flattening of oval cross sections. Oval membranes can fail in the long term even though the instantaneous fracture risk is tolerable. Based on industrial relevant conditions, the requirements to the material creep rate and component...

  1. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    Energy Technology Data Exchange (ETDEWEB)

    William C. Conner

    2007-08-02

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  2. Membrane transport of andrographolide in artificial membrane and rat small intestine.

    Science.gov (United States)

    Daodee, Supawadee; Wangboonskul, Jinda; Jarukamjorn, Kanokwan; Sripanidkulchai, Bung-orn; Murakami, Teruo

    2007-06-15

    In the present study, the possible drug interactions of andrographolide with co-administering drugs such as acetaminophen, amoxycillin, aspirin, chlorpheniramine and norfloxacin to treat various infectious and inflammatory diseases that may be induced during absorption process were examined using artificial lipophilic membrane and everted rat intestine. The membrane transport of andrographolide across the artificial membrane was not affected by different pH of the medium (simulated gastric and intestinal fluids), different concentrations of andrographolide and co-administered drugs examined. In everted rat intestine, above co-administered drugs examined showed no significant effect on andrographolide membrane transport. The participation of efflux transporters such as P-glycoprotein and MRP2 in andrographolide transport was then examined, since andrographolide is a diterpene compound and some diterpene compounds are known as P-glycoprotein substrates. Cyclosporine, a P-glycoprotein/MRP2 inhibitor, significantly suppressed the efflux transport of andrographolide in distal region of intestine, whereas probenecid, an MRP inhibitor, showed no significant effect in both proximal and distal regions of intestine. These results suggest that P-glycoprotein, but not MRP, is participated in the intestinal absorption of andrographolide and P-glycoprotein-mediated drug interactions occur depending on the co-administered drugs and its concentrations. PMID:19093450

  3. SNX12 role in endosome membrane transport.

    Directory of Open Access Journals (Sweden)

    Véronique Pons

    Full Text Available In this paper, we investigated the role of sorting nexin 12 (SNX12 in the endocytic pathway. SNX12 is a member of the PX domain-containing sorting nexin family and shares high homology with SNX3, which plays a central role in the formation of intralumenal vesicles within multivesicular endosomes. We found that SNX12 is expressed at very low levels compared to SNX3. SNX12 is primarily associated with early endosomes and this endosomal localization depends on the binding to 3-phosphoinositides. We find that overexpression of SNX12 prevents the detachment (or maturation of multivesicular endosomes from early endosomes. This in turn inhibits the degradative pathway from early to late endosomes/lysosomes, much like SNX3 overexpression, without affecting endocytosis, recycling and retrograde transport. In addition, while previous studies showed that Hrs knockdown prevents EGF receptor sorting into multivesicular endosomes, we find that overexpression of SNX12 restores the sorting process in an Hrs knockdown background. Altogether, our data show that despite lower expression level, SNX12 shares redundant functions with SNX3 in the biogenesis of multivesicular endosomes.

  4. Millimeter microwave effect on ion transport across lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, S.I. [Russian Academy of Sciences, Pushchino (Russian Federation). Inst. of Cell Biophysics; Ziskin, M.C. [Temple Univ. Medical School, Philadelphia, PA (United States). Center for Biomedical Physics

    1995-06-01

    The effects of millimeter microwaves in the frequency range of 54--76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB{sup {minus}}). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1,000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% {+-} 0.5%. At the same time, membrane current induced by TPhB{sup {minus}} transport increased by 5% {+-} 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% {+-} 0.4%). No resonance-like effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB{sup {minus}} transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 C.

  5. TonB-dependent outer membrane transport: going for Baroque?

    Science.gov (United States)

    Wiener, Michael C

    2005-08-01

    The import of essential organometallic micronutrients (such as iron-siderophores and vitamin B(12)) across the outer membrane of Gram-negative bacteria proceeds via TonB-dependent outer membrane transporters (TBDTs). The TBDT couples to the TonB protein, which is part of a multiprotein complex in the plasma (inner) membrane. Five crystal structures of TBDTs illustrate clearly the architecture of the protein in energy-independent substrate-free and substrate-bound states. In each of the TBDT structures, an N-terminal hatch (or plug or cork) domain occludes the lumen of a 22-stranded beta barrel. The manner by which substrate passes through the transporter (the "hatch-barrel problem") is currently unknown. Solution NMR and X-ray crystallographic structures of various TonB domains indicate a striking structural plasticity of this protein. Thermodynamic, biochemical and bacteriological studies of TonB and TBDTs indicate further that existing structures do not yet capture critical energy-dependent and in vivo conformations of the transport cycle. The reconciliation of structural and non-structural experimental data, and the unambiguous experimental elucidation of a detailed molecular mechanism of transport are current challenges for this field. PMID:16039843

  6. Mechanism of unassisted ion transport across membrane bilayers

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  7. Isothermal titration calorimetry of ion-coupled membrane transporters.

    Science.gov (United States)

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.

  8. Membrane transporters and drought resistance – a complex issue

    Directory of Open Access Journals (Sweden)

    Karolina Maria Jarzyniak

    2014-12-01

    Full Text Available Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.

  9. Development of thin film oxygen transport membranes on metallic supports

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ye

    2012-04-25

    interlayer, though it comprised some cracks. The second interlayer had a crack-free and porous structure. The top membrane layer was deposited by physical vapor deposition (magnetron sputtering) with a thickness of 3.8 {mu}m improving the gastightness considerably but showing still reasonable air-leakage. Summarizing, the successful development of a metal-perovskite-composite could be shown, which acts as a basis for a further development of a gas-tight metal supported oxygen transport asymmetric membrane structure. (orig.)

  10. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  11. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    Science.gov (United States)

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  12. Multicomponent transport in membranes for redox flow batteries

    Science.gov (United States)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  13. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  14. Synaptic action of anandamide and related substances in mammalian brain

    OpenAIRE

    Liao, Cheng Yong

    2007-01-01

    Anandamide and the synthetic cannabimimetic drugs AM 404 and WIN 55,212-2 were found to inhibit the binding of [3H]batrachotoxinin A 20--benzoate (BTX) to voltage-gated sodium channels (VGSCs) and also to depress VGSC-dependent release of GABA and L-glutamic acid. These effects occur independently of CB-1 receptor activation since they were not attenuated by AM251 at concentrations known to antagonize CB-1 receptors, although at higher concentrations AM251 inhibited VGSCs also. These ...

  15. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration

    DEFF Research Database (Denmark)

    Hansen, H.H.; Lastres-Becker, I.; Berrendero, F.;

    2001-01-01

    intracerebral NMDA injection, while less severe insults triggered by mild concussive head trauma or NMDA receptor blockade produced a less pronounced NAE accumulation. By contrast, levels of 2-AG and other 2-MAGs were virtually unaffected by the insults employed, rendering it likely that key enzymes...... following mild concussive head trauma and exposure to NMDA receptor blockade. This may suggest that mild to moderate brain injury may trigger elevated endocannabinoid activity via concomitant increase of anandamide levels, but not 2-AG, and CB receptor density....

  16. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

    2004-01-30

    The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

  17. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  18. Unassisted Transport of N-acetyl-L-tryptophanamide through Membrane: Experiment and Simulation of Kinetics

    OpenAIRE

    Cardenas, Alfredo E.; Jas, Gouri S.; DeLeon, Kristine Y; Hegefeld, Wendy A.; Kuczera, Krzysztof; Elber, Ron

    2012-01-01

    Cellular transport machinery, such as channels and pumps, is working against the background of unassisted material transport through membranes. The permeation of a blocked tryptophan through a 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane is investigated to probe unassisted or physical transport. The transport rate is measured experimentally and modeled computationally. The time scale measured by Parallel Artificial Membrane Permeation Assay (PAMPA) experiments is ~8 h. Simulations...

  19. Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared to Placenta

    OpenAIRE

    Aleksunes, Lauren M.; Cui, Yue; Klaassen, Curtis D.

    2008-01-01

    Fetal exposure to xenobiotics can be restricted by transporters at the interface between maternal and fetal circulation. Previous work identified transporters in the placenta, however, less is known about the presence of these transporters in the fetal membranes (i.e., yolk sac and amniotic membranes). The purpose of this study was to quantify mRNA and protein expression of xenobiotic transporters in mouse placenta and fetal membranes during mid- to late-gestation. Concepti (placenta and feta...

  20. A kinetic study of mercury(II transport through a membrane assisted by new transport reagent

    Directory of Open Access Journals (Sweden)

    Görgülü Ahmet

    2011-07-01

    Full Text Available Abstract Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II ions. Conclusion A kinetic study of mercury(II transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II ion from water or other solution.

  1. Membrane vesicles: A simplified system for studying auxin transport

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1989-01-01

    Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA[sup [minus

  2. Towards Co-evolution of Membrane Transport and Metabolism

    Science.gov (United States)

    Wei, Chenyu; Pohorille, Andrzej

    2014-01-01

    Protocellular boundaries were inextricably connected to the metabolism they encapsulated: to be inheritable, early metabolism must have led to an increased rate of growth and division of vesicles and, similarly, transport through vesicle boundaries must have supported the evolution of metabolism. Even though explaining how this coupling emerged and evolved in the absence of the complex machinery of modern cells is one of the key issues in studies on the origin of life, little is known about the biochemical and biophysical processes that might have been involved. This gap in our knowledge is a major impediment in efforts to construct scenarios for the origin of life and laboratory models of protocells. A combination of experimental and computational studies carried out by us and our collaborators is aimed at helping to close this gap. Properties of membranes might have contributed to the selection of RNA as an early biopolymer. A kinetic mechanism was proposed (Sacerdote & Szostak, 2005) in which ribose was supplied more quickly than other aldopentoses to primordial cells for preferential incorporation of ribonucleotides into nucleic acids. This proposal is based on a finding that ribose permeates membranes an order of magnitude faster than its diastereomers, arabinose and xylose. Our computer simulations, which yield permeation rates in excellent agreement with experiment, and kinetic modeling explain this phenomenon in terms of inter- and intramolecular interactions involving exocyclic hydroxyl groups attached to carbon atoms of the pyranose ring (Wei and Pohorille, 2009). They also constrain scenarios for the formation of the earliest nucleic acids (Wei and Pohorille, 2013). In one scenario, sugars permeate protocellular walls and subsequently are used to synthesize nucleic acids inside protocells. As long as this process proceeds at the rate faster than 6x10(exp -3)/s, ribose derivatives will be available for synthesis easier than their diastereomers. If

  3. Oscillations and multiple steady states in active membrane transport models.

    Science.gov (United States)

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  4. Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells.

    LENUS (Irish Health Repository)

    Mnich, Katarzyna

    2010-01-01

    6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson\\'s disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB(1) or CB(2)) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.

  5. System and method for air temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  6. Regulation of the divalent metal ion transporter via membrane budding

    Science.gov (United States)

    Mackenzie, KimberlyD; Foot, Natalie J; Anand, Sushma; Dalton, Hazel E; Chaudhary, Natasha; Collins, Brett M; Mathivanan, Suresh; Kumar, Sharad

    2016-01-01

    The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins. PMID:27462458

  7. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  8. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  9. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  10. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    Science.gov (United States)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  11. Mechanism of coupling drug transport reactions located in two different membranes

    Directory of Open Access Journals (Sweden)

    Helen I. Zgurskaya

    2015-02-01

    Full Text Available Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of cells. Some transporters together with periplasmic membrane fusion proteins (MFPs and outer membrane channels assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protect bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.

  12. Transport properties of track-etched membranes having variable effective pore-lengths

    Science.gov (United States)

    Nguyen, Quoc Hung; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang

    2015-12-01

    The transport rate of molecules through polymeric membranes is normally limited because of their micrometer-scale thickness which restricts their suitability for more practical application. To study the effect of effective pore length on the transport behavior, polymer membranes containing cylindrical and asymmetric-shaped nanopores were prepared through a two-step ion track-etching technique. Permeation experiments were performed separately to investigate the transport properties (molecular flux and selectivity) of these track-etched membranes. The permeation data shows that the molecular flux across membranes containing asymmetric nanopores is higher compared to those having cylindrical pores. On the other hand, the cylindrical pore membranes exhibit higher selectivity than asymmetric pores for the permeation of charged molecules across the membrane. Current-voltage (I-V) measurements of single-pore membranes further verify that asymmetric pores exhibit lower resistance for the flow of ions and therefore show higher currents than cylindrical pores. Moreover, unmodified and polyethyleneimine (PEI) modified asymmetric-shaped pore membranes were successfully used for the separation of cationic and anionic analyte molecules from their mixture, respectively. In this study, two distinct effects (pore geometry and pore density, i.e. number of pores cm-2), which mainly influence membrane selectivity and molecular transport rates, were thoroughly investigated in order to optimize the membrane performance. In this context, we believe that membranes with high molecular transport rates could readily find their application in molecular separation and controlled drug delivery processes.

  13. Mechanisms for Recycling and Biosynthesis of Endogenous Cannabinoids Anandamide and 2-Arachidonylglycerol

    OpenAIRE

    Placzek, Ekaterina A.; Okamoto, Yasuo; Ueda, Natsuo; Barker, Eric L.

    2008-01-01

    The mechanisms of endogenous cannabinoid biosynthesis are not completely understood. We hypothesized that anandamide could be recycled by the cell to form new endocannabinoid molecules and released into the extracellular space. We determined that new endocannabinoids derived from exogenous anandamide or arachidonic acid were synthesized and released from RBL-2H3 cells in response to ionomycin. Treatment of RBL-2H3 cells with nystatin and progesterone, agents that disrupt organization of lipid...

  14. Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes

    Science.gov (United States)

    We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...

  15. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    OpenAIRE

    Wang, Jinwen

    2014-01-01

    The objective and focus of this study is to fully understand trace organic pollutant transport through NF/RO membranes. An extension of the classical solution-diffusion model had been developed that relates transport through NF/RO membranes directly to membrane structure descriptors (i.e., effective barrier layer pore size, porosity and thickness, etc.). In general, model predictions agreed well with experimental data suggesting the model captures the phenomenological behavior of commercial N...

  16. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  17. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes

    Science.gov (United States)

    Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei; Escalada, Artur; Tunuguntla, Ramya; Comolli, Luis R.; Allen, Frances I.; Shnyrova, Anna V.; Cho, Kang Rae; Munoz, Dayannara; Wang, Y. Morris; Grigoropoulos, Costas P.; Ajo-Franklin, Caroline M.; Frolov, Vadim A.; Noy, Aleksandr

    2014-10-01

    There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these `CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.

  18. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  19. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane modul

  20. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    Science.gov (United States)

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters.

  1. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    International Nuclear Information System (INIS)

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  2. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: Julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  3. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  4. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations

    CERN Document Server

    Shen, Meng; Lueptow, Richard M

    2016-01-01

    The Angstrom-scale transport characteristics of water and six different solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polyamide reverse osmosis (RO) membrane, FT-30, using non-equilibrium molecular dynamics (NEMD) simulations. Results indicate that water transport increases with an increasing fraction of connected percolated free volume, or water-accessible open space, in the membrane polymer structure. This free volume is enhanced by the dynamic structure of the membrane at the molecular level as it swells when hydrated and vibrates due to molecular collisions allowing a continuous path connecting the opposite membrane surfaces. The tortuous paths available for transport of solutes result in Brownian motion of solute molecules and hopping from pore to pore as they pass through the polymer network structure of the membrane. The transport of alcohol solutes decreases for solutes with larger Van der Waals volume, which corresponds to less available percolated free volume, or sol...

  5. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  6. The Effects of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol on Human Osteoblast Proliferation and Differentiation.

    Directory of Open Access Journals (Sweden)

    Marie Smith

    Full Text Available The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandamide or 2-arachidonoylglycerol for between 1 and 21 days. Cell proliferation (DNA content and differentiation (alkaline phosphatase (ALP, collagen and osteocalcin secretion and calcium deposition were measured. Anandamide and 2-arachidonoylglycerol significantly decreased osteoblast proliferation after 4 days, associated with a concentration-dependent increase in ALP. Inhibition of endocannabinoid degradation enzymes to increase endocannabinoid tone resulted in similar increases in ALP production. 2-arachidonoylglycerol also decreased osteocalcin secretion. After prolonged (21 day treatment with 2-arachidonoylglycerol, there was a decrease in collagen content, but no change in calcium deposition. Anandamide did not affect collagen or osteocalcin, but reduced calcium deposition. Anandamide increased levels of phosphorylated CREB, ERK 1/2 and JNK, while 2-arachidonoylglycerol increased phosphorylated CREB and Akt. RT-PCR demonstrated the expression of CB2 and TRPV1, but not CB1 in HOBs. Anandamide-induced changes in HOB differentiation were CB1 and CB2-independent and partially reduced by TRPV1 antagonism, and reduced by inhibition of ERK 1/2 and JNK. Our results have demonstrated a clear involvement of anandamide and 2-arachidonoylglycerol in modulating the activity of human osteoblasts, with anandamide increasing early cell differentiation and 2-AG increasing early, but decreasing late osteoblast-specific markers of differentiation.

  7. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation.

    Science.gov (United States)

    Vermaas, J V; Trebesch, N; Mayne, C G; Thangapandian, S; Shekhar, M; Mahinthichaichan, P; Baylon, J L; Jiang, T; Wang, Y; Muller, M P; Shinn, E; Zhao, Z; Wen, P-C; Tajkhorshid, E

    2016-01-01

    Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory. PMID:27497175

  8. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...... that the same type of training affects many transport proteins, suggesting that all transport proteins increase with training, and that both sprint and endurance training in humans increase the density of most membrane transport proteins. There seems to be an upper limit for these changes: intense...... training for 6-8 weeks substantially increases the density of membrane proteins, whereas years of training (as performed by athletes) have no further effect. Studies suggest that training-induced changes at the protein level are important functionally. The underlying factors responsible for these changes...

  9. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    OpenAIRE

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane module. A simple and easy method to measure the oxygen nonstoichiometry of a perovskite material is described in chapter 2. A Computing Fluid Dynamic (CFD) model is developed in chapter 3 to describe th...

  10. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    Science.gov (United States)

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  11. GLTP mediated non-vesicular GM1 transport between native membranes.

    Directory of Open Access Journals (Sweden)

    Ines Lauria

    Full Text Available Lipid transfer proteins (LTPs are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP, we examined GM1 (monosialotetrahexosyl-ganglioside transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.

  12. GLTP mediated non-vesicular GM1 transport between native membranes.

    Science.gov (United States)

    Lauria, Ines; van Üüm, Jan; Mjumjunov-Crncevic, Esmina; Walrafen, David; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2013-01-01

    Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes. PMID:23555818

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  14. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  15. Extraction and Transport of Amino Acids Using Kryptofix 5 as Carrier through Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Pankaj Raizada

    2013-01-01

    Full Text Available The present work explores membrane-mediated extraction and transport studies of amino acids through artificial bulk liquid membrane system with kryptofix 5 as a carrier. The various reaction parameters such as amino acid concentration, carrier concentration, time, pH, and stirring effect were studied to optimize reaction conditions. The stirring of source and receiving phases increased the efficiency of extraction process. Noncyclic receptor kryptofix 5 with five oxyethylene units and terminal aromatic donor end groups governs its transport and extraction efficiency. The extraction and transport efficiency followed the following trend: valine > alanine > glycine > threonine. Supported liquid membrane (SLM studies were performed using cellulose nitrate, PTFE, eggshell, and onion membranes. The egg shell membrane support proved to be most efficient due to intricate network of water insoluble proteins fibers with very high surface area and homogeneity.

  16. On the mechanism of transport of Inner Nuclear Membrane Proteins

    NARCIS (Netherlands)

    Laba, Justyna Katarzyna

    2016-01-01

    The nucleus is usually the biggest, round-shaped organelle in the cell, which contains numerous proteins and nucleic acids and protects the DNA. Nuclear components are contained within the boarders of Nuclear Envelope (NE), a double membrane system, formed by the fusion of Outer Nuclear Membrane (OM

  17. Membrane-Transport Systems for Sucrose in Relation to Whole-Plant Carbon Partitioning

    Institute of Scientific and Technical Information of China (English)

    Brian G. Ayre

    2011-01-01

    T Sucrose is the principal product of photosynthesis used for the distribution of assimilated carbon in plants. Transport mechanisms and efficiency influence photosynthetic productivity by relieving product inhibition and contribute to plant vigor by controlling source/sink relationships and biomass partitioning. Sucrose is synthesized in the cytoplasm and may move cell to cell through plasmodesmata or may cross membranes to be compartmentalized or exported to the apoplasm for uptake into adjacent cells. As a relatively large polar compound, sucrose requires proteins to facilitate efficient membrane transport. Transport across the tonoplast by facilitated diffusion, antiport with protons, and symport with protons have been proposed; for transport across plasma membranes, symport with protons and a mechanism resembling facilitated diffusion are evident. Despite decades of research, only symport with protons is well established at the molecular level. This review aims to integrate recent and older studies on sucrose flux across membranes with principles of whole-plant carbon partitioning.

  18. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Energy Technology Data Exchange (ETDEWEB)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  19. Synthesis of Ionic Imprinted Polymer Particles for Selective Membrane Transport ofFe(III using Polyeugenol as the Functional Polymer

    Directory of Open Access Journals (Sweden)

    Muhammad Cholid Djunaidi

    2016-03-01

    Full Text Available The preparation of Ionic Imprinted Polymer (IIP particles for selective membrane transport of Fe (III had been done using polyeugenol as functional polymer and PVA (polyvinyl alcohol (Mr 125,000 solution in 1-Methyl-2-pyrrolidone (NMP solvent as membrane base. The membrane was then cut and Fe(III was removed by acid to produce IIP particles membrane. Analysis of the membrane and its constituent was done by IR, SEM and also TOC analysis. Experimental results showed the transport of Fe(III was faster with the decrease of membrane thickness and the higher concentration of template. However, the transport of Fe(III was slower for higher concentration of PVA (Polyvinyl Alcohol in the membrane. The selectivity of all IIP particles membrane was confirmed as they were all unable to transport Cr (III, while NIP (Non-imprinted Polymer membrane was able transport Cr (III.

  20. The Development of Conductive Nanoporous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    OpenAIRE

    Pei-Ru Chen; Yun-Ju Chuang

    2013-01-01

    We present the development of conductive nanoporous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxylfluorescein (CF), substance P, and tumor necrosis factor-alpha (TNF-α). The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nanotubes, respectively. These nanoporous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive...

  1. Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation

    OpenAIRE

    Haguenauer-Tsapis, Rosine; André, Bruno

    2004-01-01

    Of the 125 plasma membrane transporters thus far identified in the yeast S. cerevisiae, a growing number is reported to be subject to tight control at membrane trafficking level, in addition to control at transcriptional level. Typical physiological conditions inducing these controls include changes of substrate concentration and availability of alternative nutrients. These changes of conditions often provoke the downregulation of specific transporters eventually accompanied by upregulation o...

  2. GLTP Mediated Non-Vesicular GM1 Transport between Native Membranes

    OpenAIRE

    Lauria, Ines; van Üüm, Jan; Mjumjunov-Crncevic, Esmina; Walrafen, David; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2013-01-01

    Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels i...

  3. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury.

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    Full Text Available Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA. We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.

  4. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  5. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  6. Gated ion transport through dense carbon nanotube membranes.

    Science.gov (United States)

    Yu, Miao; Funke, Hans H; Falconer, John L; Noble, Richard D

    2010-06-23

    Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment. PMID:20504021

  7. The diversity of membrane transporters encoded in bacterial arsenic-resistance operons

    Directory of Open Access Journals (Sweden)

    Yiren Yang

    2015-05-01

    Full Text Available Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3, have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family, Major Facilitator protein Superfamily (MFS and Major Intrinsic Protein (MIP. In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed.

  8. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  9. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Directory of Open Access Journals (Sweden)

    Nitish K Mishra

    Full Text Available BACKGROUND: Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task. RESULTS: Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset. CONCLUSIONS: Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models

  10. Uranyl ion transport across tri-n-butyl phosphate/n-dodecane liquid membranes

    International Nuclear Information System (INIS)

    Carrier-facilitated transport of uranium (VI) against its concentration gradient from aqueous nitrate acidic solutions across organic bulk liquid membranes (BLM) and supported liquid membranes (SLM) containing TBP as the mobile carrier and n-dodecane as the membrane solvent was investigated. Extremely dilute uranyl nitrate solutions in about 2.5 M nitric acid generally constituted as the source phase. Uranyl transport appreciably increased with both stirring of the receiving phase and the carrier concentration in the organic membrane, while enhanced acidity of the strip side adversely affected the partioning of the cation into this phase. Among the several reagents tested, diluted ammonium carbonate (∼1M) solutions served efficiently as the stripant. Besides Accurel polypropylene (PP) film as the solid support for SLM, some silicon flat-sheet membranes with different inorganic fillers like silica, calcium silicate, calcium carbonate, chromium oxide, zinc oxide etc. and teflon membranes transported about 70% of uranium in nearly 7-8 hr employing 1 M ammonium carbonate as the strippant. Specifically, 30% TBP supported on Accurel flat-sheet supports transfered better than 70% of uranium from moderate acid feeds (2.5M) under similar conditions. Membranes supporting Aliquat-336, TLA, TOPO etc. yielded somewhat poor uranium recoveries. The feed : strip volume ratio showed an inverse relationship to the fraction of cation transported. (author). 9 refs., 2 tab s

  11. Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder

    Science.gov (United States)

    Krasowska, Monika; Strzelewicz, Anna; Rybak, Aleksandra; Dudek, Gabriela; Cieśla, Michał

    2016-06-01

    Structure and transport properties of ethylcellulose membranes with dispersed magnetic powder were investigated. The study mainly focused on diffusion, which is one of the transport mechanisms. The transport properties depend on many parameters like: polymeric matrix used, type of powder, its amount and granulation. The structure of the pattern formed by magnetic particles in the membrane matrix was studied. Description of the system was based on the phenomenological and molecular (random walk on a fractal lattice) approaches. Two parameters were calculated: the fractal dimension of random walk dw, and the fractal dimension of membrane structure df. The knowledge of both parameters made it possible to use the generalized equation of diffusion on the fractal structure obtained by Metzler et al. The research was carried out to determine the influence of magnetic powder granulation on the transport properties. The results showed that the random walk within the membranes of the smallest magnetic powder granulation was of the most subdiffusive character. Detailed investigation and quantitative description of gas transport through the membranes enables designing the membranes to be used in air oxygen enrichment.

  12. Transport studies through peritoneal membrane: Effect of alteration in concentration of Trace Metal Ion

    International Nuclear Information System (INIS)

    The effect of trace metals on thermodynamic properties of peritoneum has been examined. Membrane potential across peritoneal membrane of buffalo (Bof. Bubalis) for various 2:1, 3:1 and 1:2 electrolytes solutions have been measured with a view to examine the transport number of ions, effective fixed charge density and permselectivity of electrolyte systems. The transport number of co-ions decreased as the concentration of electrolyte is decreased. The applicability of different theories of membrane given by Kobatake et al. based on non-equilibrium thermodynamics have been tested. It has been observed that in biological systems also the fixed charged density is a constant quantity and does not vary with the concentrations of electrolytes as in the case of artificial membranes. Equations for 3:1 and 2:1 electrolytes have been derived, which will be essential for evaluating the transport number of trace material ions. This experimental model can be used to study and calculate the transport to study and calculate the transport number across biological membrane using Benventa's equation. The result of this study is valuable in understanding the influence of alteration in trace elements milieu on electrophysical behavior of all membranes. (author)

  13. A NOVEL KIND OF PROTON EXCHANGE MEMBRANE:CHARACTERS AND PROTON TRANSPORT MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Cheng Peng; Yong Yang; Li Wang; Min Huang; Xian-fa Shi

    2009-01-01

    A novel proton exchange membrane(PEM)was designed and prepared from a polymer containing calix[4]arene as the functional unit to transport proton.The proton-conductivity of this membrane is about the same order of magnitude as that of Nafion(R)112 membrane.It is of interest to note that very different from most of the currently known PEMs,this membrane can transport proton without the help of water or other solvents.It is deduced that the protons are transported via an ion tunneling model.This opens up a new avenue for a new type of solvent-free PEMs to be applied in the development of new H2/O2 fuel cells.

