WorldWideScience

Sample records for analyzing real-time systems

  1. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  2. Analyzing Real-Time Systems: Theory and Tools

    DEFF Research Database (Denmark)

    Hune, Thomas Seidelin

    actions take place, but also the timing of the actions. The formal reasoning presented here is based on (extensions of) the model of timed automata and tools supporting this model, mainly UPPAAL. Real-time systems are often part of safety critical systems e.g. control systems for planes, trains......The main topic of this dissertation is the development and use of methods for formal reasoning about the correctness of real-time systems, in particular methods and tools to handle new classes of problems. In real-time systems the correctness of the system does not only depend on the order in which......, or factories, though also everyday electronics as audio/video equipment and (mobile) phones are considered real-time systems. Often these systems are concurrent systems with a number of components interacting, and reasoning about such systems is notoriously difficult. However, since most of the systems...

  3. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton, Jr.

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  4. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  5. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  6. Real-Time IPMI Protocol Analyzer

    CERN Document Server

    Kozak, T; Makowski, D

    2011-01-01

    The Advanced Telecommunications Computing Ar- chitecture (ATCA) is a modern platform, which gains popularity, not only in telecommunication, but also in others fields like High Energy Physics (HEP) experiments. Computing systems based on ATCA provide high performance and efficiency and are char- acterized by significant reliability, availability and serviceability. ATCA offers these features because of an integrated manage- ment system realized by the Intelligent Platform Management Interface (IPMI) implemented on dedicated Intelligent Platform Management Controller (IPMC). IPMC is required on each ATCA board to fulfill the ATCA standard and is responsible for many vital procedures performed to support proper operation of ATCA system. It covers, among others, activation and deactivations of modules, monitoring of actual parameters or controlling fans. The commercially available IPMI implementations are expensive and often not suited to demands of specific ATCA applications and available hardware. Thus, many r...

  7. Analyzing Real-Time Behavior of Flash Memories

    OpenAIRE

    Parthey, Daniel

    2007-01-01

    Flash memories are used as the main storage in many portable consumer electronic devices because they are more robust than hard drives. This document gives an overview of existing consumer flash memory technologies which are mostly removable flash memory cards. It discusses to which degree consumer flash devices are suitable for real-time systems and provides a detailed timing analysis of some consumer flash devices. Further, it describes methods to analyze mount times, access per...

  8. Mobile real time radiography system

    International Nuclear Information System (INIS)

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights ∼38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  9. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  10. A real time monitoring system

    International Nuclear Information System (INIS)

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author)

  11. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    Science.gov (United States)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  12. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    OpenAIRE

    Yan-Fang Tao; Dong Wu; Li Pang; Wen-Li Zhao; Jun Lu; Na Wang; Jian Wang; Xing Feng; Yan-Hong Li; Jian Ni; Jian Pan

    2012-01-01

    Abstract Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster so...

  13. The ALMA Real Time Control System

    Science.gov (United States)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  14. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  15. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional languag...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  16. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    OpenAIRE

    Raja Vara Prasad Y; Mirza Sami Baig; Mishra, Rahul K; Rajalakshmi, P.; U. B. Desai; S. N. Merchant

    2011-01-01

    Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN) on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for ...

  17. Real Time Information Fusion in Military Systems

    Directory of Open Access Journals (Sweden)

    E. Bhagiratharao

    1990-01-01

    Full Text Available With the proliferation of sensors on platforms like battle ships and aircraft, the information to be handled by the battlefield commanders has significantly increased in the recent time. From a deluge of information flowing from sensors, the battlefield commander is required to make situation assessment in real-time and take appropriate action. Recent studies by cognitive scientists have indicated that decision making by individuals as well as a team suffer from several biases. For these two reasons, the battlefield commanders need assistance of real-time information fusion systems to take objective assessment of highly dynamic battle situation in real-time information fusion systems to take objective assessment of a highly dynamic battle situation in real-time. The real-time information fusion systems at a single platform level as well as that applicable for geographically distributed platforms is discussed in detail in this paper. It was concluded that by carrying out these activities at the platform level as well as at 'global' level involving several platforms, the limitations in performance of any sensor due to propagation effects or due to enemy counter measures can be significantly minimised or totally eliminated. At the same time the functional effectiveness of each sensor onboard different platforms, becomes better than when it had to operate autonomously within the real-time information fusion facility. By carrying out global real-time information fusion activity in a theatre of war, all the platforms operating in the area will have the benefit of the best sensor in that area on each aspect of the capability. A few examples of real-time information fusion system are also discussed.

  18. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  19. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  20. Advances in Real-Time Systems

    CERN Document Server

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  1. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  2. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  3. Real-time RGBD SLAM system

    Science.gov (United States)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  4. Stochastic Particle Real Time Analyzer (SPARTA) Validation and Verification Suite

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michael A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Fluid Science and Engineering Dept.; Koehler, Timothy P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Fluid Science and Engineering Dept.; Plimpton, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Multi Scale Science Dept.

    2014-10-01

    This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo (DSMC) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation, etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.). Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by analytical solutions and theory. A number of additional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well-established codes or theoretical predictions. This compilation of test cases is not exhaustive, and it is anticipated that more cases will be added in the future.

  5. Real Time Wide Area Radiation Surveillance System

    Science.gov (United States)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  6. A distributed real-time operating system

    International Nuclear Information System (INIS)

    A distributed real-time operating system, Fados, has been developed for an embedded multi-processor system. The operating system is based on a host target approach and provides for communication between arbitrary processes on host and target machine. The facilities offered are, apart from process communication, access to the file system on the host by programs on the target machine and monitoring and debugging of programs on the target machine from the host. The process communication has been designed in such a way that the possibilities are the same as those offered by the Ada programming language. The operating system is implemented on a MC 68000 based multiprocessor system in combination with a Unix host. (orig.)

  7. The Operation Control System for Pollution Source Chemical Analyzer Real-time Sampling%污染源化学分析仪实时采样运行控制系统

    Institute of Scientific and Technical Information of China (English)

    沈志鸿

    2014-01-01

    This article according to the real-time problem on the detection data by wastewater pollution chemistry analyzer, presents a method to improve the detection of the real-time data by building the operation control system for pollution source chemical analyzer real-time sampling, and effectively solves the actual problem that detection of data lags behind the situation of sewage treatment as a result of deifciency of chemical analyzer design structure, and faithfully relfects the real time status of sewage of monitoring points, to provide real-time detection of data more close to the actual for regulators.%针对废水污染源化学分析仪检测数据的实时性问题,提出了一种提高检测数据实时性的污染源化学分析仪实时采样运行控制系统,有效地解决了由于化学分析仪设计结构存在的不足而导致的检测数据滞后于当前工况的实际问题,真实的反映被监控点的实时排污状况,为监管机构提供更为贴近实际的实时分析检测数据。

  8. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  9. Wi-Fi real time location systems

    Science.gov (United States)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  10. Near real-time stereo vision system

    Science.gov (United States)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  11. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    Science.gov (United States)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  12. Upgrade of the COMPASS tokamak real-time control system

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: filip.janky.work@gmail.com [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Havlicek, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Batista, A.J.N. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kudlacek, O.; Seidl, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Neto, A.C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pipek, J.; Hron, M. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Mikulin, O. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, V Holesovickach 2, 18000 Prague (Czech Republic); and others

    2014-03-15

    Highlights: • An upgrade of the COMPASS real-time system has been made to generally improve the plasma performance. • Stability of discharges in SNT configuration has been increased. • Plasma flat-top phase length has been extended. • Central solenoid protection has been developed. • Plasma position estimation has been improved. - Abstract: The COMPASS plasma control system is based on the MARTe real-time framework. Thanks to MARTe modularity and flexibility new algorithms have been developed for plasma diagnostic (plasma position calculation), control (shaping field control), and protection systems (central solenoid protection). Moreover, the MARTe framework itself was modified to broaden the communication capabilities via Aurora. This paper presents the recent upgrades and improvements made to the COMPASS real-time plasma control system, focusing on the issues related to precision of the real-time calculations, and discussing the improvements in terms of discharge parameters and stability. In particular, the new real-time system has given the possibility to analyze and to minimize the transport delays of each control loop.

  13. MODIS NDVI Change Detection Techniques and Products Used in the Near Real Time ForWarn System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William; Gasser, Jerry; Smoot, James; Kuper, Philip D.

    2014-01-01

    This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.

  14. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    Science.gov (United States)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  15. A real time operating system for embedded platforms

    OpenAIRE

    Wroldsen, Torstein; Tveitane, Ståle

    2004-01-01

    SDL (Specification and Description Language) is today widely used for description and development of complex systems. One of the major benefits of SDL is the possibility to graphically describe a complex system, as well as the capability to analyze the system before implementation. This thesis evaluates SDL as a formal description language for use in an embedded platform. To be able to map the properties and behaviour of an SDL system into a programming language, a Real Time...

  16. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  17. Secure transaction processing in firm real-time database systems

    OpenAIRE

    George, Binto; Haritsa, Jayant

    1997-01-01

    Many real-time database applications arise in safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. A secure real-time database system has to simultaneously satisfy who requirements guarantee data security and minimize the number of missed transaction deadlines. We investigate here the performance implications, in terms of missed deadlines, of guaranteeing security in a real-time database system. In particular, we focus on the...

  18. UML for real design of embedded real-time systems

    CERN Document Server

    Martin, Grant; Selic, Bran

    2003-01-01

    Models, Software Models and UML.- UML for Real-Time.- Structural Modeling with UML 2.0.- Message Sequence Charts.- UML and Platform-based Design.- UML for Hardware and Software Object Modeling.- Fine Grained Patterns for Real-Time Systems.- Architectural Patterns for Real-Time Systems.- Modeling Quality of Service with UML.- Modeling Metric Time.- Performance Analysis with UML.- Schedulability Analysis with UML.- Automotive UML.- Specifying Telecommunications Systems with UML.- Leveraging UML to Deliver Correct Telecom Applications.- Software Performance Engineering.

  19. Upgrade of the RFX-mod real time control system

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127 (Italy); Barbalace, A.; Luchetta, A.; Soppelsa, A.; Taliercio, C.; Zampiva, E. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127 (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The paper describes the experience in running the real-time control system of RFX-mod. Black-Right-Pointing-Pointer It proposes a new architecture based multicore technology. Black-Right-Pointing-Pointer It analyzes two different solutions for data acquisition. Black-Right-Pointing-Pointer It discusses the effect of non simultaneous sampling in acquisition. Black-Right-Pointing-Pointer It provides some preliminary performance measurements. - Abstract: The real-time control system of RFX-mod, in operation since 2005, has been successful and has allowed several important achievements in the RFX physics research program. As a consequence of this fact, new control algorithms are under investigation, which are more demanding in terms of both enhanced computing power and reduced system latency, currently around 1.5 ms. For this reason, a major upgrade of the system is being considered, and a new architecture has been proposed, taking advantage of the rapid evolution of computer technology in the last years. The central component of the new architecture is a Linux-based multicore server, where individual cores replace the VME computers. The server is connected to the I/O via PCI-e based bus extenders, and every PCI-e connection is managed by a separate core. The system is supervised by MARTe, a software framework for real-time applications written in C++ and developed at JET and currently used for the JET vertical stabilization and in other fusion devices.

  20. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian;

    2009-01-01

    subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking......We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...

  1. 75 FR 68418 - Real-Time System Management Information Program

    Science.gov (United States)

    2010-11-08

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... System Management Information Program that provides, in all States, the capability to monitor, in real... traveler information. The purposes of the Real-Time System Management Information Program are to:...

  2. 76 FR 42536 - Real-Time System Management Information Program

    Science.gov (United States)

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... additional comments relating to the costs and benefits of the Real-Time System Management Information...

  3. Specifying and verifying requirements of real-time systems

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Rischel, Hans; Hansen, Kirsten Mark

    1993-01-01

    An approach to specification of requirements and verification of design for real-time systems is presented. A system is defined by a conventional mathematical model for a dynamic system where application specific states denote functions of real time. Specifications are formulas in duration calculus...

  4. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    Directory of Open Access Journals (Sweden)

    Yan-Fang Tao

    2012-09-01

    Full Text Available Abstract Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We

  5. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  6. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  7. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  8. Real-time analytics techniques to analyze and visualize streaming data

    CERN Document Server

    Ellis, Byron

    2014-01-01

    Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development,

  9. Merged Real Time GNSS Solutions for the READI System

    Science.gov (United States)

    Santillan, V. M.; Geng, J.

    2014-12-01

    Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21

  10. A Text Categorization System with Soft Real-Time Guarantee

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to provide predictable runtime performance for text categorization (TC) systems, an innovative system design method is proposed for soft real-time TC systems. An analyzable mathematical model is established to approximately describe the nonlinear and time-varying TC systems. According to this mathematical model, the feedback control theory is adopted to prove the system's stableness and zero steady state error. The experiments result shows that the error of deadline satisfied ratio in the system is kept within 4% of the desired value. And the number of classifiers can be dynamically adjusted by the system itself to save the computation resources. The proposed methodology enables the theoretical analysis and evaluation to the TC systems, leading to a high-quality and low-cost implementation approach.

  11. Real time control engineering systems and automation

    CERN Document Server

    Ng, Tian Seng

    2016-01-01

    This book covers the two broad areas of the electronics and electrical aspects of control applications, highlighting the many different types of control systems of relevance to real-life control system design. The control techniques presented are state-of-the-art. In the electronics section, readers will find essential information on microprocessor, microcontroller, mechatronics and electronics control. The low-level assembly programming language performs basic input/output control techniques as well as controlling the stepper motor and PWM dc motor. In the electrical section, the book addresses the complete elevator PLC system design, neural network plant control, load flow analysis, and process control, as well as machine vision topics. Illustrative diagrams, circuits and programming examples and algorithms help to explain the details of the system function design. Readers will find a wealth of computer control and industrial automation practices and applications for modern industries, as well as the educat...

  12. SELF LEARNING REAL TIME EXPERT SYSTEM

    Directory of Open Access Journals (Sweden)

    Latha B. Kaimal

    2013-02-01

    Full Text Available In a Power plant with a Distributed Control System ( DCS , process parameters are continuously stored in databases at discrete intervals. The data contained in these databases may not appear to contain valuable relational information but practically such a relation exists. The large number of process parameter values are changing with time in a Power Plant. These parameters are part of rules framed by domain experts for the expert system. With the changes in parameters there is a quite high possibility to form new rules using the dynamics of the process itself. We present an efficient algorithm that generates all significant rules based on the real data. The association based algorithms were compared and the best suited algorithm for this process application was selected. The application for the Learning system is studied in a Power Plant domain. The SCADA interface was developed to acquire online plant data.

  13. Cluster Computing for Embedded/Real-Time Systems

    Science.gov (United States)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  14. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    In recent years, real-time processing and analytics systems for big data–in the context of Business Intelligence (BI)–have received a growing attention. The traditional BI platforms that perform regular updates on daily, weekly or monthly basis are no longer adequate to satisfy the fast......-changing business environments. However, due to the nature of big data, it has become a challenge to achieve the real-time capability using the traditional technologies. The recent distributed computing technology, MapReduce, provides off-the-shelf high scalability that can significantly shorten the processing time...... for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  15. Real-time wideband holographic surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M. (1917 Hood, Richland, WA 99352); Collins, H. Dale (1751 Duluth, Richland, WA 99352); Hall, Thomas E. (8301 W. Entiat Pl., Kennewick, WA 99336); McMakin, Douglas L. (2173 Shasta Ave., Richland, WA 99352); Gribble, R. Parks (1215 Cottonwood Dr., Richland, WA 99352); Severtsen, Ronald H. (1803 Birch Ave., Richland, WA 99352); Prince, James M. (3029 W. 2nd Ave., Apt. F95, Kennewick, WA 99336); Reid, Larry D. (Rt. 1, Box 1291B, Benton City, WA 99320)

    1996-01-01

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.

  16. Real-time embedded systems design principles and engineering practices

    CERN Document Server

    Fan, Xiaocong

    2015-01-01

    This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you

  17. Resource-Parameterized Timing Analysis of Real-Time Systems

    DEFF Research Database (Denmark)

    Kim, Jin Hyun; Legay, Axel; Larsen, Kim Guldstrand;

    2015-01-01

    Cyber-Physical Systems (CPS) are subject to platform-given resource constraints upon such resources as CPU, memory, and bus, in executing their functionalities. This causes the behavior of a verified application to deviate from its intended timing behavior when the application is integrated...... on a specic platform. For the same reason, a configuration of platforms cannot be independent from applications in most cases. This paper proposes a new analysis framework of real-time systems where an application and a platform can be analyzed in a fully independent way such that not only the application...... be parameterized by various resource congurations. For analysis of application and platform models, we use two model checking techniques: symbolic and statistical model checking techniques of Uppaal. Our framework is demonstrated by a case study where a turn indicator system is analyzed with respect to various...

  18. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...... to locality, lifetime, and static analyzability of access addresses comparedto static or heap allocated data. Therefore, caching of stack allocateddata benefits from having its own cache. In this paper we present a cache architecture optimized for stack allocateddata. This cache is additional to the normal...... data cache. As stack allocated datahas a high locality, even a small stack cache gives a high hit rate. A stack cache added to a write-through data cache considerablyimproves the performance, while a stack cache compared tothe harder to analyze write-back cache has about the sameaverage case...

  19. An SDRAM controller for real-time systems

    DEFF Research Database (Denmark)

    Lakis, Edgar; Schoeberl, Martin

    2013-01-01

    For real-time systems we need to statically determine worst-case execution times (WCET) of tasks to proof the schedulability of the system. To enable static WCET analysis, the platform needs to be time-predictable. The platform includes the processor, the caches, the memory system, the operating...... memory controllers for DRAM memories are optimized to provide maximum bandwidth or throughput at the cost of variable latency for individual memory accesses. In this paper we present an SDRAM controller for realtime systems. The controller is optimized for the worst case and constant latency to provide...... system, and the application software itself. All those components need to be timing analyzable. Current computers use DRAM as a cost effective main memory. However, these DRAM chips have timing requirements that depend on former accesses and also need to be refreshed to retain their content. Standard...

  20. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  1. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  2. UML statechart based rigorous modeling of real-time system

    Institute of Scientific and Technical Information of China (English)

    LAI Ming-zhi; YOU Jin-yuan

    2005-01-01

    Rigorous modeling could ensure correctness and could verify a reduced cost in embedded real-time system development for models. Software methods are needed for rigorous modeling of embedded real-time systems. PVS is a formal method with precise syntax and semantics defined. System modeled by PVS specification could be verified by tools. Combining the widely used UML with PVS, this paper provides a novel modeling and verification approach for embedded real-time systems. In this approach, we provide 1 ) a time-extended UML statechart for modeling dynamic behavior of an embedded real-time system; 2) an approach to capture timed automata based semantics from a timed statechart; and 3) an algorithm to generate a finite state model expressed in PVS specification for model checking. The benefits of our approach include flexibility and user friendliness in modeling, extendability in formalization and verification content, and better performance. Time constraints are modeled and verified and is a highlight of this paper.

  3. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  4. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  5. Real Time Decoding of Color Symbol for Optical Positioning System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex back‐ grounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  6. IMPLEMENTATION OF IMAGE PROCESSING IN REAL TIME CAR PARKING SYSTEM

    Directory of Open Access Journals (Sweden)

    SAYANTI BANERJEE,

    2011-02-01

    Full Text Available Car parking lots are an important object class in many traffic and civilian applications. With the problems of increasing urban trafficcongestion and the ever increasing shortage of space, these car parking lots are needed to be well equipped with automatic parkingInformation and Guidance systems. Goals of intelligent parking lot management include counting the number of parked cars, and identifyingthe available location. This work proposes a new system for providing parking information and guidance using image processing. The proposed system includes counting the number of parked vehicles, and dentifying the stalls available. The system detects cars through images instead of using electronic sensors embedded on the floor. A camera is installed at the entry point of the parking lot. It capturesimage sequences. The image sequences are then analyzed using digital image processing for vehicle detection and according to the status ofvehicle occupancy inside, real time guidance and information is provided to the incoming driver.

  7. Secure buffering in firm real-time database systems

    OpenAIRE

    George, Binto; Haritsa, Jayant R.

    2000-01-01

    Many real-time database applications arise in electronic financial services, safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. We investigate here the performance implications, in terms of killed transactions, of guaranteeing multi-level secrecy in a real-time database system supporting applications with firm deadlines. In particular, we focus on the buffer management aspects of this issue. Our main contributions are the f...

  8. A Remote Real-Time Monitoring System for Power Quality

    Institute of Scientific and Technical Information of China (English)

    黄治清; 贺建闽

    2003-01-01

    An introduction is made to the composition, design method and engineering application of a remote real-time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real-time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.

  9. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  10. The Dynamic Checking of Complex Real Time System

    Institute of Scientific and Technical Information of China (English)

    YU Chao; HUANG Benwen; WU Guoqing

    2006-01-01

    The paper presents an dynamic execution model of complex real-time software based on requirement description model RTRSM, and then propose a checking method based on configuration covering and its corresponding algorithm. This checking method can check the execution situations between parallel elements in a dynamic execution step of real-time software systems. It also can check all the states and transitions which assure the completeness of checking. In the end, related theorem is proofed.

  11. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing requireme......Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing...... requirements. As real-time systems become more complex, they are often implemented using distributed heterogeneous architectures. Analysis and Synthesis of Distributed Real-Time Embedded Systems addresses the design of real-time applications implemented using distributed heterogeneous architectures....... The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. Regarding this last aspect, time-driven and event-driven systems, as well as a combination of the two, are considered. Such systems are used in many application areas...

  12. The Design Approach for Real-Time System%实时系统设计方法

    Institute of Scientific and Technical Information of China (English)

    王莲; 张云勇

    2001-01-01

    The real-time system is used widely since the 1990's. In the paper some typical design approaches are introduced. Then the object-oriented design approach for real-time system and the use of UML is analyzed.

  13. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  14. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  15. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Directory of Open Access Journals (Sweden)

    Hanchen Jiang

    2014-01-01

    Full Text Available The concern for workers’ safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM, the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  16. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  17. Analysis and Optimization of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo;

    2006-01-01

    An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware and software components, but also in terms of communication protocols...... and scheduling policies. In this context, the task of designing such systems is becoming increasingly difficult. The success of new adequate design methods depends on the availability of efficient analysis as well as optimization techniques. In this paper, we present both analysis and optimization approaches...... for such heterogeneous distributed real-time embedded systems. More specifically, we discuss the schedulability analysis of hard real-time systems, highlighting particular aspects related to the heterogeneous and distributed nature of the applications. We also introduce several design optimization problems...

  18. Simultaneous real-time monitoring of multiple cortical systems

    Science.gov (United States)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  19. System security assessment in real-time using synchrophasor measurements

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Wache, Markus

    2013-01-01

    assessment and sheds light on ongoing research activities that focus on exploiting wide-area synchrophasor measurements for real-time security assessment of sustainable power systems. At last, an mathematical mapping enabling informative visualization of the system state in respect to aperiodic rotor angle...... measures to ensure stable and secure operation of the system are necessary. Time stamped synchrophasor measurements lay the foundation for development of new real-time applications for security and stability assessment. The paper provides overview of existing solutions for synchrophasor based security...

  20. Real-time systems design principles for distributed embedded applications

    CERN Document Server

    Kopetz, Hermann

    1997-01-01

    The book explains the relevance of recent scientific insights to the solution of everyday problems in the design and implementation of distributed and embedded real-time systems. Thus, as a reference source the book presents real-time technology in a concise and understandable manner. Because the cost-effectiveness of a particular method is of major concern in an industrial setting, design decisions are examined from an economic viewpoint. The recent appearance of cost-effective powerful system chips has tremendous influence on the architecture and economics of future distributed system soluti

  1. Analysis and Optimization of Heterogeneous Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2005-01-01

    . The success of such new design methods depends on the availability of analysis and optimization techniques. In this paper, we present analysis and optimization techniques for heterogeneous real-time embedded systems. We address in more detail a particular class of such systems called multi-clusters, composed......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling...

  2. Analysis and optimisation of heterogeneous real-time embedded systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2005-01-01

    . The success of such new design methods depends on the availability of analysis and optimisation techniques. Analysis and optimisation techniques for heterogeneous real-time embedded systems are presented in the paper. The authors address in more detail a particular class of such systems called multi......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous, not only in terms of hardware components, but also in terms of communication protocols and scheduling...

  3. A real-time VLC to UART protocol conversion system

    Science.gov (United States)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  4. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer.

    Science.gov (United States)

    Liu, Peng; Yeung, Stephanie H I; Crenshaw, Karin A; Crouse, Cecelia A; Scherer, James R; Mathies, Richard A

    2008-09-01

    An integrated lab-on-a-chip system has been developed and successfully utilized for real-time forensic short tandem repeat (STR) analysis. The microdevice comprises a 160-nL polymerase chain reaction reactor with an on-chip heater and a temperature sensor for thermal cycling, microvalves for fluidic manipulation, a co-injector for sizing standard injection, and a 7-cm-long separation channel for capillary electrophoretic analysis. A 9-plex autosomal STR typing system consisting of amelogenin and eight combined DNA index system (CODIS) core STR loci has been constructed and optimized for this real-time human identification study. Reproducible STR profiles of control DNA samples are obtained in 2h and 30min with DNA required for a complete DNA profile is 100 copies. To critically evaluate the capabilities of our portable microsystem as well as its compatibility with crime scene investigation processes, real-time STR analyses were carried out at a mock crime scene prepared by the Palm Beach County Sheriff's Office (PBSO). Blood stain sample collection, DNA extraction, and STR analyses on the portable microsystem were conducted in the field, and a successful "mock" CODIS hit was generated on the suspect's sample within 6h. This demonstration of on-site STR analysis establishes the feasibility of real-time DNA typing to identify the contributor of probative biological evidence at a crime scene and for real-time human identification.

  5. Wavelet-Based Real-Time Diagnosis of Complex Systems

    Science.gov (United States)

    Gulati, Sandeep; Mackey, Ryan

    2003-01-01

    A new method of robust, autonomous real-time diagnosis of a time-varying complex system (e.g., a spacecraft, an advanced aircraft, or a process-control system) is presented here. It is based upon the characterization and comparison of (1) the execution of software, as reported by discrete data, and (2) data from sensors that monitor the physical state of the system, such as performance sensors or similar quantitative time-varying measurements. By taking account of the relationship between execution of, and the responses to, software commands, this method satisfies a key requirement for robust autonomous diagnosis, namely, ensuring that control is maintained and followed. Such monitoring of control software requires that estimates of the state of the system, as represented within the control software itself, are representative of the physical behavior of the system. In this method, data from sensors and discrete command data are analyzed simultaneously and compared to determine their correlation. If the sensed physical state of the system differs from the software estimate (see figure) or if the system fails to perform a transition as commanded by software, or such a transition occurs without the associated command, the system has experienced a control fault. This method provides a means of detecting such divergent behavior and automatically generating an appropriate warning.

  6. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  7. Evaluation of Real-time operating systems for FGC controls

    CERN Document Server

    Chalas, Konstantinos

    2015-01-01

    Power Converter Control for various experiments at CERN, is con- ducted using a machine called Function Generator Controller. The cur- rent generation of FGCs being deployed is FGC3. A certain number of FGCs require very fast and precise control, and for these systems, there is uncertainty of whether the existing hardware will be able to provide the level of determinism required. I have worked in the CCS section as a summer student on a project to study the potential of ARM-based CPUs to provide a real time behaviour fit for a future high-performance FGC4. In this paper, i will present the results of my research into real-time vari- ants of Linux and other real-time operating systems on two different ARM CPUs.

  8. Evaluation of Cache Partitioning for Hard Real-Time Systems

    NARCIS (Netherlands)

    S. Altmeyer; R. Douma; W. Lunniss; R.I. Davis

    2014-01-01

    In hard real-time systems, cache partitioning is often suggested as a means of increasing the predictability of caches in pre-emptively scheduled systems: when a task is assigned its own cache partition, inter-task cache eviction is avoided, and timing verification is reduced to the standard worst c

  9. BENEFITS OF SEWERAGE SYSTEM REAL-TIME CONTROL

    Science.gov (United States)

    Real-time control (RTC) is a custom-designed computer-assisted management system for a specific urban sewerage network that is activated during a wet-weather flow event. Though uses of RTC systems had started in the mid 60s, recent developments in computers, telecommunication, in...

  10. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup;

    2013-01-01

    The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS...

  11. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  12. Managing Real-time Collaboration in Validated Content Management System

    Directory of Open Access Journals (Sweden)

    Zakaria Itahriouan

    2013-06-01

    Full Text Available Content Management Systems (CMS provide to its users the ability to publish on the Web with no need to have experience in developing web pages, this way CMS also participates in the expansion of reducing quality of content placed on the web similarly to Web 2.0 tools. The mechanism of validating content indicates a high level of quality content control while putting users as main players according to Web 2.0 standards, from this prospects we develop Validated Content Management System VCMS as a new Web 2.0 tool that supports content validation mechanism. The VCMS system requires collaboration between users when content is being static validated. Real-time synchronization between users during collaboration on the same project can make this process easier and brings more rapidity to content publication while maintaining the mechanisms that allows quality control in our system. In this article we present the technic of implementing real time interaction between users during collaboration on the same content. We focus on promoting the What You See Is What You Get (WYSIWYG editor to support Real-time collaboration between multiple content generators. . The approach presented in this paper can be integrated to any collaborative Content Management System and also can be used in all collaborative applications that generate Web content such as blogs or wikis offering to these tools the feature of collaborating on the same content between multiple users in real-time.

  13. A distributed real-time Java system based on CSP

    NARCIS (Netherlands)

    Bakkers, André; Hilderink, Gerald; Broenink, Jan

    1999-01-01

    Real-time embedded systems in general require a reliability that is orders of magnitude higher than what is presently obtainable with state of the art C programs. The reason for the poor reliability of present day software is the unavailability of a formalism to design sequential C programs. The use

  14. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei;

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... to demonstrate modeling, system disturbances of various types, and proper recovery actions, as well as to illustrate complex power system concepts. The Kundur power system consists of two fully symmetrical areas linked together by two 230kV lines is modeled by using RSCAD in order to carry out simulations...