  14. Effect on membrane transport in the erythrocytes by band 3 cross-linking

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Band 3 and glucose transport protein (GluT1) are two kinds of important proteins in the human erythrocyte membranes. Bis(sulfosuccinimidyl)suberate (BS3), an impermeable cross-linker of band 3, inhibited NO2( transport, showing that anion exchange is affected by the association state of band 3 in the intact erythrocyte membranes. At the same time, the rates of glucose transport of both exit and entry declined. The amount of monomers of band 3 was decreased after treatment of the erythrocytes with BS3, but there was no change in GluT1 according to the SDS-PAGE patterns. This demonstrates that band 3 and GluT1 would be linkaged together in the erythrocyte membranes for the requirement of rapid and cooperative performance of physiological functions of the membrane proteins.

  15. The role of Na/+/ in transport processes of bacterial membranes

    Science.gov (United States)

    Lanyi, J. K.

    1979-01-01

    Until recently it was generally held that transport in bacteria was linked exclusively to proton circulation, in contrast to most eucaryotic systems, which depended on Na(+) circulation. The present review is intended to trace recent developments which have led to the discarding of this idea. The discussion covers transport of Na(+) and other cations, effects of Na(+) and Na(+) gradients on metabolite transport, properties of Na(+)-dependent transport carriers, and evolutionary considerations of Na(+) transport. It is now apparent that the transport of Na(+) is an important part of energy metabolism in bacteria, and that Na(+) gradients as well as H(+) gradients are used in these systems for the conservation and transmission of energy. Two hypotheses are proposed to explain the evolution of Na/K systems, and it is presently difficult to decide between them.

  16. Proteoliposomes as Tool for Assaying Membrane Transporter Functions and Interactions with Xenobiotics

    Directory of Open Access Journals (Sweden)

    Annamaria Tonazzi

    2013-09-01

    Full Text Available Proteoliposomes represent a suitable and up to date tool for studying membrane transporters which physiologically mediate absorption, excretion, trafficking and reabsorption of nutrients and metabolites. Using recently developed reconstitution strategies, transporters can be inserted in artificial bilayers with the same orientation as in the cell membranes and in the absence of other interfering molecular systems. These methodologies are very suitable for studying kinetic parameters and molecular mechanisms. After the first applications on mitochondrial transporters, in the last decade, proteoliposomes obtained with optimized methodologies have been used for studying plasma membrane transporters and defining their functional and kinetic properties and structure/function relationships. A lot of information has been obtained which has clarified and completed the knowledge on several transporters among which the OCTN sub-family members, transporters for neutral amino acid, B0AT1 and ASCT2, and others. Transporters can mediate absorption of substrate-like derivatives or drugs, improving their bioavailability or can interact with these compounds or other xenobiotics, leading to side/toxic effects. Therefore, proteoliposomes have recently been used for studying the interaction of some plasma membrane and mitochondrial transporters with toxic compounds, such as mercurials, H2O2 and some drugs. Several mechanisms have been defined and in some cases the amino acid residues responsible for the interaction have been identified. The data obtained indicate proteoliposomes as a novel and potentially important tool in drug discovery.

  17. Liquid Membrane Transport Behavior of Functional Substituted Crown Ethers for Amino Acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.

  18. Transport of peptidoglycan sub-units across the bacterial cytoplasmic membrane

    NARCIS (Netherlands)

    van Dam, V.

    2009-01-01

    Transport of peptidoglycan sub-units across the bacterial cytoplasmic membrane Vincent van Dam The work described in this thesis focuses on the mechanism by which the lipid-linked cell wall precursor molecule Lipid II is transported from the inner leaflet to the outer leaflet of the cytoplasmic memb

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-04-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates in excess of 400 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was characterized by repeated thermal and pressure cycling. The effect of cermet grain size on permeation was determined. Finally, progress is summarized on thin film cermet fabrication, catalyst development, and H{sub 2} separation unit scale up.

  20. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight

  1. Niemann–Pick type C disease proteins: orphan transporters or membrane rheostats?

    OpenAIRE

    Munkacsi, Andrew B.; Porto, Anthony F.; Sturley, Stephen L.

    2007-01-01

    Niemann–Pick type C (NPC) disease is a panethnic lysosomal lipidosis, which results in severe cerebellar impairment and death, and is proposed to be a consequence of defective metabolite transport. Numerous models of this disorder have defined the phenotypic impact of misfunction of the NPC proteins, however, their mechanism of action and definition of substrate(s) remain vague and disputed. The proteins may be lipid chaperones, nonspecific transporters, orphan transporters or membrane-sensin...

  2. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro-osmo......-uptake layer on the net water transport will also be pictured. Finally, the effect of EOD is visualized using “Newton’s cradle”....

  3. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  4. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  5. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  6. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2015-01-01

    Full Text Available Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2 but also other targets (e.g., GPR18/GPR55. We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.

  7. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation.

    Science.gov (United States)

    Bluett, R J; Gamble-George, J C; Hermanson, D J; Hartley, N D; Marnett, L J; Patel, S

    2014-07-08

    Stress is a major risk factor for the development of mood and anxiety disorders; elucidation of novel approaches to mitigate the deleterious effects of stress could have broad clinical applications. Pharmacological augmentation of central endogenous cannabinoid (eCB) signaling may be an effective therapeutic strategy to mitigate the adverse behavioral and physiological consequences of stress. Here we show that acute foot-shock stress induces a transient anxiety state measured 24 h later using the light-dark box assay and novelty-induced hypophagia test. Acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), reverses the stress-induced anxiety state in a cannabinoid receptor-dependent manner. FAAH inhibition does not significantly affect anxiety-like behaviors in non-stressed mice. Moreover, whole brain anandamide levels are reduced 24 h after acute foot-shock stress and are negatively correlated with anxiety-like behavioral measures in the light-dark box test. These data indicate that central anandamide levels predict acute stress-induced anxiety, and that reversal of stress-induced anandamide deficiency is a key mechanism subserving the therapeutic effects of FAAH inhibition. These studies provide further support that eCB-augmentation is a viable pharmacological strategy for the treatment of stress-related neuropsychiatric disorders.

  8. Regulator y effects of anandamide on intracellular Ca2+concentration increase in trigeminal ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Yi Zhang; Hong Xie; Gang Lei; Fen Li; Jianping Pan; Changjin Liu; Zhiguo Liu; Lieju Liu; Xuehong Cao

    2014-01-01

    Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neu-rotransmission by decreasing Ca2+influx through high voltage-gated Ca2+channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-clamp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+inlfux in a dose-dependent manner, which then triggered an increase of intracellular Ca2+concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+concentration by anandamide. This result showed that anandamide increased intracellu-lar Ca2+concentration and inhibited high voltage-gated Ca2+channels through different signal transduction pathways.

  9. Ultra-thin Oxide Membranes: Synthesis and Carrier Transport

    Science.gov (United States)

    Sim, Jai Sung

    Self-supported freestanding membranes are films that are devoid of any underlying supporting layers. The key advantage of such structures is that, due to the lack of substrate effects - both mechanical and chemical, the true native properties of the material can be probed. This is crucial since many of the studies done on materials that are used as freestanding membranes are done as films clamped to substrates or in the bulk form. This thesis focuses on the synthesis and fabrication as well as electrical studies of free standing ultrathin change and nature of ionic liquid gating, TiO2 and CeO2 for understanding surface conduction properties and surface chemistry. The VO2 study shows shift in metal-insulator transition (MIT) temperature arising from stress relaxation and opening of the hysteresis. The ionic liquid gating studies showed reversible modulation of channel resistance and allowed distinguishing bulk process from the surface effects. Comparing the ionic liquid gating experiments to hydrogen doping experiments illustrated that ionic liquid gating can be a surface limited electrostatic effect, if the critical voltage threshold is not exceeded. TiO2 study shows creation of non-stoichiometric forms under ion milling. Utilizing focused ion beam milling, thin membranes of Ti xOy of 100-300 nm thickness have been created. TEM studies indicated polycrystallinity and presence of twins in the FIB-milled nanowalls. Compositional analysis in the transmission electron microscope also showed reduced content of oxygen, confirming non-stoichiometry. Temperature dependence of the electrical resistivity of the nanowall showed semiconducting behavior with an activation energy different from that of TiO2 single crystals and was attributed to formation of TinO2n-1 phases after FIB processing. The CeO2 study involved high temperature conductivity studies on substrate-free self-supported nano-crystalline ceria membranes up to 800 K. Increasing conductivity with oxygen partial

  10. Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship.

    Science.gov (United States)

    Fowler, C J; Tiger, G; Stenström, A

    1997-11-01

    The ability of rat brain (minus cerebellum) homogenates to deamidate arachidonyl ethanolamide (anandamide) was determined with a custom-synthesized substrate, arachidonyl ethanolamide-[1-3H] ([3H]anandamide). Conditions whereby initial velocities were measured were established. The homogenates deamidated anandamide with a Km value of 0.8 microM and a Vmax value of 1.73 nmol . (mg protein)-1 . min-1. The deamidation of 2 microM -3H-anandamide was inhibited by phenylmethylsulfonyl fluoride and arachidonyl trifluoromethyl ketone with IC50 values of 3.7 and 0.23 microM, respectively. Ibuprofen inhibited anandamide deamidation in a mixed fashion, with Ki and K'i values of 82 and 1420 microM. At an anandamide concentration of 2 microM, the IC50 values (in microM) of a series of compounds related in structure to ibuprofen were as follows: suprofen, 170; ibuprofen, 270; fenoprofen, 480; naproxen, 550; ketoprofen, 650; diclofenac, approximately 1000. Sulindac produced 27% inhibition at a concentration of 1000 microM, whereas isobutyric acid, hydrocinnamic acid, acetylsalicylic acid and acetaminophen were essentially inactive at concentrations anandamide deamidation at pharmacologically relevant concentrations and that there is some specificity to the inhibition produced by ibuprofen and suprofen. PMID:9353392

  11. A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture

    CERN Document Server

    Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

    2013-01-01

    The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

  12. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [3H]triphenylmethylphosphonium ([3H]TPMP+), rubidium 86, and the fluorescent dye DiOC5. A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na+/K+ ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  13. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin. PMID:24715475

  14. Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil

  15. Ultra-thin Oxide Membranes: Synthesis and Carrier Transport

    Science.gov (United States)

    Sim, Jai Sung

    Self-supported freestanding membranes are films that are devoid of any underlying supporting layers. The key advantage of such structures is that, due to the lack of substrate effects - both mechanical and chemical, the true native properties of the material can be probed. This is crucial since many of the studies done on materials that are used as freestanding membranes are done as films clamped to substrates or in the bulk form. This thesis focuses on the synthesis and fabrication as well as electrical studies of free standing ultrathin process. Taking things a step further, to electrically probe these membranes required design of complex device architecture and extensive optimization of nano-fabrication processes. The challenges and optimized fabrication method of such membranes are demonstrated. Three materials are probed in this study, VO2, TiO2, and CeO2. VO2 for understanding structural considerations for electronic phase change and nature of ionic liquid gating, TiO2 and CeO2 for understanding surface conduction properties and surface chemistry. The VO2 study shows shift in metal-insulator transition (MIT) temperature arising from stress relaxation and opening of the hysteresis. The ionic liquid gating studies showed reversible modulation of channel resistance and allowed distinguishing bulk process from the surface effects. Comparing the ionic liquid gating experiments to hydrogen doping experiments illustrated that ionic liquid gating can be a surface limited electrostatic effect, if the critical voltage threshold is not exceeded. TiO2 study shows creation of non-stoichiometric forms under ion milling. Utilizing focused ion beam milling, thin membranes of Ti xOy of 100-300 nm thickness have been created. TEM studies indicated polycrystallinity and presence of twins in the FIB-milled nanowalls. Compositional analysis in the transmission electron microscope also showed reduced content of oxygen, confirming non-stoichiometry. Temperature dependence of the

  16. A Minireview: Usefulness of Transporter-Targeted Prodrugs in Enhancing Membrane Permeability.

    Science.gov (United States)

    Murakami, Teruo

    2016-09-01

    Orally administered drugs are categorized into 4 classes depending on the solubility and permeability in a Biopharmaceutics Classification System. Prodrug derivatization is one of feasible approaches in modifying the physicochemical properties such as low solubility and low permeability without changing the in vivo pharmacological action of the parent drug. In this article, prodrug-targeted solute carrier (SLC) transporters were searched randomly by PubMed. Collected SLC transporters are amino acid transporter 1, bile acid transporter, carnitine transporter 2, glucose transporter 1, peptide transporter 1, vitamin C transporter 1, and multivitamin transporter. The usefulness of transporter-targeted prodrugs was evaluated in terms of membrane permeability, stability under acidic condition, and conversion to the parent drug. Among prodrugs collected, peptide transporter-targeted prodrugs exhibited the highest number, and some prodrugs such as valaciclovir and valganciclovir are clinically available. ATP-binding cassette efflux transporter, P-glycoprotein (P-gp), reduces the intestinal absorption of lipophilic P-gp substrate drugs, and SLC transporter-targeted prodrugs of P-gp substrate drugs circumvented the P-gp-mediated efflux transport. Thus, SLC transporter-targeted prodrug derivatization seems to be feasible approach to increase the oral bioavailability by overcoming various unwanted physicochemical properties of orally administered drugs, although the effect of food on prodrug absorption should be taken into consideration.

  17. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    Science.gov (United States)

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-01-01

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  18. STUDY ON THE CONTROLLED MASS TRANSPORT THROUGH POROUS MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    l introductionMembrane Processes have been applied widely inchemical and biological separation and mass transferoperatioll. Tile mass tfansport tlimugh the membralleis driven either by pressure (sucll as ultrallltration,microfiltration and nanofiltration), or concelltration(diffusion) like dialysis, or by electric field(electrodialysis). While pressure drived Processes areiii-idel}' used for separation pmpose, diffusionprocesses is conllllon in colltrolled release and soluteexchange. Haemodialysis has been ...

  19. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells.

    Science.gov (United States)

    Valk, P; Verbakel, S; Vankan, Y; Hol, S; Mancham, S; Ploemacher, R; Mayen, A; Löwenberg, B; Delwel, R

    1997-08-15

    We recently demonstrated that the gene encoding the peripheral cannabinoid receptor (Cb2) may be a proto-oncogene involved in murine myeloid leukemias. We show here that Cb2 may have a role in hematopoietic development. RNAse protection analysis showed that Cb2 is normally expressed in spleen and thymus. Cb2 mRNA is also expressed in 45 of 51 cell lines of distinct hematopoietic lineages, ie, myeloid, macrophage, mast, B-lymphoid, T-lymphoid, and erythroid cells. The effect of the fatty acid anandamide, an endogenous ligand for cannabinoid receptors, on primary murine marrow cells and hematopoietic growth factor (HGF)-dependent cell lines was then investigated. In vitro colony cultures of normal mouse bone marrow cells showed anandamide to potentiate interleukin-3 (IL-3)-induced colony growth markedly. Whereas HGFs alone stimulate proliferation of the various cell lines in serum-free culture only weakly, anandamide enhances the proliferative response of the cell lines to HGFs profoundly. This was apparent for responses induced by IL-3, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and erythropoietin. Anandamide was already effective at concentrations as low as 0.1 to 0.3 micromol/L and plateau effects were reached at 0.3 to 3 micromol/L. The addition of anandamide as single growth factor had no effect. The costimulatory effect of anandamide was not evident when cells were cultured with fetal calf serum (FCS), suggesting that FCS contains anandamide or another ligand capable of activating the peripheral cannabinoid receptor. Other cannabinoid ligands did not enhance the proliferative responsiveness of hematopoietic cells to HGFs. Transfection experiments of Cb2 in myeloid 32D cells showed that anandamide specifically activates proliferation through activation of the peripheral cannabinoid receptor. Anandamide appears to be a novel and synergistic growth stimulator for hematopoietic cells. PMID:9269762

  20. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  1. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly

    OpenAIRE

    Lee, IH; Kai, H; Carlson, LA; Groves, JT; Hurley, JH

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membra...

  2. Extraction and Transport of Amino Acids Using Kryptofix 5 as Carrier through Liquid Membrane

    OpenAIRE

    Pankaj Raizada; Uma Sharma

    2013-01-01

    The present work explores membrane-mediated extraction and transport studies of amino acids through artificial bulk liquid membrane system with kryptofix 5 as a carrier. The various reaction parameters such as amino acid concentration, carrier concentration, time, pH, and stirring effect were studied to optimize reaction conditions. The stirring of source and receiving phases increased the efficiency of extraction process. Noncyclic receptor kryptofix 5 with five oxyethylene units an...

  3. Membrane Transporters for Nitrogen, Phosphate and Potassium Uptake in Plants

    Institute of Scientific and Technical Information of China (English)

    Yi-Fang Chen; Yi Wang; Wei-Hua Wu

    2008-01-01

    Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years. In fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological,biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions.Recent discoveries of many transporters and channels for nitrate, phosphate and potassium up take have opened upopportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels. In addition, the functions and regulation of some important transporters and channels are particularly emphasized.

  4. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette;

    2008-01-01

    Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...... by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization...... that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuT(Aa), as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization...

  5. SELECTIVE TRANSPORT OF GOLD(Ⅱ) THROUGH THE LIQUID MEMBRANE CONTAINING POLYTHIOETHER OLIGOMER AS CARRIER

    Institute of Scientific and Technical Information of China (English)

    XUYuwu; WANGYing; 等

    1993-01-01

    This paper deals with the transport properties of oligomer of polythioether PSA used as moble carrier in bulk liquid membrane for gold(Ⅲ).It was found that Au(Ⅲ) can be transported by PSA from source phase to receiving phase completely under appropriate conditions and only Au(Ⅲ) can be transferred through the liquid membrane to receiving phase from a mixture of Na(I)-Cu(Ⅱ)-Au(Ⅲ)-Fe(Ⅲ)-Pt(Ⅳ) in the following system:HAuCl4-HCl(aq.)/PSA-ClCH2-CH2Cl/(NH2)2CS-HCl(aq.).The transport rate of Au(Ⅲ) depended on the concentration of carrier,the thickness of liquid membrane,the concentration of Au(Ⅲ) in source phase and the acidity of the media.

  6. Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes

    DEFF Research Database (Denmark)

    Juel, C; Thomsen, J J; Rentsch, R L;

    2007-01-01

    on the expression of muscle membrane transport proteins. Likewise, improvements in performance may involve upregulation of metabolic enzymes. Since Epo is known to augment performance we tested the effect of rHuEpo on some marker enzymes that are related to aerobic capacity. For these purposes eight subjects...... with the treatment. In conclusion, changes in muscle membrane transport proteins and selected muscle enzymes do not contribute to the Epo-induced improvement in performance.......Adaptations to chronic hypoxia involve changes in membrane transport proteins. The underlying mechanism of this response may be related to concomitant occurring changes in erythropoietin (Epo) levels. We therefore tested the direct effects of recombinant human erythropoietin (rHuEpo) treatment...

  7. Influence of hydrogen chemisorption kinetics on the interpretation of hydrogen transport through iron membranes

    Science.gov (United States)

    Shanabarger, M. R.; Taslami, A.; Nelson, H. G.

    1981-01-01

    The influence of a specific surface reaction on the transport of gas-phase hydrogen through iron membranes has been investigated on the basis of model calculations. The surface reaction involves an adsorbed molecular hydrogen precursor between the gas phase and the dissociated chemisorbed state. The calculations demonstrate that the surface reaction for the H2/Fe system makes significant contributions to the time delay associated with the transient hydrogen transport through iron membranes, even under conditions where the steady-state hydrogen transport is independent of the surface reaction. These contributions to the time delay are interpreted in terms of an effective diffusivity, which is a function of the pressure on the entrance side and the thickness of the membrane.

  8. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.

    Science.gov (United States)

    Liu, Lu-Ning

    2016-03-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.

  9. The Development of Conductive Nanoporous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    Directory of Open Access Journals (Sweden)

    Pei-Ru Chen

    2013-01-01

    Full Text Available We present the development of conductive nanoporous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxylfluorescein (CF, substance P, and tumor necrosis factor-alpha (TNF-α. The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nanotubes, respectively. These nanoporous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive potential was applied. The permeation selectivity of these membranes is reversed by converting the polarity of applied potential into negative. Based on this principle, charged molecules (carboxylfluorescein, substance P, and TNF-α are successfully filtered through these membranes. This system shows 30 times more selective for CF than substance P as positive potential was applied, while 2.5 times more selective for substance P than CF as negative potential was applied.

  10. The Development of Conductive Nano porous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    International Nuclear Information System (INIS)

    We present the development of conductive nano porous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxyl fluorescein (CF), substance P, and tumor necrosis factor-alpha (TNF-α). The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nano tubes, respectively. These nano porous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive potential was applied. The permeation selectivity of these membranes is reversed by converting the polarity of applied potential into negative. Based on this principle, charged molecules (carboxyl fluorescein, substance P, and TNF-α) are successfully filtered through these membranes. This system shows 30 times more selective for CF than substance P as positive potential was applied, while 2.5 times more selective for substance P than CF as negative potential was applied.

  11. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    Science.gov (United States)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  12. Influence of gamma and electron radiation on transport properties of nanofiltration and hyperfiltration membranes

    International Nuclear Information System (INIS)

    The influence of gamma and electron radiation on nanofiltration (NF) and hyperfiltration (HF) membranes has been studied and the changes in transport properties have been determined at different doses. Samples of NF and HF thin film composite (flat) membranes with semipermeable layer made of polymers of different composition were irradiated with doses in the range 0.005-40 kGy using external 60Co source or by immersion in a solution containing 137Cs, and by using 13 MeV electron beam from a linear accelerator. For each membrane the values of characteristic absorbed doses, AD1 and AD2 have been determined. (author)

  13. Role of adaptor proteins in motor regulation and membrane transport

    NARCIS (Netherlands)

    M.A. Schlager (Max)

    2010-01-01

    markdownabstract__Abstract__ Active transport along the cytoskeleton is a process essential for proper cellular function. Although much is known about the motor proteins that generate the necessary force and the cytoskeleton that provides the cellular infrastructure, many questions still remain. Fo

  14. Performance testing of hydrogen transport membranes at elevated temperatures and pressures.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Cugini, A. V.; Dorris, S. E.; Fisher, E. P.; Graham, W. J.; Martello, D. V.; Poston, J. A.; Rothenberger, K. S.; Siriwardane, R. W.

    1999-06-16

    The development of hydrogen transport ceramic membranes offers increased opportunities for hydrogen gas separation and utilization. Commercial application of such membranes will most likely take place under conditions of elevated temperature and pressure, where industrial processes producing and or utilizing hydrogen occur, and where such membranes are theoretically expected to have the greatest permeability. Hydrogen separation membrane performance data at elevated temperature is quite limited, and data at elevated pressures is conspicuously lacking. This paper will describe the design, construction, and recent experimental results obtained from a membrane testing unit located at the U.S. Department of Energy's Federal Energy Technology Center (FETC). The membrane testing unit is capable of operating at temperatures up to 900 C and pressures up to 500 psi. Mixed-oxide ceramic ion-transport membranes, fabricated at Argonne National Laboratory (ANL), were evaluated for hydrogen permeability and characterized for surface changes and structural integrity using scanning electron microscopy/X-ray microanalysis (SEM/EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), as a function of temperature, pressure, and hydrogen exposure.

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  16. Oxygen transport membranes for biomass gasification and cement industry

    DEFF Research Database (Denmark)

    Cheng, Shiyang

    by a microelectrode assisted Hebb-Wagner polarization. The electronic conductivity of PrxGd0.1Ce0.9-xO1.95-δ (x=0-0.4) was found to be significantly enhanced relative to that of GCO at high pO2 (1×10-8- 0.21 bar), by as much as three orders of magnitude in Pr0.4Gd0.1Ce0.5O1.95-δ. The electronic conductivity of PrxGd0...... of structural supports. An asymmetric (thin dense layer on a porous support) dual phase composite membrane of 70 vol.% Gd0.1Ce0.9O1.95-δ-30 vol.% La0.6Sr0.4FeO3-δ (GCO-LSF) was fabricated by a “one step” phase-inversion tape casting. Oxygen flux measurement as well as electrical conductivity relaxation...... indicates that the oxygen permeation flux of the membrane without catalyst is rate limited by oxygen surface exchange. Mass polarization through the porous support is insignificant over a wide range of oxygen partial pressure gradients. A stable high flux of ca. 7.00 (STP) ml cm-2 min-1 was observed for 200...

  17. Unassisted transport of N-acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics.

    Science.gov (United States)

    Cardenas, Alfredo E; Jas, Gouri S; DeLeon, Kristine Y; Hegefeld, Wendy A; Kuczera, Krzysztof; Elber, Ron

    2012-03-01

    Cellular transport machinery, such as channels and pumps, is working against the background of unassisted material transport through membranes. The permeation of a blocked tryptophan through a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane is investigated to probe unassisted or physical transport. The transport rate is measured experimentally and modeled computationally. The time scale measured by parallel artificial membrane permeation assay (PAMPA) experiments is ~8 h. Simulations with the milestoning algorithm suggest mean first passage time (MFPT) of ~4 h and the presence of a large barrier at the center of the bilayer. A similar calculation with the solubility-diffusion model yields a MFPT of ~15 min. This permeation rate is 9 orders of magnitude slower than the permeation rate of only a tryptophan side chain (computed by us and others). This difference suggests critical dependence of transport time on permeant size and hydrophilicity. Analysis of the simulation results suggests that the permeant partially preserves hydrogen bonding of the peptide backbone to water and lipid molecules even when it is moving closer to the bilayer center. As a consequence, defects of the membrane structure are developed to assist permeation.

  18. Chloride transport through cementitious membranes using pulsed current

    OpenAIRE

    Diaz, B.; Novoa, X.Ramon; Puga, Beatriz; Vivier, Vincent

    2013-01-01

    International audience Microstructural changes and chloride transport in cement pastes are studied under DC current and pulsed electric fields. Impedance spectroscopy and ultrasonic pulse velocity measurements have been employed for quasi-real time monitoring of changes in the cement paste microstructure. The results show that the electric resistivity and ultrasound velocity (measured at 500 kHz) are modified during the migration experiments. At the end of test, mercury intrusion porosimet...

  19. Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik; Park, Ho Bum; Lee, Young Moo [National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhim, Ji Won [Department of Chemical Engineering Hannam University, 133 Ojung-Dong, Daeduk-Gu, Daejon 306-791 (Korea, Republic of)

    2005-01-14

    Cross-linked poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAA)/silica hybrid membranes were prepared to evaluate the possibility of use as a proton exchange membrane for direct methanol fuel cell (DMFC). A chemical cross-linking agent having sulfonic acid group (-SO{sub 3}H) was used to increase proton conductivity, and simultaneously to prevent methanol transport through the cross-linked membranes. In addition, silica particles were dispersed into polymer matrices via sol-gel reaction under acidic conditions, expecting the barrier to the methanol transport. The proton and the methanol transport were investigated in terms of PVA/PAA compositions and cross-linker (sulfosuccinic acid, SSA) concentration. It was found that the compositions of PVA/PAA and the cross-linker concentration affected the transport properties of the membranes. Particularly, the concentration of cross-linker markedly affected the proton and the methanol transport because SSA was used not only as a chemical cross-linker but also as a donor of fixed anionic group (-SO{sub 3}{sup -}H{sup +}). The proton conductivities of the hybrid membrane were in the range of 10{sup -3}-10{sup -2} S/cm, and the methanol permeabilities ranged between 10{sup -8} and 10{sup -7} cm{sup 2}/s. Noticeably, the methanol permeabilities were reduced by cross-linking between PVA, PAA and SSA chains without a large sacrifice of proton conductivity. Moreover, the silica particles embedded in the cross-linked polymer membranes acted as a reducing material for fraction of free water as well as a methanol barrier to hinder pathway from penetrating methanol molecules.

  20. Salt transport properties of model reverse osmosis membranes using electrochemical impedance spectroscopy

    Science.gov (United States)

    Feldman, Kathleen; Chan, Edwin; Stafford, Gery; Stafford, Christopher

    With the increasing shortage of clean water, efficient purification technologies including membrane separations are becoming critical. The main requirement of reverse osmosis in particular is to maximize water permeability while minimizing salt permeability. Such performance optimization has typically taken place through trial and error approaches. In this work, key salt transport metrics are instead measured in model reverse osmosis membranes using electrochemical impedance spectroscopy (EIS). As shown previously, EIS can provide both the membrane resistance Rm and membrane capacitance Cm, with Rm directly related to salt permeability. The membranes are fabricated in a molecular layer by layer approach, which allows for control over such parameters as thickness, surface and bulk chemistry, and network geometry/connectivity. Rm, and therefore salt permeability, follows the expected trends with thickness and membrane area but shows unusual behavior when the network geometry is systematically varied. By connecting intrinsic material properties such as the salt permeability with macroscopic performance measures we can begin to establish design rules for improving membrane efficiency and facilitate the creation of next-generation separation membranes.

  1. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    International Nuclear Information System (INIS)

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property

  2. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A [Technische Universitaet Muenchen, Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising (Germany)], E-mail: rudi.vogel@wzw.tum.de

    2008-07-15

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  3. Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes

    CERN Document Server

    Tedesco, M; Biesheuvel, P M

    2016-01-01

    Transport of water through ion-exchange membranes is of importance both for electrodialysis (ED) and reverse electrodialysis (RED). In this work, we extend our previous theory [J. Membrane Sci., 510, (2016) 370-381] and include water transport in a two-dimensional model for (R)ED. Following a Maxwell-Stefan (MS) approach, ions in the membrane have friction with the water, pore walls, and one another. We show that when ion-ion friction is neglected, the MS-approach is equivalent to the hydrodynamic theory proposed by Deen for nanofiltration. The model describes all fluxes of ions and water self-consistently as function of the driving forces. After validation against experimental data from literature for ED and RED, the model is also used to analyze single-pass seawater ED and RED with highly concentrated solutions. All fluxes and velocities of water and ions in the membranes are calculated, and the influence of water and coion leakage is investigated under different conditions.

  4. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  5. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  6. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat.

    Science.gov (United States)

    Jacome-Sosa, Miriam; Vacca, Claudia; Mangat, Rabban; Diane, Abdoulaye; Nelson, Randy C; Reaney, Martin J; Shen, Jianheng; Curtis, Jonathan M; Vine, Donna F; Field, Catherine J; Igarashi, Miki; Piomelli, Daniele; Banni, Sebastiano; Proctor, Spencer D

    2016-04-01

    Vaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (P 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P< 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P< 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.

  7. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat.

    Science.gov (United States)

    Jacome-Sosa, Miriam; Vacca, Claudia; Mangat, Rabban; Diane, Abdoulaye; Nelson, Randy C; Reaney, Martin J; Shen, Jianheng; Curtis, Jonathan M; Vine, Donna F; Field, Catherine J; Igarashi, Miki; Piomelli, Daniele; Banni, Sebastiano; Proctor, Spencer D

    2016-04-01

    Vaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (PCLA on 2-AG relative to VA alone (P> 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P< 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P< 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine. PMID:26891736

  8. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiao [School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan (China); Schluesener, Hermann J, E-mail: mornsmile@yahoo.com [Institute of Brain Research, University of Tuebingen, Calwerstrasse 3, D-72076, Tuebingen (Germany)

    2010-03-12

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  9. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Science.gov (United States)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  10. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    International Nuclear Information System (INIS)

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  11. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  12. Quantitative Analysis of Membrane Protein Transport Across the Nuclear Pore Complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Poolman, Bert; Veenhoff, Liesbeth M.

    2013-01-01

    Nuclear transport of the Saccharomyces cerevisiae membrane proteins Src1/Heh1 and Heh2 across the NPC is facilitated by a long intrinsically disordered linker between the nuclear localization signal (NLS) and the transmembrane domain. The import of reporter proteins derived from Heh2 is dependent on

  13. The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism : involvement of sulfatide

    NARCIS (Netherlands)

    Baron, Wia; Ozgen, Hande; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Plat, Annechien; Trifilieff, Elisabeth; de Vries, Hans; Hoekstra, Dick

    2015-01-01

    Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered as membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes we demonstrate that transcytotic transport of the major myelin-resident protein, PLP, is a key

  14. Study on a Novel Disphase Supplying Supported Liquid Membrane for Transport Behavior of Divalent Nickel Ions

    Institute of Scientific and Technical Information of China (English)

    裴亮; 王理明; 郭维; 赵楠

    2012-01-01

    A novel d!sphase supplying supported liquid membrane (DSSLM), containing supplying feed phase andsupplying stripping phase tor transport behavior ot NI(Ⅱ), have been studied. The supplying supported feed phase included feed solution and di(2-ethyhexyl) phosphoric acid (HDEHP) as the carrier in kerosene, and supplying stripping phase included HDEHP as the cartier in kerosene and HC1 as the stripping agent. The effects of volume ratio of membrane solution to feed solution (O/F), pH, initial concentration of Ni(Ⅱ) and ionic strength in the feedsolution, volume ratio of membrane solution to stripping solution (O/S), concentration of H2SO4 solution, HDEHP concentration in the supplying stripping phase on transport of Ni(/I), the advantages of DSSLM compared to the traditional supported liquid membrane (SLM), the system stability, the reuse of membrane solution and the reten- tion of membrane phase were studied. Experimental results indicated that the optimum transpgrt of Ni(Ⅱ) was oh-tained when H2SO4 concentration was 2.00 mol'L-', HDEHP concentration was 0.120 mol·L-1, and O/S was 4· 1 in the supplying stripping phase, O/F was 1 : 10 and pH was 5.20 in the supplying feed phase. The ionic strength in supplying feed phase had no obvious effect on transport of Ni(Ⅱ). When initial Ni(Ⅱ) concentration was 2.00x 10-4 mol/L, the transport percentage of Ni(Ⅱ) was up to 93.1% in 250 min. The kinetic equation was deduced in terms of the law of mass diffusion and the interface chemistry.

  15. Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl < NaCl < KCl. - Highlights: ► Transport properties of composite membrane are evaluated. ► TMS method is used for electrochemical characterization. ► Membrane was found to be mechanically stable. ► The order of surface charge density was found to be LiCl < NaCl < KCl

  16. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    The cytosolic protein Ffh transports membrane proteins from the ribosome to the inner membrane in complex with 4.5S RNA. Here we show that native Ffh binds to the hydrophobic probe ANS in a 1 Ffh:3 ANS stoichiometry, revealing a hydrophobic binding site. Thermal precipitation of Ffh is shifted...... the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...... that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment. © 2009 Elsevier Inc. All rights reserved....

  17. Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali, E-mail: mujahidchemistry@gmail.com [Membrane Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 (India); Rafiuddin,; Inamuddin [Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2013-05-01

    The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl < NaCl < KCl. - Highlights: ► Transport properties of composite membrane are evaluated. ► TMS method is used for electrochemical characterization. ► Membrane was found to be mechanically stable. ► The order of surface charge density was found to be LiCl < NaCl < KCl.

  18. Synthesis and pharmacological evaluation of sulfamide-based analogues of anandamide.

    Science.gov (United States)

    Cano, Carolina; Páez, Juan Antonio; Goya, Pilar; Serrano, Antonia; Pavón, Javier; Rodríguez de Fonseca, Fernando; Suardíaz, Margarita; Martín, María Isabel

    2009-12-01

    Arachidonyl and linoleyl sulfamide derivatives have been synthesized and their potential cannabimimetic properties evaluated in in vitro functional and binding assays. Replacement of the ethanolamide moiety of anandamide by -CH(2)NHSO(2)NH-R considerably reduces the CB1 receptor activity and only some of the compounds showed modest cannabinoid properties in binding assays. The new compounds were also tested as inhibitors of the FAAH enzyme but were inactive.

  19. Characterisation of the membrane transport of pilocarpine in cell suspension cultures of Pilocarpus microphyllus.

    Science.gov (United States)

    Andreazza, Nathalia Luiza; Abreu, Ilka Nacif; Sawaya, Alexandra Christine Helena Frankland; Mazzafera, Paulo

    2015-03-01

    Pilocarpine is an alkaloid obtained from the leaves of Pilocarpus genus, with important pharmaceutical applications. Previous reports have investigated the production of pilocarpine by Pilocarpus microphyllus cell cultures and tried to establish the alkaloid biosynthetic route. However, the site of pilocarpine accumulation inside of the cell and its exchange to the medium culture is still unknown. Therefore, the aim of this study was to determine the intracellular accumulation of pilocarpine and characterise its transport across membranes in cell suspension cultures of P. microphyllus. Histochemical analysis and toxicity assays indicated that pilocarpine is most likely stored in the vacuoles probably to avoid cell toxicity. Assays with exogenous pilocarpine supplementation to the culture medium showed that the alkaloid is promptly uptaken but it is rapidly metabolised. Treatment with specific ABC protein transporter inhibitors and substances that disturb the activity of secondary active transporters suppressed pilocarpine uptake and release suggesting that both proteins may participate in the traffic of pilocarpine to inside and outside of the cells. As bafilomicin A1, a specific V-type ATPase inhibitor, had little effect and NH4Cl (induces membrane proton gradient dissipation) had moderate effect, while cyclosporin A and nifedipine (ABC proteins inhibitors) strongly inhibited the transport of pilocarpine, it is believed that ABC proteins play a major role in the alkaloid transport across membranes but it is not the exclusive one. Kinetic studies supported these results. PMID:25474486

  20. Modeling and simulations of polymer electrolyte membrane fuel cells with poroelastic approach for coupled liquid water transport and deformation in the membrane

    OpenAIRE

    Yeşilyurt, Serhat; Yesilyurt, Serhat

    2010-01-01

    Performance degradation and durability of polymer electrolyte membrane (PEM) fuel cells depend strongly on transport and deformation characteristics of their components especially the polymer membrane. Physical properties of membranes, such as ionic conductivity and Young's modulus, depend on the water content that varies significantly with operating conditions and during transients. Recent studies indicate that cyclic transients may induce hygrothermal fatigue that leads to the ultimate fail...

  1. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

    Science.gov (United States)

    Luoto, Heidi H; Nordbo, Erika; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2013-12-01

    Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.

  2. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    Science.gov (United States)

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters. PMID:27161976

  3. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    Science.gov (United States)

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters.

  4. Method for experimental determination of the gas transport properties of highly porous fibre membranes: a first step before predictive modelling of a membrane distillation process

    NARCIS (Netherlands)

    Guijt, C.M.; Meindersma, G.W.; Reith, T.; Haan, de A.B.

    2002-01-01

    For the predictive modelling of a membrane distillation process, the gas transport properties, defined by the dusty-gas model, of three highly permeable polyethylene and polypropylene fibre membranes have been determined. Single gas permeation experiments were carried out to determine the Knudsen di

  5. Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane.

    Science.gov (United States)

    Bath, B D; White, H S; Scott, E R

    2000-02-01

    Electrically facilitated molecular transport in an ion-exchange membrane (Nafion, 1100 equiv wt) has been studied using a scanning electrochemical microscope. The transport rates of ferrocenylmethyltrimethylammonium (a cation), acetaminophen (a neutral molecule), and ascorbate (an anion) through approximately 120-micron-thick membranes were measured as a function of the iontophoretic current passed across the membrane (-1.0 to +1.0 A/cm2). Transport rates were analyzed by employing the Nernst-Planck equation, modified to account for electric field-driven convective transport. Excellent agreement between experimental and theoretical values of the molecular flux was obtained using a single fitting parameter for each molecule (electroosmotic drag coefficient). The electroosmotic velocity of the neutral molecule, acetaminophen, was shown to be a factor of approximately 500 larger than that of the cation ferrocenylmethyltrimethylammonium, a consequence of the electrostatic interaction of the cation with the negatively charged pore walls of the ion-exchange membrane. Electroosmotic transport of ascorbate occurred at a negligible rate due to repulsion of the anion by the cation-selective membrane. These results suggest that electroosmotic velocities of solute molecules are determined by specific chemical interactions of the permeant and membrane and may be very different from the average solution velocity. The efficiency of electroosmotic transport was also shown to be a function of the membrane thickness, in addition to membrane/solute interactions. PMID:10695125

  6. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    Science.gov (United States)

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. PMID:26811291

  7. Anandamide reduces intracellular Ca2+ concentration through suppression of Na+/Ca2+ exchanger current in rat cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Qian Li

    Full Text Available PURPOSE: Anandamide, one of the endocannabinoids, has been reported to exhibit cardioprotective properties, particularly in its ability to limit the damage produced by ischemia reperfusion injury. However, the mechanisms underlying the effect are not well known. This study is to investigate whether anandamide alter Na(+/Ca(2+ exchanger and the intracellular free Ca(2+ concentration ([Ca(2+]i. METHODS: Na(+/Ca(2+ exchanger current (I(NCX was recorded and analysed by using whole-cell patch-clamp technique and [Ca(2+]i was measured by loading myocytes with the fluorescent Ca(2+ indicator Fura-2/AM. RESULTS: We found that I(NCX was enhanced significantly after perfusion with simulated ischemic external solution; [Ca(2+]i was also significantly increased by simulated ischemic solution. The reversal potential of I(NCX was shifted to negative potentials in simulated ischemic external solution. Anandamide (1-100 nM failed to affect I(NCX and [Ca(2+]i in normal solution. However, anandamide (1-100 nM suppressed the increase in INCX in simulated ischemic external solution concentration-dependently and normalized INCX reversal potential. Furthermore, anandamide (100 nM significantly attenuated the increase in [Ca(2+]i in simulated ischemic solution. Blocking CB1 receptors with the specific antagonist AM251 (500 nM failed to affect the effects of anandamide on I(NCX and [Ca(2+]i in simulated ischemic solution. CB2 receptor antagonist AM630 (100 nM eliminated the effects of anandamide on I(NCX and [Ca(2+]i in simulated ischemic solution, and CB2 receptor agonist JWH133 (100 nM simulated the effects of anandamide that suppressed the increase in I(NCX and [Ca(2+]i in simulated ischemic solution. In addition, pretreatment with the Gi/o-specific inhibitor pertussis toxin (PTX, 500 ng/ml eliminated the effects of anandamide and JWH133 on I(NCX in simulated ischemic solution. CONCLUSIONS: Collectively, these findings suggest that anandamide suppresses calcium

  8. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport.

    Science.gov (United States)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M; Desai, Tejal A; Tang, Qizhi; Roy, Shuvo

    2016-01-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host's immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m(2)/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy. PMID:27009429

  9. Studies on yttrium and neodymium transportation behaviour using hollow fibre supported liquid membrane

    International Nuclear Information System (INIS)

    Preliminary studies on rare earths transportation using Hollow Fibre Supported Liquid Membrane (HFSLM) were carried out. High purity yttrium finds applications in phosphors, super conductors, 90Y in radiopharmaceutical application, etc while neodymium finds use in permanent magnets, lasers, etc. Transportation studies were conducted using HFSLM Module of 'Liquicel X50 2.5x8 membrane contactor' in a continuous operation mode. The material of construction of membrane was polypropylene having 9950 fibres each of length 15 cm. Initially, 1 M 2-ethyl hexyl, 2-ethyl hexyl phosphonic acid (PC 88A) was loaded on the membrane under pressure. The membrane was washed with water both on the shell side and tube side to remove excess solvent. Feed comprising of 6.7 g/l each of Y and Nd in nitrate medium having feed acidity of 0.5 M HNO3 was passed at a rate of 80 ml/min (tube side) in separate runs. On the other side (shell), strip comprising of 3 M HNO3 was passed at the same flow rate. The run was made for 6 hours and samples were collected at fixed time intervals. The samples were analyzed for metal content using ICP-AES

  10. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    Science.gov (United States)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  11. CM2 antigen, a potential novel molecule participating in glucuronide transport on rat hepatocyte canalicular membrane

    Directory of Open Access Journals (Sweden)

    L. Wang

    2012-06-01

    Full Text Available The polarized molecules predominately distributing at hepatocyte canalicular surface play a vital role in disclosing the process of bile formation and etiopathogenisis of cholestatic live diseases. Therefore, it is important to find novel polarized molecules on hepatocyte canalicular membrane. In the present study, canalicular membrane vesicles (CMVs isolated from rat hepatocyte by density gradient centrifugation were used as immunogens to produce hybridoma and 46 strains of monoclonal antibodies (mAb against CMVs were obtained. With a series of morphological assay methods, including immunohistochemistry, immunofluorescence and immuno-electron microscope, the antigens recognized by canalicular mAb1 (CM1 and canalicular mAb2 (CM2 were confirmed to predominately distribute at hepatocyte canalicular membrane. Transport activity assay revealed that CM2 could inhibit ATP-dependent E217βG uptake of rat hepatocyte CMVs. Meanwhile, Western blotting analysis showed that the molecular mass of CM2 antigen was approximately 110kDa, which was much less than Mr 180kDa of multidrug resistance-associated protein 2 (MRP2 involved in glucuronide transport. These data indicated that CM2 antigen might be a potential novel molecule participating in glucuronide transport on the hepatocyte canalicular membrane.

  12. Formulated plastic separators for soluble electrode cells. [rubber-ion transport membranes

    Science.gov (United States)

    Sheibley, D. W. (Inventor)

    1979-01-01

    The fabrication and milling of membranes comprising a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material are described. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompanied by the by the oxidation of the other member of the couple on the other side of the cell and this must be accompanied by a change in chloride ion concentration in both sides.

  13. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.

    Science.gov (United States)

    Kubota, Shintaro; Shirai, Osamu; Kitazumi, Yuki; Kano, Kenji

    2016-01-01

    Ion transport through a single channel of gramicidin A (GA) within the bilayer lipid membrane (BLM) between two aqueous phases (W1 and W2) has been analyzed based on the electroneutrality principle. The single-channel current increases in proportion to the magnitude of the applied membrane potential and is also dependent on the permeability coefficients of electrolyte ions (K(+) and Cl(-)). By varying the ratio of the concentration of KCl in W1 to that in W2, the ratio of the diffusion coefficient of K(+) in the BLM to that of Cl(-) in the BLM can be evaluated. PMID:26860564

  14. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    OpenAIRE

    John J. Low; Sesh Prabhakar; Sergey Vasenkov; Douglas B. Galloway; Mayumi Kiyono-Shimobe; Steven A. Bradley; Koros, William J.; Amrish Menjoge; Rohit Kanungo; Robert Mueller

    2012-01-01

    In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS) membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diff...

  15. The properties of the outer membrane localized Lipid A transporter LptD

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico, E-mail: schleiff@bio.uni-frankfurt.d [JWGU Frankfurt/Main, Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology, Max-von-Laue Strasse 9, D-60439 Frankfurt (Germany)

    2010-11-17

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The {beta}-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  16. OsHT, a Rice Gene Encoding for a Plasma-Membrane Localized Histidine Transporter

    Institute of Scientific and Technical Information of China (English)

    Di LIU; Wei GONG; Yong BAI; Jing-Chu LUO; Yu-Xian ZHU

    2005-01-01

    Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.

  17. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    Science.gov (United States)

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  18. Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process.

    Science.gov (United States)

    Li, Yi; Wang, Hongqi; Hua, Fei; Su, Mengyuan; Zhao, Yicun

    2014-03-01

    The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308μmolmin(-1)mg(-1)·protein (observed) and 0.304μmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.

  19. Unassisted membrane insertion as the initial step in DeltapH/Tat-dependent protein transport.

    Science.gov (United States)

    Hou, Bo; Frielingsdorf, Stefan; Klösgen, Ralf Bernd

    2006-02-01

    In the thylakoid membrane of chloroplasts as well as in the cytoplasmic membrane of bacteria, the DeltapH/Tat-dependent protein transport pathway is responsible for the translocation of folded proteins. Using the chimeric 16/23 protein as model substrate in thylakoid transport experiments, we dissected the transport process into several distinct steps that are characterized by specific integral translocation intermediates. Formation of the early translocation intermediate Ti-1, which still exposes the N and the C terminus to the stroma, is observed with thylakoids pretreated with (i) solutions of chaotropic salts or alkaline pH, (ii) protease, or (iii) antibodies raised against TatA, TatB, or TatC. Membrane insertion takes place even into liposomes, demonstrating that proteinaceous components are not required. This suggests that Tat-dependent transport may be initiated by the unassisted insertion of the substrate into the lipid bilayer, and that interaction with the Tat translocase takes place only in later stages of the process.

  20. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  1. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  2. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs.

  3. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Science.gov (United States)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  4. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  5. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    Science.gov (United States)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  6. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    MURAD, SOHAIL [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  7. Studies on the transport of actinides and lanthanides through DHDECMPO based supported liquid membranes (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Dudwadkar, N.L.; Tripathi, S.C.; Gandhi, P.M. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Fuel Reprocessing Div.

    2013-07-01

    This paper describes our studies on the partitioning of actinides from high level liquid waste of PUREX origin employing a supported liquid membrane technique. The process uses a solution of DHDECMPO in n-dodecane as a carrier with poly tetra fluoro ethylene support and a mixture of citric acid, formic acid and hydrazine hydrate as a receiving phase. Transport studies are carried out for {sup 241}Am under different experimental conditions to optimize the transport parameters such as feed acidity, carrier concentration and effect of uranium, Nd(III) and salt concentration in the feed. Studies indicated good transport of neptunium, americium and plutonium across the membrane from a nitric acid medium. Under the optimized conditions the transport of {sup 241}Am has been studied for uranium depleted synthetic PHWR-HLW and finally the technique is used for the partitioning of alpha emitters from an actual HLW after reprocessing. A high concentration of uranium in the feed is found to retard the transport of americium, suggesting the need of prior removal of uranium from the waste. Separation of actinides from uranium-lean simulated as well as actual HLW has been found to be feasible using the above described technique. (orig.)

  8. Extraction and transport of uranium (VI) by polymer inclusion membranes incorporating Di-(2-ethylhexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Di-(2-ethylhexyl) phosphoric acid (D2EHPA) is a commonly used extraction reagent for the separation of uranium from aqueous solutions. Previous work showed the suitability of a polymer inclusion membrane (PIM) based on D2EHPA and poly(vinyl chloride) (PVC) for the extraction and transport of uranium (VI) from sulfate solutions. This study investigates the influence of the main system parameters (i.e. stirring rate, percentage of D2EHPA in the membrane, initial U(VI) concentration, membrane thickness, and concentration of sulfuric acid) on the extraction process. A comprehensive mathematical model, describing the extraction of U(VI), was developed, numerically solved and fitted to the experimental extraction data to determine the values of the extraction constant and the diffusion coefficient of the U(VI)-D2EHPA complex in the membrane. The transport properties of the PVC/D2EHPA PIM have been further improved by adding o-nitrophenyloctyl ether as plasticizer. Fluxes of U(VI) as high as 1.5 x 10-6 mol m-2 S-1 were recorded using a membrane composed of 35% D2EHPA, 10% o-nitrophenyloctyl ether and 55% PVC (m/m) from a solution containing 100 mg L-1 U(VI) in 0.1 mol L-1 H2SO4 into a solution containing 6 mol L-1H2SO4. The effect of the counter-ion on the extraction and back extraction of uranium was also investigated and the membranes were tested for durability over repeated cycles of extraction and back-extraction. It was demonstrated that a 45% D2EHPA and 55% PVC PIM (m/m) allowed U(VI) to be completely separated thermodynamically from a range of common metal cations and kinetically from iron (III). (author)

  9. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    Science.gov (United States)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  10. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  11. Intracellular and transcellular transport of secretory and membrane proteins in the rat hepatocyte

    International Nuclear Information System (INIS)

    The intra- and transcellular transport of hepatic secretory and membrane proteins was studied in rats in vivo using [3H]fucose and [35S]cyteine as metabolic precursors. Incorporated radioactivity in plasma, bile, and liver subcellular fractions was measured and the labeled proteins of the Golgi complex, bile and plasma were separated by SDS-PAGE and identified by fluorography. 3H-radioactivity in Golgi fractions peaked at 10 min post injection (p.i.) and then declined concomitantly with the appearance of labeled glycoproteins in plasma. Maximal secretion of secretory fucoproteins from the Golgi complex occurred between 10 and 20 min p.i. In contrast, the clearance of labeled proteins from Golgi membrane subfractions occurred past 30 min p.i., indicating that membrane proteins leave the Golgi complex at least 10 min later than the bulk of content proteins. A major 80K form of Secretory Component (SC) was identified in the bile by precipitation with an anti IgA antibody. A comparative study of kinetics of transport of 35S-labeled SC and 35S-labeled albumin showed that albumin peaked in bile at ∼45 min p.i., whereas the SC peak occurred at 80 min p.i., suggesting that the transit time differs for plasma and membrane proteins which are delivered to the bile canaliculus (BC)

  12. Dynamic Behavior of a Proton Exchange Membrane Fuel Cell under Transportation Cycle Load

    OpenAIRE

    Garnier, J.; PERA, MC; Hissel, D.; DE-BERNARDINIS, A; KAUFFMANN, JM; Coquery, G.

    2004-01-01

    This paper presents a dynamic modeling of a proton exchange membrane fuel cell (PEMFC) for transportation applications. Based on an electrochemical analysis, it gives an equivalent circuit of the fuel cell which can be used in association with a power electronic converter. Experimental polarization curves and electrochemical impedance spectroscopy (EIS) are used to identify model parameters and to validate simulation results. Finally, experimental responses to a current step and to transporta...

  13. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.

    OpenAIRE

    Kolber, M A; Haynes, D H

    1981-01-01

    The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somew...

  14. Water Transport Analysis in Polymer Electrolyte Membrane Fuel Cells by Magnetic Resonance Imaging

    Institute of Scientific and Technical Information of China (English)

    S.Tsushima; S.Hirai

    2007-01-01

    1 Results Polymer electrolyte fuel cells (PEFCs) have beenintensively developedfor future vehicle applications andon-site power generation owing to its high energy efficiency and high power density.In PEFCs ,appropriatewater management to maintain polymer electrolyte membrane (PEM) hydratedis of great i mportance ,becausethe ion conductivity of membraneislower at lower water content .Consequently,it is of great interest to watercontent and water transport process in PEMs during fuel cell operation.

  15. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, P.; Custódio, M.R. [Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP (Brazil); Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo 04044-020 (Brazil)

    2014-12-15

    Highlights: • Cd{sup 2+} gill cell transport, a non-essential toxic metal, was characterized in a hypo-hyper-regulating mangrove crab Ucides cordatus. • Cd{sup 2+} enter gill cells through Ca{sup 2+} channels and is dependent of intracellular Ca{sup 2+} levels. • Route of entry in gill cells also involves a Cd{sup 2+}/Ca{sup 2+} (2Na) exchanger. • Cd transport depends on Na{sup +}/K{sup +}-ATPase and gill cell electrochemical gradient. • Vanadate inhibits gill Cd{sup 2+} transport and ouabain increase gill Cd{sup 2+} transport. - Abstract: Membrane pathway for intracellular cadmium (Cd{sup 2+}) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd{sup 2+} transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd{sup 2+} concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd{sup 2+} transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl{sub 2} and different inhibitors. Addition of extracellular calcium (Ca{sup 2+}) to the cells affected little the fluorescence of FluoZin, confirming that Cd{sup 2+} was the main ion increasing intracellular fluorescence. Ca{sup 2+} channels blockers (nimodipine and verapamil) decreased Cd{sup 2+} influx as well as vanadate, a Ca{sup 2+}-ATPase blocker. Chelating intracellular Ca{sup 2+} (BAPTA) decreased Cd{sup 2+} influx in gill cells, while increasing intracellular Ca{sup 2+} (caffeine) augmented Cd influx. Cd{sup 2+} and ATP added at different temporal conditions were not effective at increasing intracellular Cd{sup 2+} accumulation. Ouabain (Na{sup +}/K{sup +}-ATPase inhibitor) increased Cd{sup 2+} influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd{sup 2+} influx, a non-essential metal, through the

  16. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.

    Science.gov (United States)

    Bienert, Gerd Patrick; Bienert, Manuela Désirée; Jahn, Thomas Paul; Boutry, Marc; Chaumont, François

    2011-04-01

    Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.

  17. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  18. EFFECTS OF SYNTETIC CANNABINOID RECEPTOR LIGANDS WIN 55.212-2 AND ANANDAMID UPON IN VITRO ACTIVITY OF IMMUNOCOMPETENT CELLS

    Directory of Open Access Journals (Sweden)

    E. G. Lobanova

    2009-01-01

    Full Text Available Abstract. Ability of cannabinoid receptor ligands WIN 55.212-2 and anandamid to inhibit synthesis of TNFα and IL-8 was studied in healthy donors and men with allergic disorders. To establish mechanism of action for investigated substances, the selective antagonists of the СВ1-receptor (SR141716A and for СВ2 - receptor (SR144528 were applied. Studies with whole blood dilutions allowed of approximating in vivo conditions when investigating biological properties of WIN-55.212-2 and anandamid. The synthetic cannabinoids WIN - 55.212-2 and anandamid at a concentration of 3-10 μМ were capable of reducing synthesis of TNFα and IL-8 in lipopolysaccharide-stimulated blood leukocytes, both from healthy donors and subjects with allergic disorders. It was revealed that the antagonist of СВ1-receptor (SR141716A did not exert a receptor-mediated effect for WIN-55.212-2 and anandamid. Meanwhile, a СВ2-receptor antagonist (SR144528 entirely eliminated completely the blocking effect of anandamid and WIN-55.212-2.