  15. A coincidence detection system based on real-time software

    Science.gov (United States)

    Ayuso, Sindulfo; José Blanco, Juan; Medina, José; Gómez-Herrero, Raúl; García-Población, Oscar; García Tejedor, Ignacio

    2016-09-01

    Conventional real-time coincidence systems use electronic circuitry to detect coincident pulses (hardware coincidence). In this work, a new concept of coincidence system based on real-time software (software coincidence) is presented. This system is based on the recurrent supervision of the analogue-to-digital converters status, which is described in detail. A prototype has been designed and built using a low-cost development platform. It has been applied to two different experimental sets for cosmic ray muon detection. Experimental muon measurements recorded simultaneously using conventional hardware coincidence and our software coincidence system have been compared, yielding identical results. These measurements have also been validated using simultaneous neutron monitor observations. This new software coincidence system provides remarkable advantages such as higher simplicity of interconnection and adjusting. Thus, our system replaces, at least, three Nuclear Instrument Modules (NIMs) required by conventional coincidence systems, reducing its cost by a factor of 40 and eliminating pulse delay adjustments.

  16. Real-time evolution of quenched quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Michael

    2009-06-24

    Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)

  17. Real-time evolution of quenched quantum systems

    International Nuclear Information System (INIS)

    Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)

  18. Reuse of E-plate cell sensor arrays in the xCELLigence Real-Time Cell Analyzer.

    Science.gov (United States)

    Stefanowicz-Hajduk, Justyna; Adamska, Anna; Bartoszewski, Rafal; Ochocka, J Renata

    2016-01-01

    The xCELLigence Real-Time Cell Analyzer (RTCA) is a non-invasive, impedence-based biosensor system that can measure cell viability, migration, growth, spreading, and proliferation. Changes in cell morphology and behavior are continuously monitored in real time using microelectronics located in the wells of RTCA E-plates. According to the manufacturer's recommendation, E-plates are single-use and disposable. Here, we show that E-plates can be regenerated and reused several times without significantly effecting experimental results. PMID:27625205

  19. Application Of UML In Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Aman Kaur

    2012-04-01

    Full Text Available The UML was designed as a graphical notation for use with object-oriented systems and applications. Because of its popularity, now it is emerging in the field of embedded systems design as a modeling language. The UML notation is useful in capturing the requirements, documenting the structure, decomposing into objects and defining relationships between objects. It is a notational language that is very useful in modelling the real-time embedded systems. This paper presents the requirements and analysis modelling of a real-time embedded system related to a control system application for platformstabilization using COMET method of design with UML notation. These applications involve designing of electromechanical systems that are controlled by multi-processors.

  20. Multi-purpose fast neutron spectrum analyzer with real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaev, Yu.S., E-mail: sulyaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kvashnin, A.N. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Burdakov, A.V.; Grishnyaev, E.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation)

    2013-08-21

    Diagnostics of hot ion component of plasma on the products of fusion reactions is widely used on thermonuclear facilities. In case of employment of neutron spectrometers, based on organics scintillators, there is advanced technique developed to eliminate neutron pulses from gamma background—digital pulse shape discrimination. For every DPSD application it is necessary to use the fast (2–5 ns) and precise (12 bit) transient ADC unit with large amount of onboard memory for storing every digitized scintillation pulses during shot time. At present time the duration of hot thermonuclear plasma burning in large tokamaks approximate to 1 min, and this requires very high onboard memory capacity (∼100 GB). This paper describes a neutron spectrum analyzer with real-time DPSD algorithm, implemented to ADC unit. This approach saves about two orders of onboard memory capacity, gives the possibility of instant use of outcome to feedback systems. This analyzer was tested and calibrated with help of {sup 60}Co and {sup 252}Cf radiation sources, and deuterium neutron generator.

  1. Application Of UML In Real-Time Embedded Systems

    OpenAIRE

    Aman Kaur; Rajeev Arora

    2012-01-01

    The UML was designed as a graphical notation for use with object-oriented systems and applications. Because of its popularity, now it is emerging in the field of embedded systems design as a modeling language. The UML notation is useful in capturing the requirements, documenting the structure, decomposing into objects and defining relationships between objects. It is a notational language that is very useful in modelling the real-time embedded systems. This paper presents the requirements and...

  2. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...... game between the tester and the system under test (SUT). We propose methods of using winning strategies as test cases for black-box conformance testing. The methods are generalized to problems where only possibly winning game strategies can be obtained. In this case continued testing requires some...

  3. Specification and Test of Real-Time Systems

    DEFF Research Database (Denmark)

    Nielsen, Brian

    of the desired system behavior and generates the necessary test cases. A main problem is to construct a reasonably small test suite that can be executed within allotted resources, while having a high likelihood of detecting unknown errors. Our goal has been to treat the time dimension of this problem thoroughly......Distributed real-time computer based systems are very complex and intrinsically difficult to specify and implement correctly; in part this is caused by the overwhelming number of possible interactions between system components, but especially by a lack of adequate methods and tools to deal...... of the system, and a set of constraint patterns which describes and enforces the timing and synchronization constraints among components. We propose new techniques for automated black box conformance testing of real-time systems against densely timed speci cations. A test generator tool examines a specification...

  4. Implementation of a Real Time Passenger Information System

    CERN Document Server

    Ganesh, K; Kuri, Joy; Dagale, Haresh; Sudhakar, G; Sanyal, Sugata

    2012-01-01

    Intelligent Transportation Systems (ITS) are gaining recognition in developing countries like India. This paper describes the various components of our prototype implementation of a Real-time Passenger Information System (RTPIS) for a public transport system like a fleet of buses. Vehicle-mounted units, bus station units and a server located at the transport company premises comprise the system. The vehicle unit reports the current position of the vehicle to a central server periodically via General Packet Radio Service (GPRS). An Estimated Time of Arrival (ETA) algorithm running on the server predicts the arrival times of buses at their stops based on real-time observations of the buses' current Global Positioning System (GPS) coordinates. This information is displayed and announced to passengers at stops using station units, which periodically fetch the required ETA from the server via GPRS. Novel features of our prototype include: (a) a route creator utility which automatically creates new routes from scra...

  5. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  6. Analysis and optimisation of heterogeneous real-time embedded systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    policies. Each network has its own communication protocol, each processor in the architecture can have its own scheduling policy, and several scheduling policies can share a processor. In this context, the task of designing such systems is becoming increasingly important and difficult at the same time......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous, not only in terms of hardware components, but also in terms of communication protocols and scheduling....... The success of such new design methods depends on the availability of analysis and optimisation techniques. Analysis and optimisation techniques for heterogeneous real-time embedded systems are presented in the paper. The authors address in more detail a particular class of such systems called multi...

  7. Infrared Real-time Thermal System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared real-time imaging system using DSP(digital signal processor) as the kernel of digital signal processing board is presented. In this system, the imaging difference and nonuniformity correction method is developed on the chip taking advantage of DSP with high speed. The method combines hardware and software together, so that the difficulty for realizing such a method with other hardware can be overcome.

  8. Earth Observing System (EOS) real-time onboard orbit determination

    Science.gov (United States)

    Folta, David C.; Muller, Ron

    1993-01-01

    The paper describes the TDRSS Onboard Navigation System (TONS) selected by NASA/GSFC for the EOS-AM1 spacecraft as the baseline navigation system for real-time onboard orbit determination. Particular attention is given to the TONS algorithms and environmental models, the general design considerations, the algorithm implementation, and the required hardware. Results are presented of the covariance analysis for the nominal onboard and instrument requirements.

  9. Real-time multi-task operators support system

    International Nuclear Information System (INIS)

    The development in computer software and hardware technology and information processing as well as the accumulation in the design and feedback from Nuclear Power Plant (NPP) operation created a good opportunity to develop an integrated Operator Support System. The Real-time Multi-task Operator Support System (RMOSS) has been built to support the operator's decision making process during normal and abnormal operations. RMOSS consists of five system subtasks such as Data Collection and Validation Task (DCVT), Operation Monitoring Task (OMT), Fault Diagnostic Task (FDT), Operation Guideline Task (OGT) and Human Machine Interface Task (HMIT). RMOSS uses rule-based expert system and Artificial Neural Network (ANN). The rule-based expert system is used to identify the predefined events in static conditions and track the operation guideline through data processing. In dynamic status, Back-Propagation Neural Network is adopted for fault diagnosis, which is trained with the Genetic Algorithm. Embedded real-time operation system VxWorks and its integrated environment Tornado II are used as the RMOSS software cross-development. VxGUI is used to design HMI. All of the task programs are designed in C language. The task tests and function evaluation of RMOSS have been done in one real-time full scope simulator. Evaluation results show that each task of RMOSS is capable of accomplishing its functions. (authors)

  10. Refinement and Verification of Real-Time Systems

    CERN Document Server

    Kolano, Paul Z; Kemmerer, Richard A; Mandrioli, Dino

    2010-01-01

    This paper discusses highly general mechanisms for specifying the refinement of a real-time system as a collection of lower level parallel components that preserve the timing and functional requirements of the upper level specification. These mechanisms are discussed in the context of ASTRAL, which is a formal specification language for real-time systems. Refinement is accomplished by mapping all of the elements of an upper level specification into lower level elements that may be split among several parallel components. In addition, actions that can occur in the upper level are mapped to actions of components operating at the lower level. This allows several types of implementation strategies to be specified in a natural way, while the price for generality (in terms of complexity) is paid only when necessary. The refinement mechanisms are first illustrated using a simple digital circuit; then, through a highly complex phone system; finally, design guidelines gleaned from these specifications are presented.

  11. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  12. Real-time moving object detection for video monitoring systems

    Institute of Scientific and Technical Information of China (English)

    Wei Zhiqiang; Ji Xiaopeng; Wang Peng

    2006-01-01

    Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. A method for real-time moving object detection is described. A new background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving objects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video monitoring systems.

  13. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  14. Integrated real time bowel sound detector for artificial pancreas systems

    OpenAIRE

    Khandaker A. Al Mamun; Nicole McFarlane

    2016-01-01

    This paper reports an ultra-low power real time bowel sound detector with integrated feature extractor for physiologic measure of meal instances in artificial pancreas devices. The system can aid in improving long term diabetic patient care and consists of a front end detector and signal processing unit. The front end detector transduces the initial bowel sound recorded from a piezoelectric sensor into a voltage signal. The signal processor uses a feature extractor to determine whether a bowe...

  15. Real-time Data Communication in Photoelectric Image Detection System

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-tao; LIU Yong-gui; HUANG Min

    2006-01-01

    High speed data communication between digital signal processor and the host is required to meet the demand of most real-time systems. PCI bus technology is a solution of this problem. The principle of data communication based on PCI has been explained. Meanwhile,the technology of data transfer between synchronous dynamic RAM(SDRAM) and an mapping space of on-chip memory(L2) by expansion direct memory access(EDMA) has also been realized.

  16. Real-Time Co-Operative Decision Making & Control Systems

    OpenAIRE

    Vlacic, Ljubo; Thomas, Daniel; Pérez Rastelli, Joshué

    2011-01-01

    International audience Learning and adaptability (and thus the ability of being co-operative) are important features of decision & control systems. This paper investigates decision making and control concepts that enable human beings and artificial beings to interact and co-operate in real time in a dynamic and reliable way. It examines the aspects of being co-operative and substitutable in the context of: (i) co-operative driving by driverless vehicles; and (ii) computer game play scenari...

  17. Online Testing of Real-time Systems Using Uppaal

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Mikucionis, Marius; Nielsen, Brian

    2005-01-01

    We present T-Uppaal{} -- a new tool for online black-box testing of real-time embedded systems from non-deterministic timed automata specifications. We describe a sound and complete randomized online testing algorithm and how to implement it using symbolic state representation and manipulation......-the-fly model-checking tool engine. A medium size case study shows promising results in terms of error detection capability and computation performance....

  18. System Integration for Real-time Mobile Manipulation

    Directory of Open Access Journals (Sweden)

    Reza Oftadeh

    2014-03-01

    Full Text Available Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator ’s mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based controls, and proposes a systematic solution based on code generation products of MATLAB and Simulink. The remote development environment described here is used to develop real-time controller software and modules for the mobile manipulator under a POSIX-compliant, real-time Linux operating system. Our approach enables developers to reliably design controller modules that meet the hard real-time constraints of the entire low-level system architecture. Moreover, it provides a systematic framework for the development and integration of hardware devices with various communication mediums and protocols, which facilitates the development and integration process of the software controller.

  19. Real-Time Mapping alert system; user's manual

    Science.gov (United States)

    Torres, L.A.

    1996-01-01

    The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water- related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field monitoring sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. These alert values can help keep water- resource specialists informed of current hydrologic conditions. The current alert status at monitoring sites is of critical importance during floods, hurricanes, and other extreme hydrologic events where quick analysis of the situation is needed. This manual provides instructions for using the Real-Time Mapping software, a series of computer programs developed by the U.S. Geological Survey for quick analysis of hydrologic conditions, and guides users through a basic interactive session. The software provides interactive graphics display and query of real-time information in a map-based, menu-driven environment.

  20. Design of preliminary experiments with the Sun Java Real-Time system

    OpenAIRE

    Cook, Thomas S.; Michael, James Bret; Otani, Thomas W.; Drusinsky, Doron; Shing, Man-Tak

    2006-01-01

    There is an increasing interest in recent years to use the JavaTM programming language for implementing real-time systems. Recent advances in the Real-Time Specification for Java (RTSJ) have resulted in the introduction of new means for creating predictable real-time environments for Java programs. However, these new features also make the Java semantics more complex and the run-time behavior of the Java programs more difficult to analyze. In this technical report, we describe a number of pr...

  1. Real Time and Multiple Location Radon (222Rn Monitoring System

    Directory of Open Access Journals (Sweden)

    MORARIU, G.

    2010-11-01

    Full Text Available The paper presents a Radon monitoring system. The system is designed for real time multiple location monitoring. The paper presents in the first part a method and an instrument for measuring radon concentration in air. Simulink simulations and implementation of the measurement principle are presented. Instrument position is determined by GPS and transmitted over GPRS along with the measurements results. Data management is accomplished by a software component of the system. The paper presents as an application, an investigation on nanomaterials to be used for Radon mitigation.

  2. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...... simulator. We then present two applications based on this method. The first one is an agent based controller used to increase the penetration of wind energy in a weak grid, and the second one is the controller of a gas micro turbine connected to the distribution grid....

  3. Real-Time System for Water Modeling and Management

    Science.gov (United States)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The

  4. Real-time implementation of an interactive jazz accompaniment system

    Science.gov (United States)

    Deshpande, Nikhil

    Modern computational algorithms and digital signal processing (DSP) are able to combine with human performers without forced or predetermined structure in order to create dynamic and real-time accompaniment systems. With modern computing power and intelligent algorithm layout and design, it is possible to achieve more detailed auditory analysis of live music. Using this information, computer code can follow and predict how a human's musical performance evolves, and use this to react in a musical manner. This project builds a real-time accompaniment system to perform together with live musicians, with a focus on live jazz performance and improvisation. The system utilizes a new polyphonic pitch detector and embeds it in an Ableton Live system - combined with Max for Live - to perform elements of audio analysis, generation, and triggering. The system also relies on tension curves and information rate calculations from the Creative Artificially Intuitive and Reasoning Agent (CAIRA) system to help understand and predict human improvisation. These metrics are vital to the core system and allow for extrapolated audio analysis. The system is able to react dynamically to a human performer, and can successfully accompany the human as an entire rhythm section.

  5. Single Stage Rocket Technology's real time data system

    Science.gov (United States)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  6. Optical real-time defect-enhancement diagnostic system.

    Science.gov (United States)

    Gaeta, C J; Mitchell, P V; Pepper, D M

    1992-12-15

    We have demonstrated an all-optical diagnostic system that enhances the observation of defects in periodic structures. This real-time technique employs a spatial light modulator as a smart-pixel array for information processing in the Fourier transform plane of a lens. The system also includes a phase-conjugate mirror for autoalignment and for correction of optical wave-front aberrations that are imparted on the object light by the smart-pixel processor and its associated optical train. PMID:19798320

  7. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  8. A miniature real-time volumetric ultrasound imaging system

    Science.gov (United States)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  9. System for real-time generation of georeferenced terrain models

    Science.gov (United States)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  10. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2014-01-01

    for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  11. Wind tunnel real-time data acquisition system

    Science.gov (United States)

    Cole, P.

    1979-01-01

    The hardware configuration is described for the data acquisition system (DAS) which consists of an analog front end that can process up to 260 channels of data, a multichannel analog-to-digital subsystem that can process up to 50,000 samples of data per second, and a digital computer with standard and nonstandard devices, including graphics capability. Also described are the software configuration of the DAS and complex hardware/software interfaces providing, for example, automatic amplifier gain and offset adjustment for each data channel. Specific DAS applications are summarized, including the real time processing of dynamic deflection data, unsteady pressure measurements, and flutter and buffet data.

  12. Experimental ultrasound system for real-time synthetic imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost;

    1999-01-01

    Digital signal processing is being employed more and more in modern ultrasound scanners. This has made it possible to do dynamic receive focusing for each sample and implement other advanced imaging methods. The processing, however, has to be very fast and cost-effective at the same time. Dedicated......-element ultrasound transducers, and to enable real-time or near realtime processing of the acquired data. The system will be capable of performing the processing for the currently available imaging methods, and will make it possible to perform initial trials in a clinical environment with new imaging modalities...

  13. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  14. Unmanned airborne system in real-time radiological monitoring

    International Nuclear Information System (INIS)

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  15. Physical Oceanographic Real-Time System (PORTS) (Invited)

    Science.gov (United States)

    Wright, D.

    2013-12-01

    The 1999 Assessment of U.S. Marine Transportation System report to Congress noted that the greatest safety concern voiced by the maritime community was the availability of timely, accurate, and reliable navigation information, including real time environment data. Real time oceanographic and meteorological data, along with other navigation tools, gives the mariner a good situational understanding of their often challenging operational environment, to make the best safety of life and property decisions. The National Oceanic and Atmospheric Administration's (NOAA) Physical Oceanographic Real Time System (PORTS) was developed in response to accidents like the Sunshine Skyway Bridge collision in Tampa, FL in 1980, where the lack of accurate, reliable and timely environmental conditions directly contributed to an accident that resulted in a high loss of life and property. Since that time, PORTS has expanded to over 20 locations around the country, and its capabilities have been continually expanded and improved as well. PORTS primary mission is to prevent maritime accidents. Preventing an accident from occurring is the most cost effective approach and the best way to avoid damage to the environment. When accidents do occur, PORTS data is used to improve the effectiveness of response efforts by providing input for trajectory models and real time conditions for response efforts. However, benefits derived from PORTS go well beyond navigation safety. Another large benefit to the local maritime community is potential efficiencies in optimizing use of the existing water column. PORTS provides information that can be used to make economic decisions to add or offload cargo to a vessel and/or to maintain or adjust transit schedules based upon availability of water depth, strength/timing of tidal currents, and other conditions. PORTS data also helps improve and validate local National Weather Service marine weather forecasts. There are many benefits beyond the local maritime

  16. Distributed digital real-time control system for TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.B. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland); Felici, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Paley, J.I.; Duval, B.P.; Moret, J.-M.; Coda, S.; Sauter, O.; Fasel, D.; Marmillod, P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new distributed digital control system for the TCV tokamak has been commissioned. • Data is shared in real-time between all nodes using the reflective memory. • The customised Linux OS allows achieving deterministic and low latency behaviour. • The control algorithm design in Simulink together with the automatic code generation using Embedded Coder allow rapid algorithm development. • Controllers designed outside the TCV environment can be ported easily. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: A new digital feedback control system (named the SCD “Système de Contrôle Distribué”) has been developed, integrated and used successfully to control TCV (Tokamak à Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded

  17. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests. PMID:27483281

  18. Monitoring and Acquisition Real-time System (MARS)

    Science.gov (United States)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  19. Real-Time EEG-Based Happiness Detection System

    Directory of Open Access Journals (Sweden)

    Noppadon Jatupaiboon

    2013-01-01

    Full Text Available We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8 gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  20. Real-time fetal ECG system design using embedded microprocessors

    Science.gov (United States)

    Meyer-Baese, Uwe; Muddu, Harikrishna; Schinhaerl, Sebastian; Kumm, Martin; Zipf, Peter

    2016-05-01

    The emphasis of this project lies in the development and evaluation of new robust and high fidelity fetal electrocardiogram (FECG) systems to determine the fetal heart rate (FHR). Recently several powerful algorithms have been suggested to improve the FECG fidelity. Until now it is unknown if these algorithms allow a real-time processing, can be used in mobile systems (low power), and which algorithm produces the best error rate for a given system configuration. In this work we have developed high performance, low power microprocessor-based biomedical systems that allow a fair comparison of proposed, state-of-the-art FECG algorithms. We will evaluate different soft-core microprocessors and compare these solutions to other commercial off-the-shelf (COTS) hardcore solutions in terms of price, size, power, and speed.

  1. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory (AM) chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering...

  2. A modular real-time vision system for humanoid robots

    Science.gov (United States)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  3. Real time control of a fast RF impedance matching system

    International Nuclear Information System (INIS)

    A real time control system has been developed to maintain an RF impedance match in the ion cyclotron range of frequencies (ICRF). This system is designed to adjust output parameters with a cycle period of approximately 100 μseconds using commercially available VME based components and a UNIX workstation host. Advanced Ferrite Technologies (AFT) has developed the hybrid tuning system (HTS) which has the capability of tracking a mismatch on the time scale of milliseconds (2.5 MW, 60 MHz) by varying the magnetic field bias of ferrite loaded transmission lines. The control algorithm uses a combination of neural network and fuzzy logic techniques. Initial results of a test facility using a low power prototype are presented. 2 refs., 5 figs

  4. Model Checking Real-Time Value-Passing Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Zio-Ning Cao

    2004-01-01

    In this paper,to model check real-time value-passing systems,a formal language Timed Symbolic Transition Graph and a logic system named Timed Predicate μ-Calculus are proposed.An algorithm is presented which is local in that it generates and investigates the reachable state space in top-down fashion and maintains the partition for time evaluations as coarse as possible while on-the-fly instantiating data variables.It can deal with not only data variables with finite value domain,but also the so called data independent variables with infinite value domain.To authors knowledge,this is the first algorithm for model checking timed systems containing value-passing features.

  5. A Model for Industrial Real-Time Systems

    DEFF Research Database (Denmark)

    Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen;

    2015-01-01

    Introducing automated formal methods for large industrial real-time systems is an important research challenge. We propose timed process automata (TPA) for modeling and analysis of time-critical systems which can be open, hierarchical, and dynamic. The model offers two essential features for large...... industrial systems: (i) compositional modeling with reusable designs for different contexts, and (ii) an automated state-space reduction technique. Timed process automata model dynamic networks of continuous-time communicating control processes which can activate other processes. We show how to automatically...... establish safety and reachability properties of TPA by reduction to solving timed games. To mitigate the state-space explosion problem, an automated state-space reduction technique using compositional reasoning and aggressive abstractions is also proposed....

  6. SPARTA Stochastic Particle Real Time Analyzer Validation and Verification Test Suite.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Koehler, Timothy; Plimpton, Steven J.

    2014-10-01

    This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo ( DSMC ) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation , etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.) . Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by an alytical solutions and theory. A number of add itional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well - est ablished codes or theoretical predictions. This compi lation of test cases is not exha u s t ive , and it is anticipated that more cases will be added in the future.

  7. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR.

    Science.gov (United States)

    Soler, Marçal; Serra, Olga; Molinas, Marisa; García-Berthou, Emili; Caritat, Antònia; Figueras, Mercè

    2008-05-01

    The molecular processes underlying cork biosynthesis and differentiation are mostly unknown. Recently, a list of candidate genes for cork biosynthesis and regulation was made available opening new possibilities for molecular studies in cork oak (Quercus suber L.). Based on this list, we analyzed the seasonal variation in mRNA abundance in cork tissue of selected genes by real time reverse-transcriptase polymerase chain reaction (RT-PCR). Relative transcript abundance was evaluated by principal component analysis and genes were clustered in several functional subgroups. Structural genes of suberin pathways such as CYP86A1, GPAT and HCBT, and regulatory genes of the NAM and WRKY families showed highest transcript accumulation in June, a crucial month for cork development. Other cork structural genes, such as FAT and F5H, were significantly correlated with temperature and relative humidity. The stress genes HSP17.4 and ANN were strongly positively correlated to temperature, in accord with their protective role.

  8. Analyzer of neutron flux in real time; Analizador de flujo neutronico en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  9. USAGE INTENTION FOR REAL-TIME PRODUCTION CAPABILITY INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Tsuen-Ho Hsu

    2015-06-01

    Full Text Available With the prosperity and the growing trend of online information system applications, consumers and business alike have been changing their behavioral models for obtaining information. This brings enormous commercial opportunities to the catering industry. In order to promote its competitive advantages, Napoli Pizza, a chain restaurant in Taiwan, implemented a real-time kitchen production capability information system (e-KS. This research aims at helping Napoli Pizza to identify factors affecting employees’ attitude toward e-KS usage intention. The results show that employees have positive impressions and evaluations of e-KS, and the most influential factor is employees’ “attitude toward using”, which has a significant effect on their usage intention.

  10. Real Time Flood Alert System (RTFAS) for Puerto Rico

    Science.gov (United States)

    Lopez-Trujillo, Dianne

    2010-01-01

    The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.

  11. Expert Systems for Real-Time Volcano Monitoring

    Science.gov (United States)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  12. Real-time control of sewer systems using turbidity measurements.

    Science.gov (United States)

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.

  13. Portable real time analysis system for regional cerebral blood flow

    International Nuclear Information System (INIS)

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit

  14. Portable real time analysis system for regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-02-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit.

  15. Real-time, interactive, visually updated simulator system for telepresence

    Science.gov (United States)

    Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.

    1991-01-01

    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.

  16. Real-Time Group Face-Detection for an Intelligent Class-Attendance System

    Directory of Open Access Journals (Sweden)

    Abdelfatah Aref Tamimi

    2015-05-01

    Full Text Available The traditional manual attendance system wastes time over students’ responses, but it has worked well for small numbers of students. This research presents a real-time group face-detection system. This system will be used later for student class attendance through automatic student identification. The system architecture and its algorithm will be described in details. The algorithm for the system was based on analyzing facial properties and features in order to perform face detection for checking students’ attendance in real time. The classroom’s camera captures the students’ photo. Then, face detection will be implemented automatically to generate a list of detected student faces. Many experiments were adopted based on real time video captured using digital cameras. The experimental results showed that our approach of face detection offers realtime processing speed with good acceptable detection ratio equal to 94.73%.

  17. GPS Real-Time Supervisory System and Application in the Construction of Face Rockfill Dam

    Institute of Scientific and Technical Information of China (English)

    HUANG Shengxiang; LIU Jingnan; ZENG Huai'en

    2005-01-01

    According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real-time supervisory system is developed in this paper. It can be used to real-timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.

  18. A Real-Time Offshore Weather Risk Advisory System

    Science.gov (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  19. New real-time image processing system for IRFPA

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-jian; LIU Shang-qian; CHENG Yu-bao

    2006-01-01

    Influenced by detectors' material,manufacturing technology etc,every detector in infrared focal plane array (IRFPA) will output different voltages even if their input radiation flux is the same.And this is called non-uniformity of IRFPA.At the same time,the high background temperature,low temperature difference between targets and background and the low responsivity of IRFPA result in low contrast of infrared images.So non-uniformity correction and image enhancement are important techniques for IRFPA imaging system.This paper proposes a new real-time infrared image processing system based on Field Programmable Gate Array(FPGA).The system implements non-uniformity correction,image enhancement and video synthesization etc.By using parallel architecture and pipeline technique,the system processing speed is as high as 50Mx12bits per second.It is appropriate greatly to a large IRFPA and a high frame frequency IRFPA imaging system.The system is miniatured in one FPGA.

  20. Development of Real-Time Data Filtering for SCADA System

    Directory of Open Access Journals (Sweden)

    P.K.D.V. Yarlagadda

    2007-04-01

    Full Text Available Purpose: Purpose to develop a suitable algorithm to filter data from the SCADA system.Design/methodology/approach: A real-time filtering method for SCADA system is developed by capturing the occurrence of data change in SCADA data, which is followed by recording several data before this data change occurs. Then, the algorithm is modeled and developed and in the final step an experiment to verify the algorithm is conducted. Finally, the result from the experiment is analysed to check the effectiveness of the algorithm.Findings: As a result, SCADA data analysis will be easier to conduct since only essential information is left. In fact, in comparison to the the entire data collection, only around 8-22 % of data is changed.Research limitations/implications: By utilizing this algorithm, data analysis will be easier to conduct since only the essential information as a starting point of analyses is left. However, this paper only describes the reasons and steps of data filtering algorithm development, how the algorithm works and the result after it is implemented to analyse data from the SCADA system. Further analyses to the data filtering results haven’t been done yet. The next step will be to analyse the results in order to establish the root cause of why the data is changing.Originality/value: It has been noted in many research papers that the SCADA system is able to increase the efficiency of the monitoring itself. However, the SCADA system creates a huge amount of data which is difficult to analyse. This paper proposes a real-time data filtering for the SCADA system. The philosophy that is applied in this algorithm is only to “catch” the occurrence of data change in SCADA data, which is followed by recording several data before this data changes. As a result, SCADA data analysis will be easier to be conducted since only essential information is left. In fact compared to the entire data collection, only around 8-22 % of data is changed

  1. Real Time System Architecture For A Mobile Robot

    Science.gov (United States)

    Sharma, Uma K.; McTamaney, Louis S.

    1987-01-01

    An intelligent mobile robot must be able to accept a mission statement and constraints, plan its actions, execute its plans, perceive and adapt to its environment, and report its successes and failures. In this paper we describe a modular system architecture for such a complex mobile robot system. On-board versus off-board processing is a key system-level issue. We have selected off-board processing because the anticipated computer quantity, size, power requirement, and lack of robustness made on-board processing impractical if not impossible. Our system includes a transportable command center and a computer-controllable M113 armored personnel carrier, our mobile robot. The command center contains communication and computer hardware necessary for receiving and processing robot motion and sensor information, and for generating and transmitting mobility and sensor commands in real time to the robot. All control and status data transmission, between the robot and the command center, is accomplished through microwave links using a wide band, auto-tracking antenna. Under development since 1982, this system has demonstrated the capability of mission and route planning with execution at 8 km/hr, obstacle detection and avoidance at 15 km/hr, autonomous road following at 24 km/hr, and a remotely managed route reconnaissance mission at vehicle speeds of up to 40 km/hr.