  19. Analysis of Heat Transport in a Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    E. Afshari

    2009-01-01

    Full Text Available In this study a two-phases, single-domain and non-isothermal model of a Proton Exchange Membrane (PEM fuel cell has been studied to investigate thermal management effects on fuel cell performance. A set of governing equations, conservation of mass, momentum, species, energy and charge for gas diffusion layers, catalyst layers and the membrane regions are considered. These equations are solved numerically in a single domain, using finite-volume-based computational fluid dynamics technique. Also the effects of four critical parameters that are thermal conductivity of gas diffusion layer, relative humidity, operating temperature and current density on the PEM fuel cell performance is investigated. In low operating temperatures the resistance within the membrane increases and this could cause rapid decrease in potential. High operating temperature would also reduce transport losses and it would lead to increase in electrochemical reaction rate. This could virtually result in decreasing the cell potential due to an increasing water vapor partial pressure and the membrane water dehydration. Another significant result is that the temperature distribution in GDL is almost linear but within membrane is highly non-linear. However at low current density the temperature across all regions of the cell dose not change significantly. The cell potential increases with relative humidity and improved hydration which reduces ohmic losses. Also the temperature within the cell is much higher with reduced GDL thermal conductivities. The numerical model which is developed is validated with published experimental data and the results are in good agreement.

  20. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  1. Large-scale analysis of membrane transport in yeast using invertase reporters.

    Science.gov (United States)

    Dalton, Lauren; Davey, Michael; Conibear, Elizabeth

    2015-01-01

    Transport of membrane proteins between cellular organelles requires the concerted action of many regulatory factors, which aid in cargo recognition and vesicle formation, targeting, and fusion. The yeast Saccharomyces cerevisiae is a useful model system for studying such regulators, due to the availability of genome-wide mutant collections and reporter proteins that provide sensitive biochemical readouts of individual transport pathways. Here, we describe an enzymatic invertase assay for evaluating endocytic recycling using a chimeric GFP-Snc1-Suc2 reporter. Cell surface levels of this reporter can be measured by a colorimetric assay that monitors sucrose hydrolysis at the plasma membrane, using two different methods. The first is a semiquantitative agar overlay assay followed by image densitometry that is suitable for high-throughput screening of arrayed yeast colonies. In the second, more quantitative assay, an enzymatic solution is added to yeast cultures in a multi-well plate and the absorbance is assessed by a plate reader. Furthermore, the modular nature of the chimeric reporter allows alternate transport signals to be introduced, thereby expanding the range of transport pathways that can be evaluated by this method. Together these techniques can be used to explore the function of genes involved in a variety of cellular trafficking pathways.

  2. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.

    Science.gov (United States)

    Devuyst, O

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  3. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  4. Study of saturated hydrocarbons transport through MFI zeolitic membranes; Etude du transport d`hydrocarbures satures dans des membranes zeolithiques de structure MFI

    Energy Technology Data Exchange (ETDEWEB)

    Millot, B.

    1998-12-22

    The main goal of this work was to characterize and model alkanes transport through (MFI) zeolitic membranes. This work was divided in two steps. First, a characterization of alkanes sorption equilibria in MFI type zeolite was necessary. The measurements of sorption isotherms and Temperature Programmed Desorption allowed us to deduce: capacity of absorption, variations of the sorption isosteric enthalpy and entropy. A model using two different types of sorption sites in the zeolite was used to explain the presence of several interaction types between molecules and zeolite. The model showed the importance of entropy on the localization of the molecules in the zeolitic channels. Moreover, we studied the permeation of alkanes in zeolitic membranes. The results showed promising properties for the separation of linear and branched alkanes. Even if the behavior is very intricate, the use of the Generalized Maxwell-Stefan equations gave an access to the diffusivities of the linear and mono-branched alkanes. The preliminary modeling of the permeation mixtures results was also obtained. (author) 280 refs.

  5. Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory A. Voth

    2010-11-30

    The solvation and transport of hydrated protons in proton exchange membranes (PEMs) such as NafionTM will be described using a novel multi-state reactive molecular dynamics (MD) approach, combined with large scale MD simulation to help probe various PEM morphological models. The multi-state MD methodology allows for the treatment of explicit (Grotthuss) proton shuttling and charge defect delocalization which, in turn, can strongly influence the properties of the hydrated protons in various aqueous and complex environments. A significant extension of the methodology to treat highly acidic (low pH) environments such as the hydrophilic domains of a PEM will be presented. Recent results for proton solvation and transport in NafionTM will be described which reveal the significant role of Grotthuss shuttling and charge defect delocalization on the excess proton solvation structures and transport properties. The role of PEM hydration level and morphology on these properties will also be described.

  6. Effects of darbepoetin injections on erythrocyte membrane transport protein expressions in humans

    DEFF Research Database (Denmark)

    Rentsch, R.; Damsgaard, Rasmus; Lundby, C.;

    2006-01-01

    ), and the water channel aquaporin 1. Thirteen subjects were injected with NESP once a week for 4 wk. Blood samples were obtained before, during, and after the injection period, and the erythrocyte transport proteins were determined by Western blotting. The NESP injections induced a transient increase......The present study investigated the effects of injected darbepoetin [novel erythropoietin stimulating protein (NESP)] on the density of three erythrocyte membrane transport proteins: the lactate-H+ cotransporter (monocarboxylate transporter 1), the chloride/bicarbonate exchanger 1 (anion exchanger 1...... in hematocrit, red cell volume, and reticulocyte fraction. The density of aquaporin 1 protein was higher (maximal increase +59%) (P injection period compared with the preinjection value and lower (P injection period. The density of anion exchanger 1 protein was higher...

  7. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, H.; Weerth, S.; Schindlbeck, M.; Klein, U.

    1989-07-05

    Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.

  8. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  9. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  10. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  11. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-08-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters.

  12. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.

    Science.gov (United States)

    Shabala, Sergey; Bose, Jayakumar; Fuglsang, Anja Thoe; Pottosin, Igor

    2016-02-01

    Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma. PMID:26507891

  13. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  14. Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE.

    Science.gov (United States)

    Yasuda, Masaki; Iguchi-Yokoyama, Asako; Matsuyama, Shin-ichi; Tokuda, Hajime; Narita, Shin-ichiro

    2009-10-01

    The LolCDE complex is an ATP-binding cassette transporter that mediates the release of newly synthesized lipoproteins from the cytoplasmic membrane of gram-negative bacteria, which results in the initiation of outer-membrane sorting of lipoproteins through the Lol pathway. LolCDE is composed of one copy each of membrane subunits LolC and LolE, and two copies of nucleotide-binding subunit LolD. In this study, we examined the membrane topology of LolC and LolE by PhoA fusion analysis. Both LolC and LolE were found to have four transmembrane segments with a large periplasmic loop exposed to the periplasm. Despite similarities in sequence and topology, the accessibility of a sulfhydryl reagent to Cys introduced into the periplasmic loop suggested that the structure of the periplasmic region differs between LolC and LolE. Inhibition of the release of lipoproteins by the sulfhydryl reagent supported a previous proposal that LolC and LolE have distinct functions. PMID:19809197

  15. Effect of medium-chain glycerides on the membrane transport of D-glucose and sulfanilic acid in the intestinal brush-border membrane vesicles.

    Science.gov (United States)

    Sagara, K; Higaki, K; Yamazaki, A; Hashida, M; Sezaki, H

    1990-01-01

    To clarify the influence of medium-chain glycerides (MCG) on a biological membrane, we investigated the membrane transport of D-glucose and sulfanilic acid in the brush-border membrane (BBM) vesicles pretreated with MCG. The size distribution of the BBM vesicles determined by electron microscopic observation was not significantly different between the vesicles incorporated with MCG and those of the control. However, the amount of D-glucose taken up by the vesicles at an equilibrated stage (30 min) was significantly decreased in the MCG-treated ones based on unit content of protein. Based on these results we estimated the membrane transport of D-glucose and sulfanilic acid in consideration of vesiculation or filter-capturing efficiency in MCG-treated vesicles. The rates of Na+ gradient-independent D-glucose transport and sulfanilic acid transport were significantly greater in MCG-treated vesicles than in the control. On the other hand, the magnitude of overshooting effect in Na+ gradient-dependent uptake of D-glucose in MCG-treated vesicles was maintained similar to the control. Comparison of kinetic parameters for active D-glucose transport at different concentrations indicated that Km and Vmax were not significantly different between MCG-treated and the control vesicles. These results indicated that passive diffusion of D-glucose and sulfanilic acid was significantly increased but Na(+)-glucose cotransporter was not significantly changed by the incorporation of MCG in the intestinal BBM vesicles.

  16. Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Chun Pong; Wirtz, Markus; Hell, Rüdiger

    2014-01-01

    Cysteine is essential for many mitochondrial processes in plants, including translation, iron-sulfur cluster biogenesis and cyanide detoxification. Its biosynthesis is carried out by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) which can be found in the cytosol, plastids and mitochondria. Mutants lacking one compartment-specific OAS-TL isoform show viable phenotypes, leading to the hypothesis that the organellar membranes are permeable to substrates and products of the cysteine biosynthetic pathway. In this report, we show that exogenouslly supplied [(35)S]cysteine accumulates in the mitochondrial fraction and is taken up into isolated mitochondria for in organello protein synthesis. Analysis of cysteine uptake by isolated mitochondria and mitoplasts indicates that cysteine is transported by multiple facilitated mechanisms that operate in a concentration gradient-dependent manner. In addition, cysteine uptake is dependent mainly on the ΔpH across the inner membrane. The rates of mitochondrial cysteine transport can be mildly altered by specific metabolites in the cyanide detoxification-linked sulfide oxidation, but not by most substrates and products of the cysteine biosynthetic pathway. Based on these results, we propose that the transport of cysteine plays a pivotal role in regulating cellular cysteine biosynthesis as well as modulating the availability of sulfur for mitochondrial metabolism.

  17. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza;

    2015-01-01

    role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestine, while pan-specific Pmca antibodies...... the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In human kidney, a similar pattern of distribution was observed, with highest PMCA4 expression in NCC positive tubules. Electron microscopy demonstrated Pmca4 localization...... in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments, but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing...

  18. Heinrich Wieland--prize lecture. Transport of proteins across mitochondrial membranes.

    Science.gov (United States)

    Neupert, W

    1994-03-01

    mitochondrial processing peptidase which cleaves signal sequences after import of preproteins into the matrix. Thus, the study of transport of polypeptides through the mitochondrial membranes does not only contribute to the understanding of how biological membranes facilitate the penetration of macromolecules but also provides novel insights into the structure and function of this organelle. PMID:8043971

  19. Small Molecule Membrane Transporters in the Mammalian Podocyte: A Pathogenic and Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    2014-11-01

    Full Text Available The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development.

  20. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes.

    Science.gov (United States)

    Epperla, Chandra Prakash; Mohan, Nitin; Chang, Che-Wei; Chen, Chia-Chun; Chang, Huan-Cheng

    2015-12-01

    Recently discovered tunneling nanotubes (TNTs) are capable of creating intercellular communication pathways through which transport of proteins and other cytoplasmic components occurs. Intercellular transport is related to many diseases and nanotubes are potentially useful as drug-delivery channels for cancer therapy. Here, we apply fluorescent nanodiamond (FND) as a photostable tracker, as well as a protein carrier, to illustrate the transport events in TNTs of human cells. Proteins, including bovine serum albumin and green fluorescent protein, are first coated on 100-nm FNDs by physical adsorption and then single-particle tracking of the bioconjugates in the transient membrane connections is carried out by fluorescence microscopy. Stop-and-go and to-and-fro motions mediated by molecular motors are found for the active transport of protein-loaded FNDs trapped in the endosomal vehicles of human embryonic kidney cells (HEK293T). Quantitative analysis of the heterotypical transport between HEK293T and SH-SY5Y neuroblastoma cells by flow cytometry confirm the formation of open-ended nanotubes between them, despite that their TNTs differ in structural components. Our results demonstrate the promising applications of this novel carbon-based nanomaterial for intercellular delivery of biomolecular cargo down to the single-particle level.

  1. Membrane vesicles: A simplified system for studying auxin transport. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1989-12-31

    Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA{sup {minus}} + nH{sup +}), driven by both the pH gradient and membrane voltage. Such a symport should be highly accumulative, however, with a lipophilic weak acid such as IAA, net diffusive efflux of IAAH whenever IAAHI{sub i} > IAAH{sub o} would constitute a leak. (3) A third model sees a pH change driven IAA uptake and saturable symport enhanced by internal binding sites. Following pH gradient-driven accumulation of IAA, the anion may bind to an intravesicular site, permitting further uptake of IAA. NPA, by blocking anion efflux, enhances this binding. We have reported that membrane vesicles isolated from actively growing plant tissues are a good system for studying the mechanisms involved in the transport and accumulation of auxin.

  2. THE RELATIONSHIPS BETWEEN PLASMA CHOLESTEROL、TRIGLYCERIDE、HIGH DENSITY LIPOPROTEIN AND ION TRANSPORT ENZYMES IN ERYTHROCYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    符云峰; 王素敏; 卢振敏; 李红

    2002-01-01

    Objective To investigate the relationships between levels of plasma cholesterol (Ch), triglyceride (TG)、high density lipoprotein(HDL) and ion transport enzyme activities in red cell membranes of essential hypertensive patients.Methods Plasma Ch, TG, HDL-c, activites of Na+ -K+ -ATPase and Ca2+-ATPase, Ca2+-binding capacity of interior membrane surface, and membrane Ch, phospholipid(PL) were measured in 32 normotensive (NT) subjects and 55 essential hypertensive patients(HT).Results ①Mean artery pressure(MAP), plasma Ch、TG and membrane Ch levels, and membrane cholesterol/phospholipid(C/P) molar ratio were significantly increased compared with those in NT group, respectively; ②The plasma HDL-c level, the activities of Na+-K+-ATPase and Ca2+-ATPase, and the Ca2+-binding capacity of the interior membrane surface in HT group were significantly lower than those in NT group, respectively.Conclusion The depressed activities of Na+-K+-ATPase and Ca2+-ATPase, and Ca2+-binding capacity of the interior surface in cell membranes are the major evidence of ion transport abnormalities in essential hypertension. The plasma TG and membrance C/P molar ratio-dependent changes in membrane microviscosity seem to be responsible for the modulation of particular ion transport pathways.

  3. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  4. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  5. Mathematical modeling of a carrier-mediated transport process in a liquid membrane.

    Science.gov (United States)

    Ganesan, Subramanian; Anitha, Shanmugarajan; Subbiah, Alwarappan; Rajendran, Lakshmanan

    2013-06-01

    An analysis of the reaction diffusion in a carrier-mediated transport process through a membrane is presented. A simple approximate analytical expression of concentration profiles is derived in terms of all dimensionless parameters. Furthermore, in this work we employ the homotopy perturbation method to solve the nonlinear reaction-diffusion equations. Moreover, the analytical results have been compared to the numerical simulation using the Matlab program. The simulated results are comparable with the appropriate theories. The results obtained in this work are valid for the entire solution domain.

  6. Carrier-mediated transport of rare earth elements through liquid membranes Pt. 4

    International Nuclear Information System (INIS)

    Transport of tervalent REEs - Sc, Y, Ce, Eu, Gd, Tm, Yb - from nitrate medium through a liquid membrane containing TBP in n-dodecane, impregnated on a flat-sheet nucleoporous support, has been studied as a function of time and initial metal concentration, salting-out agent concentration and pH of the feed phase. Influences of various complexing agents dissolved in the strip phase was investigated, too. Adding a suitable amount of EDTA into the feed phase, separation of binary mixtures of REEs was experimentally achieved. (author) 15 refs.; 8 figs.; 7 tabs

  7. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  8. Molecular dynamics simulations of Na+/Cl--dependent neurotransmitter transporters in a membrane-aqueous system

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.;

    2007-01-01

    We have performed molecular dynamics simulations of a homology model of the human serotonin transporter (hSERT) in a membrane environment and in complex with either the natural substrate S-HT or the selective serotonin reuptake inhibitor escitaloprom. We have also included a transporter homologue...

  9. Membrane topology of the Na+/citrate transporter CitS of Klebsiella pneumoniae by insertion mutagenesis

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    The sodium ion dependent citrate transporter of Klebsiella pneumoniae (CitS) is a member of the bacterial 2-hydroxycarboxylate transporter family. Membrane topology models of the protein. largely based on reporter molecule fusions to C-terninally truncated CitS molecules, indicate that the protein t

  10. CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in "Arabidopsis thaliana"

    Science.gov (United States)

    Potassium (K(+)) is essential for plant growth and development, yet the molecular identity of many K(+) transporters remains elusive. Here we characterized cation/H(+) exchanger (CHX) 14 as a plasma membrane K(+) transporter. "CHX14" expression was induced by elevated K(+) and histochemical analysis...

  11. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors.

    Science.gov (United States)

    Duan, Haichuan; Hu, Tao; Foti, Robert S; Pan, Yongmei; Swaan, Peter W; Wang, Joanne

    2015-11-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1-3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC₅₀ = 1.4 ± 0.2 µM) over OCT1 (IC₅₀ = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1-3. PMID:26285765

  12. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    Science.gov (United States)

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  13. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    Science.gov (United States)

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  14. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    Science.gov (United States)

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  15. Heterogeneity of membrane transport quantified by the analysis of a unidirectional flux transient of charged tracer.

    Science.gov (United States)

    Bass, L; Maloney, L V; Young, M O

    1989-05-01

    A planar mosaic membrane consists of patches, each with a given area, diffusion coefficient, and mobility of charged tracer; a common electric field, constant in space and time, lies across all the patches. Given the properties of the patches, the transient of the total unidirectional flux (summed over the patches) is predictable. Here we deal with the inverse problem: Given only the observed transient of the total unidirectional flux (as defined experimentally by Ussing), the unknown transport heterogeneity of the mosaic membrane is to be analyzed. Results obtained previously for uncharged tracers are generalized to include effects of the field. In particular, the ratio of the arithmetic and harmonic means (both area-weighted) of the diffusion coefficients, evaluated over the membrane, is expressed in terms of only the observed transient and the field strength and is used to characterize the heterogeneity; and the unique exact solution of the inverse problem for two kinds of patches is recovered at any field strength. If the mosaic consists of n distinct kinds of patches, a sweep of the field strength from low to high values reveals (at most) n steplike shapes in the time course of the total unidirectional flux (normalized to its final steady value), which permit an approximate analysis of the heterogeneity by elementary means. PMID:2520165

  16. Ammonium across a Selective Polymer Inclusion Membrane: Characterization, Transport, and Selectivity.

    Science.gov (United States)

    Casadellà, Anna; Schaetzle, Olivier; Loos, Katja

    2016-05-01

    The recovery of ammonium from urine requires distinguishing and excluding sodium and potassium. A polymer inclusion membrane selective for ammonium is developed using an ionophore based on pyrazole substituted benzene. The interactions of the components are studied, as well as their effect on transport and selectivity. Spectroscopic and thermogravimetric measurements show no extensive physical interactions of the components, and that the plasticizer reduces the intermolecular forces (rigidity) of the membrane. The ionophore turns the membrane more rigid, although it increases its swelling degree and therefore the affinity of cations. A ratio of plasticizer (DEHP) and polymer (PVC) of 1:3 in mass gives the highest ammonium flux. Tested contents of ionophore (2 and 5 wt%) show that the higher the content of the ionophore, the fastest the flux is (7.5 × 10(-3) mmol cm(-2) h(-1) ). Selectivity of NH4 (+) over Na(+) and over K(+) is reduced from 13.07 to 9.33 and from 14.15 to 9.57 correspondingly. PMID:27062504

  17. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  18. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    Science.gov (United States)

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols. PMID:26721269

  19. Characterization of transport of calcium by microsomal membranes from roots maize

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, M.A.

    1985-01-01

    This study investigates calcium transport by membranes of roots of maize isolated by differential centrifugation. The preparation was determined to be enriched in plasma membrane using market enzyme and electron microscopy. Using the /sup 45/Ca filtration technique and liquid scintillation counting, vesicular calcium uptake was shown to be stimulated by added calmodulin and specific for and dependent on ATP. Conditions for maximal calcium accumulation were found to be 30 min incubation in the presence of 5 mM ATP, 5 mM MgCl/sub 2/, 50 ..mu..M CaCl/sub 2/, at 23/sup 0/C, and at pH 6.5. Calcium uptake was inhibited by the ionophores A23187, X-537A, and ionomycin. Sodium fluoride, ruthenium red, and p-chloromercuribenzoate completely inhibited transport: diamide and vanadate produced slight inhibition; caffeine, caffeic acid, oligomycin, and ouabain produced little or no inhibition. Chlorpromazine, W7, trifluoperazine, and R 24 571 inhibit calcium uptake irrespective of added calmodulin, while W5 showed little effect on uptake. Verapamil, nifedipine, cinnarizine, flunarizine, lidoflazine, and diltiazem decreased calcium uptake by 17%-50%. Electron microscopic localization of calcium by pyroantimonate showed vesicles incubated with calmodulin and ATP showed the greatest amount of precipitate. These results suggest that these vesicles accumulate calcium in an ATP-dependent, calmodulin-stimulated manner.

  20. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane.

    Science.gov (United States)

    Mohammadi, Tamimount; van Dam, Vincent; Sijbrandi, Robert; Vernet, Thierry; Zapun, André; Bouhss, Ahmed; Diepeveen-de Bruin, Marlies; Nguyen-Distèche, Martine; de Kruijff, Ben; Breukink, Eefjan

    2011-04-20

    Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes. PMID:21386816

  1. Design of an ion transport membrane reactor for application in fire tube boilers

    International Nuclear Information System (INIS)

    A design of an ITM (ion transport membranes) reactor is introduced in a two-pass fire tube boiler furnace to produce steam for power generation toward the ZEPP (zero emission power plant) applications. Oxygen separation, combustion and heat exchange occur in the first pass containing the multiple-units ITM reactor. In the second pass, heat exchange between the combustion gases and the surrounding water at 485 K (Psat = 20 bar) occurs mainly by convection. The emphasis is to extract sufficient oxygen for combustion while maintaining the reactor size as compact as possible. Based on a required power in the range of 5–8 MWe, the fuel and gases flow rates were calculated. Accordingly, the channel width was determined to maximize oxygen permeation flux and keep the viscous pressure drop within a safe range for fixed reactor length of 1.8 m. Three-dimensional simulations were conducted for both counter and co-current flow configurations. Counter-current flow configuration proved its suitability in fire tube boilers for steam generation over the co-current flow configuration. The resultant reactor consists of 12,500 ITM units with a height of 5 m, membrane surface area of 2700 m2 and a total volume of 45.45 m3. - Highlights: • A novel two-path fire tube boiler design is presented utilizing ITMs (ion transport membranes). • A new multi-unit ITM reactor design for boiler furnace substitution is presented. • Flow rates have been optimized for maximum oxygen flux and power generation. • Counter-current flow configuration is much more efficient than co-current flow. • Total number of ITM units was calculated to produce power of 5:8 MWe

  2. Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Noy, A; Huser, T; Eaglesham, D; Bakajin, O

    2004-08-25

    A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.

  3. Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life.

    Science.gov (United States)

    Mooij, Miriam G; van de Steeg, Evita; van Rosmalen, Joost; Windster, Jonathan D; de Koning, Barbara A E; Vaes, Wouter H J; van Groen, Bianca D; Tibboel, Dick; Wortelboer, Heleen M; de Wildt, Saskia N

    2016-07-01

    Human hepatic membrane-embedded transporter proteins are involved in trafficking endogenous and exogenous substrates. Even though impact of transporters on pharmacokinetics is recognized, little is known on maturation of transporter protein expression levels, especially during early life. We aimed to study the protein expression of 10 transporters in liver tissue from fetuses, infants, and adults. Transporter protein expression levels [ATP-binding cassette transporter (ABC)B1, ABCG2, ABCC2, ABCC3, bile salt efflux pump, glucose transporter 1, monocarboxylate transporter 1, organic anion transporter polypeptide (OATP)1B1, OATP2B1, and organic cation/carnitine transporter 2) were quantified using ultraperformance liquid chromatography tandem mass spectrometry in snap-frozen postmortem fetal, infant, and adult liver samples. Protein expression was quantified in isolated crude membrane fractions. The possible association between postnatal and postmenstrual age versus protein expression was studied. We studied 25 liver samples, as follows: 10 fetal [median gestational age 23.2 wk (range 16.4-37.9)], 12 infantile [gestational age at birth 35.1 wk (27.1-41.0), postnatal age 1 wk (0-11.4)], and 3 adult. The relationship of protein expression with age was explored by comparing age groups. Correlating age within the fetal/infant age group suggested four specific protein expression patterns, as follows: stable, low to high, high to low, and low-high-low. The impact of growth and development on human membrane transporter protein expression is transporter-dependent. The suggested age-related differences in transporter protein expression may aid our understanding of normal growth and development, and also may impact the disposition of substrate drugs in neonates and young infants. PMID:27103634

  4. Uptake of auxins into membrane vesicles isolated from pea stems: an in vitro auxin transport system

    Energy Technology Data Exchange (ETDEWEB)

    Slone, J.H.

    1985-01-01

    The objective of this research was to test the applicability of the chemiosmotic theory of auxin transport to a subcellular system. Membrane vesicles were isolated from the basal portion of the third internode of etiolated pea plants (Pisum sativum L. var. Alaska) by differential centrifugation. Uptake of auxin was determined by adding /sup 14/C-labeled indoleacetic acid (IAA) to vesicles. Nigericin, a monovalent cation ionophore, and the electrogenic protonophore, carbonyl-cyanide m-chlorophenylhydrazone (CCCP), at micromolar concentrations abolished saturable uptake. Bursting vesicles by sonication, osmotic shock and freeze/thawing also eliminated saturable uptake. As the temperature increased from 0 to 30/sup 0/C, saturable uptake decreased markedly. Nonsaturable auxin uptake was less affected by these treatments. The pH gradient-dependent uptake of auxin appeared to be a transmembrane uptake of auxin into the vesicles rather than surface binding. Unlabeled IAA, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-naphthaleneacetic acid (NAA) at low concentrations reduced the saturable accumulation of (/sup 14/C)IAA in vesicles, while phenylacetic acid, benzoic acid, and 1-NAA were effective only at high concentrations. Kinetic analysis revealed two types of sites: a high affinity site with an uptake capacity of 25 to 40 pmoles/g tissue, and a low affinity site with an uptake capacity of 260 to 600 pmole/g tissue, fresh wt. In conclusion, several principal elements of an auxin transport system, as specific by the chemiosmotic theory of polar auxin transport, were present in membrane vesicles isolated from relatively mature pea stem tissue. However, one important aspect of the theory was not demonstrated in this in vitro system - a TIBA/NPA-sensitive auxin efflux. The kinetics and specificity of auxin uptake strongly suggested that this system was physiologically significant.

  5. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    Science.gov (United States)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  6. A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations.

    Directory of Open Access Journals (Sweden)

    Hubert Charles

    Full Text Available Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system.