  2. Real-time virtual EAST physical experiment system

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  3. FORMAL SPECIFICATION FOR REAL-TIME OBJECT ORIENTED SYSTEMS WITH UML DESIGN

    Directory of Open Access Journals (Sweden)

    Benjamin D. Horne

    2012-01-01

    Full Text Available Traditionally, real-time software system development focuses on low-level programming techniques to increase timeliness and operate within constraints; however, more recently higher-level, object-oriented methodologies are being used to create real-time software systems. This increase in object-oriented design for real- time systems is due to the improved use of active objects and concurrency in object-oriented languages. Real-time aspects have not only improved in many programming languages, but these real-time constraints are becoming more essential in general object-oriented software development. Consequently, the specification of real-time object-oriented systems is becoming important in software development processes. One of the many tools used to specify software is an executable specification language called Descartes. Descartes relates output data to input data as a function of the input data through a tree structure notation called "Hoare trees." This useful specification structure has been extended and supported for several types of systems since the language's creation in 1977. In particular, Descartes has been extended for the specification of real-time systems and for object-oriented designed systems. In spite of this, the combination of the two extensions for specification of real-time object oriented (RTOO systems has not been tested. Thus, the main objective was to validate that the combination of the two Descartes extensions either satisfied the needed specification for RTOO systems or that the language needed to be additionally extended. To gain further verification of these united Descartes extensions, the Unified Modeling Language (UML was used for comparison in aspects of design and effectiveness. In this research effort, UML 2.0, a widely used modeling language was used and analyzed to model security requirements along with the application requirements for real time object oriented systems. The outcome from this research

  4. The performance of a TDMA satellite system for non real-time and real-time traffic

    OpenAIRE

    Celandroni, Nedo; Ferro, Erina; Potort?, Francesco

    1995-01-01

    This paper is divided into two sections. The first section presents the performance of the satellite capacity allocation algorithm for n on-real time traffic used in the FODA/IBEA system.A newfeature, called pre-assignment mode, improves the end?to?end delay during the transient provoked by a traffic step when the system is scarcely loaded. The experimental results obtained with four stations on the ITALSAT satellite are reported. The behaviour of the system in both stationary and transient l...

  5. Integrated real time bowel sound detector for artificial pancreas systems

    Directory of Open Access Journals (Sweden)

    Khandaker A. Al Mamun

    2016-03-01

    Full Text Available This paper reports an ultra-low power real time bowel sound detector with integrated feature extractor for physiologic measure of meal instances in artificial pancreas devices. The system can aid in improving long term diabetic patient care and consists of a front end detector and signal processing unit. The front end detector transduces the initial bowel sound recorded from a piezoelectric sensor into a voltage signal. The signal processor uses a feature extractor to determine whether a bowel sound is detected. The feature extractor consists of a low noise, low power signal front-end, peak and trough locator, signal slope and width detector, digitizer, and bowel pulse locator. The system was fabricated in a standard 0.18 μm CMOS process, and the bowel sound detection system was characterized and verified with experimentally recorded bowel sounds. The integrated instrument consumes 53 μW of power from a 1 V supply in a 0.96 mm2 area, and is suitable for integration with portable devices.

  6. Formal Visual Modeling of Real-Time Systems in e-Motions: Two Case Studies

    CERN Document Server

    Durán, Francisco; Rivera, José E; 10.4204/EPTCS.56.4

    2011-01-01

    e-Motions is an Eclipse-based visual timed model transformation framework with a Real-Time Maude semantics that supports the usual Maude formal analysis methods, including simulation, reachability analysis, and LTL model checking. e-Motions is characterized by a novel and powerful set of constructs for expressing timed behaviors. In this paper we illustrate the use of these constructs --- and thereby implicitly investigate their suitability to define real-time systems in an intuitive way --- to define and formally analyze two prototypical and very different real-time systems: (i) a simple round trip time protocol for computing the time it takes a message to travel from one node to another, and back; and (ii) the EDF scheduling algorithm.

  7. Cybersecurity through Real-Time Distributed Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Manges, Wayne W [ORNL; MacIntyre, Lawrence Paul [ORNL; Nutaro, James J [ORNL; Munro Jr, John K [ORNL; Ewing, Paul D [ORNL; Howlader, Mostofa [ORNL; Kuruganti, Phani Teja [ORNL; Wallace, Richard M [ORNL; Olama, Mohammed M [ORNL

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  8. Real-time infrared test set: system design and development

    Science.gov (United States)

    Johnson, R. Barry; Martin, Diehl H.; Chung, Ronald; Geist, Jon C.; Burrell, Jack O.; Slemp, Jim L.; Umstead, Jeffrey R.; Mann, Allen; Marlin, H. Ronald; Bates, Richard L.; Sweet, Miles H.; Williams, Donald N.; Carlson, Rowena M.; Gaitan, Michael; Marshall, Janet C.; Mulford, Charles D.; Zakar, Eugene S.; Zeto, Robert J.; Olson, Russ; Perkins, Gordon C.

    1997-07-01

    During the past several years, the technology for designing and fabricating thermal pixel arrays (TPAs) using silicon micromachined CMOS devices has been developed adequately to support the development of a real-time infrared test set (RTIR) for sensors and seekers. The TPA is a custom application-specific integrated circuit device that is fabricated using a low-cost commercial CMOS process. The system architecture and development of the initial RTIR Test Set is described. The RTIR is a compact, self-contained test instrument that is intended for test and evaluation of infrared systems in the field. In addition to the TPA, the RTIR contains projection optics and electronics which drive the TPA, provide TPA nonuniformity compensation, data translation, data transformation, and user interface. The RTIR can display internal test patterns (static and dynamic), external digital video data, and NTSC video. The initial RTIR unit incorporates a 64 X 64 TPA to provide flickerless infrared scenes at 30 frames per second. Additional TPAs are under development with formats of 128 X 128, 256 X 256, and 512 X 512 pixels.

  9. TeleOph: a secure real-time teleophthalmology system.

    Science.gov (United States)

    Wu, Yongdong; Wei, Zhou; Yao, Haixia; Zhao, Zhigang; Ngoh, Lek Heng; Deng, Robert H; Yu, Shengsheng

    2010-09-01

    Teleophthalmology (TeleOph) is an electronic counterpart of today's face-to-face, patient-to-specialist ophthalmology system. It enables one or more ophthalmologists to remotely examine a patient's condition via a confidential and authentic communication channel. Specifically, TeleOph allows a trained nonspecialist in a primary clinic to screen the patients with digital instruments (e.g., camera, ophthalmoscope). The acquired medical data are delivered to the hospital where an ophthalmologist will review the data collected and, if required, provide further consultation for the patient through a real-time secure channel established over a public Internet network. If necessary, the ophthalmologist is able to further sample the images/video of the patient's eyes remotely. In order to increase the productivity of the ophthalmologist in terms of number of patients reviewed, and to increase the efficiency of network resource, we manage the network bandwidth based on a Poisson model to estimate patient arrival at the clinics, and the rate of ophthalmologist consultation service for better overall system efficiency. The main objective of TeleOph is therefore to provide the remote patients with a cost-effective access to specialist's eye checkups at primary healthcare clinics, and at the same time, minimize unnecessary face-to-face consultation at the hospital specialist's center.

  10. Digital Signal Processing Based Real Time Vehicular Detection System

    Institute of Scientific and Technical Information of China (English)

    YANG Zhaoxuan; LIN Tao; LI Xiangping; LIU Chunyi; GAO Jian

    2005-01-01

    Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.

  11. Applying Global Positioning System Real-Time Kinematic Technology to Collection and Analysis of Rowing Information

    Institute of Scientific and Technical Information of China (English)

    郝彤途; 过静君

    2003-01-01

    To obtain higher accuracy of information concerning boat motion, the use of global positioning system (GPS) real-time kinematic (RTK) technology was investigated. Through RTK technology, a measurement precision of the ±1 cm range can be achieved. The research equipment included a GPS receiver and a personal digital assistant as a data control and processing unit. Real-time GPS data was captured and processed to acquire various parameters, including the boat track, velocity curve, stroke rate, and stroke distance. Using this data, the quantitative information related to rowing training can be achieved. The results are helpful for analyzing the biomechanical parameters of rowing techniques and for evaluating training efficiency.

  12. FPGA Based Real Time Monitoring System for Agricultural Field

    Directory of Open Access Journals (Sweden)

    M. Dinesh,

    2012-06-01

    Full Text Available The most important factors for the quality and productivity of plant growth are temperature, humidity, light and the level of the carbon dioxide. Continuous monitoring of these environmental variables gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness .The optimal greenhouse climate adjustment can enable us to improve productivity and to achieve remarkable energy savings - especially during the winter in northern countries. The system itself was usually simple without opportunities to control locally heating, lights, ventilation or some other activity, which was affecting the greenhouse interior climate. This all has changed in the modern greenhouses. The typical size of the greenhouse itself is much bigger what it was before, and the greenhouse facilities provide several options to make local adjustments to the lights, ventilation, heating and other greenhouse support systems.However, more measurement data is also needed to make this kind of automation system work properly. Increased number of measurement points should not dramatically increase the automation system cost. It should also be possible to easily change the location of the measurement points according to the particular needs, which depend on the specific plant, on the possible changes in the external weather or greenhouse structure and on the plant placement in the greenhouse. For the implementation of agricultural technologies, low cost and real time remote monitoring are needed, in this sense, programmable Logic Devices (PLDs present as a good option for the technology development and implementation, because PLDs allow fast development of prototypes and the design of complex hardware systems using FPGAs (Field Programmable Gate Arrays and Complex Programmable Logic Devices.

  13. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  14. Real Time Decoding of Color Symbol for Optical Positioning System

    OpenAIRE

    Abdul Waheed Malik; Benny Thörnberg; Qaisar Anwar; Tor Arne Johanson; Khurram Shahzad

    2015-01-01

    This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA) and a m...

  15. FORMAL SPECIFICATION FOR REAL-TIME OBJECT ORIENTED SYSTEMS WITH UML DESIGN

    OpenAIRE

    Horne, Benjamin D.; Vinitha Hannah Subburaj; Joseph E. Urban

    2012-01-01

    Traditionally, real-time software system development focuses on low-level programming techniques to increase timeliness and operate within constraints; however, more recently higher-level, object-oriented methodologies are being used to create real-time software systems. This increase in object-oriented design for real- time systems is due to the improved use of active objects and concurrency in object-oriented languages. Real-time aspects have not only improved in many programming languages,...

  16. Optimal Real-time Dispatch for Integrated Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Ryan Michael [Univ. of California, Berkeley, CA (United States)

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

  17. An Advanced Real-Time Earthquake Information System in Japan

    Science.gov (United States)

    Takahashi, I.; Nakamura, H.; Suzuki, W.; Kunugi, T.; Aoi, S.; Fujiwara, H.

    2015-12-01

    J-RISQ (Japan Real-time Information System for earthquake) has been developing in NIED for appropriate first-actions to big earthquakes. When an earthquake occurs, seismic intensities (SI) are calculated first at each observation station and sent to the Data Management Center in different timing. The system begins the first estimation when the number of the stations observing the SI of 2.5 or larger exceeds the threshold amount. It estimates SI distribution, exposed population and earthquake damage on buildings by using basic data for estimation, such as subsurface amplification factors, population, and building information. It has been accumulated in J-SHIS (Japan Seismic Information Station) developed by NIED, a public portal for seismic hazard information across Japan. The series of the estimation is performed for each 250m square mesh and finally the estimated data is converted into information for each municipality. Since October 2013, we have opened estimated SI, exposed population etc. to the public through the website by making full use of maps and tables.In the previous system, we sometimes could not inspect the information of the surrounding areas out of the range suffered from strong motions, or the details of the focusing areas, and could not confirm whether the present information was the latest or not without accessing the website. J-RISQ has been advanced by introducing the following functions to settle those problems and promote utilization in local areas or in personal levels. In addition, the website in English has been released.・It has become possible to focus on the specific areas and inspect enlarged information.・The estimated information can be downloaded in the form of KML.・The estimated information can be updated automatically and be provided as the latest one.・The newest information can be inspected by using RSS readers or browsers corresponding to RSS.・Exclusive pages for smartphones have been prepared.The information estimated

  18. From distributed to multicore architecture in the RFX-mod real time control system

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it; Luchetta, A.; Soppelsa, A.; Taliercio, C.

    2014-03-15

    Highlights: • The paper describes the experience in running the real-time control system of RFX-mod. • It presents a new architecture based on multicore technology. • It analyze the feasibility of Linux MRG for real-time control. • It presents an application of the MARTe framework. - Abstract: The real-time control system of RFX has been operating since 2004 providing effective control of the plasma position and of the MagnetoHydroDynamic (MHD) modes. The demand for new and more computing-intensive control algorithms and the need for shorter latency pushed the system to its limits and, thus, a complete re-design was carried out in 2012. The new system adopts radically different solutions in hardware, operating system and software management. The VME PowerPC CPUs communicating over Ethernet have been now replaced by a single multicore server. VxWorks, previously used in the VME CPUs has now been replaced by Linux, which can be currently considered a real-time system provided an accurate tuning of the Linux scheduler and interrupt configuration. The previous framework for control and communication has been replaced by MARTe, a modern framework for real-time control gaining interest in the fusion community. The usage of MARTe allowed a rapid development of the control system and, in particular, its intrinsic simulation ability gave us the possibility of carrying out most debugging in simulation, without affecting machine operation. As a result the whole system has been finally commissioned in RFX in only two weeks.

  19. Nanodroplet real-time PCR system with laser assisted heating.

    Science.gov (United States)

    Kim, Hanyoup; Dixit, Sanhita; Green, Christopher J; Faris, Gregory W

    2009-01-01

    We report the successful application of low-power (approximately 30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective heating scheme using an infrared laser appears ideal for driving PCR because it heats only the droplet, not the oil or plastic substrate, providing fast heating and completing the 40 cycles of PCR in 370 seconds. No microheaters or microfluidic circuitry were deposited on the substrate, and PCR was performed in one droplet without affecting neighboring droplets. The assay performance was quantitative and its amplification efficiency was comparable to that of a commercial instrument.

  20. The Multi-level Recovery of Main-memory Real-time Database Systems with ECBH

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Storing the whole database in the main-memory is a common method to process real-time transaction in real-time database systems. The recovery mechanism of Main-memory Real-time Database Systems (MMRTDBS) should reflect the characteristics of the main-memory database and real-time database because their structures are quite different from other conventional database systems. In this paper, therefore, we propose a multi-level recovery mechanism for main-memory real-time database systems with Extendible Chained Bucket Hashing (ECBH). Owing to the occurrence of real-time data in real-time systems, we should also consider it in our recovery mechanism. According to our performance test, this mechanism can improve the transaction concurrency, reducing transactions' deadline missing rate.

  1. Development of real-time monitoring system for printing registration based on μC/OS-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    马志艳

    2009-01-01

    After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ.According to functional requirements of registration system and the target development platform,we described the detailed process of task division, priority assignment,and synchronization and communication,and optimized the real-time performance of system in the premise of stability assurance.Fi...

  2. Fault-Tolerant Scheduling for Real-Time Embedded Control Systems

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Yang; Geert Deconinck; Wei-Hua Gui

    2004-01-01

    With the increasing complexity of industrial application, an embedded control system (ECS) requires processing a number of hard real-time tasks and needs fault-tolerance to assure high reliability. Considering the characteristics of real-time tasks in ECS, an integrated algorithm is proposed to schedule real-time tasks and to guarantee that all real-time tasks are completed before their deadlines even in the presence of faults. Based on the nonpreemptive critical-section protocol (NCSP), this paper analyzes the blocking time introduced by resource conflicts of relevancy tasks in fault-tolerant multiprocessor systems. An extended schedulability condition is presented to check the assignment feasibility of a given task to a processor. A primary/backup approach and on-line replacement of failed processors are used to tolerate processor failures. The analysis reveals that the integrated algorithm bounds the blocking time, requires limited overhead on the number of processors, and still assures good processor utilization. This is also demonstrated by simulation results. Both analysis and simulation show the effectiveness of the proposed algorithm in ECS.

  3. Quality of Service in Real Time Services in Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ambar Yadav, Arti Singh

    2014-05-01

    Full Text Available In Real time message transmission there is no time delay between a message sending and reception. Real time messaging defines standard packet format and data delivery for transmission of audio and video data over IP networks. Video enable applications are mostly used in our life without any delay, which also improve the quality of video. The needs for a central buffer management to achieves better memory utilization by enabling video stream sharing across components and to all network condition. This buffer management avoids congestion in networks. Our work is focused on a queue management scheme to manage the buffer at destination for video enable services which carries huge amount of data through network channel. Video data is generated at source which it reached to destination through various nodes and links. So, there may be delay, packet loss and jitter. To provide the better service at destination, we require a less delay, less amount of packet loss and less jitter. So in this paper we are working on a buffer management mechanism which cares about packet loss and jitter and try to resolve and will find out better scheduling in existing schemes

  4. Fault recovery for real-time, multi-tasking computer system

    Science.gov (United States)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  5. Dynamic management of transactions in distributed real-time processing system

    CERN Document Server

    Singh, Y Jayanta; Gaikwad, Ashok; Mehrotra, S C; 10.5121/ijdms.2010.2210

    2010-01-01

    Managing the transactions in real time distributed computing system is not easy, as it has heterogeneously networked computers to solve a single problem. If a transaction runs across some different sites, it may commit at some sites and may failure at another site, leading to an inconsistent transaction. The complexity is increase in real time applications by placing deadlines on the response time of the database system and transactions processing. Such a system needs to process Transactions before these deadlines expired. A series of simulation study have been performed to analyze the performance under different transaction management under conditions such as different workloads, distribution methods, execution mode-distribution and parallel etc. The scheduling of data accesses are done in order to meet their deadlines and to minimize the number of transactions that missed deadlines. A new concept is introduced to manage the transactions in dynamic ways rather than setting computing parameters in static ways...

  6. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    OpenAIRE

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge ...

  7. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    OpenAIRE

    Hanchen Jiang; Peng Lin; Qixiang Fan; Maoshan Qiang

    2014-01-01

    The concern for workers’ safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge ...

  8. A real-time data-acquisition and analysis system with distributed UNIX workstations

    International Nuclear Information System (INIS)

    A compact data-acquisition system using three RISC/UNIXTM workstations (SUNTM/SPARCstationTM) with real-time capabilities of monitoring and analysis has been developed for the study of photonuclear reactions with the large-acceptance spectrometer TAGX. One workstation acquires data from memory modules in the front-end electronics (CAMAC and TKO) with a maximum speed of 300 Kbytes/s, where data size times instantaneous rate is 1 Kbyte x 300 Hz. Another workstation, which has real-time capability for run monitoring, gets the data with a buffer manager called NOVA. The third workstation analyzes the data and reconstructs the event. In addition to a general hardware and software description, priority settings and run control by shell scripts are described. This system has recently been used successfully in a two month long experiment. (orig.)

  9. Research on Web-based Real-time Monitoring System on SVG and Comet

    Directory of Open Access Journals (Sweden)

    Xuehui Xian

    2012-09-01

    Full Text Available For the lack of real-time performance of browser technology in existing Web-based real-time monitoring system, takes use of SVG (Scalable Vector Graphics and the Comet to design a new Web-based real-time monitoring system. In this system, JSON (JavaScript Object Notation is the data transmission carrier, Comet is the key technology for system communication and data transmission, and SVG is a chart drawing tool in the browser side. So this system has a good real-time and is rich in the form of show.

  10. NOAA Satellite Based Real Time Forest Fire Monitoring System for Russia and North Asian Region

    OpenAIRE

    Kalpoma,Kazi A. / Kawano,Koichi / Kudoh,Jun-ichi; / カワノ,コウイチ / クドウ,ジュンイチ

    2007-01-01

    Forest fires cause severe damages to natural resources and human lives all over the world. Though a lot of forest fires occur in Russia and North Asia every year, there is no system available that monitors forest fire in real time processing. However the MODIS Land Rapid Response System provides near-real time fire observations globally, currently forest fire monitoring techniques are not efficient enough to optimally monitor this disaster. For a real-time forest fire monitor system an effici...

  11. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae

    1997-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS (Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, NNW in winter season. (author). 6 refs., 9 tabs., 4 figs.

  12. A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer

    Science.gov (United States)

    Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.

    1991-01-01

    A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.

  13. Performance analysis and kernel size study of the Lynx real-time operating system

    Science.gov (United States)

    Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.

    1993-01-01

    This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.

  14. The IPERMOB System for Effective Real-Time Road Travel Time Measurement and Prediction

    OpenAIRE

    Martelli, Francesca; Renda, Maria Elena; Santi, Paolo

    2010-01-01

    Accurate, real-time measurement and estimation of road travel time is considered a central problem in the design of advanced Intelligent Transportation Systems. In particular, whether eective, real-time collection of travel time measurements in a urban area is possible is, to the best of our knowledge, still an open problem. In this paper, we introduce the IPERMOB system for efficient, real-time collection of travel time measurements in urban areas through vehicular networks. We demonstrate t...

  15. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    building maintenance structure and the real hydronic heating system faults. Coupled simulation and optimization programs (EnergyPlus and GenOpt) were utilized for improving the building performances. These tools were used for improving the design and the control strategies in the HVAC systems. Buildings with a hydronic heating system were analyzed for the purpose of improving the design. Since there are issues in using the optimization tool, GenOpt, a few procedures for different practical problems have been suggested. The optimization results show that the choice of the optimization functions influences significantly the design parameters for the hydronic heating system. Since building construction and equipment characteristics are changing over time, there is a need to find new control strategies which can meet the actual building demand. This problem has been also elaborated on by using EnergyPlus and GenOpt. The control strategies in two different HVAC systems were analyzed, including the hydronic heating system and the ventilation system with the recovery wheel. The developed approach for the strategy optimization includes: involving the optimization variables and the objective function and developing information flow for handling the optimization process. The real data obtained from BEMS and the additional measurements have been utilized to explain faults in the hydronic heating system. To couple real data and the simple heat balance model, the procedure for the model calibration by use of an optimization algorithm has been developed. Using this model, three operating faults in the hydronic heating system have been elaborated. Using the simulation tools EnergyPlus and TRNSYS, several fault detection and diagnosis (FDD) rules have been generated. The FDD rules were established in three steps: testing different faults, calculating the performance indices (PI), and classifying the observed PIs. These rules have been established for the air cooling system and the

  16. Research & Reform on Real-Time Operating System Applied to Robot

    Institute of Scientific and Technical Information of China (English)

    CHENYimin; CHENYangbin

    2004-01-01

    The paper describes some current popular real-time operation systems such as QNX, VxWorks, and analyses Linux present status and weak points for real-time supporting characteristics and related main trend technology of real-time support based on Linux kernel, and compares comprehensively strong and weak points among different kinds of solutions. By drawing out a typical realtime application model and combining some present research results and thoughts, this paper puts forward reform scheme of real-time operation system which is realized in Linux operation system, and some good results are given at last.

  17. Study on integration of geographical information system and real-time control system based on Agent architecture

    Institute of Scientific and Technical Information of China (English)

    王远飞; 叶雷; 何洪林; 张超

    2004-01-01

    The real-time control system correlatively dealing with spatial information will become an important part of the artificial control system in the future. Geographical information system, as an analyzing and processing spatial data platform and powerful tool, will play a more and more role in the real-time control field. Agent-based architecture, as a concept of artificial intelligence, has been introduced in this paper. A new intelligent soft Agent, spatial-info Agent was developed, compared with the central nerve system, integrated by GIS and the traditional real-time control system. The realization model structure of spatial-info Agent was given too. And the techniques and integration methods were discussed by integrating mapinfo and fiber integration measurement system.

  18. Real-time emergency telemedicine system: prototype design and functional evaluation.

    Science.gov (United States)

    Yoo, Sun K; Kim, Kwang Min; Jung, Seok Myung; Kim, Nam Hyun; Kim, Sun Ho; Park, Jin Bae; Park, In-Cheol; Oh, Jin Ho; Kim, Seung-Ho

    2004-06-30

    In this paper, an emergency telemedicine system was designed for the transmission of real-time multimedia for remote consultation, including radiological images, patient records, video-conferencing, full-quality video, ECG, BP, respiration, temperature, SpO(2), systolic and diastolic pressures and heart rate. The standardized, modular, software-based design architecture, without resorting to external hardware compression boards, enables the low-cost implementation of the telemedicine system, using the unified, systematic and compact integration of multimedia on general personal computers. Experimental tests on local networks analyze the technical aspects of designed systems, and inter-hospital experiments demonstrate its clinical usefulness. PMID:15227738

  19. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    Science.gov (United States)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    The requirements for the development of real-time displays are reviewed. Of particular interest are the psychological aspects of design such as the layout, color selection, real-time response rate, and the interactivity of displays. Some existing Western Aeronautical Test Range displays are analyzed.

  20. Capturing reading patterns through a real-time smart camera iris tracking system

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Ortlieb, Evan; McLauchlan, Lifford; Pham, Linh M.

    2012-06-01

    A real-time iris detection and tracking algorithm has been implemented on a smart camera using LabVIEW graphical programming tools. The program detects the eye and finds the center of the iris, which is recorded and stored in Cartesian coordinates. In subsequent video frames, the location of the center of the iris corresponding to the previously detected eye is computed and recorded for a desired period of time, creating a list of coordinates representing the moving iris center location across image frames. We present an application for the developed smart camera iris tracking system that involves the assessment of reading patterns. The purpose of the study is to identify differences in reading patterns of readers at various levels to eventually determine successful reading strategies for improvement. The readers are positioned in front of a computer screen with a fixed camera directed at the reader's eyes. The readers are then asked to read preselected content on the computer screen, one comprising a traditional newspaper text and one a Web page. The iris path is captured and stored in real-time. The reading patterns are examined by analyzing the path of the iris movement. In this paper, the iris tracking system and algorithms, application of the system to real-time capture of reading patterns, and representation of 2D/3D iris track are presented with results and recommendations.

  1. Real-Time Systems: Reflections on higher education in the Czech Republic, Hungary, Poland and Slovenia

    NARCIS (Netherlands)

    File, Jon; Goedegebuure, Leo

    2003-01-01

    Real-time systems (An ICT definition) In real-time multiprocessing there is the extra requirement that the system complete its response to any input within a certain critical time. This poses additional problems, particularly in situations where the system is heavily loaded and is subject to many si

  2. Real-Time Brain-Computer Interface System Based on Motor Imagery

    Institute of Scientific and Technical Information of China (English)

    Tie-Jun Liu; Ping Yang; Xu-Yong Peng; Yu Huang; De-Zhong Yao

    2009-01-01

    A brain-computer interface (BCI) real-time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments.A key problem to be solved for practical applications is real-time data collection and processing.In this paper,a real-time BCI system is implemented on computer with electroencephalogram amplifier.In our implementation,the on-line voting method is adopted for feedback control strategy,and the voting results are used to control the cursor horizontal movement.Three subjects take part in the experiment.The results indicate that the best accuracy is 90%.

  3. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    Science.gov (United States)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  4. A multimodal spectroscopy system for real-time disease diagnosis

    Science.gov (United States)

    Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.

    2009-04-01

    The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.

  5. A MDE-based optimisation process for Real-Time systems

    OpenAIRE

    Gilles, Olivier; Hugues, Jérôme

    2010-01-01

    The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and not functional properties in a central framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyse models. In this paper, we present a MDE-based pro...

  6. Research and implementation of a web-based RealTime monitoring system on EPICS data

    International Nuclear Information System (INIS)

    It studied and implemented a RealTime Monitoring system based on Web, using Flex and BlazeDS technology. Capturing EPICS data through CAJ interface, the system displays a RealTime linchart on the web page, updates data without manual intervention and enables you to adjust the time span and zoom the chart. (authors)

  7. Embedded and real time system development a software engineering perspective concepts, methods and principles

    CERN Document Server

    Saeed, Saqib; Darwish, Ashraf; Abraham, Ajith

    2014-01-01

    Nowadays embedded and real-time systems contain complex software. The complexity of embedded systems is increasing, and the amount and variety of software in the embedded products are growing. This creates a big challenge for embedded and real-time software development processes and there is a need to develop separate metrics and benchmarks. “Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles” presents practical as well as conceptual knowledge of the latest tools, techniques and methodologies of embedded software engineering and real-time systems. Each chapter includes an in-depth investigation regarding the actual or potential role of software engineering tools in the context of the embedded system and real-time system. The book presents state-of-the art and future perspectives with industry experts, researchers, and academicians sharing ideas and experiences including surrounding frontier technologies, breakthroughs, innovative solutions and...

  8. EXPLORING THE POTENTIAL OF SHORT-TIME FOURIER TRANSFORMS FOR ANALYZING SKIN CONDUCTANCE AND PUPILLOMETRY IN REAL-TIME APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran

    2008-09-01

    The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino,& Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems.

  9. A curriculum for real-time computer and control systems engineering

    Science.gov (United States)

    Halang, Wolfgang A.

    1990-01-01

    An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.

  10. Real time modeling, simulation and control of dynamical systems

    CERN Document Server

    Mughal, Asif Mahmood

    2016-01-01

    This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.

  11. Zigbee Based Real - Time Monitoring System of Agricultural Environment

    OpenAIRE

    Sumit P. Goyal; Dr. Archana Bhise

    2014-01-01

    Irrigation System is required to be automize in the area of agricultural field. Presently automatic systems have few manual operations, insufficient flexibility and accuracy. Therefore agricultural field prefer automatic control system and provide adequate irrigation to specific area. Proposed system is primarily designed for wide range control applications and to replace the existing non-standard technologies. Current system control parameter like temperature and soil moistur...

  12. Supporting Development of Energy-Optimised Java Real-Time Systems using TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    This paper presents how the tool TetaSARTS can be used to support the development of embedded hard real-time systems written in Java using the emerging Safety Critical Java (SCJ) profile. TetaSARTS facilitates control-flow sensitive schedulability analysis of a set of real-time tasks, and features...

  13. Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

    2007-01-01

    This paper presents a design optimisation tool for distributed embedded real-time systems that 1) decides mapping, fault-tolerance policy and generates a fault-tolerant schedule, 2) is targeted for hard real-time, 3) has hard reliability goal, 4) generates static schedule for processes and messages...

  14. Online Real-Time Tribology Failure Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under NASA Phase I funding, we have developed a system for the ball bearing fault detection and identification. Our system can effectively identify multiple fault...

  15. FORMAL VERIFICATION OF REAL TIME DISTRIBUTED SYSTEMS USING B METHOD

    Directory of Open Access Journals (Sweden)

    AYAMAN M. WAHBA,

    2011-04-01

    Full Text Available Throughout the previous years, the complexity and size of digital systems has increased dramatically, as a result design flow phases changed a lot. Simulation used to be the most common procedure to assure the correctness of a system under design, but it cannot exhaustively examine all the execution scenarios of the system. A different approach to validate a system by formally reasoning the system behavior is Formal verification, where the system implementation is checked against the requirements or the properties to be satisfied. The most common paradigms are based on theorem proving, model checking and language containment. This paper presents an application of the B method to the formalization and verification of a simplified flight control system, as an example of a system consisting of a number of distributed computing devices that are interconnected together through digital communication channels.

  16. Reverse Engineering Tool Requirements for Real Time Embedded Systems

    OpenAIRE

    Govin, Brice; Anquetil, Nicolas; Etien, Anne; Monegier Du Sorbier, Arnaud; Ducasse, Stéphane

    2015-01-01

    For more than three decades, reverse engineering has been a major issue in industry wanting to capitalise on legacy systems. Lots of companies have developed reverse engineering tools in order to help developers in their work. However, those tools have been focusing on traditional information systems. Working on a time critical embedded system we found that the solutions available focus either on software behaviour structuring or on data extraction from the system. None of them seem to be cle...

  17. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael;

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  18. Scheduling and Communication Synthesis for Distributed Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2000-01-01

    Embedded systems are now omnipresent: from cellular phones to pagers, from microwave ovens to PDAs, almost all the devices we use are controlled by embedded systems. Many embedded systems have to fulfill strict requirements in terms of performance and cost efficiency. Emerging designs are usually...

  19. Assessment of the accuracy of real-time continuous glucose monitoring system and its correlated factors

    Institute of Scientific and Technical Information of China (English)

    洛佩

    2014-01-01

    Objective To assess the factors that influence the accuracy of real-time continuous glucose monitoring system(RT-CGM).Methods A total of 79 diabetic patients wore RT-CGM for three days continuously while calibrating by interphalangeal glucose values 4-8 times a day.We counted matching rate of interphalangeal glucose values and RT-CGM probe value,and analyzed correlation of the matching rate with MAGE,SDBG,MBG,AUC10,AUC3.9,and NGE by Pearson correlation analysis and multiple linear

  20. A Real-Time and Dynamic Biological Information Retrieval and Analysis System (BIRAS)

    Institute of Scientific and Technical Information of China (English)

    Qi Zhou; Hong Zhang; Meiying Geng; Chenggang Zhang

    2003-01-01

    The aim of this study is to design a biological information retrieval and analysis system (BIRAS) based on the Internet. Using the specific network protocol, BIRAS system could send and receive information from the Entrez search and retrieval system maintained by National Center for Biotechnology Information (NCBI) in USA. The literatures, nucleotide sequence, protein sequences, and other resources according to the user-defined term could then be retrieved and sent to the user by pop up message or by E-mail informing automatically using BIRAS system.All the information retrieving and analyzing processes are done in real-time. As a robust system for intelligently and dynamically retrieving and analyzing on the user-defined information, it is believed that BIRAS would be extensively used to retrieve specific information from large amount of biological databases in now days.The program is available on request from the corresponding author.

  1. Real time swallowing measurement system by using photometric stereo

    Science.gov (United States)

    Fujino, Masahiro; Kato, Kunihito; Mura, Emi; Nagai, Hajime

    2015-04-01

    In this paper, we propose a measurement system to evaluate the swallowing by estimating the movement of the thyroid cartilage. We developed a measurement system based on the vision sensor in order to achieve the noncontact and non-invasive sensor. The movement of the subject's thyroid cartilage is tracked by the three dimensional information of the surface of the skin measured by the photometric stereo. We constructed a camera system that uses near-IR light sources and three camera sensors. We conformed the effectiveness of the proposed system by experiments.

  2. Hard Real-Time Performances in Multiprocessor-Embedded Systems Using ASMP-Linux

    OpenAIRE

    Betti Emiliano; Bovet DanielPierre; Cesati Marco; Gioiosa Roberto

    2008-01-01

    Abstract Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures can satisfy the ever increasing computational requirements of embedded systems. ASMP-LINUX is a modified, high responsiveness, open-source hard real-time operating system for multiprocessor systems capable of providing high real-time performance while maintaining the code simple and not impacting on the performances of the rest of the system. Moreover, ASMP-...

  3. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik;

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...... the system real-time states with good robustness and can address several kinds of BD....

  4. Real-time common awareness in communication constrained sensor systems

    NARCIS (Netherlands)

    E. van Foeken; L.J.H.M. Kester

    2011-01-01

    Sensor systems need to be more adaptive to perform well in dynamically changing environments. Common awareness in sensor systems enables distributed agents to perform coordinated actions and reason about other agents. In addition, physical distribution of the agents in the network prevent a single p

  5. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam construction quality monitoring with high-techs is urgently needed. The paper makes theoretical research on construction quality real-time monitoring and system integration of core rockfill dam, proposes implementation method and integrated solution of construction quality real-time monitoring of core rockfill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  6. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; CUI Bo; LIU DongHai; TONG DaWei

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the Improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam con-struction quality monitoring with high-techs is urgently needed.The paper makes theoretical research on construction quality real-time monitoring and system integration of core rock/ill dam, proposes im-plementation method and integrated solution of construction quality real-time monitoring of core rock-fill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  7. Building XenoBuntu Linux Distribution for Teaching and Prototyping Real-Time Operating Systems

    CERN Document Server

    Litayem, Nabil; Saoud, Slim Ben

    2011-01-01

    This paper describes the realization of a new Linux distribution based on Ubuntu Linux and Xenomai Real-Time framework. This realization is motivated by the eminent need of real-time systems in modern computer science courses. The majority of the technical choices are made after qualitative comparison. The main goal of this distribution is to offer standard Operating Systems (OS) that include Xenomai infrastructure and the essential tools to begin hard real-time application development inside a convivial desktop environment. The released live/installable DVD can be adopted to emulate several classic RTOS Application Program Interfaces (APIs), directly use and understand real-time Linux in convivial desktop environment and prototyping real-time embedded applications.

  8. A new real-time algorithm of wavelet transform for detection of sudden-changing signals of power systems

    Institute of Scientific and Technical Information of China (English)

    何建军; 任震; 黄雯莹; 周宏; 林涛

    1999-01-01

    With a complex wavelet function, a new real-time recursive algorithm of wavelet transform (WT) is analyzed in detail. Compared with the existing recursive algorithm in two directions, the computing time is greatly redueed in response to faults signals in power systems, and the same recursive algorithm can be generalized to other wavelet functions. With the phases and magnitudes of complex WT coefficients under the fast recursive algorithm, a method to detect faults signals of power systems is presented. Lastly, the analyzing results of some signals show that it is effective and practical for the complex wavelet and its real-time recursive algorithm to detect faults of power systems.

  9. Concept of Operations for Real-time Airborne Management System

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  10. Real time implementation and control validation of the wind energy conversion system

    Science.gov (United States)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real

  11. A Prototype SSVEP Based Real Time BCI Gaming System

    Directory of Open Access Journals (Sweden)

    Ignas Martišius

    2016-01-01

    Full Text Available Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  12. High speed preprocessing in real time telemetry systems

    Science.gov (United States)

    Strock, O. J.; O'Brien, Michael

    A versatile high-speed preprocessor, the EMR 8715, is described which is used as a closed-coupled input device for the host computer in a telemetry system. Much of the data and time merging, number conversion, floating-point processing, and data distribution are performed by the system, reducing the host load. The EMR 8715 allows a choice of serial processing, parallel processing, or a combination of the two, on a measurement-by-measurement basis.

  13. Task Scheduling in Energy Harvesting Real-time Embedded Systems

    OpenAIRE

    Chetto, Maryline

    2012-01-01

    International audience; Harvesting energy from the environment is very desirable for many emerging applications that use embedded devices. Energy harvesting also known as energy scavenging enables us to guarantee quasi-perpetual system operation for wireless sensors, medical implants, etc. without requiring human intervention which is normally necessary for recharging batteries in classical battery-operated systems. Nevertheless, energy harvesting calls for solving numerous technological prob...

  14. Real-Time Clinical Decision Support System with Data Stream Mining

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2012-01-01

    Full Text Available This research aims to describe a new design of data stream mining system that can analyze medical data stream and make real-time prediction. The motivation of the research is due to a growing concern of combining software technology and medical functions for the development of software application that can be used in medical field of chronic disease prognosis and diagnosis, children healthcare, diabetes diagnosis, and so forth. Most of the existing software technologies are case-based data mining systems. They only can analyze finite and structured data set and can only work well in their early years and can hardly meet today's medical requirement. In this paper, we describe a clinical-support-system based data stream mining technology; the design has taken into account all the shortcomings of the existing clinical support systems.

  15. Real-Time Remote Monitoring with Data Acquisition System

    Science.gov (United States)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  16. GPUs for real-time processing in HEP trigger systems

    CERN Document Server

    Ammendola, R; Deri, L; Fiorini, M; Frezza, O; Lamanna, G; Lo Cicero, F; Lonardo, A; Messina, A; Sozzi, M; Pantaleo, F; Paolucci, Ps; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2014-01-01

    We describe a pilot project (GAP - GPU Application Project) for the use of GPUs (Graphics processing units) for online triggering applications in High Energy Physics experiments. Two major trends can be identied in the development of trigger and DAQ systems for particle physics experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a fully software data selection system (\\trigger-less"). The innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software not only in high level trigger levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several elds of science, although so far applications have been tailored to the specic strengths of such devices as accelerators in oine computation. With the steady reduction of GPU latencies, and the incre...

  17. ARAC: a flexible real-time dose consequence assessment system

    International Nuclear Information System (INIS)

    ARAC (the Atmospheric Release Advisory Capability), an emergency radiological dose assessment capability of the U.S. Government, has been called on to do consequence assessments for releases into the atmosphere of radionuclides and a variety of other substances. Because of the variety of requirements of each unique assessment, ARAC has developed and maintains a flexible system of people, computer software and hardware. A new version of ADPIC that can simulate the transport of any number of radionuclide particulates and gases and all of the decay products that are generated during transport and after deposition. This code will be most suitable for application to nuclear reactor accidents. ARAC has personal computer and advanced computer workstations at approximately 50 remote sites that communicate central system and which can initiate an ARAC response by transmitting time, location and source information about an accident to the central system

  18. Structure and Hierarchy in Real-Time Systems

    DEFF Research Database (Denmark)

    Möller, Michael Oliver

    The development of digital systems is particularly challenging, if their correctness depends on the right timing of operations. One approach to enhance the reliability of such systems is model-based development. This allows for a formal analysis throughout all stages of design. Model...... that have the potential to reduce time and memory consumption drastically. The first technique makes use of structural information, in particular loops, to exploit regularities in the reachable state space. Via shortcut-like additions to the model we avoid repetition of similar states during an exhaustive...

  19. Real Time Medical Image Consultation System Through Internet

    Directory of Open Access Journals (Sweden)

    D. Durga Prasad

    2010-01-01

    Full Text Available Teleconsultation among doctors using a telemedicine system typically involves dealing with and sharing medical images of the patients. This paper describes a software tool written in Java which enables the participating doctors to view medical images such as blood slides, X-Ray, USG, ECG etc. online and even allows them to mark and/or zoom specific areas. It is a multi-party secure image communication system tool that can be used by doctors and medical consultants over the Internet.

  20. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ...

  1. Real-Time Strap Pressure Sensor System for Powered Exoskeletons

    Directory of Open Access Journals (Sweden)

    Jesús Tamez-Duque

    2015-02-01

    Full Text Available Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  2. Real-time qualitative reasoning for telerobotic systems

    Science.gov (United States)

    Pin, Eancois G.

    1993-02-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  3. Real-time strap pressure sensor system for powered exoskeletons.

    Science.gov (United States)

    Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis

    2015-02-16

    Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  4. Real-time embedded systems open-source operating systems perspective

    CERN Document Server

    Bertolotti, Ivan Cibrario

    2012-01-01

    From the Foreword: "!the presentation of real-time scheduling is probably the best in terms of clarity I have ever read in the professional literature. Easy to understand, which is important for busy professionals keen to acquire (or refresh) new knowledge without being bogged down in a convoluted narrative and an excessive detail overload. The authors managed to largely avoid theoretical-only presentation of the subject, which frequently affects books on operating systems. ! an indispensable [resource] to gain a thorough understanding of the real-time systems from the operating systems p

  5. Globally Scheduled Real-Time Multiprocessor Systems with GPUs

    OpenAIRE

    Elliott, Glenn,; Anderson, James

    2010-01-01

    Graphics processing units, GPUs, are powerful processors that can offer significant performance advantages over traditional CPUs. The last decade has seen rapid advancement in GPU computational power and generality. Recent technologies make it possible to use GPUs as co-processors to the CPU. The performance advantages of GPUs can be great, often outperforming traditional CPUs by orders of magnitude. While the motivations for developing systems with GPUs are clear, little research in the real...

  6. A real time measurement system for red tide studies

    OpenAIRE

    Lam, HYI; Hodgkiss, IJ

    2001-01-01

    An apparently increasing trend of red tide occurrences and/or harmful algal blooms has become a global issue, particularly in coastal zones with 'cultural eutrophication', but no effective measures have been developed yet for detection and early warning, in order to prevent public health problems and the threat of economic losses. A multiple-probe-and-sensor based telemetry system has been developed to monitor water quality parameters, hydrographic variables and meteorological conditions, in ...

  7. Real-Time Environmental Information Network and Analysis System (REINAS)

    OpenAIRE

    Nuss, Wendell A.

    1998-01-01

    The long term goals of the NPS portion of this project, which is joint with UCSC, are to develop a mesoscale coastal analysis system for use in diagnosing and predicting coastal circulations in a topographically complex coastal region and to provide guidance to UCSC for the development of data collection, data management, and visualization tools for mesoscale meteorological problems. Funding Document Number: N0001498WR30144

  8. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  9. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  10. Mean waiting time approximation for a real time polling system

    Institute of Scientific and Technical Information of China (English)

    Cao Chunsheng; Yin Rupo; Zhang Weidong; Cai Yunze

    2007-01-01

    This paper considers a novel polling system with two classes of message which can experience an upper bounded time before being served . The station serves these two classes with mixed service discipline , one class with exhaustive service discipline, and the other with gated service discipline. Using iterative method, we have developed an approximation method to obtain the mean waiting time for each message class . The performance of approximation has been compared with the simulation results . The expression for the upper bound of waiting time is given too .

  11. Design and Implementation of Real Time Remote Supervisory System

    Directory of Open Access Journals (Sweden)

    Mr. Mudit Goenka,

    2015-02-01

    Full Text Available In today’s fast growing communication environment and rapid exchange of data in networking field has triggered us to develop a home based remote supervisory monitoring system. In the present paper the physiological parameters of the patient such as body temperature, ECG, Pulse rate and Oxygen Saturation is displayed in MATLAB graphical user interface which is processed using ARM7 LPC2138. In case any emergency persist and parameters goes abnormal over the optimum level then a buzzer will ring to alert the caretaker. And the vital parameters will be displayed on the patient side computer and an automatic SMS will be sent to the doctor using GSM interface.

  12. Real-time systems development with SDL and next generation validation tools

    OpenAIRE

    Sinnott, R.O.

    2001-01-01

    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language exten...

  13. Research of smart real-time robot navigation system

    Science.gov (United States)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  14. Real-time visual tracking system modelling in MPSoC using platform based design

    Science.gov (United States)

    Jia, Zai Jian; Bautista, Tomás; Núñez, Antonio; Guerra, Cayetano; Hernández, Mario

    2009-02-01

    In this paper, we present the modelling of a real-time tracking system on a Multi-Processor System on Chip (MPSoC). Our final goal is to build a more complex computer vision system (CVS) by integrating several applications in a modular way, which performs different kind of data processing issues but sharing a common platform, and this way, a solution for a set of applications using the same architecture is offered and not just for one application. In our current work, a visual tracking system with real-time behaviour (25 frames/sec) is used like a reference application, and also, guidelines for our future CVS applications development. Our algorithm written in C++ is based on correlation technique and the threshold dynamic update approach. After an initial computational complexity analysis, a task-graph was generated from this tracking algorithm. Concurrently with this functionality correctness analysis, a generic model of multi-processor platform was developed. Finally, the tracking system performance mapped onto the proposed architecture and shared resource usage were analyzed to determine the real architecture capacity, and also to find out possible bottlenecks in order to propose new solutions which allow more applications to be mapped on the platform template in the future.

  15. MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YU Shitao; YANG Shiwei; YANG Lin; GONG Yuanming; ZHUO Bin

    2007-01-01

    A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.

  16. Real Time Hand Gesture Recognition System for Dynamic Applications

    Directory of Open Access Journals (Sweden)

    Siddharth S. Rautaray

    2012-02-01

    Full Text Available Virtual environments have always been considered as a means for more visceral and efficient human computer interaction by a diversified range of applications. The spectrum of applications includes analysis of complex scientific data, medical training, military simulation, phobia therapy and virtual prototyping. Evolution of ubiquitous computing, current user interaction approaches with keyboard, mouse and pen are not sufficient for the still widening spectrum of Human computer interaction. Gloves and sensor based trackers are unwieldy, constraining and uncomfortable to use. Due to the limitation of these devices the useable command set based diligences is also limited. Direct use of hands as an input device is an innovative method for providing natural Human Computer Interaction which has its inheritance from textbased interfaces through 2D graphical-based interfaces, multimedia-supported interfaces, to full-fledged multi-participant Virtual Environment (VE systems. Conceiving a future era of human-computer interaction with the implementations of 3D application where the user may be able to move and rotate objects simply by moving and rotating his hand - all without help of any input device. The research effort centralizes on the efforts of implementing an application that employs computer vision algorithms and gesture recognition techniques which in turn results in developing a low cost interfacedevice for interacting with objects in virtual environment using hand gestures. The prototype architecture of the application comprises of a central computational module that applies the camshift technique fortracking of hands and its gestures. Haar like technique has been utilized as a classifier that is creditworthy for locating hand position and classifying gesture. The patterning of gestures has been done for recognition by mapping the number of defects that is formed in the hand with the assigned gestures. The virtual objects are produced using

  17. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  18. Detection of influenza A virus RNA in birds by optimized Real-Time PCR system

    Institute of Scientific and Technical Information of China (English)

    Ilinykh Ph A; Shestopalova EM; Khripko Yu I; Durimanov AG; Sharshov KA; Shestopalov AM

    2010-01-01

    Objective: To evaluate the use of Real-Time PCR system based on specific amplification of matrix protein gene fragment for influenza A virus RNA detection in cloacal swabs from wild birds. Methods:Sensitivity, specificity and reproducibility of analysis results were identified. Study of cloacal swabs from wild birds for influenza A virus presence was performed. Results:Reproducibility of low concentrations of virus detection in samples by Real-Time PCR was significantly higher than that of detection based on cytopathic effect of viruses grown on MDCK cell culture. Conclusions: Real-Time PCR system for influenza A virus RNA detection is developed and applied for virus surveillance study.

  19. Resource Management in Real-time Multicore Embedded Systems: Performance and Energy Perspectives

    OpenAIRE

    Chen, Gang

    2016-01-01

    Multi-core architectures are believed to be one of the major solutions for future embedded systems, due to their advantages in the high average performance and procurement cost. However, the use of the architecture of multi-core processors in real-time systems poses important challenges on timing analysis. In this thesis, we present novel reconfiguration techniques and scheduling algorithms for resource management in real-time multi-core embedded systems. We provide approaches by considering ...

  20. High Dynamic Range Real-time Vision System for Robotic Applications

    OpenAIRE

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Rosse, Matthieu; Ginhac, Dominique

    2012-01-01

    International audience Robotics applications often requires vision systems capable of capturing a large amount of information related to a scene. With many camera sensors, the perception of information is limited in areas with strong contrasts. The High Dynamic Range (HDR) vision system can deal with these limitations. This paper describes the HDR-ARtiSt hardware platform (High Dynamic Range Advanced Real-time imaging System), a FPGA-based architecture that can produce a real- time high dy...

  1. Range Safety Real-time System for Satellite Launch Vehicle Missions–Testing Methodologies

    Directory of Open Access Journals (Sweden)

    R. Varaprasad

    2006-11-01

    Full Text Available A real-time system plays a critical role in the range safety decision-making in a satellitelaunch mission. Real-time software, the heart of such systems, is becoming an issue of criticality.Emphasis is being laid on the development of reliable, robust, and operational system. Thispaper purports to delineate prudent testing methodologies implemented to test the real-timesystem.

  2. T-UPPAAL: Online Model-based Testing of Real-Time Systems

    DEFF Research Database (Denmark)

    Mikucionis, Marius; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    The goal of testing is to gain confidence in a physical computer based system by means of executing it. More than one third of typical project resources is spent on testing embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore systematic......, theoretically well-founded and effective automated real-time testing techniques are of great practical value. We pesent an online conformance testing tool for timed systems....

  3. Alternate Data Acquisition and Real-time Monitoring System on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Wei Peijie; Luo Jiarong; Wang Hua; Li Guiming

    2005-01-01

    A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.

  4. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  5. Estimating Model Parameters of Adaptive Software Systems in Real-Time

    Science.gov (United States)

    Kumar, Dinesh; Tantawi, Asser; Zhang, Li

    Adaptive software systems have the ability to adapt to changes in workload and execution environment. In order to perform resource management through model based control in such systems, an accurate mechanism for estimating the software system's model parameters is required. This paper deals with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. First, insights in to the static performance model estimation problem are provided. Then an Extended Kalman Filter (EKF) design is combined with an open queueing network model to dynamically estimate the model parameters in real-time. Specific problems that are encountered in the case of multiple classes of workload are analyzed. These problems arise mainly due to the under-deterministic nature of the estimation problem. This motivates us to propose a modified design of the filter. Insights for choosing tuning parameters of the modified design, i.e., number of constraints and sampling intervals are provided. The modified filter design is shown to effectively tackle problems with multiple classes of workload through experiments.

  6. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  7. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  8. Dynamic Reconfiguration in Real-Time Systems Energy, Performance, and Thermal Perspectives

    CERN Document Server

    Wang, Weixun; Ranka, Sanjay

    2013-01-01

    Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.  Provides a comprehensive introduction to optimization and dynamic reconfiguration techniques in real-time embedded systems; Covers state-of-the-art techniques and ongoing research in reconfigurable architectures; Focuses on algorithms tuned for dynamic reconfiguration techniques in real-time systems;  Provides reference for anyone designing low-power systems, energy-/temperature-constrained devices, and power-performance efficie...

  9. Rugged, Portable, Real-Time Optical Gaseous Analyzer for Hydrogen Fluoride

    Science.gov (United States)

    Pilgrim, Jeffrey; Gonzales, Paula

    2012-01-01

    Hydrogen fluoride (HF) is a primary evolved combustion product of fluorinated and perfluorinated hydrocarbons. HF is produced during combustion by the presence of impurities and hydrogen- containing polymers including polyimides. This effect is especially dangerous in closed occupied volumes like spacecraft and submarines. In these systems, combinations of perfluorinated hydrocarbons and polyimides are used for insulating wiring. HF is both highly toxic and short-lived in closed environments due to its reactivity. The high reactivity also makes HF sampling problematic. An infrared optical sensor can detect promptly evolving HF with minimal sampling requirements, while providing both high sensitivity and high specificity. A rugged optical path length enhancement architecture enables both high HF sensitivity and rapid environmental sampling with minimal gaseous contact with the low-reactivity sensor surfaces. The inert optical sample cell, combined with infrared semiconductor lasers, is joined with an analog and digital electronic control architecture that allows for ruggedness and compactness. The combination provides both portability and battery operation on a simple camcorder battery for up to eight hours. Optical detection of gaseous HF is confounded by the need for rapid sampling with minimal contact between the sensor and the environmental sample. A sensor is required that must simultaneously provide the required sub-parts-permillion detection limits, but with the high specificity and selectivity expected of optical absorption techniques. It should also be rugged and compact for compatibility with operation onboard spacecraft and submarines. A new optical cell has been developed for which environmental sampling is accomplished by simply traversing the few mm-thick cell walls into an open volume where the measurement is made. A small, low-power fan or vacuum pump may be used to push or pull the gaseous sample into the sample volume for a response time of a few

  10. Task Management for Soft Real-Time Applications Based on General Purpose Operating Systems

    OpenAIRE

    Pedreiras, Paulo; Almeida, Luis

    2007-01-01

    Using general purpose operating systems for soft real time applications has several advantages related with low costs and the abundance of device drivers and software tools. However, such applications still require adequate timing services, for process activation and synchronization.

  11. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre;

    2010-01-01

    as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one......Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...

  12. Real-time total system error estimation:Modeling and application in required navigation performance

    Institute of Scientific and Technical Information of China (English)

    Fu Li; Zhang Jun; Li Rui

    2014-01-01

    In required navigation performance (RNP), total system error (TSE) is estimated to pro-vide a timely warning in the presence of an excessive error. In this paper, by analyzing the under-lying formation mechanism, the TSE estimation is modeled as the estimation fusion of a fixed bias and a Gaussian random variable. To address the challenge of high computational load induced by the accurate numerical method, two efficient methods are proposed for real-time application, which are called the circle tangent ellipse method (CTEM) and the line tangent ellipse method (LTEM), respectively. Compared with the accurate numerical method and the traditional scalar quantity summation method (SQSM), the computational load and accuracy of these four methods are exten-sively analyzed. The theoretical and experimental results both show that the computing time of the LTEM is approximately equal to that of the SQSM, while it is only about 1/30 and 1/6 of that of the numerical method and the CTEM. Moreover, the estimation result of the LTEM is parallel with that of the numerical method, but is more accurate than those of the SQSM and the CTEM. It is illustrated that the LTEM is quite appropriate for real-time TSE estimation in RNP application.

  13. Design of a Real-time Signal Processing System for LIF Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiande; Zheng Wengang; Dong Daming; Shen Changjun; Zhang Xin; Zhou Jianjun; Yan Hua; Wu Wenbiao, E-mail: zhengwg@nercita.org.cn [National Engineering Research Center for Information Technology in Agriculture, 100097 (China)

    2011-02-01

    Laser Induced Fluorescence (LIF) sensor is one of the most sensitive approaches available for a variety of analytical applications, such as determination of nitrogen content of plant leaves, detection of chlorophyll content in water, etal. As a core instrumental requirements of real time LIF sensor, signal processing system is used to store effective processing and identification algorithms in a short time. By analyzing the working principle of LIF sensor in detail, a novel platform of signal processing system used in LIF sensor is proposed in this paper. The design solutions and hardware architecture of the system are described in this paper, include Digital Signal Processor (DSP), data transmission block, and memory block. Several steps of signal processing methods are proposed, according to the characteristic of LIF sensor. At last, an application of using the signal processing system designed in this paper for measuring chlorophyll content in plant leaves is shown.

  14. Real-time Moving Object Tracking System Using Cam-shift Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Song

    2013-11-01

    Full Text Available A real-time tracking system with the ability of tracking the moving target using cam-shift algorithm is designed. The basic technique of the stereo vision system is discussed. The architecture, the hardware component and the interface of the tracking system is analyzed. Two digital cameras are fit on the cradle head, and the electric pan/tilt/zoom controller has two independent degrees of freedom: horizontal rotation and pitch. The video signals are captured by two digital cameras, and then the position of the target is calculated. The electric pan/tilt/zoom controller is moved in order to make the target always in the surveillance window. This active system extends vision coverage over wide areas to get more detail information.    

  15. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    Science.gov (United States)

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients.

  16. Computerized real-time materials accountability system for safeguards material control

    International Nuclear Information System (INIS)

    A real-time, computer-based system is described which provides safeguards material control at the Oak Ridge National Laboratory. Originally installed in 1972 to provide computerized real-time fissile materials accountability for criticality control purposes, the system has been expanded to provide accountability of all source and nuclear materials (SNM) and to utilize the on-line inventory files in support of the Laboratory physical protection and surveillance procedures. (auth)

  17. Onboard Real-time System for Digitizing and Geo-referencing of 3D Urban Environments

    OpenAIRE

    Abuhadrous, Iyad; Nashashibi, Fawzi; Laurgeau, Claude; Goulette, Francois

    2003-01-01

    International audience The onboard real-time system for three-dimensional environment reconstruction consists of an instrumented vehicle equipped with a 2D laser range scanner for data mapping, and GPS, INS and odometers for vehicle positioning and attitude information. The advantage of this system is its ability to perform data acquisition during the robot or vehicle navigation; the sensor needed being a basic 2D scanner with opposition to traditional expensive 3D sensors. Real-time data ...

  18. Real-Time Ensemble Based Face Recognition System for Humanoid Robots

    OpenAIRE

    Samuel, Kadri

    2016-01-01

    Humanoid robots are being used in many industrial and domestic application in which human-robot interaction plays an important role. One of the important existing challenges is developing an accurate real-time face recognition system which is not required to be computationally expensive. In this research work a real-time face recognition system which requires low computational complexity is proposed. For this purpose, this thesis is investigating block processing of local binary patterns o...

  19. A Real-Time Semiautonomous Audio Panning System for Music Mixing

    Directory of Open Access Journals (Sweden)

    Joshua D. Reiss

    2010-01-01

    Full Text Available A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional mixing engineer.

  20. Real-time Human Proxy: An Avatar-based Communication System

    OpenAIRE

    Arita, Daisaku; Taniguchi, Rin-ichiro

    2007-01-01

    We propose a concept of real-time human proxy for avatar-based communication systems, which virtualizes a human in the real world in real-time and which lets the virtualized human behave as if he/she was present at a distant place. For estimating RHP, we apply it to a simple game and a virtual classroom system. The experimental results shows us that RHP is useful for avatar-based communication.

  1. Dynamics model for real time diagnostics of Triga RC-1 system

    International Nuclear Information System (INIS)

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisor System and TRIGA Diagnostic Simulator

  2. A Comparison and Evaluation of Real-Time Software Systems Modeling Languages

    Science.gov (United States)

    Evensen, Kenneth D.; Weiss, Kathryn Anne

    2010-01-01

    A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.

  3. A Statistical Approach to Performance Monitoring in Soft Real-Time Distributed Systems

    CERN Document Server

    Bickson, Danny; Hoch, Ezra N; Shagin, Konstantin

    2009-01-01

    Soft real-time applications require timely delivery of messages conforming to the soft real-time constraints. Satisfying such requirements is a complex task both due to the volatile nature of distributed environments, as well as due to numerous domain-specific factors that affect message latency. Prompt detection of the root-cause of excessive message delay allows a distributed system to react accordingly. This may significantly improve compliance with the required timeliness constraints. In this work, we present a novel approach for distributed performance monitoring of soft-real time distributed systems. We propose to employ recent distributed algorithms from the statistical signal processing and learning domains, and to utilize them in a different context of online performance monitoring and root-cause analysis, for pinpointing the reasons for violation of performance requirements. Our approach is general and can be used for monitoring of any distributed system, and is not limited to the soft real-time dom...