  7. Proton transport in additives to the polymer electrolyte membrane for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Pia

    2011-03-21

    The enhancement of proton transport in polymer electrolyte membranes is an important issue for the development of fuel cell technology. The objective is a material providing proton transport at a temperature range of 350 K to 450 K independent from a purely water based mechanism. To enhance the PEM properties of standard polymer materials, a class of additives is studied by means of atomistic simulations consisting of functionalised mesoporous silicon dioxide particles. The functional molecules are imidazole or sulphonic acid, covalently bound to the surface via a carbon chain with a surface density of about 1.0 nm{sup -2} groups. At first, the proton transport mechanism is explored in a system of functional molecules in vacuum. The molecules are constrained by the terminal carbon groups according to the geometric arrangement in the porous silicon dioxide. The proton transport mechanism is characterised by structural properties obtained from classical molecular dynamics simulations and consists of the aggregation of two or more functional groups, a barrier free proton transport between these groups followed by the separation of the groups and formation of new aggregates due to fluctuations in the hydrogen bond network and movement of the carbon chain. For the different proton conducting groups, i.e. methyl imidazole, methyl sulphonic acid and water, the barrier free proton transport and the formation of protonated bimolecular complexes were addressed by potential energy calculations of the density functional based tight binding method (DFTB). For sulphonic acid even at a temperature of 450 K, relatively stable aggregates are formed, while most imidazole groups are isolated and the hydrogen bond fluctuations are high. However, high density of groups and elevated temperatures enhance the proton transport in both systems. Besides the anchorage and the density of the groups, the influence of the chemical environment on the proton transport was studied. Therefore, the

  8. Regulative effect of anandamide-mediated cannabinoid receptor in rats with visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Yu-qin HE

    2012-11-01

    Full Text Available Objective  To investigate the role of anandamide(ANA-mediated cannabinoid receptor 1(CB1 on the acquisition of visceral hypersensitivity in rats, and explore its underlying mechanism. Methods  The visceral hypersensitivity non-noxious/noxious colorectal distension (NNCRD/NCRD model of rat was reproduced by ovalbumin (OVA sensitization combined with NNCRD/NCRD. Fifty-four rats were randomly divided into control group (n=7, saline+CRD group (n=7, OVA+CRD+dimethyl sulfoxide (DMSO group (n=8, OVA+CRD+different concentrations of ANA (0.5, 5.0, 10.0mg/kg groups (8 each, and OVA+CRD+ANA+AM251 group (n=8. The expression and quantitative assessment of CB1 were monitored by immunoflurorescence and laser scanning confocal analysis. The visceral sensitivity was evaluated by the area under curve (AUC of myoelectrical activity of abdominal wall muscle. Results  By NCRD at 80mmHg, the density of CB1 immunofluorescence intensity was significantly higher in L4–L6 of the spinal cord of the rats in saline+CRD group compared with that in control group (P 0.05. By NCRD at 80mmHg, the VMR-AUC increased obviously in OVA+CRD+DMSO group as compared with that of saline+CRD group, but it decreased significantly in OVA+CRD+high concentration ANA group (P < 0.05. When AM251 was intravenously given, VMR-AUC increased significantly in OVA+CRD+ANA+AM251 group compared with that in OVA+CRD+different concentrations of ANA groups (P < 0.05. Conclusions Intravenous administration of ANA may mitigate the visceral nociception induced by basic OVAsensitization combined with NCRD stimulation in CB1-mediated manner. It indicated that anandamide-mediated CB1 cannabinoid receptor may regulate the development and maintenance of visceral hypersensitivity.

  9. Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle.

    Directory of Open Access Journals (Sweden)

    Maria Gracia Gervasi

    Full Text Available Mammalian oviduct acts as a reservoir for spermatozoa and provides an environment in which they may compete for the opportunity to fertilize the oocyte. Whilst in the oviduct spermatozoa undergo capacitation essential for fertilization. Sperm-oviduct interaction is essential for sperm capacitation and is a tightly regulated process influenced by the local microenvironment. Previously we reported that the endocannabinoid anandamide (AEA regulates sperm release from epithelial oviductal cells by promoting sperm capacitation. The aims of this work were to measure the AEA content and to characterize the main AEA metabolic pathway in the bovine oviduct and determine how these change through the oestrous cycle. In this study, the levels of AEA and two other N-acylethanolamines, N-oleoylethanolamine and N-palmitoylethanolamine, were measured in bovine oviduct collected during different stages of oestrous cycle by ultra high performance liquid chromatography tandem mass spectrometry. Results indicated that intracellular oviductal epithelial levels of all three N-acylethanolamines fluctuate during oestrous cycle. Anandamide from oviductal fluid also varied during oestrous cycle, with the highest values detected during the periovulatory period. Endocannabinoid levels from ipsilateral oviduct to ovulation were higher than those detected in the contralateral one, suggesting that levels of oviductal AEA may be regulated by ovarian hormones. The expression and localization of N-acylethanolamines metabolizing enzymes in bovine oviduct were also determined by RT-PCR, Western blot, and immunohistochemistry but no change was found during the oestrous cycle. Furthermore, nanomolar levels of AEA were detected in follicular fluids, suggesting that during ovulation the mature follicle may contribute to oviductal AEA levels to create an endocannabinoid gradient conducive to the regulation of sperm function for successful fertilization.

  10. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    Science.gov (United States)

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  11. Uphill transport driven by hydrolysis of a complex partitioned into a liquid membrane: application to the preconcentration of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J.A.; Bhatnagar, A.

    1988-01-01

    AsI/sub 3/ is demonstrated to partition from a 9 M HCl, 0.10 M KI, 0.10 M asorbic acid solution into kerosene and dodecane membranes which do not contain complexing agents. Subsequent hydrolysis at the membrane receiver interface causes a transport of As against its concentration gradient. A 60 minute experiment with a 4 mL receiver solution and 200 mL sample permits the preconcentration of As by a factor of 16 +- 0.5. The interferences of aluminum and phosphate on the graphite furnace atomic absorption spectrometric determination of As are eliminated. This transport mechanism, which has not been previously reported, may allow the range of species which can be preconcentrated by transport across supported liquid membranes to be significantly extended.

  12. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  13. ABC transporters in CSCs membranes as a novel target for treating tumour relapse

    Directory of Open Access Journals (Sweden)

    LAURA eZINZI

    2014-07-01

    Full Text Available CSCs are responsible for the high rate of recurrence and chemoresistance of different type of cancers. The current antineoplastic agents, able to inhibit bulk replicating cancer cells and radiation treatment, were found inefficacious towards CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC transporters family and the activation of different signaling pathway (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumour therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach in which specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation and cytotoxic activity towards CSCs and the corresponding differentiated tumour cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active towards MDR pumps on CSCs isolated by tumour specimens.

  14. Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency.

    Science.gov (United States)

    Wang, Yizhou; Hills, Adrian; Blatt, Michael R

    2014-04-01

    Stomatal transpiration is at the center of a crisis in water availability and crop production that is expected to unfold over the next 20 to 30 years. Global water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is expected to double again before 2030, driven mainly by irrigation and agriculture. Guard cell membrane transport is integral to controlling stomatal aperture and offers important targets for genetic manipulation to improve crop performance. However, its complexity presents a formidable barrier to exploring such possibilities. With few exceptions, mutations that increase water use efficiency commonly have been found to do so with substantial costs to the rate of carbon assimilation, reflecting the trade-off in CO₂ availability with suppressed stomatal transpiration. One approach yet to be explored in detail relies on quantitative systems analysis of the guard cell. Our deep knowledge of transport and homeostasis in these cells gives real substance to the prospect for reverse engineering of stomatal responses, using in silico design in directing genetic manipulation for improved water use and crop yields. Here we address this problem with a focus on stomatal kinetics, taking advantage of the OnGuard software and models of the stomatal guard cell recently developed for exploring stomatal physiology. Our analysis suggests that manipulations of single transporter populations are likely to have unforeseen consequences. Channel gating, especially of the dominant K⁺ channels, appears the most favorable target for experimental manipulation. PMID:24596330

  15. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    -4 protein content. Glucose transport normalized to GLUT-4 protein content also increased with exercise, suggesting increased intrinsic activity of GLUT-4. Furthermore, exercise resulted in a 1.4-fold increase in sarcolemmal vesicle-associated membrane protein (VAMP-2) content, suggesting that muscle...... contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport....

  16. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    Directory of Open Access Journals (Sweden)

    John J. Low

    2012-02-01

    Full Text Available In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG NMR technique that combines advantages of high field (17.6 T NMR and high magnetic field gradients (up to 30 T/m. This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

  17. Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.

    Science.gov (United States)

    Vazquez, Hector M; Vionnet, Christine; Roubaty, Carole; Mallela, Shamroop K; Schneiter, Roger; Conzelmann, Andreas

    2016-07-01

    While most yeast enzymes for the biosynthesis of glycerophospholipids, sphingolipids and ergosterol are known, genes for several postulated transporters allowing the flopping of biosynthetic intermediates and newly made lipids from the cytosolic to the lumenal side of the membrane are still not identified. An E-MAP measuring the growth of 142'108 double mutants generated by systematically crossing 543 hypomorphic or deletion alleles in genes encoding multispan membrane proteins, both on media with or without an inhibitor of fatty acid synthesis, was generated. Flc proteins, represented by 4 homologous genes encoding presumed FAD or calcium transporters of the ER, have a severe depression of sphingolipid biosynthesis and elevated detergent sensitivity of the ER. FLC1, FLC2 and FLC3 are redundant in granting a common function, which remains essential even when the severe cell wall defect of flc mutants is compensated by osmotic support. Biochemical characterization of some other genetic interactions shows that Cst26 is the enzyme mainly responsible for the introduction of saturated very long chain fatty acids into phosphatidylinositol and that the GPI lipid remodelase Cwh43, responsible for introducing ceramides into GPI anchors having a C26:0 fatty acid in sn-2 of the glycerol moiety can also use lyso-GPI protein anchors and various base resistant lipids as substrates. Furthermore, we observe that adjacent deletions in several chromosomal regions show strong negative genetic interactions with a single gene on another chromosome suggesting the presence of undeclared suppressor mutations in certain chromosomal regions that need to be identified in order to yield meaningful E-map data. PMID:27462707

  18. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle......Maximally effective concentrations of vanadate (a phosphotyrosine phosphatase inhibitor) increase glucose transport in muscle less than maximal insulin stimulation. This might be due to vanadate-induced decreased intrinsic activity of GLUT4 accompanying GLUT4 translocation. Thus, the effect of...

  19. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  20. Transport of Indium, Gallium and Thallium Metal Ions Through Chromatographic Fiber Supported Solid Membrane in Acetylacetone Containing Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    Abaji Gaikwad

    2011-01-01

    The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent system has been explored. The fibers supported solid membranes were prepared with chemical synthesis from cellulose fibers and citric acid with the carboxylic acid ion exchange groups introduced. The experimental variables, such as concentration of metal ions (10^-2 to 10^-4 mol.L^-1) in the source solution, mixed solvent composition [for exampl, e, acetylacetone, (2,4-pentanedione), (HAA) 20% (by volume), 1,4-dioxane 10% to 60% and HC1 0.25 to 2 mol.L^-1] in the receiving phase and stirring speed (50-130 r.min ) of the bulk source and receiving phase, were explored. The efficiency of mixed solvents for the transport of metal ions from the source to receiving phase through the fiber supported solid membrane was evaluated. The combined ion exchange solvent extraction (CIESE) was observed effective for the selective transport of thallium, indium and gallium metal ions through fiber supported solid membrane in mixed solvents. The oxonium salt formation in the receiving phase enhances thallium, indium and gallium metal ion transport through solid membrane phase. The selective transport of thallium metal ions from source phase was observed from indium and gallium metal ions in the presence of hydrochloric acid in organic solvents in receiving phase. The separation of thallium metal ions from the binary mixtures of Be(II), Ti(IV), AI(III) Ca(II), Mg(II), K (I), La(III) and Y(III) was carried out in the mixed solvent system using cellulose fiber supported solid membrane.

  1. Multivariate analysis of the transport in an ion exchange membrane bioreactor for removal of anionic micropollutants from drinking water.

    Science.gov (United States)

    Ricardo, A R; Velizarov, S; Crespo, J G; Reis, M A M

    2011-01-01

    The present study focuses on investigating the effects of biological compartment conditions on the transport of nitrate and perchlorate in an Ion Exchange Membrane Bioreactor (IEMB). In this hybrid process, the transport depends not only on the membrane properties but also on the biological compartment conditions. The experiments were planned according to the Plackett-Burman statistical design in order to cover a broader range of experimental conditions, under which a previously developed mechanistic transport model was not able to predict correctly the transport fluxes of the target pollutants. Using Principal Component Analysis, it was possible to identify not only the concentrations of target (nitrate and perchlorate) and of major driving counter-ion (chloride) but also those of some biomedium components (e.g. ammonia, ethanol and sulphate) as variables that affect the transport rate of micropollutants across the membrane. These conclusions are based on the loadings of the two first principal components that describe 84% of the data variance. The present study also revealed that the hydraulic retention time and the hydrodynamic conditions in the biocompartment have a minor contribution to the micropollutants transport. The results obtained are important for process optimization purposes. PMID:21977639

  2. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi.

    Science.gov (United States)

    Schumacher, Marc M; Jun, Dong-Jae; Jo, Youngah; Seemann, Joachim; DeBose-Boyd, Russell A

    2016-07-01

    UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. Previously, we found that sterols trigger binding of UBIAD1 to endoplasmic reticulum (ER)-localized HMG-CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids, including GGpp. This binding inhibits sterol-accelerated degradation of reductase, which contributes to feedback regulation of the enzyme. The addition to cells of geranylgeraniol (GGOH), which can become converted to GGpp, triggers release of UBIAD1 from reductase, allowing for its maximal degradation and permitting ER-to-Golgi transport of UBIAD1. Here, we further characterize geranylgeranyl-regulated transport of UBIAD1. Results of this characterization support a model in which UBIAD1 continuously cycles between the ER and medial-trans Golgi of isoprenoid-replete cells. Upon sensing a decline of GGpp in ER membranes, UBIAD1 becomes trapped in the organelle where it inhibits reductase degradation. Mutant forms of UBIAD1 associated with Schnyder corneal dystrophy (SCD), a human eye disease characterized by corneal accumulation of cholesterol, are sequestered in the ER and block reductase degradation. Collectively, these findings disclose a novel sensing mechanism that allows for stringent metabolic control of intracellular trafficking of UBIAD1, which directly modulates reductase degradation and becomes disrupted in SCD. PMID:27121042

  3. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  4. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction.

    Science.gov (United States)

    Harold, F M; Baarda, J R

    1968-12-01

    We studied the effect of compounds that uncouple oxidative phosphorylation on membrane function in Streptoccocus faecalis, an organism which relies upon glycolysis for the generation of metabolic energy. At low concentrations (ranging from 10(-7) to 10(-4)m), tetrachlorosalicylanilide, tetramethyldipicrylamine, carbonylcyanide m-chlorophenylhydrazone, pentachlorophenol, and dicoumarol strongly inhibited energy-dependent transport of rubidium, phosphate, and certain amino acids. However, these compounds had little effect on the generation of adenosine triphosphate via glycolysis or on its utilization for the synthesis of macromolecules. They also did not seriously inhibit uptake of those monosaccharides and amino acids which do not require concurrent metabolism. It is proposed that the uncouplers interfere with the utilization of metabolic energy for membrane transport. The uncouplers accelerated the translocation of protons across the cytoplasmic membrane. It appears that a proton-impermeable membrane is required for transport, perhaps, because a proton gradient is involved in the coupling of metabolic energy to the translocation of substrates across the membrane. PMID:4177737

  5. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  6. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  7. MEMBRANE MOBILITY AND MICRODOMAIN LOCALIZATION OF THE DOPAMINE TRANSPORTER STUDIED BY CONFOCAL FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) AND FRAP

    DEFF Research Database (Denmark)

    Adkins, Erica; (Vægter), Christian Bjerggaard; van Deurs, Bo;

    FCS measurements in transiently transfected N2A neuroblastoma cells were impaired by photobleachning suggesting immobilization of the transporter in the membrane. This was confirmed by the use of fluorescence recovery after photobleaching (FRAP), which showed clear recovery of YFP-DAT fluorescence...

  8. Gas transport in metal organic framework–polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure

    NARCIS (Netherlands)

    Hegde, Maruti; Shahid, Salman; Norder, Ben; Dingemans, Theo J.; Nijmeijer, Kitty

    2015-01-01

    We report on how the morphology of the polymer matrix, i.e. amorphous vs. semi-crystalline, affects the gas transport properties in a series of mixed matrix membranes (MMMs) using Cu3(BTC)2 as the metal organic framework (MOF) filler. The aim of our work is to demonstrate how incorporation of Cu3(BT

  9. The role of sacrificial fugitives in thermoplastic extrusion feedstocks onproperties of MgO supports for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kwok, Kawai; Søgaard, Martin;

    2015-01-01

    2014AbstractThree different compositions of MgO compounds were investigated for use in oxygen transport membranes. Porous MgO supports were extruded using different kind (size, morphology and chemistry) of pore formers: A flaky graphite, a spherical graphite and ideal spheres of PMMA. The influen...

  10. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  11. Transport of lanthanide ions through cellulose triacetate membranes containing hinokitiol and flavonol as carriers. [beta-isopropyltropolone and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Masaaki (National Chemical Lab. for Industry, Ibaraki (Japan))

    Fluxes of trivalent lanthanide ions across cellulose triacetate membranes were determined by using hinokitiol (HIPT) and flavonol (HFL) as carriers. The transport of the lanthanides was coupled to flow of hydrogen ions. The effects added anion and the pH in the source phase, and the plasticizer incorporated in the membrane on the lanthanide flux, were examined. In the case of HIPT, the fluxes for the lanthanides from samarium to lutetium were much higher than those for lanthanum to neodymium. In the transport using HFL, the flux increased with decreasing ionic radius of the lanthanide species. The addition of perchlorate of thiocyanate ions to the source phase resulted in a rise in the lanthanide flux. With decreased in pH difference between the aqueous phases, the fluxes using HIPT decreased gradually while those using HFL decreased rapidly. The flux was affected by the type of plasticizer added to the membrane.

  12. Impact of microstructure on oxygen semi-permeation performance of perovskite membranes: Understanding of oxygen transport mechanisms

    Science.gov (United States)

    Reichmann, M.; Geffroy, P.-M.; Richet, N.; Chartier, T.

    2016-08-01

    The influence of dense membrane microstructures on semi permeation performance is still not well understood, and no consensus or explanation can be established from the literature. The apparent discrepancy is likely due to a poor understanding of the oxygen transport mechanisms through the membrane and, specifically, to the impact of the microstructure on the oxygen surface exchange kinetics. The aim of this paper is to provide a better understanding of the impact of microstructures on oxygen transport mechanisms through the membrane. Two reference materials, Ba0.5Sr0.5Fe0.7Co0.3O3 (BSFCo) and La0.5Sr0.5Fe0.7Ga0.3O3 (LSFG) perovskites, are considered to explain the discrepancies observed in the literature.

  13. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C. (New York Medical College, Valhalla (USA))

    1990-05-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of (14C)taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics.

  14. ENERGETICS OF ALANINE, LYSINE, AND PROLINE TRANSPORT IN CYTOPLASMIC MEMBRANES OF THE POLYPHOSPHATE-ACCUMULATING ACINETOBACTER-JOHNSONII STRAIN 210A

    NARCIS (Netherlands)

    VANVEEN, HW; ABEE, T; KLEEFSMAN, AWF; MELGERS, B; KORTSTEE, GJJ; KONINGS, WN; ZEHNDER, AJB

    1994-01-01

    Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV tvas generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic ana

  15. VESICULAR TRANSPORT. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly.

    Science.gov (United States)

    Dodonova, S O; Diestelkoetter-Bachert, P; von Appen, A; Hagen, W J H; Beck, R; Beck, M; Wieland, F; Briggs, J A G

    2015-07-10

    Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.

  16. Selective transport of Ag(Ⅰ)ion across a bulk liquid and polymer membranes incorporated with di-N-benzylated O3N2 donor macrocycles

    Institute of Scientific and Technical Information of China (English)

    A.Nezhadali

    2010-01-01

    The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ)from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ)and Pb(Ⅱ),was studied.The source phases contained equimolar concentrations of the above-mentioned cations,with the source and receiving phases being buffered at pH 5.0 and 3.0,respectively.Ag(Ⅰ)ion transport occurred with a good efficiency from the aqueous source phases across the bulk liquid membrane and polymer membrane(derived from cellulose triacetate)containing ligand 1 as the ionophores,into the aqueous receiving phases.Clear transport selectivity for Ag(Ⅰ)was observed using ligand 1.There was no selectivity for the cations using ligand 2 in the both bulk liquid membrane and polymer membrane transports.

  17. Measurement of Membrane Characteristics Using the Phenomenological Equation and the Overall Mass Transport Equation in Ion-Exchange Membrane Electrodialysis of Saline Water

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tanaka

    2012-01-01

    Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.

  18. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid

    Science.gov (United States)

    Servadio, M; Melancia, F; Manduca, A; di Masi, A; Schiavi, S; Cartocci, V; Pallottini, V; Campolongo, P; Ascenzi, P; Trezza, V

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients. PMID:27676443

  19. Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Shen

    2013-02-01

    Full Text Available The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.

  20. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  1. Simulation of cesium nitrate extraction by a calixarene. Application to supported liquid membranes transport

    International Nuclear Information System (INIS)

    This work fits into the general pattern of the CEA studies on the decontamination of liquid effluents containing long-lived radioactive isotopes. Some calixarenes have proved to be very effective to selectively extract the cesium of aqueous solutions whose composition simulates those of the effluents to be reprocessed. On account of the difficulty of the studied extraction mechanisms, a physical and chemical simulation has been necessary. The system takes into account: 1)a concentrated nitric acid aqueous phase and/or sodium nitrate 2)an organic phase constituted by the diluent 1,2-nitro-phenyl-octyl-ether and 1,3-diisopropoxy-calix(4)arene-couronne-6. The use of concentrated aqueous solutions requires to take into account variations to ideality by the mean of activity coefficients reckoning. The different theories on the reckoning of variations to ideality in aqueous or organic phases are described in the first part. The determination of cesium and sodium nitrates activity coefficients in very concentrated matrices has required an important theoretical and experimental study which is given in the second part. The aim of this study was indeed to complete the thermodynamic data of cesium and sodium nitrates aqueous solutions. The computerized tools required for the modeling are reviewed. The stoichiometry of the extracted species in the organic phase has been determined in the third part. The supported membrane technique is an original method of separation by liquid-liquid extraction. A membrane transport model has been developed and is given in the last part of this work. (O.M.)

  2. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.

    Science.gov (United States)

    Tagliazucchi, Mario; Rabin, Yitzhak; Szleifer, Igal

    2013-10-22

    This work reports a comprehensive theoretical study of the transport-rectification properties of cylindrical nanopores with neutral inner walls and chemically modified outer membrane. The chemical species on the two outer sides of the membrane have charges of opposite sign and can be either surface-confined species (i.e., surface charges) or polyelectrolyte brushes. The advantage of this design over other types of rectifying nanopores is that it requires controlling the composition of the outer walls of the pore (which are easy to access) rather than the inner walls, thus simplifying the fabrication process. Ion-current rectification in nanopores with charged outer walls is ascribed to applied-potential-induced changes in the ionic concentration within the pore. The rectification efficiency is studied as a function of pore length, radius, surface charge and bulk electrolyte concentration. An analytical model is derived for the case of surface-confined charges that predicts the current-potential curves in very good agreement with the numerical calculations. Neutral nanopores with polyelectrolyte-modified outer walls have two distinct advantages compared to surface-charged systems: (i) they exhibit higher rectification factors due to the large charge density immobilized by the polyelectrolyte brushes, and (ii) the applied potential deforms the polyelectrolyte chains toward the oppositely charged electrode. This deformation brings the polyelectrolyte brushes into the pore in the low conductivity state and expels them from the pore in the high conductivity regime. Calculations of the potentials of mean-force suggest that the applied-field-induced conformational changes can be used to control the translocation of cargoes larger than ions, such as proteins and nanoparticles.

  3. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  4. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane

    Science.gov (United States)

    Burns, Jonathan R.; Seifert, Astrid; Fertig, Niels; Howorka, Stefan

    2016-02-01

    Biological ion channels are molecular gatekeepers that control transport across cell membranes. Recreating the functional principle of such systems and extending it beyond physiological ionic cargo is both scientifically exciting and technologically relevant to sensing or drug release. However, fabricating synthetic channels with a predictable structure remains a significant challenge. Here, we use DNA as a building material to create an atomistically determined molecular valve that can control when and which cargo is transported across a bilayer. The valve, which is made from seven concatenated DNA strands, can bind a specific ligand and, in response, undergo a nanomechanical change to open up the membrane-spanning channel. It is also able to distinguish with high selectivity the transport of small organic molecules that differ by the presence of a positively or negatively charged group. The DNA device could be used for controlled drug release and the building of synthetic cell-like or logic ionic networks.

  5. Cation transport across plasticized polymeric membranes containing N,N,N',N'-tetraoctyl-3 oxapentanediamide as the carrier ligand

    International Nuclear Information System (INIS)

    Polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, 2-nitrophenyl n-octyl ether (NPOE) as a solvent and N,N,N',N'-tetraoctyl-3 oxapentanediamide (TODGA) as a carrier were developed. The facilitated transport of lanthanides (La, Eu, Ho, Yb and Lu), actinides (Am, Cm) and fission product (Sr) ions was experimentally investigated using the TODGA-PIMs. It was observed that the present PIMs were very effective to transport Ln(III) and Am(III) ions from the feed phase to the strip phase. The experimental results indicated that the transport was controlled by the diffusion of the ion-carrier complex in the membrane strippant. (author)

  6. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñez, Natalia Maria

    2013-09-03

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  7. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  8. An efficient strategy for small-scale screening and production of archaeal membrane transport proteins in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Pikyee Ma

    Full Text Available BACKGROUND: Membrane proteins play a key role in many fundamental cellular processes such as transport of nutrients, sensing of environmental signals and energy transduction, and account for over 50% of all known drug targets. Despite their importance, structural and functional characterisation of membrane proteins still remains a challenge, partially due to the difficulties in recombinant expression and purification. Therefore the need for development of efficient methods for heterologous production is essential. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen integral membrane transport proteins from Archaea were selected as test targets, chosen to represent two superfamilies widespread in all organisms known as the Major Facilitator Superfamily (MFS and the 5-Helix Inverted Repeat Transporter superfamily (5HIRT. These proteins typically have eleven to twelve predicted transmembrane helices and are putative transporters for sugar, metabolite, nucleobase, vitamin or neurotransmitter. They include a wide range of examples from the following families: Metabolite-H(+-symporter; Sugar Porter; Nucleobase-Cation-Symporter-1; Nucleobase-Cation-Symporter-2; and neurotransmitter-sodium-symporter. Overproduction of transporters was evaluated with three vectors (pTTQ18, pET52b, pWarf and two Escherichia coli strains (BL21 Star and C43 (DE3. Thirteen transporter genes were successfully expressed; only two did not express in any of the tested vector-strain combinations. Initial trials showed that seven transporters could be purified and six of these yielded quantities of ≥ 0.4 mg per litre suitable for functional and structural studies. Size-exclusion chromatography confirmed that two purified transporters were almost homogeneous while four others were shown to be non-aggregating, indicating that they are ready for up-scale production and crystallisation trials. CONCLUSIONS/SIGNIFICANCE: Here, we describe an efficient strategy for heterologous production of

  9. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    Science.gov (United States)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  10. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia;

    2011-01-01

    The ¿-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve...... terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-¿/PKC-d and ERK....../MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  11. Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    2014-12-01

    Full Text Available Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes, consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.

  12. Strategies to improve clinical outcomes in peritoneal dialysis patients: delivered dose and membrane transport.

    Science.gov (United States)

    Churchill, D N

    1998-12-01

    For patients with end-stage renal disease treated with peritoneal dialysis, prospective cohort studies using multivariate statistical analysis have shown an association between greater urea clearance and a decreased relative risk for death. The recommended weekly Kt/V for urea is 2.0, with the corresponding creatinine clearance (CrCl) of 60 L/1.73 m2. This is considered adequate dialysis but fails to define optimum urea and CrCl targets. The assumption that renal and peritoneal clearances are equivalent has been challenged by circumstantial data and is probably untenable. The relative importance of these clearances requires definition. The suggestion that CrCl is a more important indicator of adequacy of dialysis is confounded by association with renal, rather than peritoneal, clearance and perhaps by the early referral and initiation of dialysis. Recent reports have shown an association between increased peritoneal membrane transport and an increased relative risk for technique failure and/or death. Patients with higher peritoneal transport should have greater clearance of urea and creatinine and better clinical outcomes. Possible explanations for this apparent contradiction include the adverse effects of increased glucose absorption, malnutrition, and fluid overload, the latter caused by decreased ultrafiltration. Available data suggest an important role for the failure of ultrafiltration among patients treated with continuous ambulatory peritoneal dialysis (CAPD). Strategies to improve the clearance of urea and creatinine include the preservation of residual renal function and increased peritoneal clearance. Loss of residual renal function may be delayed by the avoidance of nephrotoxic drugs and angiographic dye. Peritoneal clearance can be enhanced by a combination of increased volume and frequency of peritoneal dialysis cycles. Ultrafiltration failure, but not protein loss, can be addressed with shorter cycles with nocturnal peritoneal dialysis. Development of

  13. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Directory of Open Access Journals (Sweden)

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  14. Moisture transport through non-porous hydrophilic membranes used in protective clothing

    Directory of Open Access Journals (Sweden)

    Zhu Fang-Long

    2013-01-01

    Full Text Available The three-step upright cup method was employed to determine the total moisture transfer resistance and the two air layer resistances on both sides of the membrane. The effective moisture diffusion coefficient in air layer between the membrane and water surface was determined by the regressive method, and the effective moisture diffusion coefficient of membrane was calculated. Experiments were conducted on a non-porous hydrophilic thermoplastic polyester elastomer membrane. The moisture transfer process through the membrane was modeled by using the solution-diffusion model. The effects of membrane microstructure on membrane permeation were analyzed based on the solution-diffusion model and experimental data. The results show that the effective diffusion coefficient can be used to evaluate the mass transfer process through the non-porous hydrophilic thermoplastic polyester elastomer membrane.