  4. A Real-time Monitoring System for the Pipeline Network of Coalmine

    Science.gov (United States)

    Zhao, H. L.; Wang, J. K.; Jiang, X.

    2012-05-01

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  5. A Real-time Monitoring System for the Pipeline Network of Coalmine

    International Nuclear Information System (INIS)

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  6. Developing highly predictable system behavior in real-time battle-management software

    OpenAIRE

    Michael, James Bret

    2003-01-01

    Given that battle-management solutions in system-of-systems environment are separately designed and developed on various operating platforms in different languages, predicting battle-management behavior of system-of-systems is not possible. As a rule, battle-management is executed at the system level rather than the desired system-of-systems level. Typically, C4 systems are non-real-time systems. Traditionally, weapon systems are real-time systems. If we are to match the performance of weapon...

  7. Time Synchronization under 1PPS Signal in Distributed Real-time Simulation System

    Directory of Open Access Journals (Sweden)

    Yao Xinyu

    2010-12-01

    Full Text Available Time synchronization is one of the key points in distributed of a real-time simulation system. At first, a distributed simulation system is introduced. Secondly, time synchronization method under 1PPS signal is put forth. Thirdly, the relevant technology of time synchronization are studied, including system structure, SNTP, 1PPS signal and control logic. Vxworks watch dog timer mode and timecard counter mode under this method are also analyzed in detail and the precision is presented. Fourthly, Arena software is chosen to model and simulate the time synchronization procedure. At last, the whole simulation model is constructed and the experiment results are given out to prove the efficiency of the synchronization method.

  8. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  9. Dynamic Real Time Distributed Sensor Network Based Database Management System Using XML, JAVA and PHP Technologies

    Directory of Open Access Journals (Sweden)

    D. Sudharsan

    2012-03-01

    Full Text Available Wireless Sensor Network (WSN is well known for distributed real time systems for various applications. In order to handle the increasing functionality and complexity of high resolution spatio-temporal sensorydatabase, there is a strong need for a system/tool to analyse real time data associated with distributed sensor network systems. There are a few package/systems available to maintain the near real time database system/management, which are expensive and requires expertise. Hence, there is a need for a cost effective and easy to use dynamic real-time data repository system to provide real time data (raw as well as usable units in a structured format. In the present study, a distributed sensor network system, with Agrisens (AS and FieldServer (FS as well as FS-based Flux Tower and FieldTwitter, is used, which consists of network of sensors and field images to observe/collect the real time weather, crop and environmental parameters for precision agriculture. The real time FieldServer-based spatio-temporal high resolution dynamic sensory data was converted into Dynamic Real-Time Database Management System (DRTDBMS in a structured format for both raw and converted (with usable units data. A web interface has been developed to access the DRTDBMS and exclusive domain has been created with the help of open/free Information and Communication Technology (ICT tools in Extendable Markup Language (XML using (Hypertext preprocessor PHP algorithms and with eXtensible Hyper Text Markup Language (XHTML self-scripting. The proposed DRTDBMS prototype, called GeoSense DRTDBMS, which is a part of the ongoing IndoJapan initiative ‘ICT and Sensor Network based Decision Support Systems in Agriculture and EnvironmentAssessment’, will be integrated with GeoSense cloud server to provide database (dynamic real-time weather/soil/crop and environmental parameters and modeling services (crop water requirement and simulated rice yield modeling. GeoSense-cloud server

  10. Real-time pickup and display integral imaging system without pseudoscopic problem

    Science.gov (United States)

    Kim, Jonghyun; Jung, Jae-Hyun; Lee, Byoungho

    2013-03-01

    We propose a novel real-time pickup and display of integral imaging system using only a lens array and a high speed charge coupled device (CCD). A simple lens array and a high speed CCD can capture 3D information of the object and a commercial liquid crystal (LC) display panel shows the elemental image in real-time. Reconstructed image is real and orthographic so that the observer can touch the 3D image. Furthermore, our system is free from pseudoscopic problem by adopting recent pixel mapping algorithm. This algorithm, based on image interweaving process, can also change the depth plane of the displayed 3D images in real-time. C++ programming is used for real-time capturing, image processing, and display. For real-time high quality 3D video generation, a high resolution and high frame rate CCD (AVT Prosilica GX2300C) and LC display panel (IBM 22inch 3840×2400) are used in proposed system. Proper simulation and experiment are presented to verify our proposed system. We expect that our research can be the basic technology for real-time 3D broadcasting and interactive 3D technology.

  11. Real-time multibody system dynamic simulation. I - A modified recursive formulation and topological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Fuh-Feng; Haug, E.J. (Iowa University, Iowa City (United States))

    1991-03-01

    A modified recursive dynamics formulation and a topological analysis method for the formulation are presented in order to achieve the goal of real-time simulation of multibody mechanical systems. A parallel computational algorithm that exploits inherent parallelism in the modified recursive formulation and numerical results is considered. An efficient general-purpose dynamic simulation method is developed for real-time simulation of shared memory parallel processors. 21 refs.

  12. An automated, real time classification system for biological and anthropogenic sounds from fixed ocean observatories

    OpenAIRE

    Zaugg, Serge Alain; Schaar, Mike van der; Houegnigan, Ludwig; André, Michel

    2010-01-01

    The automated, real time classification of acoustic events in the marine environment is an important tool to study anthropogenic sound pollution, marine mammals and for mitigating human activities that are potentially harmful. We present a real time classification system targeted at many important groups of acoustic events (clicks, buzzes, calls, whistles from several cetacean species, tonal and impulsive shipping noise and explosions). The achieved classification performance ...

  13. Real-time solar magnetograph operation system software design and user's guide

    Science.gov (United States)

    Wang, C.

    1984-01-01

    The Real Time Solar Magnetograph (RTSM) Operation system software design on PDP11/23+ is presented along with the User's Guide. The RTSM operation software is for real time instrumentation control, data collection and data management. The data is used for vector analysis, plotting or graphics display. The processed data is then easily compared with solar data from other sources, such as the Solar Maximum Mission (SMM).

  14. Real-Time Business Intelligence in the MIRABEL Smart Grid System

    DEFF Research Database (Denmark)

    Fischer, Ulrike; Kaulakiene, Dalia; Khalefa, Mohamed;

    2012-01-01

    of energy related data, and must be able to react rapidly (but intelligently) when conditions change, leading to substantial real-time business intelligence challenges. This paper discusses these challenges and presents data management solutions in the European smart grid project MIRABEL. These solutions......) data. Experimental studies show that the proposed solutions support important real-time business intelligence tasks in a smart grid system....

  15. RRSAS [Robotic Radiation Survey and Analysis System] Project: A real time sensor driven robotic system

    International Nuclear Information System (INIS)

    A prototype robotic system developed to conduct radiation surveys on nuclear waste shipping casks is discussed. The system integrates sensing and model based control into the operation of a commercial gantry robot. This allows location of the cask, automatic development of radiation survey test plans, and execution of complete radiation surveys, including force controlled contact swiping at random locations on the cask surface. The robotic system incorporates data management and real-time graphical presentation of survey results. 11 refs., 8 figs

  16. Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems.

    Science.gov (United States)

    Yaradou, Diaraf Farba; Hallier-Soulier, Sylvie; Moreau, Sophie; Poty, Florence; Hillion, Yves; Reyrolle, Monique; André, Janine; Festoc, Gabriel; Delabre, Karine; Vandenesch, François; Etienne, Jerome; Jarraud, Sophie

    2007-03-01

    We evaluated a ready-to-use real-time quantitative Legionella pneumophila PCR assay system by testing 136 hot-water-system samples collected from 55 sites as well as 49 cooling tower samples collected from 20 different sites, in parallel with the standard culture method. The PCR assay was reproducible and suitable for routine quantification of L. pneumophila. An acceptable correlation between PCR and culture results was obtained for sanitary hot-water samples but not for cooling tower samples. We also monitored the same L. pneumophila-contaminated cooling tower for 13 months by analyzing 104 serial samples. The culture and PCR results were extremely variable over time, but the curves were similar. The differences between the PCR and culture results did not change over time and were not affected by regular biocide treatment. This ready-to-use PCR assay for L. pneumophila quantification could permit more timely disinfection of cooling towers. PMID:17194840

  17. Applying an integrated neuro-expert system model in a real-time alarm processing system

    Science.gov (United States)

    Khosla, Rajiv; Dillon, Tharam S.

    1993-03-01

    In this paper we propose an integrated model which is derived from the combination of a generic neuro-expert system model, an object model, and unix operating system process (UOSP) model. This integrated model reflects the strengths of both artificial neural nets (ANNs) and expert systems (ESs). A formalism of ES object, ANN object, UOSP object, and problem domain object is used for developing a set of generic data structures and methods. These generic data structures and methods help us to build heterogeneous ES-ANN objects with uniform communication interface. The integrated model is applied in a real-time alarm processing system for a non-trivial terminal power station. It is shown how features like hierarchical/distributed ES/ANN objects, inter process communication, and fast concurrent execution help to cope with real-time system constraints like, continuity, data variability, and fast response time.

  18. Hard Real-Time Performances in Multiprocessor-Embedded Systems Using ASMP-Linux

    Directory of Open Access Journals (Sweden)

    Daniel Pierre Bovet

    2008-01-01

    Full Text Available Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures can satisfy the ever increasing computational requirements of embedded systems. ASMP-LINUX is a modified, high responsiveness, open-source hard real-time operating system for multiprocessor systems capable of providing high real-time performance while maintaining the code simple and not impacting on the performances of the rest of the system. Moreover, ASMP-LINUX does not require code changing or application recompiling/relinking. In order to assess the performances of ASMP-LINUX, benchmarks have been performed on several hardware platforms and configurations.

  19. Hard Real-Time Performances in Multiprocessor-Embedded Systems Using ASMP-Linux

    Directory of Open Access Journals (Sweden)

    Betti Emiliano

    2008-01-01

    Full Text Available Abstract Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures can satisfy the ever increasing computational requirements of embedded systems. ASMP-LINUX is a modified, high responsiveness, open-source hard real-time operating system for multiprocessor systems capable of providing high real-time performance while maintaining the code simple and not impacting on the performances of the rest of the system. Moreover, ASMP-LINUX does not require code changing or application recompiling/relinking. In order to assess the performances of ASMP-LINUX, benchmarks have been performed on several hardware platforms and configurations.

  20. High performance reconfigurable hardware system for real-time image processing

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel reconfigurable hardware system which uses both multi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-DSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient.Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.

  1. A portable device for real time drowsiness detection using novel active dry electrode system.

    Science.gov (United States)

    Tsai, Pai-Yuan; Hu, Weichih; Kuo, Terry B J; Shyu, Liang-Yu

    2009-01-01

    Electroencephalogram (EEG) signals give important information about the vigilance states of a subject. Therefore, this study constructs a real-time EEG-based system for detecting a drowsy driver. The proposed system uses a novel six channels active dry electrode system to acquire EEG non-invasively. In addition, it uses a TMS320VC5510 DSP chip as the algorithm processor, and a MSP430F149 chip as a controller to achieve a real-time portable system. This study implements stationary wavelet transform to extract two features of EEG signal: integral of EEG and zero crossings as the input to a back propagation neural network for vigilance states classification. This system can discriminate alertness and drowsiness in real-time. The accuracy of the system is 79.1% for alertness and 90.91% for drowsiness states. When the system detects drowsiness, it will warn drivers by using a vibrator and a beeper.

  2. Environmental measurement while drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA). The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented

  3. Real time seismic traffic light systems for hydraulic stimulations in deep geothermal systems

    Science.gov (United States)

    Wegler, Ulrich; Vasterling, Margarete; Dinske, Carsten; Becker, Jan

    2015-04-01

    In order to mitigate the risk associated with induced seismicity caused by hydraulic stimulations in deep geothermal systems so called traffic light systems (risk management plans) are used. These systems consist of a local seismic monitoring and an estimate of the current seismic hazard based on observed induced seismicity. The current hazard is compared to threshold values. Measures to reduce the seismic hazard (e.g. reducing the flow rate) specified in the risk management plan are taken, if thresholds are exceeded. Standard traffic light systems use the largest recorded magnitude or peak ground velocity to estimate current seismic hazard caused by induced earthquakes. We developed a real time technique that computes the probability of exceedance for an undesired magnitude using a statistical analysis of recorded micro-seismicity. Based on the in real time generated earthquake catalogue, we compute the magnitude of completeness, the b-value of the Gutenberg-Richter law, and the so-called seismogenic index. These three quantities are updated in real time, if more induced earthquakes are detected. Using the flow rate of the hydraulic stimulation, which we assume to be recorded in real time as well, we calculate the expected seismicity for the next hours. In particular, we compute the probability of exceedance for a predefined critical magnitude. The value is permanently updated and compared to predefined threshold values of the traffic light system. Additionally to the scenario of a continued stimulation with the current flow rate, we also consider the case of an immediate shut-in. For this scenario the probability of exceedance is computed using a modified Omori law. The developed algorithm is implemented in the real-time earthquake monitoring software SeisComP3 including a graphical user interface. So far the traffic light algorithm has only been tested in playback mode simulating a real time scenario. For example, using data of the Basel Deep Heat Mining project

  4. HyperForest: A high performance multi-processor architecture for real-time intelligent systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P. Jr.; Rebeil, J.P. [Sandia National Labs., Albuquerque, NM (United States); Pollard, H. [Univ. of New Mexico, Albuquerque, NM (United States). Electrical Engineering and Computer Engineering Dept.

    1997-04-01

    Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doors for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.

  5. Design and Research of Distributed Real TimeSurveillance Control System

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Distributed real time surveillance control system is used especially in distributed computer measure and control system, mostly inwidely dispersed measure points without human surveillance. This paper describes theory、construction、control strategy, stabilityanalysis of distributed real time supervisory control and data acquisition system, implements distributed measure signals collectionand design of supervisory control system. The realization of virtual instrument based on VC++ can accomplish measurementsignals acquisition, storage, display and analysis, also the result of surveillance control system is provided, and shows thefunctional powerful agility of virtual instrument based on VC++.

  6. Real-time systems design and analysis tools for the practitioner

    CERN Document Server

    Laplante, Phillip A

    2012-01-01

    An important resource, this book offers an introduction and overview of real-time systems: systems where timeliness is a crucial part of the correctness of the system. It contains a pragmatic overview of key topics (computer architecture and organization, operating systems, software engineering, programming languages, and compiler theory) from the perspective of the real-time systems designer and is organized into chapters that are essentially self-contained. In addition, each chapter contains both basic and more challenging exercises that will help the reader to confront actual problems.

  7. Application of IEEE 1588 to the real-time control system of accelerator

    International Nuclear Information System (INIS)

    Background: Time synchronization is one of the core technology of realizing the real-time control of accelerator under the distributed control system architecture. The ordinary crystal frequency deviation of IEEE 1588 causes low synchronous accuracy, which doesn't meet the needs of high precision synchronization. Purpose: This paper proposes an algorithm to improve the synchronization precision caused by the crystal frequency deviation. Methods: According to the basic principle of IEEE 1588 time synchronization, a dynamic frequency compensation (DFC) algorithm module was designed and a test platform was built to verify the feasibility and practicability of the algorithm. The influence of the synchronous cycle and delay jitter of the switch on the synchronization accuracy were analyzed. Results: Experimental results showed the great precision improvement of synchronization after using DFC algorithm. Conclusion: Low synchronous accuracy caused by the crystal frequency deviation can be improved by using DFC algorithm implemented for precision time protocol (PTP) of IEEE 1588. (authors)

  8. Real-Time GPS Receiver System Implementation for Providing Location Based Services and SMS Tracking

    Directory of Open Access Journals (Sweden)

    Pratik K. Gaikwad

    2014-05-01

    Full Text Available This paper describes the design of a real-time GPS receiver system in a very simple and efficient fashion for navigation, tracking and positioning. This system is designed to provide location based parameters in real time like latitude, longitude, altitude, current location name and altitude. The values of these parameters are displayed on a GUI (Graphical User Interface. The system also provides a website application where the values of the parameters on the GUI are displayed in a tabulated form on the website. The parameter values are continuously updated and are displayed on the GUI. The updated parameter values on the GUI are also added to the table in the website. Hence the table shows the real-time parameter values along with the values which were previously displayed on the GUI. An internet based SMS (Short Message Service application is also developed which will message the real time latitude, longitude, altitude, speed and location name to the user’s mobile. The system consists of an antenna which acquires the satellite signals. These signals are given to the GPS receiver. The receiver is provided with a Universal Serial Bus (USB connector so that it compatible and can be easily connected to a Personal Computer (PC or laptop. The system software in the PC or laptop is developed in Visual Basic.NET computer programming language. The system is easy to use and provides real-time results in the form of visual displays.

  9. Performance results of cooperating expert systems in a distributed real-time monitoring system

    Science.gov (United States)

    Schwuttke, U. M.; Veregge, J. R.; Quan, A. G.

    1994-01-01

    There are numerous definitions for real-time systems, the most stringent of which involve guaranteeing correct system response within a domain-dependent or situationally defined period of time. For applications such as diagnosis, in which the time required to produce a solution can be non-deterministic, this requirement poses a unique set of challenges in dynamic modification of solution strategy that conforms with maximum possible latencies. However, another definition of real time is relevant in the case of monitoring systems where failure to supply a response in the proper (and often infinitesimal) amount of time allowed does not make the solution less useful (or, in the extreme example of a monitoring system responsible for detecting and deflecting enemy missiles, completely irrelevant). This more casual definition involves responding to data at the same rate at which it is produced, and is more appropriate for monitoring applications with softer real-time constraints, such as interplanetary exploration, which results in massive quantities of data transmitted at the speed of light for a number of hours before it even reaches the monitoring system. The latter definition of real time has been applied to the MARVEL system for automated monitoring and diagnosis of spacecraft telemetry. An early version of this system has been in continuous operational use since it was first deployed in 1989 for the Voyager encounter with Neptune. This system remained under incremental development until 1991 and has been under routine maintenance in operations since then, while continuing to serve as an artificial intelligence (AI) testbed in the laboratory. The system architecture has been designed to facilitate concurrent and cooperative processing by multiple diagnostic expert systems in a hierarchical organization. The diagnostic modules adhere to concepts of data-driven reasoning, constrained but complete nonoverlapping domains, metaknowledge of global consequences of anomalous

  10. Dynamic Scheduling of Skippable Periodic Tasks with Energy Efficiency in Weakly Hard Real-Time System

    CERN Document Server

    Baskaran, Santhi

    2010-01-01

    Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS) allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time. Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput while energy reduction can be obtained using lower voltage and frequency. Instead of lowering processor voltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage and frequency according to some optimization criteria, such as low energy consumption or high throughput, while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity of battery powered porta...

  11. Real-time interactive MR imaging system. Sequence optimization, and basic and clinical evaluations

    International Nuclear Information System (INIS)

    A real-time interactive MR imaging system (real-time MRI) is an MR scanner which has a fast image updating cycle and the ability to freely change slice orientation, just like an ultrasound imaging system. Recently, such a system has been developed and installed on a clinical 1.5-Tesla system. The purpose of this study was to optimize the pulse sequences for clinical use and to evaluate the clinical usefulness and basic functionality of real-time MRI. For T1-weighted imaging, FLASH (fast low angle shot) can be selected, and up to 5 frames per second can be acquired depending on the matrix size. For T2-weighted imaging, true FISP (fast imaging with steady-state precession) can be selected, and up to 4 frames per second can be acquired. Maximum C/N between liver and spleen was obtained at a flip angle of 20 degrees on FLASH. Maximum C/N between cardiac cavity and wall was obtained at a flip angle of 60 degrees on true FISP. Localization of the right and left coronary arteries could be performed within 30 seconds in three volunteers. Although the present real-time MRI system has drawbacks such as low spatial resolution and relatively low contrast resolution, we expect real-time MRI to be one of the most important tools for future clinical MRI. (author)

  12. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  13. WCET analysis in shared resources real-time systems with TDMA buses

    OpenAIRE

    Rihani, Hamza; Moy, Matthieu; Maiza (Burguiere), Claire; Altmeyer, Sebastian

    2015-01-01

    International audience Predictability is an important aspect in real-time and safety-critical systems, where non-functional properties – such as the timing behavior – have high impact on the system cor-rectness. As many safety-critical systems have a growing performance demand, simple, but outdated architectures are not sufficient anymore. Instead, multi-core systems are more and more popular, even in the real-time domain. To combine the performance benefits of a multi-core architecture wi...

  14. Three axis electronic flight motion simulator real time control system design and implementation

    International Nuclear Information System (INIS)

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system

  15. System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Hansen, Martin; Tomov, Borislav Gueorguiev;

    2007-01-01

    Real-time Ultrasound System (SARUS) has been developed through the last 2 years and can perform real time SA imaging and storage of RF channel data for multiple seconds. SARUS consists of a 1024 channel analog front-end and 64 identical digital boards. Each has 16 transmit channels and 16 receive...... boards. The system can concurrently sample in 1024 channels, thus, generating 140 GBytes/s of data, which also can be processed in real time or stored. The system is controlled over a 1 Gbit/s Ethernet link to each digital board that runs Linux. The control and processing are divided into functional...... is written in C++ and runs under Matlab for high level access to the system in a command structure similar to the Field 11 simulation program. This makes it possible for the user to specify imaging in very few lines of code and the set-up is fast due to the employment of the 64 PowerPCs in parallel. Focusing...

  16. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  17. Design and FPGA verification of a novel reliable real-time data transfer system

    Institute of Scientific and Technical Information of China (English)

    Yu-ping LIAN; Yan HAN; Ming-xu HUO; Jin-long CHEN; Yan ZHANG

    2008-01-01

    Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable gate array) imple-mentation of a novel reliable real-time data transfer system based on EPA (Ethernet for plant automation) protocol and IEEE 1588 standard. This combination can provide more predictable and real-time communication between automation equipments and precise synchronization between devices. The designed EPA system has been verified on Xilinx Spartan3 XC3S1500 and it consumed 75% of the total slices. The experimental results show that the novel industrial control system achieves high synchro-nization precision and provides a 1.59-us standard deviation between the master device and the slave ones. Such a real-time data transfer system is an excellent candidate for automation equipments which require precise synchronization based on Ethernet at a comparatively low price.

  18. Real Time Part Input Control of a Pull Production System by Finding IF-THEN Rules

    Science.gov (United States)

    Ramli, Rizauddin; Yamamoto, Hidehiko; Abu Qudeiri, Jaber

    This paper considers the part input problem of a production system where two Flexible Transfer Lines (FTLs) consisting of an up-stream production line and a down-stream production line while operating under Just In Time (JIT) production management. The up-stream production line processes the raw material after receiving them from suppliers, and after processing them, delivers the processed product to a down-stream production line via a conveyer. In this paper, we have proposed a novel idea for a part input real time control system, known as Algorithm for Real Time Control of Part Input Systems (ARTCOPS). The algorithm is useful when FTLs are in operation under a production order that is different from the pre-decided production schedule. Simulations of virtual production systems have been carried out to verify that ARTCOPS is useful in real time control, although the production orders are different from the pre-decided production scheduling.

  19. Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation.

    Science.gov (United States)

    Hsueh, Ya-Hsin; Yin, Chieh; Chen, Yan-Hong

    2015-09-01

    The study aimed to develop a real-time electromyography (EMG) signal acquiring and processing device that can acquire signal during electrical stimulation. Since electrical stimulation output can affect EMG signal acquisition, to integrate the two elements into one system, EMG signal transmitting and processing method has to be modified. The whole system was designed in a user-friendly and flexible manner. For EMG signal processing, the system applied Altera Field Programmable Gate Array (FPGA) as the core to instantly process real-time hybrid EMG signal and output the isolated signal in a highly efficient way. The system used the power spectral density to evaluate the accuracy of signal processing, and the cross correlation showed that the delay of real-time processing was only 250 μs. PMID:26210898

  20. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  1. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    Science.gov (United States)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  2. Dynamic Scheduling of Skippable Periodic Tasks With Energy Efficiency In Weakly Hard Real-Time System

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran

    2010-12-01

    Full Text Available Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time.Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput whileenergy reduction can be obtained using lower voltage and frequency. Instead of lowering processorvoltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage andfrequency according to some optimization criteria, such as low energy consumption or high throughput,while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity ofbattery powered portable devices continues to raise, energy efficient design of such devices has becomeincreasingly important. Many real-time scheduling algorithms have been developed recently to reduceenergy consumption in the portable devices that use DVS capable processors. Extensive power awarescheduling techniques have been published for energy reduction, but most of them have been focusedsolely on reducing the processor energy consumption. While the processor is one of the major powerhungry units in the system, other peripherals such as network interface card, memory banks, disks alsoconsume significant amount of power. Dynamic Power Down (DPD technique is used to reduce energyconsumption by shutting down the processing unit and peripheral devices, when the system is idle. Threealgorithms namely Red Tasks Only (RTO, Blue When Possible (BWP and Red as Late as Possible (RLPare proposed in the literature to schedule the real-time tasks in Weakly-hard real-time

  3. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  4. The inverse method parametric verification of real-time embedded systems

    CERN Document Server

    André , Etienne

    2013-01-01

    This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solv

  5. A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation

    Science.gov (United States)

    Mihaloew, J. R.; Roth, S. P.; Creekmore, R.

    1981-01-01

    A Pegasus-Harrier propulsion system is selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics are modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real-time propulsion model is formulated by applying a piecewise linear state variable methodology. A hydromechanical and water injection control system is also simulated. It is noted that the real-time dynamic model includes the detail and flexibility required for evaluating critical control parameters and propulsion component limits over a limited flight envelope.

  6. Implementation of a Real-time JPEG2000 System Using DSPs for 2 Digital Cameras

    Institute of Scientific and Technical Information of China (English)

    何得平

    2006-01-01

    This paper presents techniques and approaches capable of achieving a real-time JPEG2000compressing system using DSP chips. We propose a three-DSP real-time parallel processing system usingefficient memory management for discrete wavelet transform (DWT) and parallel-pass architecture forembedded block coding with optimized truncation (EBCOT). This system performs compression of 1392×1040pixels monochrome images with the speed of 10 fps/camera of 2 digital still cameras and is proven to be apractical and efficient DSP solution.

  7. ARGOS - Near Real Time Airborne Monitoring System for Disaster and Traffic Applications

    OpenAIRE

    Reinartz, Peter; Kurz, Franz; Rosenbaum, Dominik; Leitloff, Jens; Palubinskas, Gintautas

    2010-01-01

    Near real time monitoring of natural disasters, mass events, and large traffic disasters with airborne optical sensors is a focus of research and development at the German Aerospace Center (DLR). For this purpose, a new airborne camera system was developed named 3K camera system (3K = “3Kopf-Kamera”). Image data are processed onboard on five onboard processing units using data from a real time GPS/IMU system. Processed data are sent to ground via two types of datalinks, a commercial microwave...

  8. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  9. WCET analysis in shared resources real-time systems with TDMA buses

    NARCIS (Netherlands)

    H. Rihani; M. Moy; C. Maiza; S. Altmeyer

    2015-01-01

    Predictability is an important aspect in real-time and safety-critical systems, where non-functional properties -- such as the timing behavior -- have high impact on the system correctness. As many safety-critical systems have a growing performance demand, simple, but outdated architectures are not

  10. Real-time parameters monitoring system for underground equipment based on panoramic images

    Institute of Scientific and Technical Information of China (English)

    Chen-guang ZHAO; Bo-qiang SHI; Zhi-jun HAO; Ming-chong XU; Chen-tong BIAN

    2013-01-01

    Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety.In this paper,the way to monitor the real-time status of underground equipment was put forward,and it was proved to be effective as commanding and dispatching system.Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding,which not only realizes real-time status monitoring for underground equipment,but also gets a direct scene for underground surrounding.B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment.Meantime,it can reduce the waste of the data resource.

  11. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    Science.gov (United States)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  12. Real-time Digital Video Watermark Embedding System based on Software in Commodity PC

    Science.gov (United States)

    Yamada, Takaaki; Echizen, Isao; Tezuka, Satoru; Yoshiura, Hiroshi

    Emerging broadband networks and high performance of PCs provide new business opportunities of the live video streaming services for the Internet users in sport events or in music concerts. Digital watermarking for video helps to protect the copyright of the video content and the real-time processing is an essential requirement. For the small start of new business, it should be achieved by flexible software without special equipments. This paper describes a novel real-time watermarking system implemented on a commodity PC. We propose the system architecture and methods to shorten watermarking time by reusing the estimated watermark imperceptibility among neighboring frames. A prototype system enables real time processing in a series of capturing NTSC signals, watermarking the video, encoding it to MPEG4 in QGVA, 1Mbps, 30fps style and storing the video for 12 hours in maximum

  13. Real-Time Load-Side Control of Electric Power Systems

    Science.gov (United States)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with

  14. Timing system solution for MedAustron; Real-time event and data distribution network

    International Nuclear Information System (INIS)

    MedAustron is an ion beam research and therapy centre under construction in Wiener Neustadt, Austria. The facility features a synchrotron particle accelerator for light ions. The timing system for this class of accelerators has been developed in close collaboration between MedAustron and Cosylab. Mitigating economical and technological risks, we have chosen a proven, widely used Micro Research Finland (MRF) timing equipment and redesigned its FPGA firmware, extending its high-logic services above transport layer, as required by machine specifics. We obtained a generic real-time broadcast network for coordinating actions of a compact, pulse-to-pulse modulation based particle accelerator. High-level services include support for virtual accelerators and a rich selection of event response mechanisms. The system uses a combination of a real-time link for downstream events and a non-real-time link for upstream messaging and non time-critical communication. It comes with National Instruments LabVIEW-based software support, ready to be integrated into PXIe based front-end controllers. This article explains the high level logic services provided by the real-time link, describes the non-real-time interfaces and presents the software configuration mechanisms. (authors)

  15. EXTRA: A real time knowledge-based monitoring system for a nuclear power plant

    International Nuclear Information System (INIS)

    EXTRA is an expert system for industrial process control. The main objectives are diagnosis and operation aids. From a methodological point of view, EXTRA is based on a deep knowledge of the plant operation and topology and on qualitative physics principles. This system represents a considerable step forward in the field of expert-systems because of the size of the knowledge-base and the real-time requirements. A specific application of EXTRA is developed for the BUGEY unit 2 (a 900 MWe pressurized water nuclear unit) concerning the electrical power supplies. This system called ''electrical power supplies supervision'' gives diagnosis in real time of the electric incidental situation origin. A connection to a data base make the expert system able to supply operators with information concerning the consequences of the electrical power system failures on the safety systems, the equipment measurement sensors and certain automatic devices (availability, unavailability, validity, etc.). A simulation part of the system, out of real time, can help the operators or the maintenance team to prepare the withdrawal from service of electric equipment by giving information on the consequences of it, in particular, information concerning the technical specifications. The system will be independently used and managed by the operating crews and maintenance team, but a priority is given to the diagnosis real time supervision. This expert-system will be installed for the beginning of 1989. (author). 5 refs, 2 pictures

  16. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory Francis [UNC-Chapel Hill/University of Central Florida; Zhang, Jinghe [UNC-Chapel Hill/Virginia Tech

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuities caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.