  15. Physiology of ionophore transport of potassium and sodium ions across cell membranes: valinomycin and 18-crown-6 ether

    OpenAIRE

    Fong, Clifford,

    2015-01-01

    The processes involved in transport of K + and Na + by the carrier ionophores valinomycin and 18-crown-6 ether across cell membranes have been elucidated using quantum mechanical modelling: 1. Formation of the {ionophore-M + } complex: desolvation (∆G desolv) of the central cavity of the ionophore, change in configurational energy T∆S, desolvation of the M(H 2 O) 6-7 +. 2. Desolvation of the {ionophore-M + } complex prior to entering the membrane environment. 3. Permeation through the lipophi...

  16. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica.

    Science.gov (United States)

    Paparoditis, Philipp; Västermark, Ake; Le, Andrew J; Fuerst, John A; Saier, Milton H

    2014-01-01

    Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica. PMID:23969110

  17. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Vladimir; Bluemle, Michael J.; Mann, J. Adin; Zawodzinski, Thomas A. [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7217 (United States); De Castro, Emory S.; Tsou, Yu-Min [E-TEK division, De Nora North America Inc., 41 Veronica Avenue, Somerset, NJ 08873 (United States)

    2006-10-06

    This is the first in a series of papers in which we present state-of-the-art methods demonstrated at Case for the estimation of transport properties in gas diffusion layers (GDLs) for proton exchange membrane fuel cells (PEMFCs). Most of the methods used today for measuring wettability properties of GDLs are related to the external contact angle to water. The external contact angle however does not describe adequately capillary forces acting on the water inside the GDL pores. We show as well that the direct method of estimation of the internal contact angle using goniometry on micrographs is impractical. We propose and describe in this paper a method for estimating the internal contact angle to water and the surface energy of hydrophobic and hydrophilic gas diffusion media. The method was applied to GDLs having different contents of hydrophobic agent and carbon types. The method can be applied separately to different components of the GDL including macro-porous substrates and micro-porous layers. The uncertainty estimates using this method are usually within 3% of the measured value. (author)

  18. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  19. Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy.

    Science.gov (United States)

    Kueng, Angelika; Kranz, Christine; Mizaikoff, Boris

    2005-08-15

    Extracellular adenosine-5'-triphosphate (ATP) is involved in a variety of relevant regulatory mechanisms at a cellular level and has therefore been focus of extensive research. One of the major challenges associated with measuring this key regulatory analyte is the ability to detect and localize extracellular ATP with sufficient spatial and temporal resolution in physiological environments. In this study, scanning electrochemical microscopy (SECM) utilizing an amperometric micro-biosensor based on co-immobilization of the enzymes glucose oxidase and hexokinase is applied for imaging ATP transport through a porous polycarbonate membrane under physiologically relevant conditions. The enzymatic biosensor operates on competitive consumption of the substrate glucose between the immobilized enzymes glucose oxidase and hexokinase involving ATP as a co-substrate. Quantitative determination of the ATP concentration is based on a linear correlation between the glucose consumption and the ATP level. Integration of the amperometric ATP micro-biosensor into a dual micro-disk electrode configuration is achieved by immobilizing the enzymes at one of the micro-disk electrodes while the second disk serves as an unmodified amperometric probe for controlled positioning of the micro-biosensor in close proximity to the sample surface enabling quantification of the obtained current signal. PMID:16023962

  20. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    Energy Technology Data Exchange (ETDEWEB)

    D Freed; P Horanyi; M Wiener; D Cafiso

    2011-12-31

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  1. Coordination of Pancreatic HCO3- Secretion by Protein-Protein Interaction between Membrane Transporters

    Directory of Open Access Journals (Sweden)

    Lee MG

    2001-07-01

    Full Text Available Increasing evidence suggests that protein-protein interaction is essential in many biological processes including epithelial transport. In this report, we discuss the significance of protein interactions to HCO(3(- secretion in pancreatic duct cells. In pancreatic ducts HCO(3(- secretion is mediated by cystic fibrosis transmembrane conductance regulator (CFTR activated luminal Cl(-/HCO(3(- exchange activity and HCO(3(- absorption is achieved by Na(+-dependent mechanisms including Na(+/H(+ exchanger 3 (NHE3. We found biochemical and functional association between CFTR and NHE3. In addition, protein binding through PDZ modules is needed for this regulatory interaction. CFTR affected NHE3 activities in two ways. Acutely, CFTR augmented the cAMP-dependent inhibition of NHE3. In a chronic mechanism, CFTR increases the luminal expression of Na(+/H(+ exchange in pancreatic duct cells. These findings reveal that protein complexes in the plasma membrane of pancreatic duct cells are highly organized for efficient HCO(3(- secretion.

  2. Dose-response effects of systemic anandamide administration in mice sequentially submitted to the open field and elevated plus-maze tests

    Directory of Open Access Journals (Sweden)

    A. Ribeiro

    2009-06-01

    Full Text Available The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor® (18:1:1 and administered ip (0.1 mL/10 g body weight; control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg increased (P < 0.05 the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05 after exposing the animals to the open field test.

  3. Dose-response effects of systemic anandamide administration in mice sequentially submitted to the open field and elevated plus-maze tests.

    Science.gov (United States)

    Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Palermo-Neto, J

    2009-06-01

    The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P open field test.

  4. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.

    Science.gov (United States)

    Martinez-Arca, S; Alberts, P; Zahraoui, A; Louvard, D; Galli, T

    2000-05-15

    How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.

  5. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kürten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target pro

  6. Development of facilitated transport membranes for the separation of olefins from gas streams; Entwicklung von Carriermembranen zur Olefinabtrennung aus Gasstroemen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Chemie

    2001-07-01

    The current work is concerned with the development of highly selective facilitated transport membranes for olefin/paraffin separation. Adsorption measurements with 7 silver salts showed that silver-perchlorate was the most promising carrier material. This carrier was embedded into two different commercial available polyetherblockamides - Pebax trademark 4011 and Pebax trademark 2533 with up to 41 wt.-% of silver ions. The solubility of the carrier in polymer and the influence of humidity on the separation characteristics of the membranes were studied in detail. The aging of the membrane samples was investigated as well. A composite membrane with a top layer of Pebax trademark 2533/silver-perchlorate showed the best performance. Ethylene permeabilities in the range of 0.1 to 0.4 m{sup 3}/m{sup 2} h bar and gas mixture selectivities of 110 to 400 were measured with an humidified equimolar gas mixture of ethylene and ethane. Best results were obtained with membranes manufactured from proposely aging coating solutions and a sub-surface-structure. These membranes showed a permeability coefficient up to 1000 Barrer for ethylene with a gas mixture selectivity of 400. (orig.)

  7. CORRELATION BETWEEN POLYMER PACKING AND GAS TRANSPORT PROPERTIES FOR CO2/N2 SEPARATION IN GLASSY FLUORINATED POLYIMIDE MEMBRANE

    Directory of Open Access Journals (Sweden)

    P. C. TAN

    2016-07-01

    Full Text Available Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity was investigated through a series of 6FDA-DAM:DABA (3:2 polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 µm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation.

  8. How is glucose transported through cell membrane? ¿Cómo se transporta la glucosa a través de la membrana celular?

    OpenAIRE

    Luis Carlos Burgos Herrera; Diana Patricia Díaz Hernández

    2002-01-01

    Glucose is the main energy supply for the cell and requires a transport protein to enter through cell membranes. Two monosacharid transport systems have been described: SGLT (sodium-glucose transporters) and GLUT (glucose transporters). In this article we review the main molecular, biochemical and functional characteristics of these monosacharid transporters. La glucosa es el principal sustrato energético de la célula y para su ingreso requiere una proteína transportadora en la membrana celul...

  9. Quantitative transporter proteomics by liquid chromatography with tandem mass spectrometry: addressing methodologic issues of plasma membrane isolation and expression-activity relationship.

    Science.gov (United States)

    Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D

    2015-02-01

    To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs.

  10. Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

    1994-08-01

    The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

  11. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  12. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas...... diffusion layer, microporous layer, and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation, and mass transfer between phases by a nonequilibrium phase change model....... Furthermore, the presence of irreducible liquid water is taken into account. In order to account for compression, porous media morphology variations are specified based on the gas diffusion layer (GDL) through-plane strain and intrusion which are stated as a function of compression. These morphology...

  13. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport

    NARCIS (Netherlands)

    As, van H.

    2007-01-01

    Water content and hydraulic conductivity, including transport within cells, over membranes, cell-to-cell, and long-distance xylem and phloem transport, are strongly affected by plant water stress. By being able to measure these transport processes non-invasely in the intact plant situation in relati

  14. Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport

    Directory of Open Access Journals (Sweden)

    Wataru Aoi

    2014-01-01

    Full Text Available Protons dissociated from organic acids in cells are partly buffered. If not, they are transported to the extracellular fluid through the plasma membrane and buffered in circulation or excreted in urine and expiration gas. Several transporters including monocarboxylate transporters and Na+/H+ exchanger play an important role in uptake and output of protons across plasma membranes in cells of metabolic tissues including skeletal muscle and the liver. They also contribute to maintenance of the physiological pH of body fluid. Therefore, impairment of these transporters causes dysfunction of cells, diseases, and a decrease in physical performance associated with abnormal pH. Additionally, it is known that fluid pH in the interstitial space of metabolic tissues is easily changed due to little pH buffering capacitance in interstitial fluids and a reduction in the interstitial fluid pH may mediate the onset of insulin resistance unlike blood containing pH buffers such as Hb (hemoglobin and albumin. In contrast, habitual exercise and dietary intervention regulate expression/activity of transporters and maintain body fluid pH, which could partly explain the positive effect of healthy lifestyle on disease prognosis.

  15. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    Science.gov (United States)

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  16. Proton Gradients as a Key Physical Factor in the Evolution of the Forced Transport Mechanism Across the Lipid Membrane

    Science.gov (United States)

    Strbak, Oliver; Kanuchova, Zuzana; Krafcik, Andrej

    2016-04-01

    A critical phase in the transition from prebiotic chemistry to biological evolution was apparently an asymmetric ion flow across the lipid membrane. Due to imbalance in the ion flow, the early lipid vesicles could selectively take the necessary molecules from the environment, and release the side-products from the vesicle. Natural proton gradients played a definitively crucial role in this process, since they remain the basis of energy transfer in the present-day cells. On the basis of this supposition, and the premise of the early vesicle membrane's impermeability to protons, we have shown that the emergence of the proton gradient in the lipid vesicle could be a key physical factor in the evolution of the forced transport mechanism (pore formation and active transport) across the lipid bilayer. This driven flow of protons across the membrane is the result of the electrochemical proton gradient and osmotic pressures on the integrity of the lipid vesicle. At a critical number of new lipid molecules incorporated into the vesicle, the energies associated with the creation of the proton gradient exceed the bending stiffness of the lipid membrane, and overlap the free energy of the lipid bilayer pore formation.

  17. Knock, knock, knocking on muscle doors. Visions on the transport of substrates across the plasma membrane in muscle.

    OpenAIRE

    Zorzano Olarte, Antonio; Fandos Espallargas, César; Palacín Prieto, Manuel

    2001-01-01

    Muscle is a major player in metabolism. It uses large amounts of glucose in the absorptive state and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. Lipid substrates such as fatty acids or ketone bodies are preferentially used by muscle in certain physiological conditions. Muscle is also the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters such as glucose carriers, carnitine, creatine or amino acid tr...

  18. ACTIVE CALCIUM TRANSPORT IN PLASMA MEMBRANE VESICLES FROM DEVELOPING COTYLEDONS OF COMMON BEAN

    Institute of Scientific and Technical Information of China (English)

    黄建中; 陈子元

    1995-01-01

    Plasma membrane vesicles were prepared from the developing cotyledons of common bean (Phaseolus vulgaris L cv Diyundou)by aqueous two-phase partitioning and characterized as to their purity by assaying marker enzymes for other membranes.The putative plasma membrane fraction was minimalyy contaminated by membranes other than plasma membrane and hence was of high purity,It exhibited a Ca2+-dependent ATPase activity,which was inhibited by 1umol/L EB and promoted by calcium ionophore A23187.Such an activity was responsible for the observed ATP dependent 45Ca2+ uptake into inside-out plasma membrane vesicles.This process was stimulated by 0.5μmol/L CaM and 20μmol/L IAA but inhibited by 2μmol/L ABA and abolished by A23187,Possible role of cytoplasmic Ca2+ in mediating phytohormones activity is discussed.

  19. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    Science.gov (United States)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  20. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika M; Samuvel, Devadoss J; Fog, Jacob U;

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent pr...... altering DAT surface expression. In summary, we propose that association of the DAT with lipid microdomains in the plasma membrane and/or the cytoskeleton serves to regulate both the lateral mobility of the transporter and its transport capacity....... protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...... the cytoskeleton-disrupting agent cytochalasin D and the cholesterol-depleting agent methyl-beta-cyclodextrin (mbetaCD) increased the lateral mobility of the YFP-DAT but not that of the EGFP-EGFR. The DAT associated in part with membrane raft markers both in the N2a cells and in rat striatal synaptosomes...

  1. Quantitative visualization of molecular transport through porous membranes: enhanced resolution and contrast using intermittent contact-scanning electrochemical microscopy.

    Science.gov (United States)

    McKelvey, Kim; Snowden, Michael E; Peruffo, Massimo; Unwin, Patrick R

    2011-09-01

    The use of intermittent contact-scanning electrochemical microscopy (IC-SECM) in diffusion-limited amperometric mode to visualize and quantify mass transport through multiporous membranes is described using dentin as a model example. The IC mode of SECM employs the damping of a vertically modulated ultramicroelectrode (UME) to achieve positioning close to the receptor side of a membrane. In this way the UME can detect electroactive species close to the pore exit. A key aspect of IC-SECM is that in addition to the direct current (dc) from the diffusion-limited detection of the analyte, an alternating current (ac) also develops due to the motion of the probe. It demonstrates that this ac signal enhances the spatial resolution of SECM detection and allows the hydrodynamic flow of species to be detected from individual closely spaced pores. The experimental deductions are supported by three-dimensional finite element modeling which allows IC-SECM current maps to be analyzed to reveal transport rates through individual pores. The method described should be widely applicable to multiporous membrane transport.

  2. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    Energy Technology Data Exchange (ETDEWEB)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  3. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  4. Porous ceramic membranes: suspension processing, mechanical and transport properties, and application in the osmotic tensiometer

    OpenAIRE

    Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined with micro-electronic devices. Ceramic membranes have a large potential over their polymer counterparts for applications at high temperature, pressure and in aggressive environments. Ceramic membra...

  5. The Volitional Nature of Nicotine Exposure Alters Anandamide and Oleoylethanolamide Levels in the Ventral Tegmental Area

    Science.gov (United States)

    Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H

    2013-01-01

    Cannabinoid-1 receptors (CB1) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB1 (by AEA and 2-AG) and non-CB1 (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine. PMID:23169348

  6. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses.

  7. Endocannabinoids Anandamide and Its Cannabinoid Receptors in Liver Fibrosis after Murine Schistosomiasis

    Institute of Scientific and Technical Information of China (English)

    Hongyan LIU; Xiao GAO; Ruixian DUAN; Qiao YANG; Yaowen ZHANG; Yongwei CHENG; Yan GUO; Wangxian TANG

    2009-01-01

    This study examined endogenous cannabinoid (ECB)-anandamide (AEA) and its can-nabinoid receptors (CBR) in mice liver with the development of schistosomajaponicum.Mice were infected with schistosoma by means of pasting the cercaria onto their abdomens.Liver fibrosis was pathologically confirmed nine weeks after the infection.High performance liquid chromatography (HPLC) was employed to determine the concentration of AEA in the plasma of mice.Immunofluorescence was used to detect the expression of CBR 1 and CBR2 in liver tissue.Morphological examination showed typical pathological changes,with worm tubercles of schistosoma deposited in the liver tissue,fibrosis around the worm tubercles and infiltration or soakage ofinfiammatory cells.Also,CBRI and CBR2 were present in hepatocytes and hepatic sinusoids of the two groups,but they were obviously enhanced in the schistosoma-infected mice.However,the average optical density of CBR1 in the negative control and fibrosis group was 13.28±7.32 and 30.55±7.78,and CBR2 were 28.13±6.42 and 52.29±4.24 (P<0.05).The levels of AEA in the fibrosis group were significantly increased as compared with those of the control group.The concentrations of AEA were (0.37±0.07) and (5.67±1.34) ng/mL (P<0.05).It is concluded that the expression of endocannabinoids AEA and its cannabinoid receptor CBR were significantly increased in schistosoma-infected mice.Endogenous endocannabinoids may be involved in the development of schistosoma-induced liver fibrosis.

  8. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis.

    Science.gov (United States)

    Simon, Sibu; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I; Orellana, Ariel; Zažímalová, Eva; Friml, Jiří

    2016-07-01

    Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport. PMID:27240710

  9. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    Science.gov (United States)

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.

  10. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells

    Directory of Open Access Journals (Sweden)

    Parr Rebecca D

    2011-06-01

    Full Text Available Abstract Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM, the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL, endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to

  11. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.

    Science.gov (United States)

    Lee, Hee Dae; Kim, Hyo Won; Cho, Young Hoon; Park, Ho Bum

    2014-07-01

    As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties.

  12. Porous ceramic membranes: suspension processing, mechanical and transport properties, and application in the osmotic tensiometer

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  13. Dense inorganic membranes - studies on transport properties, defect chemistry and catalytic behaviour

    NARCIS (Netherlands)

    Elshof, ten Johan Evert

    1997-01-01

    Oxygen separation with dense oxide membranes may be an attractive method for the production of oxygen from air. Another possible application is the direct supply of oxygen in membrane reactors for the (partial) oxidation of hydrocarbons. The driving force for oxygen permeation through dense mixed io

  14. Insight into the transport of hexane-solute systems through tailor-made composite membranes

    NARCIS (Netherlands)

    Stafie, N.; Stamatialis, D.F.; Wessling, M.

    2004-01-01

    This work presents composite membranes comprising poly(acrylonitrile) (PAN) as the support and polydimethylsiloxane (PDMS) as the selective top layer. For sunflower oil/hexane and polyisobutylene (PIB)/hexane, the permeation characteristics of these membranes for various feed concentrations and pres

  15. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.

    Science.gov (United States)

    Lee, Hee Dae; Kim, Hyo Won; Cho, Young Hoon; Park, Ho Bum

    2014-07-01

    As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties. PMID:24668882

  16. Basic Amino Acid Transport in Plasma Membrane Vesicles of Penicillium chrysogenum

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumul

  17. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    Science.gov (United States)

    Adewoye, L O; Worobec, E A

    2000-08-01

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins. PMID:10940570

  18. Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models

    Directory of Open Access Journals (Sweden)

    Jin eChen

    2012-06-01

    Full Text Available High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions (pPPIs. We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.

  19. Changes of proton transportation across the inner mitochondrial membrane and H+-ATPase in endotoxic shock rats

    Institute of Scientific and Technical Information of China (English)

    LU Song-min 陆松敏; SONG Shuang-ming 宋双明; LIU Jian-cang 刘建仓; YANG He-ming 杨鹤鸣; LI Ping 李萍; WANG Zheng-guo 王正国

    2003-01-01

    Objective: To investigate the changes of proton transportation across the inner mitochondrial membrane (IMM) and H+-ATPase of hepatocytes in endotoxic shock rats.Methods: Endotoxin from E.Coil of 5.0 mg/kg or saline of 1 ml/kg was injected into the femoral vein.The rats were sacrificed pre-injection and 1, 3, 5, 8 hours after injection, and plasma and liver tissue samples were collected respectively.The liver tissue samples were used for preparation of mitochondria and submitochondrial particles (SMPs).The proton-translocation of SMPs and H+-ATPase, phospholipase A2 (PLA2) activities and malondialdehyde (MDA) content, membrane fluidities of different level of mitochondria membrane and plasma MDA content were assayed.Results: (1) Five hours after E.Coli.O111B4 injection, the maximum fluorescence quenching ACMA after adding ATP, nicotinamide adenin dinucleoacid hydrogen (NADH), and the succinate were significantly decreased (P<0.05).The time of maximum fluorescent quenching and the half time of fluorescent quenching were significantly prolonged (P<0.01), especially when NADH was used as a substrate.(2) The mitochondrial H+-ATPase activity was significantly increased at early stage of endotoxic shock (P<0.05), and significantly decreased at late stage of endotoxic shock (P<0.01).(3) The mitochondrial membrane bound PLA2 activity, plasmal and mitochondrial MDA content were significantly increased and succinate dehydrogenase (SDH) activity of mitochondria decreased markedly in endotoxic shock rats (P<0.05).(4) The mitochondrial membrane fluidity of different lipid regions was decreased, especially in the head of phospholipid.Conclusions: Proton transportation across IMM and mitochondrial H+-ATPase activity are significantly decreased in endotoxic shock.

  20. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Petr Rada

    Full Text Available Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM and inner membrane (TIM protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences

  1. Insulin-stimulated Plasma Membrane Fusion of Glut4 Glucose Transporter-containing Vesicles Is Regulated by Phospholipase D1D⃞

    OpenAIRE

    Huang, Ping; Altshuller, Yelena M.; Hou, June Chunqiu; Jeffrey E Pessin; Frohman, Michael A.

    2005-01-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insu...

  2. Dynamics of antifolate transport via the reduced folate carrier and the membrane folate receptor in murine leukaemia cells in vitro and in vivo

    NARCIS (Netherlands)

    Mauritz, Robert; Peters, Godefridus; Kathmann, Ietje; Teshale, Habte; Noordhuis, Paul; Comijn, Elizabeth; Pinedo, Herbert; Jansen, Gerrit

    Murine L1210 leukaemia cells expressing either the reduced folate carrier (RFC) or the membrane folate receptor (MFR) were studied in vitro and in vivo to assess the dynamics of membrane transport of two categories antifolates; folate-based inhibitors of dihydrofolate reductase (methotrexate, edatre

  3. Transmembrane segment (TMS) VIII of the Na+/citrate transporter CitS requires downstream TMS IX for insertion in the Escherichia coli membrane

    NARCIS (Netherlands)

    van Geest, M; Lolkema, JS

    1999-01-01

    The amino acid sequence of the sodium ion-dependent citrate transporter CitS of IL pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine o

  4. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane spanning proteins

    OpenAIRE

    Keith, Dove J; Eshleman, Amy J; Janowsky, Aaron

    2010-01-01

    Phospholipase A2 releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A2 stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [3H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic a...

  5. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  6. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  7. Carried-mediated transport of rare earth elements through liquid membranes Pt. 5

    International Nuclear Information System (INIS)

    Stability of liquid membranes containing TBP, TOPO and HDEHP in n-dodecane, impregnated on a flat-sheet nucleoporous support, has been studied in pertraction systems of REEs. Under conditions of long-time uninterrupted pertraction, no signs of 'failed' membrane behavior were observed in any system investigated. In regard to permeability coefficient of metal under the same conditions without regeneration of membrane, SLMs containing TOPO appeared the most stable, then SLMs containing HDEHP followed and the less stable were SLMs with TBP. (author) 14 refs.; 4 figs.; 1 tab

  8. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese;

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  9. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    Science.gov (United States)

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater. PMID:25380632

  10. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  11. MEMBRANE FILTRATION. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation.

    Science.gov (United States)

    Karan, Santanu; Jiang, Zhiwei; Livingston, Andrew G

    2015-06-19

    Membranes with unprecedented solvent permeance and high retention of dissolved solutes are needed to reduce the energy consumed by separations in organic liquids. We used controlled interfacial polymerization to form free-standing polyamide nanofilms less than 10 nanometers in thickness, and incorporated them as separating layers in composite membranes. Manipulation of nanofilm morphology by control of interfacial reaction conditions enabled the creation of smooth or crumpled textures; the nanofilms were sufficiently rigid that the crumpled textures could withstand pressurized filtration, resulting in increased permeable area. Composite membranes comprising crumpled nanofilms on alumina supports provided high retention of solutes, with acetonitrile permeances up to 112 liters per square meter per hour per bar. This is more than two orders of magnitude higher than permeances of commercially available membranes with equivalent solute retention. PMID:26089512

  12. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.

    Science.gov (United States)

    Valentino, Lauren; Renkens, Tennie; Maugin, Thomas; Croué, Jean-Philippe; Mariñas, Benito J

    2015-02-17

    This study contributed to improving our understanding of how disinfectants, applied to control biofouling of reverse osmosis (RO) membranes, result in membrane performance degradation. We investigated changes in physicochemical properties and permeation performance of a RO membrane with fully aromatic polyamide (PA) active layer. Membrane samples were exposed to varying concentrations of monochloramine, bromide, and iodide in both synthetic and natural seawater. Elemental analysis of the membrane active layer by Rutherford backscattering spectrometry (RBS) revealed the incorporation of bromine and iodine into the polyamide. The kinetics of polyamide bromination were first order with respect to the concentration of the secondary oxidizing agent Br2 for the conditions investigated. Halogenated membranes were characterized after treatment with a reducing agent and heavy ion probes to reveal the occurrence of irreversible ring halogenation and an increase in carboxylic groups, the latter produced as a result of amide bond cleavage. Finally, permeation experiments revealed increases in both water permeability and salt passage as a result of oxidative damage.

  13. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater

    KAUST Repository

    Valentino, Lauren

    2015-02-17

    This study contributed to improving our understanding of how disinfectants, applied to control biofouling of reverse osmosis (RO) membranes, result in membrane performance degradation. We investigated changes in physicochemical properties and permeation performance of a RO membrane with fully aromatic polyamide (PA) active layer. Membrane samples were exposed to varying concentrations of monochloramine, bromide, and iodide in both synthetic and natural seawater. Elemental analysis of the membrane active layer by Rutherford backscattering spectrometry (RBS) revealed the incorporation of bromine and iodine into the polyamide. The kinetics of polyamide bromination were first order with respect to the concentration of the secondary oxidizing agent Br2 for the conditions investigated. Halogenated membranes were characterized after treatment with a reducing agent and heavy ion probes to reveal the occurrence of irreversible ring halogenation and an increase in carboxylic groups, the latter produced as a result of amide bond cleavage. Finally, permeation experiments revealed increases in both water permeability and salt passage as a result of oxidative damage.

  14. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization

    Science.gov (United States)

    Xu, Shuhua; Soroka, Carol J.; Sun, An-Qiang; Backos, Donald S.; Mennone, Albert; Suchy, Frederick J.; Boyer, James L.

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization. PMID:27351185

  15. Synthesis of transport layers with controlled anisotropy and application thereof to study proton exchange membrane fuel cell performance

    Science.gov (United States)

    Todd, Devin; Mérida, Walter

    2016-04-01

    We report on a novel method for the synthesis of fibre-based proton exchange membrane (PEM) fuel cell porous transport layers (PTLs) with controllable fibre alignment. We also report the first application of such layers as diagnostics tools to probe the effect of within-plane PTL anisotropy upon PEM fuel cell performance. These structures are realized via adaptation of electrospinning technology. Electrospun layers with progressive anisotropy magnitude are produced and evaluated. This novel approach is distinguished from the state-of-the-art because an equivalent study using commercially available materials is impossible due to lack of structurally similar substrates with different anisotropies. The anisotropy is visualized via scanning electron microscopy, and quantified using electrical resistivity. The capacity is demonstrated to achieve fibre alignment, and the associated impact on transport properties. A framework is presented for assessing the in-situ performance, whereby transport layer orientation versus bipolar plate flow-field geometry is manipulated. While an effect upon the commercial baseline cannot be discerned, electrospun transport layers with greater anisotropy magnitude suggest greater sensitivity to orientation; where greater performance is obtained with fibres cross-aligned to flow-field channels. Our approach of electrospun transport enables deterministic structures by which fuel cell performance can be explained and optimized.