  17. Class of modified parallel combined methods of real-time numerical simulation for a stiff system

    Institute of Scientific and Technical Information of China (English)

    朱珍民; 刘德贵; 陈丽容

    2004-01-01

    A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.

  18. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco;

    2013-01-01

    The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners......’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because...

  19. The Real-Time system for MHD activity control in the FTU tokamak

    Directory of Open Access Journals (Sweden)

    Minelli D.

    2012-09-01

    Full Text Available The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  20. Real-time simulation requirements for study and optimization of power system controls

    Energy Technology Data Exchange (ETDEWEB)

    Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d`Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.

  1. The Angstrom Project Alert System: real-time detection of extragalactic microlensing

    CERN Document Server

    Darnley, M J; Newsam, A; Duke, J P; Gould, A; Han, C; Ibrahimov, M A; Im, M; Jeon, Y B; Karimov, R G; Lee, C U; Park, B G

    2006-01-01

    The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda Galaxy (M31) using a distributed network of two-meter class telescopes. The Angstrom Project Alert System (APAS) has been developed to identify in real time candidate microlensing and transient events using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS and we present a few example light curves obtained during its commissioning phase which clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.

  2. Power Aware Scheduling for Resource Constrained Distributed Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran

    2010-08-01

    Full Text Available Power management has become popular in mobile computing as well as in server farms. Although a lot of work has been done to manage the energy consumption on uniprocessor real-time systems, there is less work done on their multicomputer counterparts. For a set of real-time tasks with precedence and resource constraints executing on a distributed system, we propose a dynamic slack management technique for feedback control scheduling (FCS algorithm known as modifiedFCS algorithm. This algorithm schedules dependant periodic real-time task sets by effectively managing exclusive access resources with strict timing constraints along with energy efficiency. Simulation results show that, in comparison to commonly used greedy technique, the proposed technique achieves 28 percent less power consumption when validated with random task graphs.

  3. Real-Time Multispectral Imaging System for Online Poultry Fecal Inspection using Unified Modeling Language.

    Science.gov (United States)

    A prototype real-time multispectral imaging system for fecal detection on broiler carcasses has been developed. The prototype system included a common aperture camera with three optical trim filters (517, 565 and 802-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a...

  4. A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Brandner, Florian; Sparsø, Jens;

    2012-01-01

    This paper explores the design of a circuit-switched network-on-chip (NoC) based on time-division-multiplexing (TDM) for use in hard real-time systems. Previous work has primarily considered application-specific systems. The work presented here targets general-purpose hardware platforms. We...

  5. A self-contained, programmable microfluidic cell culture system with real-time microscopy access

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Hemmingsen, Mette; Sabourin, David;

    2011-01-01

    Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability...

  6. RePIDS: a multi tier real-time payload-based intrusion detection system

    NARCIS (Netherlands)

    Jamdagni, Aruna; Tan, Zhiyuan; Nanda, Priyadarsi; He, Xiangjian; Liu, Ren Ping

    2013-01-01

    Intrusion Detection System (IDS) deals with huge amount of network traffic and uses large feature set to discriminate normal pattern and intrusive pattern. However, most of existing systems lack the ability to process data for real-time anomaly detection. In this paper, we propose a 3-Tier Iterative

  7. A piecewise linear state variable technique for real time propulsion system simulation

    Science.gov (United States)

    Mihaloew, J. R.; Roth, S. P.

    1982-01-01

    The emphasis on increased aircraft and propulsion control system integration and piloted simulation has created a need for higher fidelity real time dynamic propulsion models. A real time propulsion system modeling technique which satisfies this need and which provides the capabilities needed to evaluate propulsion system performance and aircraft system interaction on manned flight simulators was developed and demonstrated using flight simulator facilities at NASA Ames. A piecewise linear state variable technique is used. This technique provides the system accuracy, stability and transient response required for integrated aircraft and propulsion control system studies. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model contains approximately 7.0 K bytes of in-line computational code and 14.7 K of block data. It has an 8.9 ms cycle time on a Xerox Sigma 9 computer. A Pegasus-Harrier propulsion system was used as a baseline for developing the mathematical modeling and simulation technique. A hydromechanical and water injection control system was also simulated. The model was programmed for interfacing with a Harrier aircraft simulation at NASA Ames. Descriptions of the real time methodology and model capabilities are presented.

  8. The ASDEX upgrade digital video processing system for real-time machine protection

    International Nuclear Information System (INIS)

    Highlights: • We present the Real-Time Video diagnostic system of ASDEX Upgrade. • We show the implemented image processing algorithms for machine protection. • The way to achieve a robust operating multi-threading Real-Time system is described. -- Abstract: This paper describes the design, implementation, and operation of the Video Real-Time (VRT) diagnostic system of the ASDEX Upgrade plasma experiment and its integration with the ASDEX Upgrade Discharge Control System (DCS). Hot spots produced by heating systems erroneously or accidentally hitting the vessel walls, or from objects in the vessel reaching into the plasma outer border, show up as bright areas in the videos during and after the reaction. A system to prevent damage to the machine by allowing for intervention in a running discharge of the experiment was proposed and implemented. The VRT was implemented on a multi-core real-time Linux system. Up to 16 analog video channels (color and b/w) are acquired and multiple regions of interest (ROI) are processed on each video frame. Detected critical states can be used to initiate appropriate reactions – e.g. gracefully terminate the discharge. The system has been in routine operation since 2007

  9. A game-theoretic approach to real-time system testing

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao;

    2008-01-01

    This paper presents a game-theoretic approach to the testing of uncontrollable real-time systems. By modelling the systems with Timed I/O Game Automata and specifying the test purposes as Timed CTL formulas, we employ a recently developed timed game solver UPPAAL-TIGA to synthesize winning strate...

  10. A HARDWARE SUPPORTED OPERATING SYSTEM KERNEL FOR EMBEDDED HARD REAL-TIME APPLICATIONS

    NARCIS (Netherlands)

    COLNARIC, M; HALANG, WA; TOL, RM

    1994-01-01

    The concept of the kernel, i.e. the time critical part of a real-time operating system, and its dedicated co-processor, especially tailored for embedded applications, are presented. The co-processor acts as a system controller and operates in conjunction with one or more conventional processors in h

  11. On the effectiveness of cache partitioning in hard real-time systems

    NARCIS (Netherlands)

    S. Altmeyer; R. Douma; W. Lunniss; R.I. Davis

    2016-01-01

    In hard real-time systems, cache partitioning is often suggested as a means of increasing the predictability of caches in pre-emptively scheduled systems: when a task is assigned its own cache partition, inter-task cache eviction is avoided, and timing verification is reduced to the standard worst-c

  12. Weak Serializable Concurrency Control in Distributed Real-Time Database Systems

    Institute of Scientific and Technical Information of China (English)

    党德鹏; 刘云生; 等

    2002-01-01

    Most of the proposed concurrency control protocols for real-time database systems are based on serializability theorem.Owing to the unique characteristics of real-time database applications and the importance of satisfying the timing constraints of transactions,serializability is too strong as a correctness criterion and not suitable for real-time databases in most cases.On the other hand,relaxed serializability including epsilon-serializability and similarity-serializability can allow more real-time transactions to satisfy their timing constraints,but database consistency may be sacrificed to some extent.We thus propose the use of weak serializability(WSR)that is more relaxed than conflicting serializability while database consistency is maintained.In this paper,we first formally define the new notion of correctness called weak serializability.After the necessary and sufficient conditions for weak serializability are shown,corresponding concurrency control protocol WDHP(weak serializable distributed high prority protocol)is outlined for distributed real time databases,where a new lock mode called mask lock mode is proposed for simplifying the condition of global consistency.Finally,through a series of simulation studies,it is shown that using the new concurrency control protocol the performance of distributed realtime databases can be greatly improved.

  13. Improvements to Web Toolkits for Antelope-based Real-time Monitoring Systems

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Vernon, F. L.; Hansen, T. S.; Orcutt, J.

    2005-12-01

    The Antelope Environmental Monitoring System (http://www.brtt.com) is a robust middleware architecture for near-real-time data collection, analysis, archiving and distribution. Antelope has an extensive toolkit allowing users to interact directly with their datasets. A rudimentary interface was developed in previous work between Antelope and the web-scripting language PHP (The PHP language is described in more detail at http://www.php.net). This interface allowed basic application development for remote access to and interaction with near-real-time data through a World Wide Web interface. We have added over 70 new functions for the Antelope interface to PHP, providing a solid base for web-scripting of near-real-time Antelope database applications. In addition, we have designed a new structure for web sites to be created from the Antelope platform, including PHP applications and Perl CGI scripts as well as static pages. Finally we have constructed the first version of the dbwebproject program, designed to dynamically create and maintain web-sites from specified recipes. These tools have already proven valuable for the creation of web tools for the dissemination of and interaction with near-real-time data streams from multi-signal-domain real-time sensor networks. We discuss current and future directions of this work in the context of the ROADNet project. Examples and applications of these core tools are elaborated in a companion presentation in this session (Newman et al., AGU 2005, session IN06).

  14. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  15. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya; Sreedharan, Priya

    2007-12-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  16. Real-time transient simulation of multimachine power system networks in the phase domain

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.H.; Parle, J.A.; Acha, E. [Glasgow Univ. (United Kingdom). Centre for Economic Renewable Power Delivery

    2004-03-01

    This paper details implementation of the mathematical model of a synchronous generator in the direct time phase domain suitable for transient analysis in a real-time simulation environment. The network model, which is a full multimachine model in the phase domain, has been implemented on a multipurpose real time station (RTS). A solution method for solving the direct time phase domain model of the generator in the multimachine environment, where transmission imbalances are fully taken into account, has also been proposed. The method is based on discretisation of the state equations for the generator and the interconnecting network. The proposed model and solution method is compared with an industry standard power system package, PSCAD/EMTDC TM. The model enables a unified approach to be adopted in the study of both symmetrical and asymmetrical operating conditions. A thorough analysis is performed to evaluate the model performance in real-time, where the frame time of simulation is a subject of study. (author)

  17. Exploring the Potential of an Isotopic N2O Analyzer to Observe Soil Biogeochemical Processes in Real-time

    Science.gov (United States)

    Jorgensen, R.; Koyama, A.; von Fischer, J. C.; Gupta, M.

    2012-12-01

    We evaluated the potential applications of an Isotopic Nitrous Oxide (N2O) Analyzer (Los Gatos Research), which can measure isotopic values of N2O (δ15Nα, δ15Nβ, δ15N and δ18O) as well as [N2O] at real-time. The analyzer can provide continuous and precise measurements of the isotopic values with a quantum cascade laser along with cavity enhanced laser absorption spectroscopy technique. We evaluated the analyzer by quantifying N2O produced from soils and sediments, N2O dissolved in water, and a N2O standard for δ15N and δ18O. In quantifying N2O production from soils, we used four soils collected from diverse grassland sites across the North American Great Plains. In this lobe of the study, we investigated the relationship between N2O production rates and soil water content (SWC) by manipulating soil water levels in a lab setting. We hypothesized that N2O production rates would be positively correlated with SWC because we expected denitrification to be a more important N2O source than nitrification. Consistent with this hypothesis, we observed that soils adjusted at high SWC (20 to 50%) produced significant N2O. Parallel experiments using 15N labeling (15NH4+ and 15NO3-) suggested that N2O from the soils with high SWC was produced mostly via denitrification. Most of the soils adjusted with low SWC (10 to 20%) produced little N2O. When we observed measurable N2O from one soil with low SWC, the 15N labeling experiment suggested that N2O was produced via nitrification. Our measurements demonstrate that the Isotopic N2O Analyzer can be a powerful tool to investigate N2O dynamics in various materials, such as soils and water, in different environmental settings.

  18. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    Science.gov (United States)

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance.

  19. Building Real-Time Network Intrusion Detection System Based on Parallel Time-Series Mining Techniques

    Institute of Scientific and Technical Information of China (English)

    Zhao Feng; Li Qinghua

    2005-01-01

    A new real-time model based on parallel time-series mining is proposed to improve the accuracy and efficiency of the network intrusion detection systems. In this model, multidimensional dataset is constructed to describe network events, and sliding window updating algorithm is used to maintain network stream. Moreover, parallel frequent patterns and frequent episodes mining algorithms are applied to implement parallel time-series mining engineer which can intelligently generate rules to distinguish intrusions from normal activities. Analysis and study on the basis of DAWNING 3000 indicate that this parallel time-series mining-based model provides a more accurate and efficient way to building real-time NIDS.

  20. Integrated near real-time plutonium inventory system for LWR reprocessing solutions

    International Nuclear Information System (INIS)

    Nuclear safeguard and nonproliferation concerns have generated worldwide interest on reliable and timely nuclear material control and accountability systems. A system employing on-line total and isotopic plutonium concentration monitors that are compatible with the chemical and radiation environments of an experimental coprocessing system employing a modified Purex process has been developed, fabricated, and demonstrated. In-process plutonium from the first to the final purification cycle has been accurately determined in near-real-time by direct gamma ray spectrometry. Each critical measurement stream was monitored by using a cell that has been carefully calibrated for that stream. The assay of low levels of plutonium (0.1 - 15 g/l) was accomplished by using radiation-resistant and chemically inert plastic cell windows. The more concentrated plutonium solutions were analyzed by interposing appropriate gamma ray adsorbers between the cell and the monitor's detection system. Data acquisition and processing were fully automated and continuous, allowing rapid optimization of the coprocessing flowsheet and timely detection of any attempt to divert the plutonium. The collective outputs of the stream-specific monitors formed on integrated inventory system for the experimental facility

  1. A Hybrid Real-time Zero-day Attack Detection and Analysis System

    Directory of Open Access Journals (Sweden)

    Ratinder Kaur

    2015-08-01

    Full Text Available A zero-day attack poses a serious threat to the Internet security as it exploits zero-day vulnerabilities in the computer systems. Attackers take advantage of the unknown nature of zero-day exploits and use them in conjunction with highly sophisticated and targeted attacks to achieve stealthiness with respect to standard intrusion detection techniques. Thus, it's difficult to defend against such attacks. Present research exhibits various issues and is not able to provide complete solution for the detection and analysis of zero-day attacks. This paper presents a novel hybrid system that integrates anomaly, behavior and signature based techniques for detecting and analyzing zero-day attacks in real-time. It has layered and modular design which helps to achieve high performance, flexibility and scalability. The system is implemented and evaluated against various standard metrics like True Positive Rate (TPR, False Positive Rate (FPR, F-Measure, Total Accuracy (ACC and Receiver Operating Characteristic (ROC curve. The result shows high detection rate with nearly zero false positives. Additionally, the proposed system is compared with Honeynet system.

  2. Real-time single-ion hit position detecting system for cell irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takahiro, E-mail: satoh.takahiro37@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Koka, Masahi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, Wataru [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Yokoyama, Akihito; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    We have developed a real-time single-ion hit position detecting system to replace a CR-39 solid-state nuclear-track detector for cell irradiation experiments because the CR-39 takes several minutes for off-line etching. The new real-time system consists of a 500-μm-thick CaF{sub 2}(Eu) scintillator, an optical microscope with a 10× objective lens, and a high-gain charge-coupled device camera. Each of the 260-MeV neon ions passing through a 100-μm-thick CR-39 sheet was detected using the real-time system in a performance test for the spatial resolution. The full width at half maxima (FWHMs) of the distances between positions detected by the real-time system and the centers of the etch pits on CR-39 were 6.5 and 6.9 μm in the x and y directions, respectively. The result shows that the system is useful for typical cultured cells of a few tens of micrometers in size.

  3. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    Science.gov (United States)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  4. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2003-01-01

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computer systems. An important class of embedded computer systems is that of real-time systems, which have to fulfill strict timing...... requirements. As realtime systems become more complex, they are often implemented using distributed heterogeneous architectures. The main objective of this thesis is to develop analysis and synthesis methods for communication-intensive heterogeneous hard real-time systems. The systems are heterogeneous...... not only in terms of platforms and communication protocols, but also in terms of scheduling policies. Regarding this last aspect, in this thesis we consider time-driven systems, event-driven systems, and a combination of both, called multi-cluster systems. The analysis takes into account the heterogeneous...

  5. Exploiting Real-Time FPGA Based Adaptive Systems Technology for Real-Time Sensor Fusion in Next Generation Automotive Safety Systems

    CERN Document Server

    Chappell, Steve; Preston, Dan; Olmstead, Dave; Flint, Bob; Sullivan, Chris

    2011-01-01

    We present a system for the boresighting of sensors using inertial measurement devices as the basis for developing a range of dynamic real-time sensor fusion applications. The proof of concept utilizes a COTS FPGA platform for sensor fusion and real-time correction of a misaligned video sensor. We exploit a custom-designed 32-bit soft processor core and C-based design & synthesis for rapid, platform-neutral development. Kalman filter and sensor fusion techniques established in advanced aviation systems are applied to automotive vehicles with results exceeding typical industry requirements for sensor alignment. Results of the static and the dynamic tests demonstrate that using inexpensive accelerometers mounted on (or during assembly of) a sensor and an Inertial Measurement Unit (IMU) fixed to a vehicle can be used to compute the misalignment of the sensor to the IMU and thus vehicle. In some cases the model predications and test results exceeded the requirements by an order of magnitude with a 3-sigma or ...

  6. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    Science.gov (United States)

    Whitlock, J. S.; Furlong, K.

    2003-12-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in natural hazard classes receive real-time alerts of worldwide earthquake events on cell phones distributed to the class. The students are then responsible for reacting to actual earthquake events, in real-time, with the same data (or lack thereof) as earthquake professionals. The project was first implemented in Spring 2002, and although it had an initial high intrigue and "coolness" factor, the interest of the students waned with time. Through student feedback, we observed that scientific data presented on its own without an educational context does not foster student learning. In order to maximize the impact of real-time data and the accompanying e-media, the students need to become personally involved. Therefore, in collaboration with the Incorporated Research Institutes of Seismology (IRIS), we have begun to develop an online infrastructure that will help teachers and faculty effectively use real-time earthquake information. The Real-Time Earthquake Education (RTEE) website promotes student learning by integrating inquiry-based education modules with real-time earthquake data. The first module guides the students through an exploration of real-time and historic earthquake datasets to model the most important criteria for determining the potential impact of an earthquake. Having provided the students with content knowledge in the first module, the second module presents a more authentic, open-ended educational experience by setting up an earthquake role-play situation. Through the Earthworm system, we have the ability to "set off

  7. Application of Q-Measure in a Real Time Fuzzy System for Managing Financial Assets

    Directory of Open Access Journals (Sweden)

    Penka Georgieva

    2012-12-01

    Full Text Available One of the major problems that a financial manager faces is the enormous amount of financial data. Thereis a variety of software systems used to support the process of investment decision making. In this paper, asoftware system for financial asset management is presented. The system is based on fuzzy logic, operatesin real time and differs from existing systems for portfolio management in five key aspects. The system istested on real data from Bulgarian Stock Exchange

  8. Open Architecture of Single-processor Real-time Robot Control System Based on Windows NT

    Institute of Scientific and Technical Information of China (English)

    张广立; 付莹; 杨汝清

    2003-01-01

    This paper introduces the architecture and implementation of an industrial robot control system,which is based on a singleprocessor structure,can run on general industrial computers.Owing to using Windows NT's real-time time performance and friendly user interface in one generalpurpose operating system.A three layer hierarchical system more scalable and flexible.Furthermore a communication and configuration system is implemented to make the control system scalable and flexible.

  9. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter;

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  10. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...

  11. Service-Oriented Architecture (SOA) Instantiation within a Hard Real-Time, Deterministic Combat System Environment

    Science.gov (United States)

    Moreland, James D., Jr

    2013-01-01

    This research investigates the instantiation of a Service-Oriented Architecture (SOA) within a hard real-time (stringent time constraints), deterministic (maximum predictability) combat system (CS) environment. There are numerous stakeholders across the U.S. Department of the Navy who are affected by this development, and therefore the system…

  12. Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2011-01-01

    Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…

  13. A new Java Thread model for concurrent programming of real-time systems

    NARCIS (Netherlands)

    Hilderink, Gerald; Broenink, Jan; Bakkers, André

    1998-01-01

    The Java ™ Virtual Machine (JVM) provides a high degree of platform independence, but being an interpreter, Java has a poor system performance. New compiler techniques and Java processors will gradually improve the performance of Java, but despite these developments, Java is still far from real-time

  14. Design of Embedded Real-time Systems: Developing a Method for Practical Software Engineering

    DEFF Research Database (Denmark)

    Løvengreen, Hans Henrik; Ravn, Anders P.; Rischel, Hans

    1990-01-01

    The methodological issues and practical problems in development and industrial use of a theory-based design method for embedded, real-time systems are discussed. The method has been used for several years in a number of smaller industries that develop both electronics and software...

  15. Rigorous Modeling of Real-time System Based on UML and PVS

    Institute of Scientific and Technical Information of China (English)

    LAI Ming-zhi; YOU Jin-yuan

    2005-01-01

    Rigorous modeling could improve the correctness and reduce cost in embedded real-time system development for models could be verified. Tools are needed for rigorous modeling of embedded real-time system. UML is an industrial standard modeling language which provides a powerful expressi-veness, intuitive and easy to use interface to model. UML is widely accepted by software developer. However, for lack of precisely defined semantics, especially on the dynamic diagrams, UML model is hard to be verified. PVS is a general formal method which provides a high-order logic specification language and integrated with model checking and theorem proving tools. Combining the widely used UML with PVS, this paper provides a novel modeling and verification approach for embedded real-time system. In this approach, we provide 1) a timed extended UML statechart for modeling dynamic behavior of an embedded real-time system; 2) an approach to capture timed automata based semantics from timed statechart; and 3) an algorithm to generate a finite state model expressed in PVS specification for model checking. The benefits of our approach include flexible and friendly in modeling, extendable in formalization and verification content, and better performance. Time constraints are modeled and verified and its a highlight of this paper.

  16. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff

    International Nuclear Information System (INIS)

    Real-time monitoring of the radiation doses received by interventional radiology (IR) staff has become highly desirable. However, occupational doses are rarely measured in real time, due to the lack of a feasible method for use in IR. Recently, the i2 system by RaySafe™ has been introduced to measure occupational exposure in IR in real time. The i2 system consists of several personal dosimeters (PDs) and a base station with a display and computer interfacing. We evaluated the fundamental performance (dose linearity, dose-rate dependence, angular dependence, batch uniformity and reproducibility) of the i2 system. The dose linearity of the i2 was excellent (R2 = 1.00) The i2 exhibited slight dose-rate dependence (∼20%) at very high dose rates (250 mGy h−1). Little angular dependence (within 20%) was observed between 0° and ±45°, in either the vertical or horizontal direction. We also found that the PD was highly sensitive (about 200%) at angles behind it, e.g. 180°. However, this backscattered radiation is not a problem, in general, due to the placement of the i2 sensor (PD) on the lead apron. We conclude that the i2 system facilitates accurate real-time monitoring and management of occupational doses during IR. (note)

  17. A Data Analytical Framework for Improving Real-Time, Decision Support Systems in Healthcare

    Science.gov (United States)

    Yahav, Inbal

    2010-01-01

    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to…

  18. A Real-Time Embedded Control System for Electro-Fused Magnesia Furnace

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-01-01

    Full Text Available Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

  19. An environment for object-oriented real-time system design

    NARCIS (Netherlands)

    Weg, van de Rob; Engmann, Rolf; Hoef, van de Raoul; Thij, ten Vincent

    1997-01-01

    A concise object-oriented method for the development of real-time systems has been composed. Hardware components are modelled by (software) base objects; base objects are controlled by a hierarchy of coordinator objects, expressed in an organizational diagram. The behaviour of objects is specified b

  20. An Off-Line Simulation System for Development of Real-Time FORTRAN Programs.

    Science.gov (United States)

    White, James W.

    Implementation of an ISA FORTRAN standard for executive functions and process input-output within a simulation system called MINIFOR provides a useful real-time program development tool for small single function, dedicated minicomputers having a FORTRAN compiler but limited program development aids. A FORTRAN-based pre-compiler is used off-line to…

  1. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Chiwan Koo

    Full Text Available Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  2. Real-Time Digitization of Metabolomics Patterns from a Living System Using Mass Spectrometry

    Science.gov (United States)

    Heinemann, Joshua; Noon, Brigit; Mohigmi, Mohammad J.; Mazurie, Aurélien; Dickensheets, David L.; Bothner, Brian

    2014-10-01

    The real-time quantification of changes in intracellular metabolic activities has the potential to vastly improve upon traditional transcriptomics and metabolomics assays for the prediction of current and future cellular phenotypes. This is in part because intracellular processes reveal themselves as specific temporal patterns of variation in metabolite abundance that can be detected with existing signal processing algorithms. Although metabolite abundance levels can be quantified by mass spectrometry (MS), large-scale real-time monitoring of metabolite abundance has yet to be realized because of technological limitations for fast extraction of metabolites from cells and biological fluids. To address this issue, we have designed a microfluidic-based inline small molecule extraction system, which allows for continuous metabolomic analysis of living systems using MS. The system requires minimal supervision, and has been successful at real-time monitoring of bacteria and blood. Feature-based pattern analysis of Escherichia coli growth and stress revealed cyclic patterns and forecastable metabolic trajectories. Using these trajectories, future phenotypes could be inferred as they exhibit predictable transitions in both growth and stress related changes. Herein, we describe an interface for tracking metabolic changes directly from blood or cell suspension in real-time.

  3. Quality control in cloth production: a new system for real-time defect detection

    Science.gov (United States)

    Baldassare, Antonio; De Lucia, Maurizio; Rossi, Francesca; Vannucci, Massimiliano

    2001-02-01

    Real time defect detection on fine cloth is an urgent problem to solve: detecting a long and serious defect on a roll, as soon as it is produced, can reduce damages to the roll, and the consequent decrement of price. The paper describes the work performed at the Department of Energy Engineering `Sergio Stecco' of the University of Florence, in collaboration with well-known high quality wool cloth manufacturers (Marzotto) and machine builders (Sulzer, Benninger). The main goal has been to obtain a new and innovative production line, endowed with a system (based on image processing techniques) for detecting defects in real- time and thus for controlling the production process. The system is based on image processing techniques with a special attention to the real-time constraints. An architecture separating an on-line defect detection and an off-line classification has been proposed. An intelligent optical head, assembled on the loom, acquires images and detects the defects in real-time. A server has the offline task to classify each defect detected by the head. The system has been tested on a real loom, with good results in terms of reliability, false alarms and stability.

  4. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  5. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  6. Research on Collaboration Theory of Distributed Measurement System and Real-Time of Communication Platform

    Institute of Scientific and Technical Information of China (English)

    SHEN Yan

    2005-01-01

    @@ With developments of technology of computer and network, researching on distributed measurement system becomes one of the hot problems in the field of automatic test. However, existing resolutions to distributed measurement system still have great limit,e.g. intelligence, self-adaptivity, collaboration, system load balance and integer view, and their capabilities need to be enhanced. Based on two key projects, this paper studies on collaboration mechanism and real-time of communication platform in distributed measurement system comprehensively and systematically.

  7. Stability of Adaptive Distributed Real-TimeSystems with Dynamic Resource Management

    OpenAIRE

    Rafiliu, Sergiu

    2013-01-01

    Today's embedded distributed real-time systems, are exposed to large variations in resource usage due to complex software applications, sophisticated hardware platforms, and the impact of their run-time environment. As eciency becomes more important, the applications running on these systems are extended with on-line resource managers whose job is to adapt the system in the face of such variations. Distributed systems are often heterogeneous, meaning that the hardware platform consists of com...

  8. Validation Support for Distributed Real-Time Embedded Systems in VDM++

    DEFF Research Database (Denmark)

    S. Fitzgerald, John; Gorm Larsen, Peter; Tjell, Simon;

    2007-01-01

    We present a tool-supported approach to the validation of system-level timing properties in formal models of distributed real-time embedded systems. Our aim is to provide system architects with rapid feedback on the timing characteristics of alternative designs in the often volatile early stages...... to visualise traces and validation conjecture violations. The approach and tool support are illustrated with a case study based on an in-car radio navigation system....

  9. A Wireless and Real-Time Monitoring System Design for Car Networking Applications

    Directory of Open Access Journals (Sweden)

    Li Wenjun

    2013-01-01

    Full Text Available We described a wireless and monitoring system to obtain several classes of vehicle data and send them to the server via General Packet Radio Service (GPRS in real-time. These data are consisted by on-board diagnostic (OBD which get from the vehicle’s OBD interface, Tire-Pressure Monitoring system (TPMS and Global Positioning System (GPS. The main content of this paper is the hardware design of the system, especially RF modules and antennas.

  10. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    Science.gov (United States)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  11. Mobile Embedded Real Time System (RTTCS for Monitoring and Controlling in Telemedicine

    Directory of Open Access Journals (Sweden)

    Basim Mohammed

    2010-10-01

    Full Text Available A real time system embedded in mobile phone was designed In this work, called (Real Time Telemonitoring and Controlling System RTTCS to telemonitor and control a patient's case in level two of telemedicine. The signals (ECG, Arterial Oxygen Saturation and Blood Pressure were transferred out of the patient's monitoring equipments to NOKIA12 unit. Then they were send wirelessly through GPRS to be received by the mobile phone interpreted by the specialist physician who is far a way from the patient. By which the physician can evaluate the patient's case through parameters displaced on the mobile phone screen, so he can provide the necessary medical orders. The suggested system consists of three units. The first is the NOKIA12 unit (T-Box N12 R which contains an embedded real time program works as its operating system. That depends upon two principles multithreading and preemptive and uses a proposed dynamic scheduling algorithm called (RTT with real time constraints to schedule the signals and to send them according to identified priorities to meet the deadline of signals. The second unit represents a web site which is the middle storage for the patient's data. The third unit is a mobile unit (mobile phone which receives the coming signals from the patient monitor accordingly through the previously mentioned first and second units, then the physician can evaluate and diagnose the patient’s case and order the necessary interventions. The system was applied on many cases of abnormal cardiac rhythm cases, where it had been send successfully to a mobile phone in it's real time, and had been read by the physician where it was clear and reliable for the medical diagnosis.