  16. Facilitated transport membranes for biogas upgrading%用于生物气提纯的促进传递膜

    Institute of Scientific and Technical Information of China (English)

    田志章; 李奕帆; 姜忠义; 王少飞

    2014-01-01

    由生物气提纯获得的生物甲烷具有高热值,可作为天然气的替代品。生物气中除主要成分甲烷以外还含有大量的CO2和少量的水、H2S以及其他痕量杂质组分,需经过净化提纯方可获得高纯度的生物甲烷。膜分离技术用于生物气提纯具有绿色、高效、能耗低等特点,特别地,促进传递膜因其特殊的传质机制,对于生物甲烷系统提纯具有显著优势。综述了促进传递膜材料及其制备技术,讨论了生物气中水、H2S 杂质对膜过程的影响,同时尝试对膜法生物气提纯的经济性和发展前景进行了分析。%Biomethane, purified from biogas, can be utilized as substitute for natural gas owing to its high calorific value (HCV). Typically biogas contains 60%-65% CH4, 35%-40% CO2, small amounts of hydrogen sulfide, water vapor and trace amounts of other gases. Treatment of raw biogas must be implemented in order to convert biogas into HCV biomethane. Membrane separation process exhibits many distinct advantages, including low energy consumption, high efficiency, high process flexibility and environment friendliness. Particularly, facilitated transport membrane exhibits predominant features for biogas upgrading because of its unique transport mechanism. Materials for facilitated transport membrane and corresponding preparation methods/technologies are summarized. Influences of impurities, such as water and hydrogen sulfide on membrane separation as well as some techno- economic issues are discussed. Finally, prospects on membrane separation technology in biogas upgrading are presented.

  17. K+ transport across the lamprey erythrocyte membrane: characteristics of a Ba(2+)- and amiloride-sensitive pathway.

    Science.gov (United States)

    Kirk, K

    1991-09-01

    The characteristics of K+ transport in erythrocytes from the river lamprey (Lampetra fluviatilis) were investigated using standard radioisotope flux techniques. The cells were shown to have a ouabain-sensitive transport pathway that carried 43K+ and 86Rb+ into the cell at similar rates. Most of the ouabain-resistant 43K+ and 86Rb+ influx was via a pathway that was insensitive to cotransport inhibitors and to the replacement of extracellular Cl- or Na+. This pathway showed a strong selectivity for 43K+ over 86Rb+. It was inhibited fully by Ba2+ (I50 approximately 2.8 mumol l-1), amiloride (I50 approximately 150 mumol l-1) and ethylisopropylamiloride (I50 approximately 3.3 mumol l-1) and less effectively by quinine and by the tetraethylammonium ion. Inhibition by Ba2+ took full effect within a few minutes whereas the full inhibitory effect of amiloride took more than 1 h to develop. Experiments with the membrane potential probe [14C]tetraphenylphosphonium ion gave results consistent with the lamprey erythrocyte membrane having a Ba(2+)-sensitive K+ conductance that was significantly greater than the membrane Na+ conductance and which gave rise to a marked dependence of the membrane potential on the extracellular K+ concentration. The rate constants for Ba(2+)-sensitive 43K+ and 86Rb+ influx decreased (proportionally) with increasing extracellular K+ concentration in a manner that was consistent with the transport being via a conductive pathway. The decrease was attributed to a depolarisation of the membrane (in response to the increasing extracellular K+ concentration) and a consequent decrease in the driving force for the conductive movement of 43K+ and 86Rb+ into the cells. Ba(2+)-sensitive 86Rb+ influx increased significantly with decreasing cell volume and with increasing intracellular pH (at a constant extracellular pH) but increased only slightly with increasing extracellular pH. The pathway operated normally in the complete absence of extracellular Ca2+ but

  18. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  19. Study of supported bilayer lipid membranes for use in chemo-electric energy conversion via active proton transport

    Science.gov (United States)

    Sarles, Stephen A.; Sundaresan, Vishnu B.; Leo, Donald J.

    2007-09-01

    Bilayer lipid membranes (BLMs) have been studied extensively due to functional and structural similarities to cell membranes, fostering research to understand ion-channel protein functions, measure bilayer mechanical properties, and identify self-assembly mechanisms. BLMs have traditionally been formed across single pores in substrates such as PTFE (Teflon). The incorporation of ion-channel proteins into the lipid bilayer enables the selective transfer of ions and fluid through the BLM. Processes of this nature have led to the measurement of ion current flowing across the lipid membrane and have been used to develop sensors that signal the presence of a particular reactant (glucose, urea, penicillin), improve drug recognition in cells, and develop materials capable of creating chemical energy from light. Recent research at Virginia Tech has shown that the incorporation of proton transporters in a supported BLM formed across an array of pores can convert chemical energy available in the adenosine triphosphate (ATP) into electricity. Experimental results from this work show that the system-named Biocell-is capable of developing 2µW/cm2 of membrane area with 15μl of ATPase. Efforts to increase the power output and conversion efficiency of this process while moving toward a packaged device present a unique engineering problem. The bilayer, as host to the active proton transporters, must therefore be formed evenly across a porous substrate, remain stable and yet fluid-like for protein interaction, and exhibit a large seal resistance. This article presents the ongoing work to characterize the Biocell using impedance analysis. Electrical impedance spectroscopy (EIS) is used to study the effect of adding ATPase proteins to POPS:POPE bilayer lipid membranes and correlate structural changes evident in the impedance data to the energy-conversion capability of various partial and whole Biocell assemblies. The specific membrane resistance of a pure BLM drops from 40-120k

  20. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity

    Directory of Open Access Journals (Sweden)

    Anastasia A. Kirpichnikova

    2014-03-01

    Full Text Available Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1 is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca2+ cytosolic concentration, which is suggested to be dependent on the activation of Ca2+ influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca2+ efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C3-(5. The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth the magnitude of Ca2+ efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca2+ efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10−8 to 10−6 M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10−6 M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca2+ and that ABP1 is involved in modulation of this reaction.

  1. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].

    Science.gov (United States)

    Efimova, S S; Ostroumova, O S; Malev, V V; Shchagina, L V

    2011-01-01

    The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.

  2. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today's typical firetube boilers.

  3. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum

    Science.gov (United States)

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  4. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  5. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Lim, Liting; Sayers, Claire P; Goodman, Christopher D; McFadden, Geoffrey I

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  6. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Liting Lim

    Full Text Available Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane.

  7. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)

    KAUST Repository

    Ahn, Juhyeon

    2010-01-01

    Recently, high-free volume, glassy ladder-type polymers, referred to as polymers of intrinsic microporosity (PIM), have been developed and their reported gas transport performance exceeded the Robeson upper bound trade-off for O2/N2 and CO2/CH4. The present work reports the gas transport behavior of PIM-1/silica nanocomposite membranes. The changes in free volume, as well as the presence and volume of the void cavities, were investigated by analyzing the density, thermal stability, and nano-structural morphology. The enhancement in gas permeability (e.g., He, H2, O2, N2, and CO2) with increasing filler content shows that the trend is related to the true silica volume and void volume fraction. Crown Copyright © 2009.

  8. Enhanced efficiency of Sr transport in DtBuCH18C6 loaded supported liquid membrane (SLM) technique

    International Nuclear Information System (INIS)

    89Sr is used for bone pain palliation in metastatic bone cancer and produced in FBTR at IGCAR, Kalpakkam via 89Y(n, p)89Sr. Purification of Sr source by SLM technique offers relative advantages over the method used for the above. But the change in (H+) both in feed and strip due to co-transportation of H+ ions suppresses the transport of Sr+2 and poses challenges in achieving an efficient purification of Sr. This paper describes a method to overcome the limitation by acid compensation technique. The SLM setup uses a PTFE membrane (Pore size 0.45μm, Thickness 80μm) (M/s Sartorius, Germany) loaded with DtBuCH18C6/20%Octanol-80%Toluene

  9. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    International Nuclear Information System (INIS)

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power

  10. Plasma anandamide and other N-acylethanolamines are correlated with their corresponding free fatty acid levels under both fasting and non-fasting conditions in women

    NARCIS (Netherlands)

    Joosten, M.M.; Balvers, M.G.J.; Verhoeckx, K.C.M.; Hendriks, H.F.J.; Witkamp, R.F.

    2010-01-01

    N-acylethanolamines (NAEs), such as anandamide (AEA), are a group of endogenous lipids derived from a fatty acid linked to ethanolamine and have a wide range of biological activities, including regulation of metabolism and food intake. We hypothesized that i) NAE plasma levels are associated with le

  11. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium

    Science.gov (United States)

    Gu, Haiping; Lou, Jun; Wang, Haizhen; Yang, Yu; Wu, Laosheng; Wu, Jianjun; Xu, Jianming

    2016-01-01

    Reducing phenanthrene (PHE) in the environment is critical to ecosystem and human health. Biodegradation, biosorption, and the trans-membrane transport mechanism of PHE by a novel strain, Massilia sp. WF1, and an extensively researched model fungus, Phanerochaete chrysosporium were investigated in aqueous solutions. Results showed that the PHE residual concentration decreased with incubation time and the data fitted well to a first-order kinetic equation, and the t1/2 of PHE degradation by WF1, spores, and mycelial pellets of P. chrysosporium were about 2 h, 87 days, and 87 days, respectively. The biosorbed PHE was higher in P. Chrysosporium than that in WF1, and it increased after microorganisms were inactivated and inhibited, especially in mycelial pellets. The detected intracellular auto-fluorescence of PHE by two-photon excitation microscopy also proved that PHE indeed entered into the cells. Based on regression, the intracellular (Kdin) and extracellular (Kdout) dissipation rate constants of PHE by WF1 were higher than those by spores and mycelial pellets. In addition, the transport rate constant of PHE from outside solution into cells (KinS/Vout) for WF1 were higher than the efflux rate constant of PHE from cells to outside solution (KoutS/Vin), while the opposite phenomena were observed for spores and mycelial pellets. The amount of PHE that transported from outside solution into cells was attributed to the rapid degradation and active PHE efflux in the cells of WF1 and P. Chrysosporium, respectively. Besides, the results under the inhibition treatments of 4°C, and the presence of sodium azide, colchicine, and cytochalasin B demonstrated that a passive trans-membrane transport mechanism was involved in PHE entering into the cells of WF1 and P. Chrysosporium. PMID:26858710

  12. Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and Phanerochaete chrysosporium

    Directory of Open Access Journals (Sweden)

    Haiping eGu

    2016-01-01

    Full Text Available Reducing phenanthrene (PHE in the environment is critical to ecosystem and human health. Biodegradation, biosorption and the trans-membrane transport mechanism of PHE by a novel strain, Massilia sp. WF1, and an extensively researched model fungus, Phanerochaete chrysosporium (P. chrysosporium were investigated in aqueous solutions. Results showed that the PHE residual concentration decreased with incubation time and the data fitted well to a first-order kinetic equation, and the t1/2 of PHE degradation by WF1, spores and mycelial pellets of P. chrysosporium were about 2 hours, 87 days, and 87 days, respectively. The biosorbed PHE was higher in P. Chrysosporium than that in WF1, and it increased after microorganisms were inactivated and inhibited, especially in mycelial pellets. The detected intracellular auto-fluorescence of PHE by two-photon excitation microscopy also proved that PHE indeed entered into the cells. Based on regression, the intracellular (Kdin and extracellular (Kdout dissipation rate constants of PHE by WF1 were higher than those by spores and mycelial pellets. In addition, the transport rate constant of PHE from outside solution into cells (KinS/Vout for WF1 were higher than the efflux rate constant of PHE from cells to outside solution (KoutS/Vin, while the opposite phenomena were observed for spores and mycelial pellets. The amount of PHE that transported from outside solution into cells was attributed to the rapid degradation and active PHE efflux in the cells of WF1 and P. Chrysosporium, respectively. Besides, the results under the inhibition treatments of 4 °C, and the presence of sodium azide, colchicine and cytochalasin B demonstrated that a passive trans-membrane transport mechanism was involved in PHE entering into the cells of WF1 and P. Chrysosporium.

  13. ADENOSINE TRIPHOSPHATE-DEPENDENT COPPER TRANSPORT IN ISOLATED RAT-LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    INTVELD, G; VANDENBERG, GJ; MULLER, M; KUIPERS, F; VONK, RJ

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be media

  14. Ammonium across a Selective Polymer Inclusion Membrane : Characterization, Transport, and Selectivity

    NARCIS (Netherlands)

    Casadella, Anna; Schaetzle, Olivier; Loos, Katja

    2016-01-01

    The recovery of ammonium from urine requires distinguishing and excluding sodium and potassium. A polymer inclusion membrane selective for ammonium is developed using an ionophore based on pyrazole substituted benzene. The interactions of the components are studied, as well as their effect on transp

  15. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability

    NARCIS (Netherlands)

    G. Hennemann; R. Docter (Roel); E.C.H. Friesema (Edith); E.P. Krenning (Eric); T.J. Visser (Ton); M. de Jong (Marion)

    2001-01-01

    textabstractAlthough it was originally believed that thyroid hormones enter target cells by passive diffusion, it is now clear that cellular uptake is effected by carrier-mediated processes. Two stereospecific binding sites for each T4 and T3 have been detected in cell membranes an

  16. Membrane potential plays a dual role for chloride transport across toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1983-01-01

    -dependent currents are not caused by a trivial Goldmand-type rectification and ion redistributions following transepithelial potential pertubations. Extended with a dynamic Cl- permeability in the apical membrane according to a Hodgkin-Huxley kinetic scheme, the model predicts voltage clamp data which closely...

  17. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza

    Science.gov (United States)

    Bapaume, Laure; Reinhardt, Didier

    2012-01-01

    As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis. PMID:23060892

  18. How membranes shape plant symbioses: Signaling and transport in nodulation and arbuscular mycorrhiza

    Directory of Open Access Journals (Sweden)

    Laure eBapaume

    2012-10-01

    Full Text Available As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM and in root nodule symbiosis (RNS, AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER, and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.

  19. Mutagenesis analysis of the murine leukemia virus matrix protein: identification of regions important for membrane localization and intracellular transport.

    Science.gov (United States)

    Soneoka, Y; Kingsman, S M; Kingsman, A J

    1997-07-01

    We have created two sets of substitution mutations in the Moloney murine leukemia virus (Mo-MuLV) matrix protein in order to identify domains involved in association with the plasma membrane and in incorporation of the viral envelope glycoproteins into virus particles. The first set of mutations was targeted at putative membrane-associating regions similar to those of the human immunodeficiency virus type 1 matrix protein, which include a polybasic region at the N terminus of the Mo-MuLV matrix protein and two regions predicted to form beta strands. The second set of mutations was created within hydrophobic residues to test for the production of virus particles lacking envelope proteins, with the speculation of an involvement of the membrane-spanning region of the envelope protein in incorporation into virus particles. We have found that mutation of the N-terminal polybasic region redirected virus assembly to the cytoplasm, and we show that tryptophan residues may also play a significant role in the intracellular transport of the matrix protein. In total, 21 mutants of the Mo-MuLV matrix protein were produced, but we did not observe any mutant virus particles lacking the envelope glycoproteins, suggesting that a direct interaction between the Mo-MuLV matrix protein and envelope proteins either may not exist or may occur through multiple redundant interactions. PMID:9188629

  20. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.

    Science.gov (United States)

    Macpherson, Neil; Shabala, Lana; Rooney, Henrietta; Jarman, Marcus G; Davies, Julia M

    2005-06-01

    The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H(+). Measurement of H(+) extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H(+)-ATPase to expel H(+) when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H(+) and K(+) fluxes showed that net K(+) influx accompanies net H(+) efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K(+) on long-term exposure to benzoic acid. Analysis of S. cerevisiae K(+) transporter mutants revealed that loss of the high affinity K(+) uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.

  1. Pravastatin transport across the hepatocyte canalicular membrane requires both ATP and a transmembrane pH gradient.

    Science.gov (United States)

    Adachi, Y; Okuyama, Y; Miya, H; Matsusita, H; Kitano, M; Kamisako, T; Yamamoto, T

    1996-06-01

    Hepatic excretion of non-bile acid organic anions is reported to be ATP-dependent and a defect of this transport has been reported in congenitally jaundiced rats, animal models of human Dubin-Johnson syndrome. To investigate the effect of the transmembrane pH gradient on hepatocyte canalicular membrane transport of ATP-dependent organic anions, uptake of pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase-inhibiting organic anion, by hepatocyte canalicular membrane vesicles was observed in the presence or absence of transmembrane pH gradients. Uptake was assessed by a rapid filtration technique. ATP-dependent pravastatin uptake was stimulated in the presence of a transmembrane pH gradient (in > out) in Sprague-Dawley (SD) rats. Uptake was dependent on both pravastatin and ATP concentrations and showed saturation kinetics. After intravenous injection of [14C]-pravastatin (0.3 mumol), 81% of the dose was excreted in the bile within 35 min in SD rats, whereas only 20% was excreted in the bile in Eisai hyperbilirubinuria rats. ATP and the pH gradient also co-stimulated the uptake of pravastatin in Eisai hyperbilirubinuria rats, although the K(m) was much higher and Vmax was much lower than corresponding values in SD rats. This coincided well with the marked reduction in vivo biliary excretion of pravastatin in jaundiced rats.

  2. Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters.

    Science.gov (United States)

    Carrier, David John; Abu Bakar, Norliza Tendot; Lawler, Karen; Dorrian, James Matthew; Haider, Ameena; Bennett, Malcolm John; Kerr, Ian Derek

    2009-01-01

    Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues. We have examined a number of such systems for their efficiency in expressing AUX1 from Arabidopsis thaliana. We find that a eukaryotic system based upon infection of insect cells with recombinant baculovirus provides a high level, easily scalable expression system capable of delivering a functional assay for AUX1. Furthermore, a transient transfection system in mammalian cells enables localization of AUX1 and AUX1-mediated transport of auxin to be investigated. In contrast, we were unable to utilise P. pastoris or L. lactis expression systems to reliably express AUX1.

  3. A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Habib, M.A.; Badr, H.M.; Ahmed, S.F. (and others) [King Fahd University of Petrology & Minerals, Dhahran (Saudi Arabia)

    2011-07-15

    Among the proposed methods of CO{sub 2} capture, oxyfuel combustion technology provides a promising option, which is applicable to power generation systems. This technology is based on combustion with pure oxygen (O{sub 2}) instead of air, resulting in flue gas that consists mainly of CO{sub 2} and water (H{sub 2}O), that latter can be separated easily via condensation, while removing other contaminants leaving pure CO{sub 2} for storage. However, fuel combustion in pure O{sub 2} results in intolerably high combustion temperatures. In order to provide the dilution effect of the absent nitrogen (N-2) and to moderate the furnace/combustor temperatures, part of the flue gas is recycled back into the combustion chamber. An efficient source of O{sub 2} is required to make oxycombustion a competitive CO{sub 2} capture technology. Conventional O{sub 2} production utilizing the cryogenic distillation process is energetically expensive. Ceramic membranes made from mixed ion-electronic conducting oxides have received increasing attention because of their potential to mitigate the cost of O{sub 2} production, thus helping to promote these clean energy technologies. Some effort has also been expended in using these membranes to improve the performance of the O{sub 2} separation processes by combining air separation and high-temperature oxidation into a single chamber. This paper provides a review of the performance of combustors utilizing oxy-fuel combustion process, materials utilized in ion-transport membranes and the integration of such reactors in power cycles. The review is focused on carbon capture potential, developments of oxyfuel applications and O{sub 2} separation and combustion in membrane reactors. The recent developments in oxyfuel power cycles are discussed focusing on the main concepts of manipulating exergy flows within each cycle and the reported thermal efficiencies.

  4. Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance

    OpenAIRE

    Neumann, P.; R. WEISMANN; de Stefano, G; Mancuso, S.

    2010-01-01

    Proteins and traces of polysaccharide are the only polymeric colloids consistently transported in the xylem sap of plants. The hypothesis that such proteins could have physical inhibitory effects on xylem water transport was investigated. Ovalbumin, with a molecular weight of 45 kDa and a molecular diameter of 5.4 nm, is an inert, water-soluble protein that is midway along the size range of endogenous xylem sap proteins. Solutions of ovalbumin conjugated to a fluorescent marker and supplied t...

  5. Pyrrole Azocrown Ethers. Synthesis, Complexation, Selective Lead Transport and Ion-Selective Membrane Electrode Studies

    OpenAIRE

    Luboch, Elzbieta; Wagner-Wysiecka, Ewa; Fainerman-Melnikova, Marina; Lindoy, Leonard F.; Biernat, Jan F.

    2006-01-01

    Abstract New 21-membered lipophilic crown ethers, each incorporating a pyrrole unit and two azo groups as macrocyclic ring components, have been synthesized. The complexation behavior of these and two further macrocycles has been investigated in acetonitrile. These ligand systems have been employed as ionophores in transport experiments involving the competitive transport behavior of an equimolar mixture of Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ag+ and Pb2+ across a water (pH 4.9)/chlorof...

  6. Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Weiping [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu Jie; Sheng Shishan [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xiong Guoxing [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)], E-mail: gxxiong@dicp.ac.cn; Yang Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)], E-mail: yangws@dicp.ac.cn

    2008-02-29

    Hydrogen permeation performance of three thin palladium-copper composite membranes with different thicknesses had been studied between 398 K and 753 K. Hydrogen permeance was obtained up to 2.7 x 10{sup -6} mol/(m{sup 2} s Pa) with an ideal selectivity over 1000 at 753 K. The hydrogen permeation exhibited two different activation energies over the temperature range: lower activation energy of about 9.8 kJ/mol above 548 K, while higher activation energy of about 26.4 kJ/mol below 548 K. After permeation tests, the alloy membranes were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and in situ X-ray diffraction. Palladium segregation on the surface of these palladium-copper alloys may induce changes of hydrogen permeation performance and thus influence the activation energies.

  7. Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures

    International Nuclear Information System (INIS)

    Hydrogen permeation performance of three thin palladium-copper composite membranes with different thicknesses had been studied between 398 K and 753 K. Hydrogen permeance was obtained up to 2.7 x 10-6 mol/(m2 s Pa) with an ideal selectivity over 1000 at 753 K. The hydrogen permeation exhibited two different activation energies over the temperature range: lower activation energy of about 9.8 kJ/mol above 548 K, while higher activation energy of about 26.4 kJ/mol below 548 K. After permeation tests, the alloy membranes were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and in situ X-ray diffraction. Palladium segregation on the surface of these palladium-copper alloys may induce changes of hydrogen permeation performance and thus influence the activation energies

  8. [Effect of ethylmaleimide on the transport of Ca+ and K+ ions across mitochondrial membranes].

    Science.gov (United States)

    Lofrumento, N E; Zanotti, F; Pavone, A

    1979-04-30

    As already reported, it has been found that the gradient of protons, set up across the inner membrane during the Ca2+ uptake by rat liver mitochondria, can be completely reversed by the addition of NEM. Identical results have been obtained by following the energy dependent K+ uptake. In these last conditions, the rate of H+ efflux supported by succinate oxidation is greatly enhanced only when NEM is added after rotenone. It is proposed that the increased rate other than to the inhibition of Pi uptake, as suggested by Reynafarje and Lehninger, could also be ascribed to a further decrease in the energetic level of the membrane as well as to an increased rate of succinate-Pi exchange diffusion reaction induced by NEM. A possible direct effect of NEM on succinate oxidation has been also considered to account for the inhibition observed when it is added before rotenone. PMID:554640

  9. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology

    Science.gov (United States)

    Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.

    2014-08-01

    The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI

  10. Characterization of Self-Assembly and Charge Transport in Model Polymer Electrolyte Membranes

    OpenAIRE

    Beers, Keith Morgan

    2012-01-01

    There is broad interest in creating polymer electrolyte membranes (PEMs) that have a charged hydrophilic nanophase, where the size and geometry of the phase can be precisely controlled. The applications for such materials range from portable power generating devices to water purification. There is a need to better characterize the self-assembly, thermodynamics, and performance of both current and future PEMs. To this end a series of chapters is presented, that explore the development of techn...

  11. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes

    OpenAIRE

    1984-01-01

    Coated vesicles are present in the myoplasm of embryonic chick myotubes grown in vitro. They are most numerous beneath regions of the surface membrane that contain a high density of acetylcholine receptors (AChR). Prolonged exposure of myotubes to saline extract of chick brain increases the number of intracellular AChR and the number of coated vesicles. This suggests that coated vesicles contain AChR, and this hypothesis was tested with horseradish peroxidase-alpha-bungarotoxin (HRP-alpha BTX...

  12. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

    Science.gov (United States)

    Straub, Anthony P.; Yip, Ngai Yin; Lin, Shihong; Lee, Jongho; Elimelech, Menachem

    2016-07-01

    Low-grade heat from sources below 100 ∘C offers a vast quantity of energy. The ability to extract this energy, however, is limited with existing technologies as they are not well-suited to harvest energy from sources with variable heat output or with a small temperature difference between the source and the environment. Here, we present a process for extracting energy from low-grade heat sources utilizing hydrophobic, nanoporous membranes that trap air within their pores when submerged in a liquid. By driving a thermo-osmotic vapour flux across the membrane from a hot reservoir to a pressurized cold reservoir, heat energy can be converted to mechanical work. We demonstrate operation of air-trapping membranes under hydraulic pressures up to 13 bar, show that power densities as high as 3.53 ± 0.29 W m-2 are achievable with a 60 ∘C heat source and a 20 ∘C heat sink, and estimate the efficiency of a full-scale system. The results demonstrate a promising process to harvest energy from low-temperature differences (<40 ∘C) and fluctuating heat sources.

  13. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  14. Identification of a transport mechanism for NH4+ in the symbiosome membrane of pea root nodules

    DEFF Research Database (Denmark)

    Mouritzen, P.; Rosendahl, L.

    1997-01-01

    indicates that NH4+ and MA compete for the same uptake mechanism. The observed fluxes suggest that voltage-driven channels are operating in the wsymbiosome membrane and that these are capable of transporting NH4+ at high rates from the bacteroid side of the membrane to the plant cytosol. The p......H of the symbiosome space is likely to be involved in regulation of the flux....

  15. Multiscale modeling of protein transport in silicon membrane nanochannels. Part 2. From molecular parameters to a predictive continuum diffusion model.

    Science.gov (United States)

    Amato, Francesco; Cosentino, Carlo; Pricl, Sabrina; Ferrone, Marco; Fermeglia, Maurizio; Cheng, Mark Ming-Cheng; Walczak, Robert; Ferrari, Mauro

    2006-12-01

    Transport and surface interactions of proteins in nanopore membranes play a key role in many processes of biomedical importance. Although the use of porous materials provides a large surface-to-volume ratio, the efficiency of the operations is often determined by transport behavior, and this is complicated by the fact that transport paths (i.e., the pores) are frequently of molecular dimensions. Under these conditions, a protein diffusion can be slower than predicted from Fick law. The main contribution of this paper is the development of a mathematical model of this phenomenon, whose parameters are computed via molecular modeling, as described Part 1. Our multiscale modeling methodology, validated by using experimental results related to the diffusion of lysozyme molecules, constitutes an "ab initio" recipe, for which no experimental data are needed to predict the protein release, and can be tailored in principle to match any different protein and any different surface, thus filling gap between the nano and the macroscale. PMID:17003963

  16. Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell

    Science.gov (United States)

    Esposito, Angelo; Pianese, Cesare; Guezennec, Yann G.

    In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.

  17. Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Angelo [Department of Mechanical Engineering, University of Salerno, via Ponte Don Melillo 1, 84084 Fisciano (SA) (Italy); Center for Automotive Research, The Ohio State University, 930 Kinnear Rd, Columbus, 43212 OH (United States); Pianese, Cesare [Department of Mechanical Engineering, University of Salerno, via Ponte Don Melillo 1, 84084 Fisciano (SA) (Italy); Guezennec, Yann G. [Center for Automotive Research, The Ohio State University, 930 Kinnear Rd, Columbus, 43212 OH (United States)

    2010-07-01

    In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content. (author)

  18. Carrier-mediated transport of rare earth elements through liquid membranes. Pt. 3

    International Nuclear Information System (INIS)

    Transport of tervalent REEs - Sc, Y, Ce, Eu, Gd, Tm, Yb - from nitrate medium through flat-sheet SLM containing DEHPA in n-dodecane, supported on a nucleoporous filter, has been studied. Influences of both aqueous phase acidities, concentrations of metal and carrier were investigated. Transport courses of the metals in question had been obtained and their permeation coefficients or initial fluxes were evaluated. Separation of some binary mixtures Ce-Tm, Ce-Yb, Ce-Sc was experimentally achieved. (author) 21 refs.; 13 figs.; 4 tabs

  19. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    Science.gov (United States)

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  20. The transport of integral membrane proteins across the nuclear pore complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Poolman, Bert; Veenhoff, Liesbeth M.

    2012-01-01

    The nuclear envelope protects and organizes the genome. The nuclear pore complexes embedded in the nuclear envelope allow selective transport of macromolecules between the cytosol and nucleoplasm, and as such help to control the flow of information from DNA to RNA to proteins. A growing list of inte

  1. Cadmium (II) and lead (II) transport in a polymer inclusion membrane using tributyl phosphate as mobile carrier and CuFeO2 as a polarized photo electrode

    International Nuclear Information System (INIS)

    In this work, a development of polymeric inclusion membranes for the cations separation is reported. The membrane was made up of cellulose triacetate (CTA) with a tributyl phosphate (TBP) incorporated into the polymer as metal ions carrier. The transport of lead (II) and cadmium (II) ions in two membrane systems polymer inclusion membrane (PIM), PIM coupled with photo-chemical electrode using TBP as carrier and 2-nitro phenyl octyl ether (NPOE) or tris ethylhexyl phosphate (TEHP) as plasticizer have been investigated. The membranes: polymer + plasticizer + carrier were synthesized and characterized by FTIR, X-ray diffraction and scanning electron microscopy (SEM). Transports of lead and cadmium have been studied using these systems and the results were compared to commercial cation exchange membrane (CRA). The obtained results showed that for Pb2+ ion, the concentrations of the strip phase increases using synthesized membranes. The conduction band of the delafossite CuFeO2 (-1.25 VSCE) yields a thermodynamically M2+ (=Pb2+, Cd2+) photo electrodeposition and speeds up the diffusion process. In all the cases, the potential of the electrode M/M2+ in the feed compartment increases until a maximum value, reached at ∼100 min above which it undergoes a diminution.

  2. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14C-D-glucose and 14C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10-8M in the uptake media. The half-maximal inhibitory concentrations, IC50, of interferon on glucose uptake was 1.8 x 10-8M, and 5.4 x 10-9M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, Ki, 1.5 x 10-8M for glucose uptake, and 7.3 x 10-9M for alanine uptake, derived from Dixon plots were in close agreement with the IC50s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  3. Low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug.

    Science.gov (United States)

    Sánchez-Cañete, María P; Carvalho, Luís; Pérez-Victoria, F Javier; Gamarro, Francisco; Castanys, Santiago

    2009-04-01

    Miltefosine (hexadecylphosphocholine, MLF) is the first oral drug with recognized efficacy against both visceral and cutaneous leishmaniasis. However, some clinical studies have suggested that MLF shows significantly less efficiency against the cutaneous leishmaniasis caused by Leishmania braziliensis. In this work, we have determined the cellular and molecular basis for the natural MLF resistance observed in L. braziliensis. Four independent L. braziliensis clinical isolates showed a marked decrease in MLF sensitivity that was due to their inability to internalize the drug. MLF internalization in the highly sensitive L. donovani species requires at least two proteins in the plasma membrane, LdMT, a P-type ATPase involved in phospholipid translocation, and its beta subunit, LdRos3. Strikingly, L. braziliensis parasites showed highly reduced levels of this MLF translocation machinery at the plasma membrane, mainly because of the low expression levels of the beta subunit, LbRos3. Overexpression of LbRos3 induces increased MLF sensitivity not only in L. braziliensis promastigotes but also in intracellular amastigotes. These results further highlight the importance of the MLF translocation machinery in determining MLF potency and point toward the development of protocols to routinely monitor MLF susceptibility in geographic areas where L. braziliensis might be prevalent. PMID:19188379

  4. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    KAUST Repository

    Calo, Victor M.

    2015-07-17

    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

  5. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  6. Ouabain sensitive Na+/K+-pump regulates other membrane transporters in the microdomain of smooth muscle cells

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

    as a model for electrical coupling of SMC by measuring membrane capacitance (Cm). Using PCR, Western blotting and immunohistochemistry we aimed to identify the isoforms of membrane transporters involved in the suggested interaction in SMCs. SMCs were uncoupled (evaluated by inhibition of vasomotion...... and desynchronization of [Ca2+]i transients in vascular wall, or by reduction of Cm measured in paired A7r5 cells) when the Na+/K+-pump was inhibited either by a low concentration of ouabain (1-10 µM) or by ATP depletion. Reduction of Na+/K+-pump activity by removal of extracellular K+ also uncoupled cells, but only...... after inhibition of KATP channels. Inhibition of the Na+/Ca2+-exchange activity by SEA0400 or by lowering the extracellular Na+ concentration also uncoupled the cells. Depletion of [Na+]i and clamping low [Ca2+]i prevented the uncoupling. Two isoforms of the Na+/K+-ATPase α subunit (α1 and α2) were...

  7. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family.

    Science.gov (United States)

    Dos Santos Pereira, Joao N; Tadjerpisheh, Sina; Abu Abed, Manar; Saadatmand, Ali R; Weksler, Babette; Romero, Ignacio A; Couraud, Pierre-Olivier; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2014-11-01

    Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

  8. ABC transporters in CSCs membranes as a novel target for treating tumour relapse

    OpenAIRE

    LAURA eZINZI; Marialessandra eContino; Mariangela eCantore; Elena eCapparelli; Marcello eLeopoldo; Nicola Antonio Colabufo

    2014-01-01

    CSCs are responsible for the high rate of recurrence and chemoresistance of different type of cancers. The current antineoplastic agents, able to inhibit bulk replicating cancer cells and radiation treatment, were found inefficacious towards CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathway (such as Wnt/β-catenin signaling, Hedg...

  9. ABC transporters in CSCs membranes as a novel target for treating tumor relapse

    OpenAIRE

    Zinzi, Laura; Contino, Marialessandra; Cantore, Mariangela; Capparelli, Elena; Leopoldo, Marcello; Nicola A. Colabufo

    2014-01-01

    CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, N...

  10. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms

    OpenAIRE

    Hua, Fei; Wang, Hong Qi

    2014-01-01

    Petroleum-based products are a primary energy source in the industry and daily life. During the exploration, processing, transport and storage of petroleum and petroleum products, water or soil pollution occurs regularly. Biodegradation of the hydrocarbon pollutants by indigenous microorganisms is one of the primary mechanisms of removal of petroleum compounds from the environment. However, the physical contact between microorganisms and hydrophobic hydrocarbons limits the biodegradation rate...

  11. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  12. Gas and Vapour Transport and Mechanical Properties of Carbon Nanotube and Carbon Fibre-Reinforcement of Ethylene-Octene Copolymer Membranes

    OpenAIRE

    Sedláková, Zuzana

    2014-01-01

    Helium, hydrogen, nitrogen, oxygen, methane and carbon dioxide were used for gas permeation rate measurements. Theoretical Maxwell’s model was used to predict and interpret gas transport properties in MMMs. Vapour transport properties were studied for aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water. Organic vapours result more permeable than permanent gases in EOC-based membranes, with toluene and hexane permeabilities being about two orders o...

  13. Transport Selectivity of a Diethylene Glycol Dimethacrylate-Based Thymine-imprinted Polymeric Membrane over a Cellulose Support for Nucleic Acid Bases

    Institute of Scientific and Technical Information of China (English)

    QU Xiang-Jin; CHEN Chang-Bao; ZHOU Jie; WU Chun-Hui

    2007-01-01

    The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support.Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane,recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.

  14. Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes.

    Science.gov (United States)

    Russell, V E; Klein, U; Reuveni, M; Spaeth, D D; Wolfersberger, M G; Harvey, W R

    1992-05-01

    In immunobiochemical blots, polyclonal antibodies against subunits of plant and mammalian vacuolar-type ATPases (V-ATPases) cross-react strongly with corresponding subunits of larval Manduca sexta midgut plasma membrane V-ATPase. Thus, rabbit antiserum against Kalanchoe daigremontiana tonoplast V-ATPase holoenzyme cross-reacts with the 67, 56, 40, 28 and 20 kDa subunits of midgut V-ATPase separated by SDS-PAGE. Antisera against bovine chromaffin granule 72 and 39 kDa V-ATPase subunits cross-react with the corresponding 67 and 43 kDa subunits of midgut V-ATPase. Antisera against the 57 kDa subunit of both beet root and oat root V-ATPase cross-react strongly with the midgut 56 kDa V-ATPase subunit. In immunocytochemical light micrographs, antiserum against the beet root 57 kDa V-ATPase subunit labels the goblet cell apical membrane of both posterior and anterior midgut in freeze-substituted and fixed sections. The plant antiserum also labels the apical brush-border plasma membrane of Malpighian tubules. The ability of antibodies against plant V-ATPase to label these insect membranes suggests a high sequence homology between V-ATPases from plants and insects. Both of the antibody-labelled insect membranes transport K+ and both membranes possess F1-like particles, portasomes, on their cytoplasmic surfaces. This immunolabelling by xenic V-ATPase antisera of two insect cation-transporting membranes suggests that the portasomes on these membranes may be V-ATPase particles, similar to those reported on V-ATPase-containing vacuolar membranes from various sources. PMID:1534830

  15. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology.

    Science.gov (United States)

    Lozano, Elisa; Herraez, Elisa; Briz, Oscar; Robledo, Virginia S; Hernandez-Iglesias, Jorge; Gonzalez-Hernandez, Ana; Marin, Jose J G

    2013-01-01

    Changes in the uptake of many drugs by the target cells may dramatically affect the pharmacological response. Thus, downregulation of SLC22A1, which encodes the organic cation transporter type 1 (OCT1), may affect the response of healthy hepatocytes and liver cancer cells to cationic drugs, such as metformin and sorafenib, respectively. Moreover, the overall picture may be modified to a considerable extent by the preexistence or the appearance during the pathogenic process of genetic variants. Some rare OCT1 variants enhance transport activity, whereas other more frequent variants impair protein maturation, plasma membrane targeting or the function of this carrier, hence reducing intracellular active drug concentrations. Here, we review current knowledge of the role of OCT1 in modern liver pharmacology, which includes the use of cationic drugs to treat several diseases, some of them of great clinical relevance such as diabetes and primary liver cancer (cholangiocarcinoma and hepatocellular carcinoma). We conclude that modern pharmacology must consider the individual evaluation of OCT1 expression/function in the healthy liver and in the target tissue, particularly if this is a tumor, in order to predict the lack of response to cationic drugs and to be able to design individualized pharmacological treatments with the highest chances of success.

  16. Rotavirus NSP4114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane

    Directory of Open Access Journals (Sweden)

    Vasseur Monique

    2006-11-01

    Full Text Available Abstract The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.

  17. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1

    International Nuclear Information System (INIS)

    CLC transporters catalyze the exchange of Cl− for H+ across cellular membranes. To do so, they must couple Cl− and H+ binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state 13C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H+) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H+-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl−-permeation pathway, to the extracellular solution. The H+-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H+ binding is mechanistically coupled to closing of the intracellular access-pathway for Cl−

  18. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  19. Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Centro de Investigacion en Energia, UNAM, Privada Xochicalco S/N, 62580 Temixco (Mexico); Andaverde, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca (Mexico); Escobar, B. [Instituto Tecnologico de Cancun, Av. Kabah 3, 77515 Cancun (Mexico); Cano, U. [Instituto de Investigaciones Electricas, Av. Reforma 113, col. Palmira, 62490 Cuernavaca (Mexico)

    2011-02-01

    This work uses a method for the stochastic reconstruction of catalyst layers (CLs) proposing a scaling method to determine effective transport properties in proton exchange membrane fuel cell (PEMFC). The algorithm that generates the numerical grid makes use of available information before and after manufacturing the CL. The structures so generated are characterized statistically by two-point correlation functions and by the resultant pore size distribution. As an example of this method, the continuity equation for charge transport is solved directly on the three-dimensional grid of finite control volumes (FCVs), to determine effective electrical and proton conductivities of different structures. The stochastic reconstruction and the electrical and proton conductivity of a 45 {mu}m side size cubic sample of a CL, represented by more than 3.3 x 10{sup 12} FVCs were realized in a much shorter time compared with non-scaling methods. Variables studied in an example of CL structure were: (i) volume fraction of dispersed electrolyte, (ii) total CL porosity and (iii) pore size distribution. Results for the conduction efficiency for this example are also presented. (author)

  20. {sup 13}C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Sherwin J.; Cheng, Ricky C.; Chew, Thomas A.; Khantwal, Chandra M. [Stanford University School of Medicine, Department of Molecular & Cellular Physiology (United States); Liu, Corey W. [Stanford University School of Medicine, Stanford Magnetic Resonance Laboratory (United States); Gong, Shimei; Nakamoto, Robert K. [University of Virginia, Department of Molecular Physiology and Biological Physics (United States); Maduke, Merritt, E-mail: maduke@stanford.edu [Stanford University School of Medicine, Department of Molecular & Cellular Physiology (United States)

    2015-04-15

    CLC transporters catalyze the exchange of Cl{sup −} for H{sup +} across cellular membranes. To do so, they must couple Cl{sup −} and H{sup +} binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state {sup 13}C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H{sup +}) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H{sup +}-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl{sup −}-permeation pathway, to the extracellular solution. The H{sup +}-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H{sup +} binding is mechanistically coupled to closing of the intracellular access-pathway for Cl{sup −}.

  1. Structure of, and functional insight into the GLUT family of membrane transporters

    Directory of Open Access Journals (Sweden)

    Long W

    2015-10-01

    Full Text Available Wentong Long, Chris I Cheeseman Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada Abstract: This review examines the development of structure and function of the human GLUT proteins, gene family hSLC2A. These proteins are essential for moving the key metabolites, glucose, galactose, and fructose in and out of cells, as well as a number of other important substrates. Despite over five decades of research, it is still not fully understood how they work at the molecular level, although the recent publication of a crystal structure of GLUT1 suggests this may be resolved soon. The GLUT family is divided into three classes based on their sequence homology. The physiological roles of Class I GLUTs, ie, 1, 2, 3 (14, and 4 have been extensively studied for their contributions to metabolism and development. However, the other two classes have received far less attention. Genetic diseases associated with GLUTs are very rare, emphasizing their critical roles, but it is likely that as our understanding of these transporters increases, there may be more clinical conditions found to be associated with subtle changes in their activity. Another promising area of investigation is the changes in expression levels of GLUTs associated with, and likely in consequence of, disease processes. It has long been known that GLUT1 expression increases significantly in cancer cells, but it is now becoming appreciated that other GLUTs may also be involved. Determination of alterations in expression patterns may prove to be a useful diagnostic tool, and in some cases these are already being taken advantage of for the imaging of cancers. Finally, as we better understand how GLUTs bind and transport their substrates, it may be possible to design drugs that can be delivered into target cells for the treatment of a number of diseases. Keywords: GLUT proteins, Facilitated hexose transporters, protein trafficking, cancer imaging

  2. Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis.

    Science.gov (United States)

    de Almeida, Naomi M; Wessels, Hans J C T; de Graaf, Rob M; Ferousi, Christina; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-10-01

    Electron transport, or oxidative phosphorylation, is one of the hallmarks of life. To this end, prokaryotes evolved a vast variety of protein complexes, only a small part of which have been discovered and studied. These protein complexes allow them to occupy virtually every ecological niche on Earth. Here, we applied the method of proteomics-based complexome profiling to get a better understanding of the electron transport systems of the anaerobic ammonium-oxidizing (anammox) bacteria, the N2-producing key players of the global nitrogen cycle. By this method nearly all respiratory complexes that were previously predicted from genome analysis to be involved in energy and cell carbon fixation were validated. More importantly, new and unexpected ones were discovered. We believe that complexome profiling in concert with (meta)genomics offers great opportunities to expand our knowledge on bacterial respiratory processes at a rapid and massive pace, in particular in new and thus far poorly investigated non-model and environmentally-relevant species. PMID:27461995

  3.   Plant Phosphoproteomics: Analysis of Plasma Membrane Transporters by Mass Spectrometry

    DEFF Research Database (Denmark)

    Ye, Juanying; Rudashevskaya, Elena; Young, Clifford;

      Phosphorylation is a key regulatory factor in all aspects of eukaryotic biology including the regulation of plant membrane-bound transport proteins. To date, mass spectrometry (MS) has been introduced as powerful technology for study of post translational modifications (PTMs), including protein...

  4. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily

    NARCIS (Netherlands)

    Stergiopoulos, I.; Zwiers, L.H.; Waard, De M.A.

    2002-01-01

    This review provides an overview of members of the ATP-binding cassette (ABC) and major facilitator superfamily (MFS) of transporters identified in filamentous fungi. The most common function of these membrane proteins is to provide protection against natural toxic compounds present in the environme

  5. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H;

    1992-01-01

    of the Golgi apparatus and transport vesicles pointing to a role of TF-ag in membrane trafficking. Transcription of the TF-ag gene, as determined by run-on analyses, was only detectable in growing cells, and following transfer to starvation condition pre-existing TF-ag mRNA was rapidly degraded. The abundance...

  6. Simulation of cesium nitrate extraction by a calixarene. Application to supported liquid membranes transport; Modelisation de l`extraction du nitrate de cesium par un calixarene. Application a la modelisation du transport a travers des membranes liquides supportees

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, C.

    1996-12-12

    This work fits into the general pattern of the CEA studies on the decontamination of liquid effluents containing long-lived radioactive isotopes. Some calixarenes have proved to be very effective to selectively extract the cesium of aqueous solutions whose composition simulates those of the effluents to be reprocessed. On account of the difficulty of the studied extraction mechanisms, a physical and chemical simulation has been necessary. The system takes into account: 1)a concentrated nitric acid aqueous phase and/or sodium nitrate 2)an organic phase constituted by the diluent 1,2-nitro-phenyl-octyl-ether and 1,3-diisopropoxy-calix(4)arene-couronne-6. The use of concentrated aqueous solutions requires to take into account variations to ideality by the mean of activity coefficients reckoning. The different theories on the reckoning of variations to ideality in aqueous or organic phases are described in the first part. The determination of cesium and sodium nitrates activity coefficients in very concentrated matrices has required an important theoretical and experimental study which is given in the second part. The aim of this study was indeed to complete the thermodynamic data of cesium and sodium nitrates aqueous solutions. The computerized tools required for the modeling are reviewed. The stoichiometry of the extracted species in the organic phase has been determined in the third part. The supported membrane technique is an original method of separation by liquid-liquid extraction. A membrane transport model has been developed and is given in the last part of this work. (O.M.). 128 refs.

  7. GAS SORPTION AND TRANSPORT IN POLY (PHENYLENE OXIDE )(PPO)AND ARYL-BROMINATED PPO MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    JIA Lianda; F.R.SHEU, R.T. CHERN; H.B. HOPFENBERG

    1989-01-01

    The apparent solubility (S), concentration- average diffusivity (D), and permeability (P), for CO2,CH4 and N2 through PPO and aryl- brominated PPO at 35 ℃ for pressure ranging from 1 to 26 atm are reported. It is found that P,D, and Sof the membranes to all the three gases vary with the extent of bromination. S increases with the increase of the perecnt of bromine in each case, but D to CO2 increases remarkably only at higher degree of bromination, and therefore, P to CO2 is increased by more than 100% over a wide range of pressure in the case .The solubility data are well described by the dual mode sorption model. It is found that the gas molecules sorbed by the Langmuir mode are relatively more immobilized and the contribution of the nonequilibrium character of the polymer to gas permeation increases obviously for CO2 and is hardly changed for CH4 with increasing bromine content. These observations are interpreted in terms of changes in specific free volume (SFV)and the cohesive energy density (CED) of the polymers.

  8. Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    2010-01-01

    Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide...... modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting...

  9. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    Science.gov (United States)

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  10. A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2

    OpenAIRE

    Mampel, Jörg; Maier, Elke; Tralau, Tewes; Ruff, Jürgen; Benz, Roland; Cook, Alasdair M.

    2004-01-01

    Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an outer-membrane porin, formed an anion-selective channel that works in co-operation with the putative secondary transporter, TsaS, located in the...

  11. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes.

    Science.gov (United States)

    Meshali, M M; Abdel-Aleem, H M; Sakr, F M; Nazzal, S; El-Malah, Y

    2008-01-01

    The objective of this study was to evaluate the effect of intensity, mode, and duration of ultrasound application on the transport of three nonsteroidal anti-inflammatory drugs (NSAIDs) across cellulose membrane and rabbit-skin. Ibuprofen, piroxicam and diclofenac sodium were used as the model drugs. Studies were performed in vitro using a modified Franz diffusion assembly adapted to a therapeutic ultrasound transducer. Ultrasound had a significant and positive effect on the transport of the model NSAIDs across cellulose and rabbit skin membranes. Increasing ultrasound intensity from 0.5 to 3.0 W/cm2 led to a proportional increase in drug transport. Continuous ultrasound mode was more effective in enhancing drug transport than the pulsed mode. Diclofenac sodium had the least flux and permeability coefficient. This was attributed to its comparatively lower pKa value that renders the drug more ionizable in the buffer solution, consequently reducing its selective penetration through the membranes. This study demonstrated the therapeutic potential of ultrasound in transdermal delivery of NSAIDs and the synergistic effect of temperature and ultrasound operational parameters on drug transport. PMID:18271303

  12. Transporter Classification Database (TCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Transporter Classification Database details a comprehensive classification system for membrane transport proteins known as the Transporter Classification (TC)...

  13. Measurement of water transport rates across the gas diffusion layer in a proton exchange membrane fuel cell, and the influence of polytetrafluoroethylene content and micro-porous layer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Institute for Fuel Cell Innovation, National Research Council (Canada); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang, Haijiang; Yuan, Xiao-Zi; Martin, Jonathan; Shen, Jun [Institute for Fuel Cell Innovation, National Research Council (Canada); Pan, Mu; Luo, Zhiping [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-03-01

    Water management in a proton exchange membrane (PEM) fuel cell is one of the critical issues for improving fuel cell performance and durability, and water transport across the gas diffusion layer plays a key role in PEM fuel cell water management. In this work, we investigated the effects of polytetrafluoroethylene (PTFE) content and the application of a micro-porous layer (MPL) in the gas diffusion layer (GDL) on the water transport rate across the GDL. The results show that both PTFE and the MPL play a similar role of restraining water transport. The effects of different carbon loadings in the MPL on water transport were also investigated. The results demonstrate that the higher the carbon loading in the MPL, the more it reduces the water transport rate. Using the given cell hardware and components, the optimized operation conditions can be obtained based on a water balance analysis. (author)

  14. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case.

    Science.gov (United States)

    Masi, Muriel; Pagès, Jean-Marie

    2013-01-01

    Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps' overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport. PMID:23569467

  15. Design and Synthesis of Redox-Switched Lariat Ethers and Their Application for Transport of Alkali and Alkaline-Earth Metal Cations Across Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2006-08-01

    Full Text Available A new class of redox-switched anthraquinone derived lariat ethers 1-(1-anthraquinonyloxy 3, 6, 9 trioxaundecane 11-ol (M1, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-ol (M2, 1-(1-anthraquinonyloxy 3 oxapentane 5-ol (M3, 1-(1-anthraquinonyloxy 3 oxapentane 5-butane (M4, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-methane (M5 and 1-(1-anthraquinonyloxy 3 oxapentane 5-methane (M6 have been synthesized and characterized by spectral analysis. These ionophores were used in liquid membrane carrier facilitated transport of main group metal cations across supported liquid membrane (SLM. Cellulose nitrate membrane was used as membrane support. Effect of various parameters such as variation in concentration of metal as well as ionophore, effect of chain length and end group of ionophore have been studied. The sequence of metal ions transported by ionophore M1 is Na+ > Li+ > K+ > Ca2+ > Mg2+ and the order of metal ions transported by ionophores (M2–M6 is Li+ > Na+ > K+ > Ca2+ > Mg2+. Ionophore M1 is selective for Na+, Li+, and K+ and ionophores (M2–M6 are selective for Li+ and Na+.

  16. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins

    International Nuclear Information System (INIS)

    The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions

  17. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.

    Science.gov (United States)

    Chamma, Ingrid; Heubl, Martin; Chevy, Quentin; Renner, Marianne; Moutkine, Imane; Eugène, Emmanuel; Poncer, Jean Christophe; Lévi, Sabine

    2013-09-25

    The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.

  18. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    International Nuclear Information System (INIS)

    A radioiodinated photoaffinity analogue of methotrexate, Nα-(4-amino-4-deoxy-10-methyl-pteroyl)-Nε-(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  19. Studies of the biogenic amine transporters. IV. Demonstration of a multiplicity of binding sites in rat caudate membranes for the cocaine analog [125I]RTI-55.

    Science.gov (United States)

    Rothman, R B; Cadet, J L; Akunne, H C; Silverthorn, M L; Baumann, M H; Carroll, F I; Rice, K C; de Costa, B R; Partilla, J S; Wang, J B

    1994-07-01

    The drug 3 beta-[4'-iodophenyl]tropan-2 beta-carboxylic acid methyl ester (RTI-55) is a cocaine congener with high affinity for the dopamine transporter (Kd < 1 nM). The present study characterized [125I]RTI-55 binding to membranes prepared from rat, monkey and human caudates and COS cells transiently expressing the cloned rat dopamine (DA) transporter. Using the method of binding surface analysis, two binding sites were resolved in rat caudate: a high-capacity binding site (site 1, Bmax = 11,900 fmol/mg of protein) and a low-capacity site (site 2, Bmax = 846 fmol/mg of protein). The Kd (or Ki) values of selected drugs at the two sites were as follows: (Ki for high-capacity site and Ki for low-capacity site, respectively): RTI-55 (0.76 and 0.21 nM), 1-[2-diphenyl-methoxy)ethyl]-4-(3-phenylpropyl)piperazine (0.79 and 358 nM), mazindol (37.6 and 631 nM), 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (45.0 and 540 nM) and cocaine (341 and 129 nM). Nisoxetine, a selective noradrenergic uptake blocker, had low affinity for both sites. Serotonergic uptake blockers had a high degree of selectivity and high affinity for the low-capacity binding site (Ki of citalopram = 0.38 nM; Ki of paroxetine = 0.033 nM). The i.c.v. administration of 5,7-dihydroxytryptamine to rats pretreated with nomifensine (to protect dopaminergic and noradrenergic nerve terminals) selectively decreased the Bmax of site 2, strongly supporting the idea that site 2 is a binding site on the serotonin (5-HT) transporter. This serotonergic lesion also increased the affinity of [125I]RTI-55 for the DA transporter by 10-fold. The ligand selectivity of the caudate 5-HT transporter was different from the [I125]RTI-55 binding site on the 5-HT transporter present in membranes prepared from whole rat brain minus caudate. The [125I]RTI-55 binding to the DA transporter was further resolved into two components, termed sites 1a and 1b, by using human and monkey (Macaca mulatta) caudate membranes but not the

  20. Characterising the transport and preservation of microbial tetraether membrane lipids in Karst Systems

    Science.gov (United States)

    Jex, C.; Blyth, A. J.; Baker, A.; Mcdonald, J. A.; Woltering, M.; Khan, S. J.

    2013-12-01

    Stalagmites have the potential to preserve organic biomarkers, proxies for changes in surface climate. Of particular interest is a class of microbial-derived lipids, the glycerol dialkyl glycerol tetraetheral (GDGT) lipids, which have been identified in cave deposits (Yang et al. 2011). Speleothem GDGT composition has been demonstrated to correlate with surface air temperature using the achaea derived isoprenoid ';(i)GDGT' index of TEX86 and the bacteria derived branched ';(b)GDGT' index of MBT/CBT of modern speleothem samples (Blyth & Schouten, 2013), indicating considerable potential for paleo-temperature reconstructions. These studies have suggested two competing sources for GDGTs in karst systems: 1) A soil derived microbial signal dominated by bGDGTs and 2) An in situ signal dominated by iGDGTs, representative of achaea existing within the cave or overlying bedrock, which dominates the speleothem signal. These findings are yet to be thoroughly tested by characterising the seasonal and spatial nature of GDGTs within caves to establish their sources and transport pathways within these complex fractured rock systems. We address this by presenting the preliminary results of a monitoring study of GDGTs within a single cave system, in South East Australia. Harrie Wood cave in Kosciusko national park is a high altitude, semi-arid site, dominated by discrete infiltration events throughout the year. Above the cave there are thin soils consisting of loose shallow scree, steep slopes and sparse shrub vegetation. We present data obtained from waters and soils immediately above and within Harrie Wood as well as in situ collection of GDGTs formed on filter papers left inside the cave throughout the year. A second cave within the same system provides contrasting surface conditions: thick red clays of moderate to no slope and Eucalypt dominated forest. As such these caves provide ideal test sites to characterise the variability in GDGT signals that may be a result of non