  12. STUDY OF REAL-TIME EXPERT SYSTEM TOOL FOR INDUSTRIAL FAULT MONITORING AND DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    谢桂林; 周建荣

    1992-01-01

    From the requirements ot industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment,strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the realtime requirement of DC hoist,but also can give correct diagnosis results.

  13. Analysis of an Integrated Security System using Real time Network Packets Scrutiny

    Directory of Open Access Journals (Sweden)

    K. Umamageswari

    2015-11-01

    Full Text Available With the tremendous growth of internet services, websites are becoming indispensable and common source through which they are made accessible to all. Intrusion by worms or viruses through the network is continuously increasing and evolving. Firewall and intrusion detection and prevention subsystem, and its functionality is becoming more advanced for the security system against external attacks that use various security vulnerabilities. As such, enterprises are investing in various measures for an integrated security system to identify the threats of network security-based security vulnerabilities and cope with theme effectively. In sum, the network visibility plane should facilitate the following changes in network monitoring for the purposes of promoting disaggregation of analytics tool functions for long term monitoring sustainability and flexibility. In this work, the network packet in-depth test-based, integrated security system that analyzes the threat factors through an overall study of network packets dispersed in real-time and applies various protection functions to manage with integrated security threats in the future.

  14. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  15. Applying real-time control to enhance the performance of nitrogen removal in CAST system

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-po; PENG Yong-zhen; WANG Shu-ying; GAO Shou-you

    2005-01-01

    A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes:traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in realtime control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode.Moreover, the real-time control made it possible to optimize process operation and save aeration energy.

  16. A CAMAC based real-time noise analysis system for nuclear reactors

    Science.gov (United States)

    Ciftcioglu, Özer

    1987-05-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals converted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under program control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance.

  17. Real time test bed development for power system operation, control and cyber security

    Science.gov (United States)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  18. Using Sun’s Java Real-Time System to Manage Behavior-Based Mobile Robot Controllers

    Directory of Open Access Journals (Sweden)

    Andrew McKenzie

    2011-01-01

    Full Text Available Implementing a robot controller that can effectively manage limited resources in a deterministic, real-time manner is challenging. Behavior-based architectures that decompose autonomy into levels of intelligence are popular due to their robustness but do not provide real-time features that enforce timing constraints or support determinism. We propose an architecture and approach for using the real-time features of the Real-Time Specification for Java (RTSJ in a behavior-based mobile robot controller to show that timing constraints affect performance. This is accomplished by extending a real-time aware architecture that explicitly enumerates timing requirements for each behavior. It is not enough to reduce latency. The usefulness of this approach is demonstrated via an implementation on Solaris 10 and the Sun Java Real-Time System (Java RTS. Experimental results are obtained using a K-team Koala robot performing path following with four composite behaviors. Experiments were conducted using several task period sets in three cases: real-time threads with the real-time garbage collector, real-time threads with the non- real-time garbage collector, and non-real-time threads with the non-real-time garbage collector. Results show that even if latency and determinism are improved, the timing of each individual behavior significantly affects task performance.

  19. Alpha: A real-time decentralized operating system for mission-oriented system integration and operation

    Science.gov (United States)

    Jensen, E. Douglas

    1988-01-01

    Alpha is a new kind of operating system that is unique in two highly significant ways. First, it is decentralized transparently providing reliable resource management across physically dispersed nodes, so that distributed applications programming can be done largely as though it were centralized. And second, it provides comprehensive, high technology support for real-time system integration and operation, an application area which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality, performance, and cost. Alpha is the first systems effort of the Archons Project, and the prototype was created at Carnegie-Mellon University directly on modified Sun multiprocessor workstation hardware. It has been demonstrated with a real-time C(sup 2) application. Continuing research is leading to a series of enhanced follow-ons to Alpha; these are portable but initially hosted on Concurrent's MASSCOMP line of multiprocessor products.

  20. Comprehensive Real-Time Bridge Health Monitoring System of Tongtai Bridge

    OpenAIRE

    Lei Su-su; Gao Yong-tao; Pan Dan-guang

    2015-01-01

    Tongtai Bridge is the world’s largest suspension curve-girder-skew-arch bridge, which is located in Zhangjiakou, China. The understanding of mechanics characteristics is limited to such complex bridges, so it is necessary to establish reliable health monitoring system to investigate the static and dynamic responses and monitor the safety of the bridge. A comprehensive real-time bridge health monitoring system is establish, which includes four aspects: sensor system, data acquisition and trans...

  1. A Concept of Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.

    OpenAIRE

    De Cabrol, Aymeric; Garcia, Thibault; Bonnin, Patrick; Chetto, Maryline

    2007-01-01

    International audience; Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions...

  2. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  3. Development and testing of a near-real-time accounting system for the Barnwell Reprocessing Facility

    International Nuclear Information System (INIS)

    Allied-General Nuclear Services has developed and demonstrated under cold testing conditions a computerized nuclear materials control and accounting system for a large reprocessing plant. The system provides computerized data acquisition, calculation, and retention for conventional accounting measurements as well as for near-real-time estimation of in-process inventories and material balances. Application of this system as a tool for meeting projected safeguards requirements appears likely

  4. Simulation of a nuclear measurement system around a multi-task mode real-time monitor

    International Nuclear Information System (INIS)

    When debugging and testing material and software for the automation of systems, the non-availability of this last one states important logistic problems. A simulator of the system to be automatized, conceived around a multi-task mode real-time monitor, allowing the debugging of the software of automation without the physical presence of the system to be automatized, is proposed in the present report

  5. On the Performance of Symmetrical and Asymmetrical Encryption for Real-Time Video Conferencing System

    OpenAIRE

    Sureswaran Ramadass; Maryam Feily; Salah Noori

    2010-01-01

    Providing security for video conferencing systems is in fact a challenging issue due to the unique requirements of its real-time multimedia encryption. Modern cryptographic techniques can address the security objectives of multimedia conferencing system. The efficiency of a viable encryption scheme is evaluated using two critical performance metrics: Memory usage, and CPU usage. In this paper, two types of cryptosystems for video conferencing system were tested and evaluated. The first crypto...

  6. Modeling of Digital I and C System Using a Real Time System Model Checker

    International Nuclear Information System (INIS)

    The new digitalized I and C systems in nuclear power plants increase the need for safety evaluation. Model checking is a promising formal method that can be used for verifying the correctness of system designs. Several model checking systems are available offering analysis tools that are able to determine automatically whether a given state machine model satisfies the desired safety properties. Model checking can also handel delays and other time related operations which are important in I and C systems and are challenging point for design and verification. In this paper a tool for verification of real time system (Rabbit (I)) had been used in modeling two designs seem similar of a safety logic demonstrating how small changes in the design can lead to unexpected errors that are hard to detect without using model checking techniques.

  7. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  8. Advanced Visualization System for Monitoring the ATLAS TDAQ Network in real-time

    CERN Document Server

    Batraneanu, S M; The ATLAS collaboration; Martin, B; Savu, D O; Stancu, S N; Leahu, L

    2012-01-01

    The trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN comprises approximately 2500 servers interconnected by three separate Ethernet networks, totaling 250 switches. Due to its real-time nature, there are additional requirements in comparison to conventional networks in terms of speed and performance. A comprehensive monitoring framework has been developed for expert use. However, non experts may experience difficulties in using it and interpreting data. Moreover, specific performance issues, such as single component saturation or unbalanced workload, need to be spotted with ease, in real-time, and understood in the context of the full system view. We addressed these issues by developing an innovative visualization system where the users benefit from the advantages of 3D graphics to visualize the large monitoring parameter space associated with our system. This has been done by developing a hierarchical model of the complete system onto which we overlaid geographical, logical and real...

  9. A Probabilistic Approach to Control of Complex Systems and Its Application to Real-Time Pricing

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2014-01-01

    Full Text Available Control of complex systems is one of the fundamental problems in control theory. In this paper, a control method for complex systems modeled by a probabilistic Boolean network (PBN is studied. A PBN is widely used as a model of complex systems such as gene regulatory networks. For a PBN, the structural control problem is newly formulated. In this problem, a discrete probability distribution appeared in a PBN is controlled by the continuous-valued input. For this problem, an approximate solution method using a matrix-based representation for a PBN is proposed. Then, the problem is approximated by a linear programming problem. Furthermore, the proposed method is applied to design of real-time pricing systems of electricity. Electricity conservation is achieved by appropriately determining the electricity price over time. The effectiveness of the proposed method is presented by a numerical example on real-time pricing systems.

  10. Critical Task Re-assignment under Hybrid Scheduling Approach in Multiprocessor Real-Time Systems

    CERN Document Server

    Nair, Gopalakrishnan T R

    2012-01-01

    Embedded hard real time systems require substantial amount of emergency processing power for the management of large scale systems like a nuclear power plant under the threat of an earth quake or a future transport systems under a peril. In order to meet a fully coordinated supervisory control of multiple domains of a large scale system, it requires the scenario of engaging multiprocessor real time design. There are various types of scheduling schemes existing for meeting the critical task assignment in multiple processor environments and it requires the tracking of faulty conditions of the subsystem to avoid system underperformance from failure patterns. Hybrid scheduling usually engages a combined scheduling philosophy comprising of a static scheduling of a set of tasks and a highly pre-emptive scheduling for another set of tasks in different situations of process control. There are instances where highly critical tasks need to be introduced at a least expected catastrophe and it cannot be ensured to meet a...

  11. Real Time Web-based Data Monitoring and Manipulation System to Improve Translational Research Quality

    Directory of Open Access Journals (Sweden)

    Matthew Nwokejizie Anyanwu, Venkateswara Ra Nagisetty, Emin Kuscu, Teeradache Viangteeravat

    2011-02-01

    Full Text Available The use of the internet technology and web browser capabilities of the internethas provided researchers/scientists with many advantages, which includes butnot limited to ease of access, platform independence of computer systems,relatively low cost of web access etc. Hence online collaboration like socialnetworks and information/data exchange among individuals and organizationscan now be done seamlessly. In practice, many investigators rely heavily ondifferent data modalities for studying and analyzing their research/study and alsofor producing quality reports. The lack of coherency and inconsistencies in datasets can dramatically reduce the quality of research data. Thus to prevent loss ofdata quality and value and provide the needed functionality of data, we haveproposed a novel approach as an ad-hoc component for data monitoring andmanipulation called RTWebDMM (Real-Time Web-based Data Monitoring andManipulation system to improve the quality of translational research data. TheRTWebDMM is proposed as an auditor, monitor, and explorer for improving theway in which investigators access and interact with the data sets in real-timeusing a web browser. The performance of the proposed approach was evaluatedwith different data sets from various studies. It is demonstrated that the approachyields very promising results for data quality improvement while leveraging on aweb-enabled environment.

  12. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time

    Directory of Open Access Journals (Sweden)

    Fernando Seoane

    2014-04-01

    Full Text Available The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants’ operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.

  13. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    Directory of Open Access Journals (Sweden)

    Yong-Jin Yoon

    2015-03-01

    Full Text Available Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Positioning System is coupled with Inertial Navigation System to correct the errors, while Inertial Navigation System itself can be used to provide navigation solution during a Global Positioning System outage. Data from Global Positioning System and Inertial Navigation System can be integrated by extensive Kalman filtering, using loosely coupled integration architecture to provide navigation solutions. In this study, real-time low-cost loosely coupled micro-electro-mechanical system Inertial Navigation System/Global Positioning System sensors have been used for pedestrian navigation. Trial runs of Global Positioning System outages have been conducted to determine the accuracy of the system described. The micro-electro-mechanical system Inertial Navigation System/Global Positioning System can successfully project a trajectory during a Global Positioning System outage and produces a root mean square error of 9.35 m in latitude direction and 10.8 m in longitude direction. This technology is very suitable for visually impaired pedestrians.

  14. Definition of an auxiliary processor dedicated to real-time operating system kernels

    Science.gov (United States)

    Halang, Wolfgang A.

    1988-01-01

    In order to increase the efficiency of process control data processing, it is necessary to enhance the productivity of real time high level languages and to automate the task administration, because presently 60 percent or more of the applications are still programmed in assembly languages. This may be achieved by migrating apt functions for the support of process control oriented languages into the hardware, i.e., by new architectures. Whereas numerous high level languages have already been defined or realized, there are no investigations yet on hardware assisted implementation of real time features. The requirements to be fulfilled by languages and operating systems in hard real time environment are summarized. A comparison of the most prominent languages, viz. Ada, HAL/S, LTR, Pearl, as well as the real time extensions of FORTRAN and PL/1, reveals how existing languages meet these demands and which features still need to be incorporated to enable the development of reliable software with predictable program behavior, thus making it possible to carry out a technical safety approval. Accordingly, Pearl proved to be the closest match to the mentioned requirements.

  15. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    Energy Technology Data Exchange (ETDEWEB)

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  16. A search for model parsimony in a real time flood forecasting system

    Science.gov (United States)

    Grossi, G.; Balistrocchi, M.

    2009-04-01

    As regards the hydrological simulation of flood events, a physically based distributed approach is the most appealing one, especially in those areas where the spatial variability of the soil hydraulic properties as well as of the meteorological forcing cannot be left apart, such as in mountainous regions. On the other hand, dealing with real time flood forecasting systems, less detailed models requiring a minor number of parameters may be more convenient, reducing both the computational costs and the calibration uncertainty. In fact in this case a precise quantification of the entire hydrograph pattern is not necessary, while the expected output of a real time flood forecasting system is just an estimate of the peak discharge, the time to peak and in some cases the flood volume. In this perspective a parsimonious model has to be found in order to increase the efficiency of the system. A suitable case study was identified in the northern Apennines: the Taro river is a right tributary to the Po river and drains about 2000 km2 of mountains, hills and floodplain, equally distributed . The hydrometeorological monitoring of this medium sized watershed is managed by ARPA Emilia Romagna through a dense network of uptodate gauges (about 30 rain gauges and 10 hydrometers). Detailed maps of the surface elevation, land use and soil texture characteristics are also available. Five flood events were recorded by the new monitoring network in the years 2003-2007: during these events the peak discharge was higher than 1000 m3/s, which is actually quite a high value when compared to the mean discharge rate of about 30 m3/s. The rainfall spatial patterns of such storms were analyzed in previous works by means of geostatistical tools and a typical semivariogram was defined, with the aim of establishing a typical storm structure leading to flood events in the Taro river. The available information was implemented into a distributed flood event model with a spatial resolution of 90m

  17. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  18. Real time quality control of meteorological data used in SRP's emergency response system

    International Nuclear Information System (INIS)

    The Savannah River Laboratory's WIND minicomputer system allows quick and accurate assessment of an accidental release at the Savannah River Plant using data from eight meteorological towers. The accuracy of the assessment is largely determined by the accuracy of the meteorological data; therefore quality control is important in an emergency response system. Real-time quality control of this data will be added to the WIND system to automatically identify inaccurate data. Currently, the system averages the measurements from the towers to minimize the influence of inaccurate data being used in calculations. The computer code used in the real-time quality control has been previously used to identify inaccurate measurements from the archived tower data

  19. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  20. A Real-Time Analysis and Feedback System for Quality Control of Dam Foundation Grouting Engineering

    Science.gov (United States)

    Zhong, D. H.; Yan, F. G.; Li, M. C.; Huang, C. X.; Fan, K.; Tang, J. F.

    2015-09-01

    Real-time analysis and feedback systems play a vital role in obtaining good results from grouting processes. However, when there are intense construction schedules and complex geological structures, it is difficult for existing systems to provide to site engineers, prior to the borehole construction, prompt and accurate feedback, such as detailed geological information about grouting boreholes, which limits the use of such systems in practical applications. This paper proposes combining a three-dimensional (3D) geological model with real-time data collection technology in a system for both monitoring grouting, and providing analysis and feedback. This integrated grouting model, which comprises the geological model, the grouting borehole model and the grouting parameter database set, can be coupled and associated dynamically with grouting data. Additionally, the following methods are applied in this system: real-time grouting data processing and a monitoring alarm, prediction and visualization of geological conditions, forecasting of rock uplift, and visualization analysis of grouting parameters. The application of this system in Hydropower Project A, China is used as a case study. The predictions of geological conditions are closely matched with the actual situation, and this system can be used to monitor construction processes remotely and to help site engineers to design reasonable construction plans, optimize layouts for grouting boreholes and adjust construction measures.

  1. Dynamic Subcarrier Allocation for Real-Time Traffic over Multiuser OFDM Systems

    Directory of Open Access Journals (Sweden)

    Li VictorOK

    2009-01-01

    Full Text Available A dynamic resource allocation algorithm to satisfy the packet delay requirements for real-time services, while maximizing the system capacity in multiuser orthogonal frequency division multiplexing (OFDM systems is introduced. Our proposed cross-layer algorithm, called Dynamic Subcarrier Allocation algorithm for Real-time Traffic (DSA-RT, consists of two interactive components. In the medium access control (MAC layer, the users' expected transmission rates in terms of the number of subcarriers per symbol and their corresponding transmission priorities are evaluated. With the above MAC-layer information and the detected subcarriers' channel gains, in the physical (PHY layer, a modified Kuhn-Munkres algorithm is developed to minimize the system power for a certain subcarrier allocation, then a PHY-layer resource allocation scheme is proposed to optimally allocate the subcarriers under the system signal-to-noise ratio (SNR and power constraints. In a system where the number of mobile users changes dynamically, our developed MAC-layer access control and removal schemes can guarantee the quality of service (QoS of the existing users in the system and fully utilize the bandwidth resource. The numerical results show that DSA-RT significantly improves the system performance in terms of the bandwidth efficiency and delay performance for real-time services.

  2. LABKA. A real-time computer system for the clinical laboratory.

    Science.gov (United States)

    Christiansen, J U; Maruard, C D; Nielsen, H C

    1989-01-01

    This paper provides an introduction to the real-time clinical laboratory information system (LABKA), which is implemented on a Hewlett-Packard 1000 system. The system is optimized for fast data handling combined with easy control of on-line results, data flow, and linking of related information. The design of LABKA is based on the principle of having a short reporting time together with simplified working procedures. The system can be adjusted to small as well as very large laboratories. Data control is achieved by status information being returned to the operator in real-time, thus avoiding having to use matching lists. This information is presented immediately in response to the procedure which has caused the error. This method of early error detection simplifies working procedures, inhibits accumulation of errors, and increases the flexibility and speed of data reporting. As a result, the number of requested stat analyses has been reduced by 50 percent. Working lists are not generally used. Instead, requisition information is transferred on-line to the instruments on request. A fourth-generation program system for entry, calculation, and test of manually entered data, called RUCAT (1), has been developed. This system enables the user to define forms on vdu-terminals, specify calculations, and test all manually entered data. The LABKA system can also produce cumulative reporting as standard reporting, in real time, fast and in a very high print quality. The real-time demands have strongly influenced the design and layout of the lab files and system design. PMID:2772556

  3. Computer vision system in real-time for color determination on flat surface food

    OpenAIRE

    Erick Saldaña; Raúl Siche; Rosmer Huamán; Mariano Luján; Wilson Castro; Roberto Quevedo

    2013-01-01

    Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS) in real-time for the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware), which consisted of two phases: a) image acquisition ...

  4. A Stochastic Analysis Framework for Real-Time Systems under Preemptive Priority-Driven Scheduling

    OpenAIRE

    Azhar, Muhammad

    2011-01-01

    This thesis work describes how to apply the stochastic analysis framework, presented in [1] for general priority-driven periodic real-time systems. The proposed framework is applicable to compute the response time distribution, the worst-case response time, and the deadline miss probability of the task under analysis in the fixed-priority driven scheduling system. To be specific, we modeled the task execution time by using the beta distribution. Moreover, we have evaluated the existing stocha...

  5. Open Real-Time Control and Emulation of Robots and Production Systems

    OpenAIRE

    Lind, Morten

    2012-01-01

    This PhD thesis addresses the shop-oor control level in manufacturing and industrial production at some important points for the future. The main contributions are principles and software relating to the control of production systems and hereunder production devices. Specifically challenging at the production device level is the real-time, applicationoriented and sensor-integrated motion control of industrial robots. At the higher level, the production control system for a shop-oor, considere...

  6. A Class of Real-Time Parallel Combined Methods of Digital Simulation for Large Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, re spectively. Their construction, convergence and numerical stability are discussed, and the digital simulation experiments are conducted.

  7. Intra-Task Device Scheduling for Real-Time Embedded Systems

    OpenAIRE

    Awan, Muhammad Ali; Petters, Stefan M.

    2015-01-01

    An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. ...

  8. Adaptive Techniques for Minimizing Middleware Memory Footprint for Distributed, Real-Time, Embedded Systems

    OpenAIRE

    Panahi, Mark; Harmon, Trevor; Klefstad, Raymond

    2003-01-01

    In order for middleware to be widely useful for distributed, real-time, and embedded systems, it should provide a full set of services and be easily customizable to meet the memory footprint limitations of embedded systems. In this paper, we examine a variety of techniques used to reduce memory footprint in middleware. We found that combining aspect-oriented programming with code shrinkers and obfuscators reduces the memory footprint of CORBA middleware to

  9. Methodology for object-oriented real-time systems analysis and design: Software engineering

    Science.gov (United States)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  10. Real-time measurements and their effects on state estimation of distribution power system

    DEFF Research Database (Denmark)

    Han, Xue; You, Shi; Thordarson, Fannar;

    2013-01-01

    This paper aims at analyzing the potential value of using different real-time metering and measuring instruments applied in the low voltage distribution networks for state-estimation. An algorithm is presented to evaluate different combinations of metering data using a tailored state estimator. It...... is followed by a case study based on the proposed algorithm. A real distribution grid feeder with different types of meters installed either in the cabinets or at the customer side is selected for simulation and analysis. Standard load templates are used to initiate the state estimation. The...... deviations between the estimated values (voltage and injected power) and the measurements are applied to evaluate the accuracy of the estimated grid states. Eventually, some suggestions are provided for the distribution grid operators on placing the real-time meters in the distribution grid....

  11. Real-time reliability prediction for dynamic systems with both deteriorating and unreliable components

    Institute of Scientific and Technical Information of China (English)

    XU ZhengGuo; JI YinDong; ZHOU DongHua

    2009-01-01

    As an important technology for predictive maintenance,failure prognosis has attracted more and more attentions in recent years.Real-time reliability prediction is one effective solution to failure prognosis.Considering a dynamic system that is composed of normal,deteriorating and unreliable components,this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems.For s deteriorating component,the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time.The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component.The whole proposed approach contains three algorithms.A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault.An exponential smoothing algorithm named the Holt's method is used to predict the fault process.In the end,the system's reliability is predicted in real time by use of the Monte Carlo strategy.The proposed approach can effectively predict the impending failure of a dynamic system,which is verified by computer simulations based on a three-vessel water tank system.

  12. Methodology and planning for a microprocessor-oriented real time controller design automation system

    Energy Technology Data Exchange (ETDEWEB)

    Matelan, M.N.; Smith, R.J. II

    1976-11-04

    A methodology for reducing the complexity of designing dedicated real-time control systems is developed. It is shown that three areas are amenable to automation: the selection and configuration of hardware, the production of software, and the adaptation of a monitor to maintain real-time integrity of the entire system. The concept of hardware binding is introduced, and it is shown that delaying the point in the design cycle where hardware is functionally bound allows a new approach to machine independence. Concepts which allow expression of repetitive control situations are described, and a realization-independent language (CSDL), based on these concepts, is defined. Methods for automatically selecting a time-wise correct monitor are classified, and techniques for specifying the realization capabilities of digital processors are discussed. These concepts and techniques are brought together in a design automation system for the production of a complete controller design from a behavioral description. An example description is traced through the CSD System; a software listing and hardware configuration document for an actual microprocessor (the Intel 8080) is produced. This research provides a structured description of the control system design process, and allows a unified perspective in the realization of controllers for applications previously considered to be unrelated. The concepts developed define a new direction in the production of real-time control systems. 9 figures, 4 tables.

  13. VORBrouter: A dynamic data routing system for Real-Time Seismic networks

    Science.gov (United States)

    Hansen, T.; Vernon, F.; Lindquist, K.; Orcutt, J.

    2004-12-01

    For anyone who has managed a moderately complex buffered real-time data transport system, the need for reliable adaptive data transport is clear. The ROADNet VORBrouter system, an extension to the ROADNet data catalog system [AGU-2003, Dynamic Dataflow Topology Monitoring for Real-time Seismic Networks], allows dynamic routing of real-time seismic data from sensor to end-user. Traditional networks consist of a series of data buffer computers with data transport interconnections configured by hand. This allows for arbitrarily complex data networks, which can often exceed full comprehension by network administrators, sometimes resulting in data loops or accidental data cutoff. In order to manage data transport systems in the event of a network failure, a network administrator must be called upon to change the data transport paths and to recover the missing data. Using VORBrouter, administrators can sleep at night while still providing 7/24 uninterupted data streams at realistic cost. This software package uses information from the ROADNet data catalog system to route packets around failed link outages and to new consumers in real-time. Dynamic data routing protocols operating on top of the Antelope Data buffering layer allow authorized users to request data sets from their local buffer and to have them delivered from anywhere within the network of buffers. The VORBrouter software also allows for dynamic routing around network outages, and the elimination of duplicate data paths within the network, while maintaining the nearly lossless data transport features exhibited by the underlying Antelope system. We present the design of the VORBrouter system, its features, limitations and some future research directions.

  14. Real-Time Embedded Control System for a Portable Meteorological Station

    Directory of Open Access Journals (Sweden)

    Marcelo Moya

    2015-09-01

    Full Text Available The aim of this work is to design and code an embedded system for a portable automatic weather station. The portable station includes high performance sensors to measure parameters such as: i wind speed and direction, micro perturbations and wind gusts, ii air temperature, iii solar radiation, iv relative humidity, and v atmospheric pressure. The main contribution of this work is the development of an embedded control system operating in real time. This system is based on a Field Programmable Gate Array (FPGA device. The method developed guarantees high-resolution data acquisition of a number of samples in real time. The samples obtained are grouped and stored in a database, which will be used as a starting point for further analysis.

  15. Collection and evaluation of salt mixing data with the real time data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, S.; Chiu, C.; Todreas, N.E.

    1977-09-01

    A minicomputer based real time data acquisition system was designed and built to facilitate data collection during salt mixing tests in mock ups of LMFBR rod bundles. The system represents an expansion of data collection capabilities over previous equipment. It performs steady state and transient monitoring and recording of up to 512 individual electrical resistance probes. Extensive real time software was written to govern all phases of the data collection procedure, including probe definition, probe calibration, salt mixing test data acquisition and storage, and data editing. Offline software was also written to permit data examination and reduction to dimensionless salt concentration maps. Finally, the computer program SUPERENERGY was modified to permit rapid extraction of parameters from dimensionless salt concentration maps. The document describes the computer system, and includes circuit diagrams of all custom built components. It also includes descriptions and listings of all software written, as well as extensive user instructions.

  16. Real-time hybrid computer simulation of a small turboshaft engine and control system

    Science.gov (United States)

    Hart, C. E.; Wenzel, L. M.

    1984-01-01

    The development of an analytical model of a small turboshaft engine designed for helicopter propulsion systems is described. The model equations were implemented on a hybrid computer system to provide a real time nonlinear simulation of the engine performance over a wide operating range. The real time hybrid simulation of the engine was used to evaluate a microprocessor based digital control module. This digital control module was developed as part of an advanced rotorcraft control program. After tests with the hybrid engine simulation the digital control module was used to control a real engine in an experimental program. A hybrid simulation of the engine's electrical hydromechanical control system was developed. This allowed to vary the fuel flow and torque load inputs to the hybrid engine simulation for simulating transient operation. A steady-state data and the experimental tests are compared. Analytical model equations, analog computer diagrams, and a digital computer flow chart are included.

  17. Control System Design of a DSP-based Real-time Leveling Platform

    Directory of Open Access Journals (Sweden)

    Zhang Jin Ming

    2016-01-01

    Full Text Available Since platform working in the sea is badly influenced by the wave, leveling control system is researched to control the leveling platform, so as to prevent the device which is fixed on the platform from being affected. TMS320F2812 chip is set as the control core, and serial communication module, gyroscope etc. are adopted to design real-time leveling control system. Gyroscopes are used to measure the angular speed of the carrier and the angle of the platform, filtering processing is done to the data collected by the gyroscopes and PID algorithm is adopted to calculate the real-time speed of motor ,in order to control the leveling platform. Tests are conducted to prove that the system can well control the leveling platform, in which the shake range of the platform is (-12°, +12°, while the shake range of carrier is only about (-0.5° +0.5 °.

  18. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    International Nuclear Information System (INIS)

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  19. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  20. Unavoidability Routine Enrichment for Real-Time Embedded Systems by Using Cache-Locking Technique

    Directory of Open Access Journals (Sweden)

    M. Shankar Dr. M. Sridar Dr. M. Rajani

    2012-02-01

    Full Text Available In multitask, preemptive real-time systems, the use of cache memories make difficult the estimation of the response time of tasks, due to the dynamic, adaptive and non predictable behavior of cache memories. But many embedded and critical applications need the increase of performance provided by cache memories. Recent studies indicate that for application-specific embedded systems, static cache-locking helps determining the worst case execution time (WCET and cache-related pre-emption delay. The determination of upper bounds on execution times, commonly called Worst-Case Execution Times (WCETs, is a necessary step in the development and validation process for hard real-time systems. This problem is hard if the underlying processor architecture has components such as caches, pipelines, branch prediction, and other speculative components. This article describes different approaches to this problem and surveys several commercially available tools and research prototypes

  1. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  2. Model Checking Probabilistic Real-Time Properties for Service-Oriented Systems with Service Level Agreements

    Directory of Open Access Journals (Sweden)

    Christian Krause

    2011-11-01

    Full Text Available The assurance of quality of service properties is an important aspect of service-oriented software engineering. Notations for so-called service level agreements (SLAs, such as the Web Service Level Agreement (WSLA language, provide a formal syntax to specify such assurances in terms of (legally binding contracts between a service provider and a customer. On the other hand, formal methods for verification of probabilistic real-time behavior have reached a level of expressiveness and efficiency which allows to apply them in real-world scenarios. In this paper, we suggest to employ the recently introduced model of Interval Probabilistic Timed Automata (IPTA for formal verification of QoS properties of service-oriented systems. Specifically, we show that IPTA in contrast to Probabilistic Timed Automata (PTA are able to capture the guarantees specified in SLAs directly. A particular challenge in the analysis of IPTA is the fact that their naive semantics usually yields an infinite set of states and infinitely-branching transitions. However, using symbolic representations, IPTA can be analyzed rather efficiently. We have developed the first implementation of an IPTA model checker by extending the PRISM tool and show that model checking IPTA is only slightly more expensive than model checking comparable PTA.

  3. Real-Time Safety Monitoring and Prediction for the National Airspace System

    Science.gov (United States)

    Roychoudhury, Indranil

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.

  4. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    Science.gov (United States)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring

  5. Energy-efficient fault tolerance in multiprocessor real-time systems

    Science.gov (United States)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is

  6. Design and Construction of the TOPAZ II Reactor System Real-Time Dynamic Simulator

    Science.gov (United States)

    Kwok, Kwan S.

    1994-07-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The CPU is an 80486 DX2 processor operating at 66 MHz. The data acquisition system also employs an 80486 processor at 24 MHz on board. The data acquisition system is capable of providing 128 channels of analog-to-digital inputs at 1.3 MHz simultaneously, 64 channels of digital inputs at 1.6 MHz on a single channel, 64 channels of digital outputs at 1.6 MHz on a single channel, and 66 digital-to-analog channels at 1.6 MHz on a single channel. The simulator software operates in the Windows environment. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. It has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system.

  7. Development of VIS/NIR spectroscopic system for real-time prediction of fresh pork quality

    Science.gov (United States)

    Zhang, Haiyun; Peng, Yankun; Zhao, Songwei; Sasao, Akira

    2013-05-01

    Quality attributes of fresh meat will influence nutritional value and consumers' purchasing power. The aim of the research was to develop a prototype for real-time detection of quality in meat. It consisted of hardware system and software system. A VIS/NIR spectrograph in the range of 350 to 1100 nm was used to collect the spectral data. In order to acquire more potential information of the sample, optical fiber multiplexer was used. A conveyable and cylindrical device was designed and fabricated to hold optical fibers from multiplexer. High power halogen tungsten lamp was collected as the light source. The spectral data were obtained with the exposure time of 2.17ms from the surface of the sample by press down the trigger switch on the self-developed system. The system could automatically acquire, process, display and save the data. Moreover the quality could be predicted on-line. A total of 55 fresh pork samples were used to develop prediction model for real time detection. The spectral data were pretreated with standard normalized variant (SNV) and partial least squares regression (PLSR) was used to develop prediction model. The correlation coefficient and root mean square error of the validation set for water content and pH were 0.810, 0.653, and 0.803, 0.098 respectively. The research shows that the real-time non-destructive detection system based on VIS/NIR spectroscopy can be efficient to predict the quality of fresh meat.

  8. Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Enrico Mezzetti

    2015-03-01

    Full Text Available Cache randomization per se, and its viability for probabilistic timing analysis (PTA of critical real-time systems, are receiving increasingly close attention from the scientific community and the industrial practitioners. In fact, the very notion of introducing randomness and probabilities in time-critical systems has caused strenuous debates owing to the apparent clash that this idea has with the strictly deterministic view traditionally held for those systems. A paper recently appeared in LITES (Reineke, J. (2014. Randomized Caches Considered Harmful in Hard Real-Time Systems. LITES, 1(1, 03:1-03:13. provides a critical analysis of the weaknesses and risks entailed in using randomized caches in hard real-time systems. In order to provide the interested reader with a fuller, balanced appreciation of the subject matter, a critical analysis of the benefits brought about by that innovation should be provided also. This short paper addresses that need by revisiting the array of issues addressed in the cited work, in the light of the latest advances to the relevant state of the art. Accordingly, we show that the potential benefits of randomized caches do offset their limitations, causing them to be - when used in conjunction with PTA - a serious competitor to conventional designs.

  9. Video-based real-time on-street parking occupancy detection system

    Science.gov (United States)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  10. Real-time capability of GEONET system and its application to crust monitoring

    Science.gov (United States)

    Yamagiwa, Atsushi; Hatanaka, Yuki; Yutsudo, Toru; Miyahara, Basara

    2006-03-01

    The GPS Earth Observation Network system (GEONET) has been playing an important role in monitoring the crustal deformation of Japan. Since its start of operation, the requirements for accuracy and timeliness have become higher and higher. On the other hand, recent broadband communication infrastructure has had capability to realize real-time crust monitoring and to aid the development of a location-based service. In early 2003, the Geographical Survey Institute (GSI) upgraded the GEONET system to meet new requirements. The number of stations became 1200 in total by March, 2003. The antennas were unified to the choke ring antennas of Dorne Margolin T-type and the receivers were replaced with new ones that are capable of real-time observation and data transfer. The new system uses IP-connection through IP-VPN (Internet Protocol Virtual Private Network) for data transfer, which is provided by communication companies. The Data Processing System, which manages the observation data and analyses in GEONET, has 7 units. GEONET carries out three kinds of routine analyses and an analysis of RTK-type for emergencies. The new system has shown its capability for real-time crust monitoring, for example, the precise and rapid detection of coseismic (and post-seismic) motion caused by 2003 Tokachi-Oki earthquake.

  11. LATENCY DETERMINATION AND COMPENSATION IN REAL-TIME GNSS/INS INTEGRATED NAVIGATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    P. D. Solomon

    2012-09-01

    Full Text Available Unmanned Aerial Vehicle (UAV technology is now commonplace in many defence and civilian environments. However, the high cost of owning and operating a sophisticated UAV has slowed their adoption in many commercial markets. Universities and research groups are actively experimenting with UAVs to further develop the technology, particularly for automated flying operations. The two main UAV platforms used are fixed-wing and helicopter. Helicopter-based UAVs offer many attractive features over fixed-wing UAVs, including vertical take-off, the ability to loiter, and highly dynamic flight. However the control and navigation of helicopters are significantly more demanding than those of fixed-wing UAVs and as such require a high bandwidth real-time Position, Velocity, Attitude (PVA navigation system. In practical Real-Time Navigation Systems (RTNS there are delays in the processing of the GNSS data prior to the fusion of the GNSS data with the INS measurements. This latency must be compensated for otherwise it degrades the solution of the navigation filter. This paper investigates the effect of latency in the arrival time of the GNSS data in a RTNS. Several test drives and flights were conducted with a low-cost RTNS, and compared with a high quality GNSS/INS solution. A technique for the real-time, automated and accurate estimation of the GNSS latency in low-cost systems was developed and tested. The latency estimates were then verified through cross-correlation with the time-stamped measurements from the reference system. A delayed measurement Extended Kalman Filter was then used to allow for the real-time fusing of the delayed measurements, and then a final system developed for on-the-fly measurement and compensation of GNSS latency in a RTNS.

  12. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  13. Research of Real-time Grabbing Yarn Tube System Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Cui Shigang

    2015-01-01

    Full Text Available The current yarn tube manipulator just finishes yarn tube grabbing work according to the fixed coordinates. In the actual production process, equipment problems or human factors which make the spindles not on fixed coordinates cause the damage of the manipulator. Real-time grabbing yarn tube system with visual sensing has been designed and a extraction algorithm of spindles coordinates based on a mixed image morphology and Hough transform algorithm has been proposed. Through the combination of the yarn tube image characteristics which are extracted by the algorithm and the visual measurement model which is established by pinhole imaging principle, the mapping relation of yarn tube image coordinates and world coordinates has been gained to get the location information of yarn tube in real time. Results show that the proposed method could make the robot complete the grabbing job precisely and efficiently, under which the system meet the requirement of spinning and dyeing production line.

  14. Real-time FPGA-based radar imaging for smart mobility systems

    Science.gov (United States)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  15. Real-time phase-only color holographic video display system using LED illumination.

    Science.gov (United States)

    Yaraş, Fahri; Kang, Hoonjong; Onural, Levent

    2009-12-01

    A real-time full-color phase-only holographic display system generates holograms of 3D objects. The system includes a 3D object formed by voxels, an internet-based transmission capability that transmits the object information to the server, a real-time hologram generation unit, and a holographic display unit with incoherent illumination. The server calculates three phase holograms for RGB components using multiple GPUs. The resultant phase holograms are saved into an RGB bitmap image and loaded to the phase-only spatial light modulators (SLMs). SLMs are illuminated uniformly by LEDs, and reconstructed waves are aligned and overlapped by using high precision optics and stages. Experimental results are satisfactory.

  16. A Data Driven Framework for Real Time Power System Event Detection and Visualization

    CERN Document Server

    McCamish, Ben; Landford, Jordan; Bass, Robert; Cotilla-Sanchez, Eduardo; Chiu, David

    2015-01-01

    Increased adoption and deployment of phasor measurement units (PMU) has provided valuable fine-grained data over the grid. Analysis over these data can provide real-time insight into the health of the grid, thereby improving control over operations. Realizing this data-driven control, however, requires validating, processing and storing massive amounts of PMU data. This paper describes a PMU data management system that supports input from multiple PMU data streams, features an event-detection algorithm, and provides an efficient method for retrieving archival data. The event-detection algorithm rapidly correlates multiple PMU data streams, providing details on events occurring within the power system in real-time. The event-detection algorithm feeds into a visualization component, allowing operators to recognize events as they occur. The indexing and data retrieval mechanism facilitates fast access to archived PMU data. Using this method, we achieved over 30x speedup for queries with high selectivity. With th...

  17. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  18. A nuclear decision support system built with a real-time process control AI shell

    International Nuclear Information System (INIS)

    Managing large nuclear power plants is generally approached by creating separate management teams to handle major functional areas such as operations, maintenance, training and engineering. While this approach facilitates a general understanding of the specific functions and problem areas of a nuclear plant, such broad definitions diminish the integration of information needed to understand the overall problem domain. One solution utilizes a decision support system that integrates a real-time process control AI shell, relational database manager, graphic depiction of the real-time events, and distributed knowledge bases that reside within each of the departments. The goal is to create a living model between plant components, procedures, tech specs, specific functions, maintenance and training requirements. This paper describes such a model, called Engineering Model and Simulation System (EMASS)

  19. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg;

    2014-01-01

    . The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real......Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction......-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal...

  20. Multi-processor system for real-time deconvolution and flow estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jesper Lomborg; Jensen, Jørgen Arendt; Stetson, Paul F.;

    1996-01-01

    and adaptive blind deconvolution. The first algorithm uses the RF signal from a number of pulse emissions and correlates segments within different pulse-echo lines to obtain a velocity estimate. Real-time processing makes it necessary to perform around 600 million multiplications and additions per second...... of the algorithms. Many of the algorithms can only be properly evaluated in a clinical setting with real-time processing, which generally cannot be done with conventional equipment. This paper therefore presents a multi-processor system capable of performing 1.2 billion floating point operations per second on RF...... parallel interface channels. Each channel can transmit 40 MBytes a second without slowing the processor down, and each processor has 6 of these channels. Four of these are accessible through front panel connectors, so that an almost arbitrary network of the 16 processors can be made. The system has been...

  1. CamOn: A Real-Time Autonomous Camera Control System

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    This demonstration presents CamOn, an autonomous cam- era control system for real-time 3D games. CamOn employs multiple Artificial Potential Fields (APFs), a robot motion planning technique, to control both the location and orienta- tion of the camera. Scene geometry from the 3D environment...... on real-time motion planning of the camera. Moreover, the recasting of camera constraints into potential fields is visually more accessible to game designers and has the potential to be implemented as a plug-in to 3D level design and editing tools currently avail- able with games. Introduction...... contributes to the potential field that is used to determine po- sition and movement of the camera. Composition constraints for the camera are modelled as potential fields for controlling the view target of the camera. CamOn combines the compositional benefits of constraint- based camera systems, and improves...

  2. Multi-Layer Real-Time Support for JVM-based Smart Phone Systems

    Directory of Open Access Journals (Sweden)

    SEO, E.

    2013-08-01

    Full Text Available Employing the Java virtual machine (JVM architecture provides smart phone systems stability and security by sandboxing third-party applications and controlling their behavior. However, the JVM layer hinders applications from notifying the operating system scheduler about their timeliness requirements; therefore, applications sometimes fail to respond on time. In order to improve the responsiveness of smart phone applications, this paper proposes two schemes. First, for existing applications that cannot be rebuilt, we modify the kernel scheduler to value task priorities over fairness. Second, we propose cross-layer real-time support APIs to deliver applications' priorities to the kernel scheduler, which will help developers to add real-time scheduling support to their applications. Our prototype demonstrates that the suggested schemes dramatically improve response times and throughputs of prioritized applications.

  3. Design and real-time control of a robotic system for fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations). PMID:26737383

  4. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    Science.gov (United States)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  5. A Hybrid Embedded Real-time Operating System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hai-Ying Zhou

    2009-08-01

    Full Text Available Traditional operating systems for wireless sensor networks (WSN are based on either event-driven or multitask concept. Instead, this paper presents an embedded real-time operating system, named HEROS ‘Hybrid Embedded Real-time Operating System’, which is configurable to run in different modes: event-driven, multitask or hybrid to adapt to diverse domains of WSN applications. HEROS adopts a modular and hierarchical architecture: action (system operation, thread (component and event (etask and provides a predictable and deterministic scheduling mechanism: ‘non pre-emption priority based’ scheduling for events and ‘pre-emptive priority-based’ scheduling for threads. Furthermore, to ease distributed cooperative application, HEROS adopts LINDA concept by providing a simplified tuple space and a lightweight IN/OUT primitive-pair to implement system communication & synchronization. Currently, HEROS has been implemented and evaluated in different applications and on different platforms. The experimentation results show that HEROS has a small footprint and meets different real-time application requirements.

  6. Design and real-time control of a robotic system for fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  7. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  8. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    Science.gov (United States)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  9. Reliable Dynamic Voltage Scaling for Real-Time Systems with Uncertain Execution Time and Resource Constraints

    Directory of Open Access Journals (Sweden)

    G. AZHAGUNILA,

    2011-02-01

    Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.

  10. System-level power optimization for real-time distributed embedded systems

    Science.gov (United States)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as

  11. Estimate of the real-time respiratory simulation system in cyberknife image-guided radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Kee [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Kyonggi University, Seoul (Korea, Republic of); Chung, Weon Kuu [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Lee, Suk [Korea University, Seoul (Korea, Republic of); and others

    2010-01-15

    The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 {approx} 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 {approx} 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 {approx} 0.999. The differences between the maximum and the minimum amplitudes were 0.01 {approx} 0.06 mm, and the reproducibility was within {+-}0.5 mm. In the case of the application and non-application of respiration, the target errors were -0.05 {approx} 1.05 mm and -0.13 {approx} 0.74 mm, respectively, and the entire target errors were 1.30 mm and 0.79 mm, respectively. Based on the accuracy in the RRSS system, various respiration patterns of patients can be reproduced in real-time. Also, this system can be used as an optimal tool for applying patient customized accuracy management in image-guided radiosurgery.

  12. EEE Model for Evaluation of ERP Efficiency in Real Time Systems

    OpenAIRE

    Maha Attia Hana,; Mohamed Marie

    2014-01-01

    This study is designed to measure the efficiency of ERP systems in providing real time information. In this study, the research measures the efficiency rather than the performance-used in previous researches - as it is more comprehensive. The proposed ERP efficiency evaluation model depends on ERP phases'. EEE model measures the efficiency of implementation phase, post-implementation phase, and the impact of implementation phase on post implementation from technical perspectiv...

  13. A new Java Thread model for concurrent programming of real-time systems

    OpenAIRE

    Hilderink, Gerald; Broenink, Jan; Bakkers, André

    1998-01-01

    The Java ™ Virtual Machine (JVM) provides a high degree of platform independence, but being an interpreter, Java has a poor system performance. New compiler techniques and Java processors will gradually improve the performance of Java, but despite these developments, Java is still far from real-time. We propose the Communicating Java Threads (CJT) model, which eliminates several shortcomings, such as Java's non-deterministic behavior, Java's monitor weakness, and lack of reactiveness for real...

  14. A Practical Approach to Mode Change in Real-Time Systems

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Ravn, Anders Peter; Thomsen, Bent;

    We present a contract for consistent mode change in a real-time system for control applications. The contract between the control engineer and the software developer guarantees that when a mode change is signalled, it will occur at a specific instant thereafter, and that the task sets for the modes...... are never mixed. The concept is illustrated by small examples, and efficient implementations in Safety Critical Java on two platforms are demonstrated....

  15. Introducing WebSocket-Based Real-Time Monitoring System for Remote Intelligent Buildings

    OpenAIRE

    Kun Ma; Runyuan Sun

    2013-01-01

    Today, wireless sensor networks (WSNs) in electronic engineering are used in the monitoring of remote intelligent buildings, and the need for emerging Web 3.0 is becoming more and more in every aspect of electronic engineering. However, the key challenges of monitoring are the monitoring approaches and storage models of huge historical monitoring data. To address these limitations, we attempt to design a WebSocket-based real-time monitoring system for remote intelligent buildings. On one hand...

  16. Real-time risk analysis for hybrid earthquake early warning systems

    OpenAIRE

    Iervolino, I.; Dipartimento di Analisi e Progettazione Strutturale, Università di Napoli Federico II; Convertito, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Giorgio, M.; Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università di Napoli; Manfredi, G.; Dipartimento di Analisi e Progettazione Strutturale, Università di Napoli Federico II; Zollo, A.; Dipartimento di Scienze Fisiche, Università Federico II, Napoli, Italy

    2006-01-01

    Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the p...

  17. Real-time risk analysis for hybrid earthquake early warning systems

    OpenAIRE

    Iervolino, I.; Dipartimento di Analisi e Progettazione Strutturale. Università di Napoli Federico II; Convertito, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Giorgio, M.; Dipartimento di Ingegneria Aerospaziale e Meccanica. Seconda Università di Napoli; Manfredi, G.; Dipartimento di Analisi e Progettazione Strutturale. Università di Napoli Federico II; Zollo, A.; Dipartimento di Scienze Fisiche. Università degli Studi “Federico II” di Napoli

    2006-01-01

    Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of th...

  18. A Real-Time Scheduling Framework for Embedded Systems with Environmental Energy Harvesting

    OpenAIRE

    El Ghor, Hussein; Chetto, Maryline; Hage Chehade, Rafic

    2010-01-01

    Real-time scheduling refers to the problem in which there is a deadline associated with the execution of a task. In this paper, we address the scheduling problem for a uniprocessor platform that is powered by a renewable energy storage unit and uses a recharging system such as photovoltaic cells. First, we describe our model where two constraints need to be studied: energy and deadlines. Since executing tasks require a certain amount of energy, classical task scheduling like Earliest Deadline...

  19. An environment for object-oriented real-time system design

    OpenAIRE

    Weg, van de, W.E.; Engmann, Rolf; Hoef, van der, MA Martin; Thij, ten, G.D.

    1997-01-01

    A concise object-oriented method for the development of real-time systems has been composed. Hardware components are modelled by (software) base objects; base objects are controlled by a hierarchy of coordinator objects, expressed in an organizational diagram. The behaviour of objects is specified by state transition diagrams. This approach considerably promotes requirements analysis and communication with the customer. A CASE tool has been constructed with diagram editors for graphical speci...

  20. Real-time dynamic simulator for the Topaz II reactor power system

    International Nuclear Information System (INIS)

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions

  1. Real Time Alert System: A Disease Management System Leveraging Health Information Exchange

    Science.gov (United States)

    Anand, Vibha; Sheley, Meena E.; Xu, Shawn; Downs, Stephen M.

    2012-01-01

    Background Rates of preventive and disease management services can be improved by providing automated alerts and reminders to primary care providers (PCPs) using of health information technology (HIT) tools. Methods: Using Adaptive Turnaround Documents (ATAD), an existing Health Information Exchange (HIE) infrastructure and office fax machines, we developed a Real Time Alert (RTA) system. RTA is a computerized decision support system (CDSS) that is able to deliver alerts to PCPs statewide for recommended services around the time of the patient visit. RTA is also able to capture structured clinical data from providers using existing fax technology. In this study, we evaluate RTA’s performance for alerting PCPs when their patients with asthma have an emergency room visit anywhere in the state. Results: Our results show that RTA was successfully able to deliver “just in time” patient-relevant alerts to PCPs across the state. Furthermore, of those ATADs faxed back and automatically interpreted by the RTA system, 35% reported finding the provided information helpful. The PCPs who reported finding information helpful also reported making a phone call, sending a letter or seeing the patient for follow up care. Conclusions: We have successfully demonstrated the feasibility of electronically exchanging important patient related information with the PCPs statewide. This is despite a lack of a link with their electronic health records. We have shown that using our ATAD technology, a PCP can be notified quickly of an important event such as a patient’s asthma related emergency room admission so further follow up can happen in near real time. PMID:23569648

  2. Coupling for capturing an displaying hologram systems for real-time digital holographic interferometry

    Science.gov (United States)

    Porras-Aguilar, Rosario; Zaperty, Weronika; Kujawinska, Malgorzata

    2013-11-01

    Conventional (analog) holographic interferometry (HI) has been used as a powerful technique in optical metrology since sixties of XX century. However, its practical applications have been constrained because of the cumbersome procedures required for holographic material development. Digital holography has brought significant simplifications due to digital capture of holograms and their further numerical reconstruction and manipulation of reconstructed phases and amplitudes. These features are the fundamentals of double exposure digital holographic interferometry which nowadays is used in such applications as industrial inspection, medical imaging, microscopy and metrology. However another very popular HI technique, namely real time holographic interferometry has not been demonstrated in its digital version. In this paper we propose the experimental-numerical method which allows for real-time DHI implementation. In the first stage a set of digital phase shifted holograms of an object in an initial condition is captured and the phase of an object wavefront in the hologram plane is calculated. This phase is used to address a spatial light modulator, which generates the initial object wavefront. This wavefront (after proper SLM calibration) propagates toward an object and interfere with an actual object wavefront giving real-time interference fringes. The procedure works correctly in the case when CCD camera and SLM LCOS pixel sizes are the same. Usually it is not the case. Therefore we had proposed two different methods which allow the overcome of this mismatch pixel problem. The first one compensates for lateral magnification and the second one is based on re-sampling of a captured phase. The methods are compared through numerical simulations and with experimental data. Finally, the implications of setting up the experiment with the object reference phase compensated by the two approaches are analyzed and the changes in an object are monitored in real time by DHI.

  3. Real time film analysis system (RTFAS). Communication subsystem. Interprogram communication channel on the DEC-10 computer

    International Nuclear Information System (INIS)

    Described is the general organization of the communication subsystem for Real Time Film Analysis System (RTFAS) developed for the automation of primary processing of films obtained in experiments at bubble chambers. Considered are the functional structure of the interprogram communication channel (IPCC) based on the DEC-10 computer which provide composition of particular system elements, its software, and dynamic store access. It is pointed out that the composition of a single program of the system based on IPCC is well suitable for on-line processing systems, because it provides the necessary flexibility of the system, high speed of its response, and simplicity of program interaction

  4. A DR-WFOI fusion system for the real-time molecular imaging in vivo

    Institute of Scientific and Technical Information of China (English)

    Kun Bi; Xiaochun Xu; Lei Xi; Shaoqun Zeng; Qingming Luo

    2008-01-01

    Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.

  5. Real-Time Series Resistance Monitoring in PV Systems Without the Need for IV Curves

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  6. An On-Line Scheduler over Hard Real-Time Communication System

    Institute of Scientific and Technical Information of China (English)

    CHEN Hui; XIONG Guangze

    2003-01-01

    By thorough research on the prominent periodic and aperiodic scheduling algorithms, an on-line hard real-time scheduler is presented, which is applicable to the scheduling of packets over a link.This scheduler, based on both Rate Monotonic, pinwheel scheduling algorithm Sr and Polling Server scheduling algorithms, can rapidly judge the schedulability and then automatically generate a bus table for the scheduling algorithm to schedule the packets as the periodic packets. The implementation of the scheduler is simple and easy to use, and it is effective for the utilization of bus link. The orderly execution of the bus table can not only guarantee the performance of the hard real time but also avoid the blockage and interruption of the message transmission. So the scheduler perfectly meets the demand of hard realtime communication system on the field bus domain.

  7. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    Science.gov (United States)

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  8. Tradeoff analysis for Dependable Real-Time Embedded Systems during the Early Design Phases

    DEFF Research Database (Denmark)

    Gan, Junhe

    to processing elements, as well as the processor voltage and frequency levels for executing each task, such that transient faults are tolerated, the real-time constraints of the application are satisfied, and the energy consumed is minimized. In this thesis, we target the early design phases, when decisions......Embedded systems are becoming increasingly complex and have tight competing constraints in terms of performance, cost, energy consumption, dependability, flexibility, security, etc. The objective of this thesis is to propose design methods and tools for supporting the tradeoff analysis of competing...... design objectives during the early design phases, which are characterized by uncertainties. We consider safety-critical real-time applications modeled as task graphs, to be implemented on distributed heterogeneous architectures consisting of processing elements (PEs), interconnected by a shared...

  9. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    OpenAIRE

    Lei Zhang; Yi Liu; Bingqi Li; Guoxin Zhang; Songtao Zhang

    2015-01-01

    In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation...

  10. Pulsed illumination, closed circuit television system for real-time viewing of unsteady (> 1 micros) events.

    Science.gov (United States)

    Marden, W W; Steinberger, R L; Bracco, F V

    1978-10-01

    A pulsed illumination closed circuit television system is described whereby fast (times cycles. The reported applications include the recording of steady and transient propane torch flames, of the transient fuel injection process in a motored internal combustion engine, and of the propagation of a flame under firing conditions in the engine. In the shadowgraph and Schlieren modes the method is particularly suited for application to periodic combustion events such as those occurring in internal combustion engines. The method then presents the following advantages over high-speed filming (> 3000 pictures/s); real-time observation and recording of chamber events at any crankangle; real-time observation and recording of the effects of changes in the engine variables (speed, load, spark timing, injection pressure and duration, chamber swirl, etc.) on the combustion events; real-time observation and recording of ensemble averages and cycle-to-cycle variations. The technique also eliminates the delays and unknowns of film processing. Finally, the cost of this system is similar to that of a high-speed camera.

  11. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    Science.gov (United States)

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  12. A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Grum, Morten

    2014-01-01

    An innovative and generalised approach to the integrated Real Time Control of urban drainage systems is presented. The Dynamic Overflow Risk Assessment (DORA) strategy aims to minimise the expected Combined Sewer Overflow (CSO) risk by considering (i) the water volume presently stored in the drai......An innovative and generalised approach to the integrated Real Time Control of urban drainage systems is presented. The Dynamic Overflow Risk Assessment (DORA) strategy aims to minimise the expected Combined Sewer Overflow (CSO) risk by considering (i) the water volume presently stored...... in the drainage network, (ii) the expected runoff volume (calculated by radar-based nowcast models) and – most important – (iii) the estimated uncertainty of the runoff forecasts. The inclusion of uncertainty allows for a more confident use of Real Time Control (RTC). Overflow risk is calculated by a flexible...... periods, using a simple conceptual model, is presented. Compared to a traditional local control approach, DORA contributed to reduce CSO volumes from the most sensitive points while reducing total CSO volumes discharged from the catchment. Additionally, the results show that the inclusion of forecasts...

  13. Real-time earthquake alert system for the greater San Francisco Bay Area: a prototype design to address operational issues

    Energy Technology Data Exchange (ETDEWEB)

    Harben, P.E.; Jarpe, S.; Hunter, S.

    1996-05-29

    This paper describes a prototype for this EAS (real time) in the Bay area. Approach is pragmatic, attempting to establish a prototype system at a low cost and quickly. A real-time warning system can protect the public and mitigate earthquake damage. The proposed system is a distributed network of real-time strong-motion monitoring stations that telemetered data in real time to a central analysis facility which could transmit earthquake parameter information to an area before elastic wave energy arrived. Upgrades and issues that should be resolved before an operational EAS can be established, are listed.

  14. Assessment of offsite, real-time dose measurement systems for emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Maeck, W.J.; Hoffman, L.G.; Staples, B.A.; Keller, J.H.

    1982-04-01

    An evaluation is made of the effectiveness of fixed, real-time monitoring systems around nuclear power stations in determining the magnitude of unmonitored releases. The effects of meteorological conditions on the accuracy with which the magnitude of unmonitored releases is determined and the uncertainties inherent in defining these meteorological conditions are discussed. The number and placement of fixed field detectors in a system is discussed, and the data processing equipment required to convert field detector output data into release rate information is described. Cost data relative to the purchase and installation of specific systems are given, as well as the characteristics and information return for a system purchased at an arbitrary cost.

  15. Smartphone-based 3D real-time vision system for teleoperation

    OpenAIRE

    Servetti, Antonio; Masala, Enrico

    2013-01-01

    We present a small form factor 3D vision system that can easily be mounted in any system for teleoperation and presents a low-latency suitable to perform interactive control. The proposed system is based on a commercial 3D smartphone that integrates a stereoscopic camera and a wireless connection. The smartphone has been customized to acquire and transmit stereoscopic video in real-time by means of a special purpose software that runs on the Android operating system. We believe that the choic...

  16. Dynamics in two-elevator traffic system with real-time information

    International Nuclear Information System (INIS)

    We study the dynamics of traffic system with two elevators using a elevator choice scenario. The two-elevator traffic system with real-time information is similar to the two-route vehicular traffic system. The dynamics of two-elevator traffic system is described by the two-dimensional nonlinear map. An elevator runs a neck-and-neck race with another elevator. The motion of two elevators displays such a complex behavior as quasi-periodic one. The return map of two-dimensional map shows a piecewise map.

  17. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  18. Assessment of offsite, real-time dose measurement systems for emergency situations

    International Nuclear Information System (INIS)

    An evaluation is made of the effectiveness of fixed, real-time monitoring systems around nuclear power stations in determining the magnitude of unmonitored releases. The effects of meteorological conditions on the accuracy with which the magnitude of unmonitored releases is determined and the uncertainties inherent in defining these meteorological conditions are discussed. The number and placement of fixed field detectors in a system is discussed, and the data processing equipment required to convert field detector output data into release rate information is described. Cost data relative to the purchase and installation of specific systems are given, as well as the characteristics and information return for a system purchased at an arbitrary cost

  19. Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems

    Science.gov (United States)

    Quartier, F.; Delatte, B.; Joubert, M.

    2009-05-01

    Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the

  20. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery