WorldWideScience

Sample records for analyzing fuel efficiency

  1. Fuel analyzer; Analisador de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Cozzolino, Roberval [RS Motors, Indaiatuba, SP (Brazil)

    2008-07-01

    The current technology 'COMBUSTIMETRO' aims to examine the fuel through performance of the engine, as the role of the fuel is to produce energy for the combustion engine in the form of which is directly proportional to the quality and type of fuel. The 'COMBUSTIMETRO' has an engine that always keeps the same entry of air, fuel and fixed point of ignition. His operation is monitored by sensors (Sonda Lambda, RPM and Gases Analyzer) connected to a processor that performs calculations and records the information, generate reports and graphs. (author)

  2. Nuclear fuel microsphere gamma analyzer

    Science.gov (United States)

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  3. Shielded electron microprobe analyzer for plutonium fuel

    International Nuclear Information System (INIS)

    Design, construction and performance test of a shielded electron microprobe analyzer for plutonium fuel are described. In the analyzer, the following modifications were made to Shimadzu ASM-SX (analyzer): (1) a shield of tungsten alloy is incorporated between the sample and the X-ray detector to examine highly radioactive fuel, (2) a magnetic shield against β-rays from the fuel is fitted to the electron detector, (3) a small sample-loading glove box is installed to transfer plutonium fuel safely to the analyzer, (4) a glove box containing a sample-surface treatment apparatus and a balance is connected to the sample-loading glove box, (5) for maintenance and repair of the analyzer by means of closed method, about thirty modifications are made. The performance test with nonradioactive materials showed that despite the above modifications, abilities of the original analyzer are all retained. And furthermore, the simulation test for irradiated fuel with 226Ra of dose rate 40 mR/hr at 30 cm showed that the X-ray peaks to noise ratios are unchanged by using a pulse height selector of the X-ray detector. (author)

  4. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  5. Energy Efficient Wood Fuel Drying

    Energy Technology Data Exchange (ETDEWEB)

    Renstroem, Roger

    2004-04-01

    With reference to the reduction of carbon dioxide emissions, biofuel is pointed out as an important substitute for fossil fuels. The Swedish Government favours the use of biofuel by imposing taxes on fossil fuels. However, biofuel is a limited resource and it is therefore important that we develop efficient systems for the production and utilization of this limited resource. This thesis is based on six papers out of which five are experimental and treats the drying of wood in spouted bed co-generation dryers. The sixth paper deals with the integration of a co-generation dryer into the energy system of a sawmill.

  6. Older Runners Can Maintain Their 'Fuel Efficiency'

    Science.gov (United States)

    ... 159291.html Older Runners Can Maintain Their 'Fuel Efficiency' Rate of oxygen consumption differs little between active ... body is like a car with a fuel efficiency level," Ortega said in a Humboldt State news ...

  7. Vehicle Fuel-Efficiency Choices, Emission Externalities, and Urban Sprawl

    DEFF Research Database (Denmark)

    Kim, Jinwon

    excessive sprawl arising from emission externalities is the uses of larger and less-fuel efficient vehicles by suburban residents, which is different from that of congestion externalities. We also analyze the effect of the Corporate Average Fuel Efficiency (CAFE) regulation on the urban spatial structure....

  8. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  9. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  10. The sensitivity of fuel cycle performance to separation efficiency

    International Nuclear Information System (INIS)

    Reprocessing separation efficiency is a major design variable in the implementation of advanced fuel cycles as it affects waste disposal requirements, fuel fabrication, system economics, and other fuel cycle system characteristics. Using a newly developed, physics-based integrated fuel cycle systems analysis model, this study investigated the impact of varying reprocessing separation efficiencies on fuel cycle cost (FCC), proliferation resistance and repository impact. Repository impact was captured by the disposal facility capacity governed by thermal output, the projected dose rate, mass inventory, and waste toxicity index. The coupled systems analysis model included fast reactor simulation tool to analyze the depletion in the fast reactor and the requirements for the fresh fuel in transient and equilibrium states. In this calculation, the feedback between separation efficiencies and fresh and discharged fuel compositions was dynamically accounted for. The new systems model was benchmarked against published results and used to investigate a single-tier nuclear fuel cycle scenario in which light water reactors (LWRs) and 0.5 transuranic (TRU) conversion ratio (CR) sodium-cooled fast reactors are deployed in an equilibrium that results in zero net TRU production. The results indicated that fuel cycle system performance is significantly affected by the changes in partitioning strategies and elemental separation efficiency in reprocessing plants. Moreover, the effect of varying separation efficiencies on reactor performance, fuel cycle mass balances and economic performance are discussed.

  11. Modeling Fuel Efficiency: MPG or GPHM?

    Science.gov (United States)

    Bartkovich, Kevin G.

    2013-01-01

    The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…

  12. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project......The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared to...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies as...

  13. Fueling efficiency of gas puffing in ASDEX

    Science.gov (United States)

    Mayer, H.-M.; Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussman, G.; Gehre, O.; Gierke, G. v.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.

    1982-12-01

    The fueling efficiency for gas puffing, i.e. the fraction of the external gas flux that is ionized inside the separatrix, is reduced in divertor discharges since part of it is ionized in the scrape-off layer and pumped off by the divertor. The fueling efficiency is determined by switching-off the gas feed during the stationary phase of a discharge and dividing the time derivative of the total number of particles inside the separatrix by the external gas flux. The determination of this time derivative must take into account profile changes. In ASDEX the fueling efficiency ranges from close to 1.0 for discharges with a stainless steel poloidal limiter and decreases to about 0.2 at high densities ( 6 × 10 13 cm -3 line average) for diverted discharges. These results are compared with estimates of the fueling efficiency which include molecular disintegration, plasma albedo for neutral atoms and imperfect wall reflection.

  14. Materials Approach to Fuel Efficient Tires

    Energy Technology Data Exchange (ETDEWEB)

    Votruba-Drzal, Peter [PPG Industries, Monroeville, PA (United States); Kornish, Brian [PPG Industries, Monroeville, PA (United States)

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  15. Efficient vehicles versus efficient transportation : comprehensive comparison of fuel efficiency standards and Transportation Demand Management

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T.

    2001-11-21

    There are two basic approaches for reducing fuel consumption in vehicles. The first is to increase fuel efficiency, and the other is to increase transportation system efficiency. The three strategies commonly proposed to increase fuel efficiency are: (1) Corporate Average Fuel Efficiency (CAFE) standards, which require vehicle manufacturers to produce and sell more efficient vehicles, (2) Feebates, which impose a surcharge on the purchase of fuel inefficient vehicles. Revenues from Feebates are used to provide a rebate on the purchase of fuel efficient vehicles, and (3) Predictable, long-term fuel tax increases, which involve raising fuel taxes beyond what would otherwise occur to motivate motorists to buy fuel efficient vehicles. There are several transportation management strategies which can help accomplish better efficiency in a transportation system. These include: (1) road pricing which charges motorists for using certain roads, (2) parking pricing, (3) Pay-As-You-Drive vehicle insurance, (4) improved transportation choices such as transit, cycling and walking improvements, rideshare programs, high occupancy vehicle (HOV) priority, telework and delivery services, (5) commute trip reduction programs, and (6) fuel price increases which involve raising fuel taxes to provide incentive to motorists to buy more fuel efficient vehicles. Energy conservation strategies that reduce vehicle mileage result in reduced traffic congestion, savings in parking facility costs, better traffic safety and environmental benefits. 17 refs., 3 tabs.

  16. Irradiated Microsphere Gamma Analyzer for Examination of Particle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz; Various

    2014-06-01

    Fabrication of the first series of fuel compacts for the current US tristructural isotropic (TRISO) coated particle fuel development and qualification effort was completed at Oak Ridge National Laboratory (ORNL) in 2006. In November of 2009, after almost 3 years and 620 effective full power days of irradiation in the Advanced Test Reactor at Idaho National Laboratory (INL), the first Advanced Gas Reactor irradiation test (AGR-1) was concluded. Compacts were irradiated at a calculated timeaveraged, volume-averaged temperature of 955–1136°C to a burnup ranging from 11.2–19.5% fissions per initial metal atom and a total fast fluence of 2.2–4.3·1025 n/m2 [1]. No indication of fission product release from TRISO coating failure was observed during the irradiation test, based on real-time monitoring of gaseous fission products. Post-irradiation examination (PIE) and hightemperature safety testing of the compacts has been in progress at both ORNL and INL since 2010, and have revealed small releases of a limited subset of fission products (such as silver, cesium, and europium). Past experience has shown that some elements can be released from TRISO particles when a defect forms in the SiC layer, even when one or more pyrocarbon layers remain intact and retain the gaseous fission products. Some volatile elements can also be released by diffusion through an intact SiC layer during safety testing if temperatures are high enough and the duration is long enough. In order to understand and quantify the release of certain radioactive fission products, it is sometimes necessary to individually examine each of the more than 4000 coated particles in a given compact. The Advanced Irradiated Microsphere Gamma Analyzer (Advanced- IMGA) was designed to perform this task in a remote hot cell environment. This paper describes the Advanced- IMGA equipment and examination process and gives results for a typical full compact evaluation.

  17. Attention, Media and Fuel Efficiency

    OpenAIRE

    Thoenes, Stefan; Gores, Timo

    2012-01-01

    This study examines attention effects in the market for hybrid vehicles. We show that local media coverage, gasoline price changes and unprecedented record gasoline prices have a significant causal impact on the consumers’ attention. As attention is not directly observable, we analyze online search behavior as a proxy for the revealed consumer attention. Our study is based on weekly panel data of local newspaper coverage, gasoline prices and Google search trends for 19 metropolitan areas in the...

  18. Fuel element rupture detection based on NaI detector and multi-channel pulse amplitude analyzer

    International Nuclear Information System (INIS)

    Two methods of fuel element rupture detection are introduced in this paper. By analyzing their limitations, the authors put forward a new method by detecting the characteristic nuclides of 131I and 137Cs with NaI detector and multi-channel pulse amplitude analyzer. It can reduce and eliminate the affecting factors, enhance the efficiency and precision of detecting. (authors)

  19. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decade’s worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  20. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  1. Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value

    International Nuclear Information System (INIS)

    This simulative work analyzes the impact of fuel type on the energy efficiency of systems composed by a fuel processor for hydrogen production and a PEM (proton exchange membrane) fuel cell. Two fuel processors are simulated, one employs steam reforming to produce hydrogen, the other one autothermal reforming. In both cases, fuel processing is completed by two water gas shift units and one preferential CO oxidation unit. Five classes of fuels are considered, i.e. alkanes, alkenes and alkynes, alcohols and aromatics and steam to carbon and oxygen to carbon inlet ratios, reforming temperature, fuel cell split fraction and exhaust gas temperature are explored as operative parameters. For each fuel considered, Aspen Plus® was used to calculate the operative conditions that maximize the energy efficiency of the systems. For each system, the data were employed to identify an analytic expression to calculate the best possible energy efficiency given the elementar composition of the fuel and its lower heating value. The expressions proved to hold true for a broad range of fuel types. - Highlights: • Simulation of fuel processor – PEM fuel cell systems. • Optimization of operating conditions for different fuels. • Scaling of energy efficiency data. • Analytic expression to calculate energy efficiency for different fuels

  2. Analyzing the impact of reactive transport on the repository performance of TRISO fuel

    Science.gov (United States)

    Schmidt, Gregory

    One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage of this efficiency is a graphite-moderated, helium-cooled reactor known as a High Temperature Gas Reactor (HTGR). There are significant differences between current LWR's and the proposed HTGR's but most especially in the composition of the nuclear fuel. For LWR's, the fuel elements consist of pellets of uranium dioxide or plutonium dioxide that are placed in long tubes made of zirconium metal alloys. For HTGR's, the fuel, known as TRISO (TRIstructural-ISOtropic) fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer layer of PyC. These TRISO particles are then compacted with graphite into fuel rods that are then placed in channels in graphite blocks. The blocks are then arranged in an annular fashion to form a reactor core. However, this new fuel form has unanswered questions on the environmental post-burn-up behavior. The key question for current once-through fuel operations is how these large irradiated graphite blocks with spent fuel inside will behave in a repository environment. Data in the literature to answer this question is lacking, but nevertheless this is an important question that must be answered before wide-spread adoption of HTGR's could be considered. This research has focused on answering the question of how the large quantity of

  3. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry; Holden, Jacob; Jeffers, Matthew; Wang, Lijuan

    2016-06-08

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts. Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.

  4. Burning clean fuel gas improves energetic efficiency

    International Nuclear Information System (INIS)

    One the most critical problems faced by refineries nowadays is the continuous increasing of legislation urging emissions reductions specifically SO2, NOx, and particles. Therefore there is a substantial need for refineries to burn fuel gas instead of fuel oil and avoiding, if possible, the use of imported natural gas. The refinery case study presents a substantial excess of fuel gas resulting from the production of hydrogen to obtain clean flues with low sulphurs. The aim of this paper is to optimize the use of the hydrogen excess with the implementation of a gas turbine with heat recovery with a feed near 28-31% of hydrogen. The cogeneration system was modelled by GateCycle 5.34.0.r. and the results obtained for the simulation were considered optimistic. Considering a production of 13 MW of electrical power the overall efficiency reached a value of 76% and 22 t/h of vapour (17 MW) from a feed of 3 t/h of fuel gas (39 MW). These results allow a higher electrical power production and a consequent reduction in the emissions of SO2 and CO2.

  5. Burning clean fuel gas improves energetic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Andre; Gomes, Luisa A.C.N. [Chemical Engineering Department, Instituto Superior de Engenharia do Porto, Rua Dr. Antonio Bernardino de Almeida 431, P4200-072 Porto (Portugal); Tavares, Manuel L.C. [Galp Energia, Area de Tecnologia, Apartado 3015, 4451-852 Leca da Palmeira (Portugal)

    2010-03-15

    One the most critical problems faced by refineries nowadays is the continuous increasing of legislation urging emissions reductions specifically SO{sub 2}, NO{sub x}, and particles. Therefore there is a substantial need for refineries to burn fuel gas instead of fuel oil and avoiding, if possible, the use of imported natural gas. The refinery case study presents a substantial excess of fuel gas resulting from the production of hydrogen to obtain clean flues with low sulphurs. The aim of this paper is to optimize the use of the hydrogen excess with the implementation of a gas turbine with heat recovery with a feed near 28-31% of hydrogen. The cogeneration system was modelled by GateCycle 5.34.0.r. and the results obtained for the simulation were considered optimistic. Considering a production of 13 MW of electrical power the overall efficiency reached a value of 76% and 22 t/h of vapour (17 MW) from a feed of 3 t/h of fuel gas (39 MW). These results allow a higher electrical power production and a consequent reduction in the emissions of SO{sub 2} and CO{sub 2}. (author)

  6. Proteomics: an efficient tool to analyze nematode proteins

    Science.gov (United States)

    Proteomic technologies have been successfully used to analyze proteins structure and characterization in plants, animals, microbes and humans. We used proteomics methodologies to separate and characterize soybean cyst nematode (SCN) proteins. Optimizing the quantity of proteins required to separat...

  7. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  8. Sustainability of Open Collaborative Communities: Analyzing Recruitment Efficiency

    Directory of Open Access Journals (Sweden)

    Felipe Ortega

    2013-01-01

    Full Text Available Extensive research has been conducted over the past years to improve our understanding of sustainability conditions for large-scale collaborative projects, especially from an economic and governance perspective. However, the influence of recruitment and retention of participants in these projects has received comparatively less attention from researchers. Nevertheless, these concerns are significant for practitioners, especially regarding the apparently decreasing ability of the main open online projects to attract and retain new contributors. A possible explanation for this decrease is that those projects have simply reached a mature state of development. Marwell and Oliver (1993 and Oliver, Marwell, and Teixeira (1985 note that, at the initial stage in collective projects, participants are few and efforts are costly; in the diffusion phase, the number of participants grows, as their efforts are rewarding; and in the mature phase, some inefficiency may appear as the number of contributors is greater than required for the work. In this article, we examine this possibility. We use original data from 36 Wikipedias in different languages to compare their efficiency in recruiting participants. We chose Wikipedia because the different language projects are at different states of development, but are quite comparable on the other aspects, providing a test of the impact of development on efficiency. Results confirm that most of the largest Wikipedias seem to be characterized by a reduced return to scale. As a result, we can draw interesting conclusions that can be useful for practitioners, facilitators, and managers of collaborative projects in order to identify key factors potentially influencing the adequate development of their communities over the medium-to-long term.

  9. Analyzing the temporal regulation of translation efficiency in mouse liver

    Directory of Open Access Journals (Sweden)

    Peggy Janich

    2016-06-01

    Full Text Available Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013 [1]. We have recently reported on the use of ribosome profiling (RPF-seq, a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]. Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

  10. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  11. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  12. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  13. Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

    2010-11-01

    All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot

  14. Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption

    International Nuclear Information System (INIS)

    The paper provides an overview of the main features of a Vehicle Market Model (VMM) which estimates changes to vehicle stock/kilometrage, fuel consumed and CO2 emitted. It is disaggregated into four basic vehicle types. The model includes: the trends in fuel consumption of new cars, including the role of fuel price: a sub-model to estimate the fuel consumption of vehicles on roads characterised by user-defined driving cycle regimes; procedures that reflect distribution of traffic across different area/road types; and the ability to vary the speed (or driving cycle) from one year to another, or as a result of traffic growth. The most significant variable influencing fuel consumption of vehicles was consumption in the previous year, followed by dummy variables related to engine size. the time trend (a proxy for technological improvements), and then fuel price. Indeed the effect of fuel price on car fuel efficiency was observed to be insignificant (at the 95% level) in two of the three versions of the model, and the size of fuel price term was also the smallest. This suggests that the effectiveness of using fuel prices as a direct policy tool to reduce fuel consumption may he limited. Fuel prices may have significant indirect impacts (such as influencing people to purchase more fuel efficient cars and vehicle manufacturers to invest in developing fuel efficient technology) as may other factors such as the threat of legislation. (Author)

  15. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.

  16. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  17. Reducing fuel consumption by using a new fuel-efficiency support tool

    OpenAIRE

    Voort, van der, R.; Dougherty, Mark

    1999-01-01

    A fuel-efficiency support tool has been designed, which includes a normative model describing optimal driver behaviour for minimising fuel consumption. If actual behaviour deviates from optimal behaviour, the system presents advice on how to change behaviour. Evaluation revealed that drivers used ~16% less fuel compared with `normal driving'

  18. Development of Integrated Analyzing and Training Simulator for Spent Nuclear Fuel Pool, CAREPooL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongdeog [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-05-15

    The Comprehensive Analyzer of Real Estimation for spent fuel POOL (CAREPOOL) has been developed for evaluating temperature and criticality of a spent nuclear fuel pool (SFP) during the normal and accident conditions. The CAREPOOL provides four main functions- management of spent nuclear fuel, decay heat Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 7-8, 2015 calculation by ORIGEN-S code, estimation of the time to boil/fuel uncovering by thermal-hydraulics calculations, criticality evaluation by Helios code. All of these are integrated into the GUI based CAREPOOL system. The CAREPOOL would be very beneficial to nuclear power plant operator and trainee who have responsibility for the SFP operation.

  19. Development of Integrated Analyzing and Training Simulator for Spent Nuclear Fuel Pool, CAREPooL

    International Nuclear Information System (INIS)

    The Comprehensive Analyzer of Real Estimation for spent fuel POOL (CAREPOOL) has been developed for evaluating temperature and criticality of a spent nuclear fuel pool (SFP) during the normal and accident conditions. The CAREPOOL provides four main functions- management of spent nuclear fuel, decay heat Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 7-8, 2015 calculation by ORIGEN-S code, estimation of the time to boil/fuel uncovering by thermal-hydraulics calculations, criticality evaluation by Helios code. All of these are integrated into the GUI based CAREPOOL system. The CAREPOOL would be very beneficial to nuclear power plant operator and trainee who have responsibility for the SFP operation

  20. Code Package to Analyze Parameters of the WWER Fuel Rod. TOPRA-2 Code - Verification Data

    International Nuclear Information System (INIS)

    Presented are the data for computer codes to analyze WWER fuel rods, used in the WWER department of RRC 'Kurchatov Institute'. Presented is the description of TOPRA-2 code intended for the engineering analysis of thermophysical and strength parameters of the WWER fuel rod - temperature distributions along the fuel radius, gas pressures under the cladding, stresses in the cladding, etc. for the reactor operation in normal conditions. Presented are some results of the code verification against test problems and the data obtained in the experimental programs. Presented are comparison results of the calculations with TOPRA-2 and TRANSURANUS (V1M1J06) codes. Results obtained in the course of verification demonstrate possibility of application of the methodology and TOPRA-2 code for the engineering analysis of the WWER fuel rods

  1. Air Force Achieves Fuel Efficiency through Industry Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  2. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    OpenAIRE

    Youngseung Na; Federico Zenith; Ulrike Krewer

    2015-01-01

    Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC) systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further ...

  3. Review of International Policies for Vehicle Fuel Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper reviews past and current voluntary and regulatory fuel efficiency programs and then assesses the effectiveness of these policies from the viewpoints of enforcement, standard design, standard stringency and standard related policies.

  4. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  5. Method and apparatus for increasing fuel efficiency in nuclear reactors

    International Nuclear Information System (INIS)

    This patent describes an improved method of producing a spectral shift in a nuclear reactor to achieve increased nuclear fuel efficiency, the nuclear reactor containing a fluid moderator juxtaposed with fuel elements containing the nuclear fuel, which comprises disposing within the fluid moderator stationary non-poison displacer rods for achieving the spectral shift, the displacer rods exhibiting a continuous reduction in volume during operation of the nuclear reactor whereby the fluid moderator increases in volume as the nuclear fuel is burned in the nuclear reactor

  6. 76 FR 79114 - Tire Fuel Efficiency Consumer Information Program

    Science.gov (United States)

    2011-12-21

    ..., Tire Fuel Efficiency Consumer Information Program, 74 FR 29542 (June 22, 2009); Docket No. NHTSA-2008... Efficiency Consumer Information Program, 75 FR 15894 (Mar. 30, 2010); Docket No. NHTSA-2010-0036- 001. \\4... after the sale of a new vehicle at no cost to the consumer. According to Bridgestone, these tires...

  7. From Food to Fuel: The Swedish Resource Efficiency Dilemma.

    OpenAIRE

    Lundgren, Monia

    2014-01-01

    The EU has embarked on a resource efficiency trajectory in order to solve resource scarcity and general sustainability issues. The conversion of food waste into fuel is considered resource efficient as it makes use of resources that would otherwise be discarded. On the other hand, the food sector affects the environment substantially as it is inherently resource intensive and excessive. The purpose of the study was to assess how resource efficient the food waste substrate (feedstock for energ...

  8. Fuel efficiency, availability and compressor station configuration

    Energy Technology Data Exchange (ETDEWEB)

    Lubomirsky, Matt; Kurz, Rainer [Solar Turbines Inc., San Diego, CA (United States); Klimov, Pavel [Intergas Central Asia, Astana (Kazakhstan)

    2009-12-19

    Compressor stations play a very important role in the success of a gas pipeline design and a careful selection of centrifugal compressors and drivers are key aspects for the success of the project. The state of the art design available today for this equipment provides overall high thermodynamic performance and consequently minimizes installed power requirements and energy usage with significant savings on operating expenses during the economic life of the project For any application of machinery in a pipeline compression station, one of the key questions to answer is the number of units to install to meet the flow requirements of the pipeline. Depending on the load profile of the pipeline, the answers may look different. Other factors to consider include the fact that gas turbines can produce a significant amount of additional power at lower ambient temperatures. So, even for constant load of the pipeline, the relative load of the driver changes. In this paper, a typical transcontinental pipeline with multiple compressor stations is evaluated. The determination of the exact hydraulic behavior of the pipeline is part of the modeling effort. The site ambient conditions, with a significant swing in ambient temperatures are considered. The issue discussed in this paper evolves around the availability that can be achieved with various configurations, based on actually achieved reliability and availability numbers. The other large impact on operating costs, fuel consumption will be discussed. Here, the choice of the number of installed units has a distinct impact on annual fuel consumption, as well as the capacity of the pipeline during various scenarios. (author)

  9. Efficient Use of Cogeneration and Fuel Diversification

    Directory of Open Access Journals (Sweden)

    Kunickis M.

    2015-12-01

    Full Text Available Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand.

  10. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm−2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm−2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  11. Comparison of fueling efficiency from different fueling locations on DIII-D

    International Nuclear Information System (INIS)

    Fueling with gas and pellet injection from several different locations has been used on the DIII-D tokamak to study core fueling and transport in H-mode and L-mode plasmas. Specific experiments have been carried out to examine the fueling efficiency into DIII-D H-mode plasmas that have periodic edge localized modes (ELMs). The fueling efficiency, defined as the total increase in number of plasma electrons divided by the number of input fuel atoms, is determined by measurements of plasma electron density profiles before and after a fueling pulse. We have found previously that there is a significantly higher fueling efficiency for pellets injected from the inner wall [J. Nucl. Mater. 290 (2001) 398] versus outside midplane pellet injection or gas puffing. In this study we extend this work to include the investigation of gas puffing from the same inner wall injection locations as the pellets to determine if a similar effect may exist. The mechanism for the improved pellet fueling from the inner wall is hypothesized to be a ∇B induced polarization of the pellet cloud leading to an ExB drift [Phys Plasmas 7 (2000) 1968] in the major radius direction. The possibility of similar physics playing a role in gas puff fueling is examined in these experiments and does not appear to be a significant effect

  12. Energy Efficient Dryer with Rice Husk Fuel for Agriculture Drying

    OpenAIRE

    M. Djaeni; N. Asiah; S. Suherman; A. Sutanto; A. Nurhasanah

    2015-01-01

    Energy usage is crucial aspect on agriculture drying process. This step spends about 70% of total energy in post harvest treatment. The design of efficient dryer with renewable energy source is urgently required due to the limitation of fossil fuel energy. This work discusses the performance of air dehumidification using rice husk fuel as heat source for onion, and paddy drying. Unlike conventional dryer, the humidity of air during the drying was dehumidified by adsorbent. Hence, the driving ...

  13. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  14. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  15. Energy Efficient Dryer with Rice Husk Fuel for Agriculture Drying

    Directory of Open Access Journals (Sweden)

    M. Djaeni

    2015-02-01

    Full Text Available Energy usage is crucial aspect on agriculture drying process. This step spends about 70% of total energy in post harvest treatment. The design of efficient dryer with renewable energy source is urgently required due to the limitation of fossil fuel energy. This work discusses the performance of air dehumidification using rice husk fuel as heat source for onion, and paddy drying. Unlike conventional dryer, the humidity of air during the drying was dehumidified by adsorbent. Hence, the driving force of drying can be  kept high.  As consequences, the drying time and energy usage can be reduced. Here, the research was conducted in two step: laboratory and pilot scale tests. Results showed that the lowering air humidity with rice husk fuel has improved the energy efficiency. At operational temperature 60oC, the heat efficiency of 75%  was achieved. 

  16. Energy Efficient Dryer with Rice Husk Fuel for Agriculture Drying

    Directory of Open Access Journals (Sweden)

    M. Djaeni

    2015-02-01

    Full Text Available Energy usage is crucial aspect on agriculture drying process. This step spends about 70% of total energy in post harvest treatment. The design of efficient dryer with renewable energy source is urgently required due to the limitation of fossil fuel energy. This work discusses the performance of air dehumidification using rice husk fuel as heat source for onion, and paddy drying. Unlike conventional dryer, the humidity of air during the drying was dehumidified by adsorbent. Hence, the driving force of drying can be kept high. As consequences, the drying time and energy usage can be reduced. Here, the research was conducted in two step: laboratory and pilot scale tests. Results showed that the lowering air humidity with rice husk fuel has improved the energy efficiency. At operational temperature 60oC, the heat efficiency of 75% was achieved.

  17. Chord length sampling method for analyzing stochastic distribution of fuel particles in continuous energy simulations

    International Nuclear Information System (INIS)

    Highlights: ► Accuracy of chord length sampling in continuous energy simulations is analyzed. ► Boundary effect is shown to be a major factor affecting the CLS accuracy. ► Three strategies that mitigate the boundary effect are investigated. ► The best strategy is identified and assures high confidence in the application of CLS. ► CLS can analyze the stochastic distribution of fuel particles in VHTR with high fidelity. - Abstract: The Chord Length Sampling method (CLS) is studied in continuous energy simulations by analyzing two types of Very High Temperature Gas-cooled Reactor (VHTR) unit cells: the fuel compact cell in the prismatic type VHTR and the fuel pebble cell in the pebble-bed type VHTR. Infinite multiplication factors of the unit cells are calculated by the CLS and compared to benchmark simulations at different volume packing fractions from 5% to 30%. It is shown that the accuracy of the CLS is affected by the boundary effect, which is induced by the CLS procedure itself and results in a reduction in the total volume packing fraction of the fuel particles. To mitigate the boundary effect, three correction schemes based on the research of (1) Murata et al., (2) Ji and Martin and (3) Griesheimer et al. are used to improve the accuracy by applying a corrected value of the volume packing fraction to the CLS. These corrected values are calculated based on (1) a simple linear relationship, (2) an iterative self-consistent simulation correction method and (3) a theoretically derived non-linear relationship, respectively. The CLS simulation using the corrected volume packing fraction shows excellent improvements in the infinite multiplication factors for the VHTR unit cells. Ji and Martin’s self-consistent correction method shows the best improvement

  18. Efficient Use of Cogeneration and Fuel Diversification

    Science.gov (United States)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  19. Study on an environmental-friendly and high-efficient fuel cell energy conversion system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The kinds and the distribution of the coal in China areinvestigated in this paper. The results indicated that the 80% coalin China is used by the method of the coal gasification. Thepossibility of utilization and development of the fuel cell powerplant in China is analyzed. A combined cycle generation system isdesigned. Its net electrical efficiency is about 55%(LHV), which ishigher than that of the fire power plant. So it isenvironmental-friendly and high-efficient generation mode.

  20. The Demand for Car Fuel Efficiency: An Hedonic Price Approach

    OpenAIRE

    Robert Witt

    1994-01-01

    This paper uses an hedonic price approach to estimate the effect of petrol price changes on fuel efficiency and other attributes using data for new cars in the UK. In contrast with Atkinson and Halvorsen (1984), the long-run petrol price elasticity of demand for fuel efficiency is very small, suggesting that the long-run own-price elasticity of demand for petrol is less than unity. The results imply that the adjustment process within the new car market permits little substitution for more fue...

  1. FREC-3: a computer program to analyze stress and strain of fuel rods in accordance with fuel-rod irradiation history

    International Nuclear Information System (INIS)

    FREC-3 (Fuel Realiability Evaluation Code Version-3) analyzes the changes of fuel-rod design parameters in accordance with irradiation history, and evaluates the cladding strain, important fuel rods safety. The program is based on reports of the CYGRO developed by Westinghouse Electric Corporation (U.S.). This report describes the calculation procedure and models in FREC-3. (author)

  2. Experimental verification of structural models to analyze the nonlinear dynamics of LMFBR fuel elements

    International Nuclear Information System (INIS)

    Local fault situations in LMFBR cores may produce severe pressure pulses within one fuel element. The fact cannot be ignored that these pressures can have peaks and impulses that may expand and rupture the wrapper around the element. This will impulsively load the surrounding subassemblies and possibly the control rods due to extreme coolant pressure gradients and/or subassembly collision forces. Fast reactor safety requires this mechanical propagation process through the core to be analyzed, and therefore appropriate models and solution methods are needed to simulate the nonlinear structural dynamics of one typical hexagonal fuel element. The aim of this paper is to outline one- and two-dimensional structural models and discuss their capabilities and suitability for multirow core calculations. For this purpose static and impulsive single subassembly loading experiments are described and typical results are reported and compared with numerical predictions. (Auth.)

  3. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  4. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    Science.gov (United States)

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  5. Scaling of the burning efficiency for multicomponent fuel pool fires

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Farahani, Hamed Farmahini; Rangwala, Ali S.; Jomaas, Grunde

    temperature must continuously increase to evaporate the heaviest components. Small scale experiments were deemed to lack a sufficient flame volume and resulting heat feedback to the fuel surface to reach such temperatures, thus explaining the lower burning efficiencies. Small scale experiments featuring an...

  6. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    International Nuclear Information System (INIS)

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements

  7. Energy analysis of an original steering technology that saves fuel and boosts efficiency

    International Nuclear Information System (INIS)

    Highlights: • A novel energy-saving steer-by-wire technology is introduced, dubbed “DC SbW”. • A prototype vehicle is retrofitted with “DC SbW” and tested for overall efficiency. • Energy analysis is conducted to compare “DC SbW” against state-of-the-art. • “DC SbW” achieves more work while consuming less fuel → higher efficiency. - Abstract: Stemmed by ever-increasing demand on fossil fuels and increased environmental awareness to reduce carbon emissions, improving the efficiency of components and systems has been receiving paramount attention in most industries during the past few years. This is especially true in the mobile machinery industry, which produces high power equipment with relatively low energy efficiency for the most part. Mobile machines strictly employ fluid power systems owing to the superlative power density of hydraulic components. Nevertheless, no major breakthrough technologies to significantly boost the efficiency of fluid power systems have emerged, except for the recent development of a throttle-less actuation technology, known as pump displacement control (DC), which has been proven to be an energy efficient alternative and a serious contender to state-of-the-art technologies. This paper deals with analyzing the energy efficiency of a DC steering system versus a more conventional valve controlled counterpart, which conveys how effectively the two systems convert the chemical energy stored in the diesel fuel into useful mechanical energy. Experimental testing on a prototype test vehicle showed that DC steering results in 14.5% fuel savings, 22.6% productivity gain, and a grand total of 43.5% fuel usage efficiency increase

  8. Effect of operating conditions on energy efficiency for a small passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Energy conversion efficiency was studied in a direct methanol fuel cell (DMFC) with an air-breathing cathode using Nafion 117 as electrolyte membrane. The effect of operating conditions, such as methanol concentration, discharge voltage and temperature, on Faradic and energy conversion efficiencies was analyzed under constant voltage discharge with quantitative amount of fuel. Both of Faradic and energy conversion efficiencies decrease significantly with increasing methanol concentration and environmental temperature. The Faradic conversion efficiency can be as high as 94.8%, and the energy conversion efficiency can be as high as 23.9% if the environmental temperature is low enough (10 deg. C) under constant voltage discharge at 0.6 V with 3 M methanol for a DMFC bi-cell. Although higher temperature and higher methanol concentration can achieve higher discharge power, it will result in considerable losses of Faradic and energy conversion efficiencies for using Nafion electrolyte membrane. Development of alternative highly conductive membranes with significantly lower methanol crossover is necessary to avoid loss of Faradic conversion efficiency with temperature and with fuel concentration

  9. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  10. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    International Nuclear Information System (INIS)

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs

  11. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  12. Fuel Tax in Sight to Raise Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Policymakers have talked about introducing a fuel tax for more than a decade. Now, the country's urgent need to raise energy efficiency makes it the right time to bring the tax into reality. China recently announced its action plan on climate change and the Chinese Government circular urging local governments and companies around the country to implement the General Work Plan for Energy Conservation and Pollutant Discharge Reduction.

  13. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  14. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis

    International Nuclear Information System (INIS)

    Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998-2005. The changes of industrial CO2 emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO2 emissions. The overwhelming contributors to the change of China's industrial sectors' carbon emissions in the period 1998-2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998-2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002-2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial development and CO2

  15. Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV

    International Nuclear Information System (INIS)

    The aim of this paper is to analyze consumers' awareness towards electric vehicle (EV) and examine the factors that are most likely to affect consumers' choice for EV in China. A comprehensive questionnaire survey has been conducted with 299 respondents from various driving schools in Nanjing. Three binary logistic regression models were used to determine the factors that contribute to consumers' acceptance of EVs, their purchase time and their purchase price. The results suggest that: (1)Whether a consumer chooses an EV is significantly influenced by the number of driver's licenses, number of vehicles, government policies and fuel price. (2)The timing of consumers' purchases of an EV is influenced by academic degree, annual income, number of vehicles, government policies, the opinion of peers and tax incentives. (3)The acceptance of purchase price of EVs is influenced by age, academic degree, number of family members, number of vehicles, the opinion of peers, maintenance cost and degree of safety. These findings will help understand consumer's purchase behavior of EVs and have important policy implications related to the promotions of EVs in China. - Highlights: → We survey 299 respondents from various driving schools in Nanjing. → We analyze consumer's awareness towards electric vehicle (EV). → The factors affecting consumers' choice for EV are examined by three binary logistic models. → Factors contributing to consumers' acceptance of EVs, purchase time and purchase price are indicated.

  16. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  17. Analyzing price and efficiency dynamics of large appliances with the experience curve approach

    International Nuclear Information System (INIS)

    Large appliances are major power consumers in households of industrialized countries. Although their energy efficiency has been increasing substantially in past decades, still additional energy efficiency potentials exist. Energy policy that aims at realizing these potentials faces, however, growing concerns about possible adverse effects on commodity prices. Here, we address these concerns by applying the experience curve approach to analyze long-term price and energy efficiency trends of three wet appliances (washing machines, laundry dryers, and dishwashers) and two cold appliances (refrigerators and freezers). We identify a robust long-term decline in both specific price and specific energy consumption of large appliances. Specific prices of wet appliances decline at learning rates (LR) of 29±8% and thereby much faster than those of cold appliances (LR of 9±4%). Our results demonstrate that technological learning leads to substantial price decline, thus indicating that the introduction of novel and initially expensive energy efficiency technologies does not necessarily imply adverse price effects in the long term. By extending the conventional experience curve approach, we find a steady decline in the specific energy consumption of wet appliances (LR of 20-35%) and cold appliances (LR of 13-17%). Our analysis suggests that energy policy might be able to bend down energy experience curves.

  18. Analyzing price and efficiency dynamics of large appliances with the experience curve approach

    International Nuclear Information System (INIS)

    Large appliances are major power consumers in households of industrialized countries. Although their energy efficiency has been increasing substantially in past decades, still additional energy efficiency potentials exist. Energy policy that aims at realizing these potentials faces, however, growing concerns about possible adverse effects on commodity prices. Here, we address these concerns by applying the experience curve approach to analyze long-term price and energy efficiency trends of three wet appliances (washing machines, laundry dryers, and dishwashers) and two cold appliances (refrigerators and freezers). We identify a robust long-term decline in both specific price and specific energy consumption of large appliances. Specific prices of wet appliances decline at learning rates (LR) of 29±8% and thereby much faster than those of cold appliances (LR of 9±4%). Our results demonstrate that technological learning leads to substantial price decline, thus indicating that the introduction of novel and initially expensive energy efficiency technologies does not necessarily imply adverse price effects in the long term. By extending the conventional experience curve approach, we find a steady decline in the specific energy consumption of wet appliances (LR of 20-35%) and cold appliances (LR of 13-17%). Our analysis suggests that energy policy might be able to bend down energy experience curves. (author)

  19. Efficient method for analyzing multiple circular cylindrical nanoparticles on a substrate

    Science.gov (United States)

    Lu, Xun; Lu, Ya Yan

    2016-05-01

    Due to the existing nanofabrication techniques, many metallic or dielectric nanoparticles are cylindrical objects with top and bottom surfaces parallel to a substrate and side boundaries perpendicular to the substrate. In this paper, we develop a relatively simple and efficient semi-analytic method for analyzing the scattering of light by a set of circular cylindrical objects (of finite height) on a layered background. The method relies on expanding the field in one-dimensional modes in layered regions where the material properties change with one spatial variable only, to establish a linear system on the boundaries separating the layered regions. Although the ‘expansion coefficients’ are two-dimensional (2D) functions, they satisfy scalar 2D Helmholtz equations which have analytic solutions due to the special geometry. The method is used to analyze dielectric and metallic circular cylindrical nanoparticles on a substrate or in free space.

  20. Investigation and Analyzing Efficiency of Risk-adjusted Ratios in Portfolio Selection

    OpenAIRE

    Ataie Younes; Rostamzadeh Parviz

    2013-01-01

    The aim of this study is to analyze the efficiency of Risk-adjusted Ratios in portfolio selection in Tehran Stock Exchange. This study was performed on the companies that were active from 2006 until 2010. The winner and loser portfolio of 50 Top companies selected based on Risk-adjusted Ratios in Tehran Stock Exchange and then their performances were compared by the “mean difference” test “one-way Analysis of Variance” (ANOVA) and Tukey test. Results showed that there is a possibility of sele...

  1. Analyzing the structure and the efficiency of research & development activities in Turkey

    OpenAIRE

    TİNTİN, Cem

    2011-01-01

    This paper aims to analyze the structure and the efficiency of Research and Development activities in Turkey. Firstly, we have presented the basic concepts and information about R&D activities. Then, we have investigated the structure of R&D activities in Turkey by using the R&D statistics from different sources. According to this investigation, we have put forward that the level of sources, which have been devoted to R&D activities in Turkey, is very low than advanced countries. And contrary...

  2. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  3. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  4. Integrated Electrorefining Efficiency Test for Pyrochemical Fuel Cycle

    International Nuclear Information System (INIS)

    Pyrochemical processing plays an important role in the development of next generation nuclear reactors and closed nuclear fuel cycle technology. The Idaho National Laboratory (INL) has implemented a pyrochemical process for the treatment of sodium-bonded spent fuel from the Experimental Breeder Reactor-II (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE) [1]. Processing of the spent fuel and associated research and development activities have been integrated into DOE's Advanced Fuel Cycle Initiatives (AFCI) program since 2003. Electrorefining can be considered to be the signature or central technology for pyrochemical processing. In order to assess the efficiencies involved in the electrorefining process, an integrated electrorefining efficiency test was performed in the Mk-IV electrorefiner. This paper summarizes the observations and results obtained from the test. The primary goal of the integrated processing efficiency test is to demonstrate the integrated actinide dissolution and recovery efficiencies typical for the fixed operating parameters that have been applied to Mk-IV electrorefiner (ER) and cathode processor (CP) to treat spent EBR-II driver fuel during the last three years. The findings are of importance for scaling-up the pyroprocess to recover and recycle valuable actinides from spent nuclear fuel. The test was performed in the Mk-IV electrorefiner. The ER is located in the hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex. Descriptions of the major components of the ER and the process in general have been provided elsewhere [2]. Salt and cadmium levels were measured, and multiple samples were obtained prior to performing the integrated test to establish an ER baseline for assessing the test results. The test consisted of four electrorefining batches of spent driver fuel with approximately 50 kg heavy metal. Typically, three to four ER runs are

  5. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  6. Investigation and Analyzing Efficiency of Risk-adjusted Ratios in Portfolio Selection

    Directory of Open Access Journals (Sweden)

    Ataie Younes

    2013-02-01

    Full Text Available The aim of this study is to analyze the efficiency of Risk-adjusted Ratios in portfolio selection in Tehran Stock Exchange. This study was performed on the companies that were active from 2006 until 2010. The winner and loser portfolio of 50 Top companies selected based on Risk-adjusted Ratios in Tehran Stock Exchange and then their performances were compared by the “mean difference” test “one-way Analysis of Variance” (ANOVA and Tukey test. Results showed that there is a possibility of selecting an appropriate portfolio using of the Risk-adjusted Ratios. However M3 measure has better than the other two criteria and the market.

  7. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Butcher, T.A.

    1994-06-01

    Almost half of the energy used for beating in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 boilerhouses with a total capacity of 1,071 MW, and about 100,000 home furnaces with a total capacity of about 300 MW. More than 600 boilerhouses and 60 percent of the home furnaces are situated near the city center. These facilities are referred to as ``low emission sources`` because they have low stacks. They are the primary sources of particulates and hydrocarbons in the city, and major contributors of sulfur dioxide and carbon monoxide. The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in Krakow as the ``Krakow Clean Fossil Fuels and Energy Efficiency Project.`` Funding is provided through the US Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe.

  8. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  9. Krakow clean fossil fuels and energy efficiency project

    International Nuclear Information System (INIS)

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the 'Krakow Clean Fossil Fuels and Energy Efficiency Project.' Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the 'low emission sources' and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide

  10. A new topology of fuel cell hybrid power source for efficient operation and high reliability

    Science.gov (United States)

    Bizon, Nicu

    2011-03-01

    This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.

  11. Analyzing the influence exerted by individual components of wetness losses on the efficiency of steam turbine stage and compartments

    Science.gov (United States)

    Filippov, G. A.; Gribin, V. G.; Avetisyan, A. R.; Lisyanskii, A. S.

    2015-01-01

    The influence exerted by dispersed moisture on the economic efficiency of steam turbine stages and compartments operating in the wet steam region is analyzed. A procedure for generalizing experimental data is proposed that was used for analyzing the previously published results of experiments on determining the influence of different loss components on the efficiency of steam turbine stages and compartments. The influence of coarsely dispersed moisture on the turbine efficiency indicators is shown.

  12. Texas Disasters: Mapping and Analyzing Fuel Loads and Phenology in the Texas Grasslands

    Science.gov (United States)

    Beasley, B.; Holland, A.; Kelehan, K.; Spruce, J.; Reahard, R. R.

    2015-12-01

    In recent years, the risk of severe wildfires has been increasing, in part due to weather phenomena such as sequences of wet and drought years and increasing urban expansion into wildland areas that are vulnerable to seasonal wildfires. This is particularly the case in Texas where grassland ecosystems accrue vegetative growth during wet years that when senesced can be vulnerable to wildfire during a subsequent drought year. The Texas Forest Service (TFS) is tasked with estimating and evaluating potential fire risk to manage and allocate resources for the prevention and containment of possible wildfires across the state. Some of the main components for assessing fire risk in this region are understanding the location and fire risk for available vegetative fuel types, as well as fuel load dynamics. NASA Earth Observations help provide a means for vegetative conditions of wildfire fuels (i.e. land cover types) and related land surface phenology across large temporal and spatial scales. The project was conducted in collaboration with the TFS, using Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat OLI to calculate vegetation indices such as Normalized Difference Vegetation Index, and produce fuel type and fuel load maps. The relative strengths of two satellite sensors were combined, leveraging the temporal resolution of MODIS with the higher spatial resolution of Landsat OLI. The project applied data fusion techniques, resulting in wildfire fuel maps that were created for the 2010-2011 fire season, which saw some of the worst wildfires in recent history, and for the 2014-2015 season to provide a current assessment of wildfire fuels. The end products provided a means to identify and assess wildfire risk in terms of fuel load type. The TFS is using project results to assess the potential for combined use of MODIS and Landsat data in order to better understand potential wildfire fuel loads and risks across the state.

  13. Efficient energy control strategies for a Standalone Renewable/Fuel Cell Hybrid Power Source

    International Nuclear Information System (INIS)

    Highlights: • A load – following control that operates the battery in charge – sustained mode. • A real-time Maximum Efficiency Point Tracking control that saves hydrogen fuel. • A comparative study of four strategies to control the fueling rates of the fuel cell stack. • Four control strategy for the HPS under unknown RES and load power profile are analyzed. • An increase of 3–5% of fuel efficiency was observed for the best strategy proposed. - Abstract: In this paper, four energy control strategies are proposed and analyzed for the standalone Renewable/Fuel Cell Hybrid Power Source (RES/FC HPS). The concept of the load following (LF) and Maximum Efficiency Point Tracking (MEPT) is used to control the fueling rates. A standalone RES/FC HPS uses at least one Renewable Energy Sources (RES) and a Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) as backup source. Photovoltaic (PV) array and wind turbines (WT) farm are used as RES and the surplus of energy during light load stages is stored in hydrogen tank via water electrolysis to fuel the PEMFC. Small-scale RESs and commercially available PEMFCs are interfaced to the common DC bus via power converters and then to the single-phase distribution grid through a voltage source inverter. RES/FC HPS seem to be an efficient alternative for supplying smart houses and isolated sites. This paper proposes a new supervision strategy of the Energy Management Unit (EMU) based on the LF control approach that assures a charge-sustaining (CS) mode for the Energy Storage System (ESS). So, the capacity of the batteries stack can be reduced at minimum if it is directly connected to the DC bus. The ultracapacitors stack compensates dynamically the power flow balance on the DC bus, regulating the DC voltage via a bidirectional buck-boost power converter. Thus, a semi-active hybrid topology is adopted for the ESS having the batteries stack. The MEPT loops ensure an optimized energy management of the RES/FC HPS. The LF

  14. Analyzing the Direct Methanol Fuel Cell technology in portable applications by a historical and bibliometric analysis

    OpenAIRE

    Suominen, A.; Tuominen, A. (Aulis)

    2010-01-01

    The development of direct methanol fuel cell (DMFC) technology through an analysis of research, patenting and commercial adoption is studied in this paper. The analysis uses a dataset gathered from both publication and patent databases. This data is complemented with a review on commercial efforts on portable fuel cells. Bibliometric methods are used to identify research networks and research trends. The Fisher-Pry growth model is used to estimate future research activity. The patent landscap...

  15. An expert system to analyze homogeneity in fuel element plates for research reactors

    International Nuclear Information System (INIS)

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up.This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to X-ray images. These images are generated when the X-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized X-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate. (author)

  16. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O' Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  17. Development and validation of the FEM based global Fuel Rod Analyzer FRA-TF-global

    International Nuclear Information System (INIS)

    Poster summarizes results and experience gained during development of global FRA-TF fuel rod FEM simulator. Step by step is explained design of an AutoCAD 3D model of the WWER-440 typical fuel rod and WWER-1000 typical fuel rod. All the inner fuel rod design parts are modeled and connected in the whole model - object. The transfer of prepared 3D models into the COSMOSDesignSTAR/COSMOSM system was made and the various types of meshing as well as solid type of FEM elements tested. Fuel rod is modeled with all inner design parts appropriately meshed for the thermophysical simulation (thermal field with all thermal sources and heat local and global transfers). Example of the software limitations is given. The FRATFM versions (WWER- 440 and WWER-1000) are using nonlinear thermal solver (HSTAR), static mechanics solver (STAR) and nonlinear (NSTAR) mechanics COSMOSM solver. All materials, thermophysical properties as well as mechanical properties are prepared in the form of COSMOSM library - functions and material curves with temperature dependence and time (expressing burn-up process). Successful implementation of a simulator for the of-line usage at the NPP and its validation against the FEM based integral code FEMAXI is given. Open questions of this type of development and industrial implementation are discussed in the conclusions. Computer techniques and practical applicability is critically commented using real case of a 5 year irradiation history calculation of a typical WWER-1000 fuel rod. This poster closes one phase of our work, which started with classical safety documentation and 2D sketches as input and ended in the modern AutoCADCOSMOSDesignSTAR 3D application delivered to the industry customer. Developed models can be transferred to another FEM based program that has more features. References: Belytschko, T., Liu, W. K., Moran, B.:Nonlinear Finite Elements for Continua and Structures. J. Wiley and Sons Ltd., 2000. Hughes,T.J.R.: The Finite Element Method

  18. Plasmolysis for efficient CO2 -to-fuel conversion

    Science.gov (United States)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  19. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies

    International Nuclear Information System (INIS)

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of the components and applied control strategy. There are many available patterns of combining the power flows to meet load requirements making it difficult to analyze and evaluate a newly designed HEV. In order to enhance design of HEVs, the paper provides a stand alone analytical framework for evaluating energy conversion phenomena of different HEV topologies. Analytical analysis is based on the energy balance equations and considers the complete energy path in the HEVs from the energy sources to the wheels and to other energy sinks. The analytical framework enables structuring large amount of data in physically meaningful energy flows and associated energy losses, and therefore provides insightful information for HEV optimization. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components, since it reveals and quantifies the instruments that could lead to improved energy conversion efficiency of particular HEV. The analytical framework is also applicable for correcting the energy consumption of the HEV to the value corresponding to balanced energy content of the electric storage devices.

  20. OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation

    Science.gov (United States)

    Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.

    2011-01-01

    The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.

  1. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    Science.gov (United States)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  2. Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives

    OpenAIRE

    Anderson, Soren; Parry, Ian; James M. Sallee; FISCHER, Carolyn

    2010-01-01

    This paper discusses fuel economy regulations in the United States and other countries. We first describe how these programs affect the automobile market, including their impacts on fuel use and other dimensions of the vehicle fleet. We then review different methodologies for assessing the costs of fuel economy regulations and discuss what the results of these methodologies imply for policy. Following that, we compare the welfare effects of fuel economy regulations to those of fuel taxes and ...

  3. EVA: Exome Variation Analyzer, an efficient and versatile tool for filtering strategies in medical genomics

    Directory of Open Access Journals (Sweden)

    Coutant Sophie

    2012-09-01

    Full Text Available Abstract Background Whole exome sequencing (WES has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogenic allelic variant(s and the affected gene(s. For this purpose, commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories, new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists have to be autonomous combining themselves different filtering criteria and conduct a personal strategy depending on their assumptions and study design. Results We describe EVA (Exome Variation Analyzer, a user-friendly web-interfaced software dedicated to the filtering strategies for medical WES. Thanks to different modules, EVA (i integrates and stores annotated exome variation data as strictly confidential to the project owner, (ii allows to combine the main filters dealing with common variations, molecular types, inheritance mode and multiple samples, (iii offers the browsing of annotated data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv and finally offers export files and cross-links to external useful databases and softwares for further prioritization of the small subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a new candidate gene

  4. An advanced oxy-fuel power cycle with high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gou, C.; Hong, H. [University of Science and Technology, Beijing (China). Mechanical School; Cai, R. [Chinese Academy of Sciences, Beijing (China). Institute of Engineering Thermophysics

    2006-07-01

    In this article, an innovative oxy-fuel power cycle is proposed as a promising CO{sub 2} emission mitigation solution. It includes two cases with different characteristics in the cycle configuration. Case 1 basically consists of a water steam Rankine cycle and a steam-CO{sub 2} recuperative-reheat cycle. Case 2 integrates some characteristics of Case 1 and a top Brayton cycle. The thermodynamic performances for the design conditions of these two cases were analysed using the advanced process simulator Aspen Plus and the results are given in detail. The corresponding exergy loss analyses were carried out to gain an understanding of the loss distribution. The MATIANT cycle, the CES cycle, and the GRAZ cycle were also evaluated as references. The results demonstrate that the proposed cycle has notable advantages in thermal efficiency, specific work, and technical feasibility compared with the reference cycles. For example, the thermal efficiency of Case 2 is 6.58 percentage points higher than that of the MATIANT cycle. (author)

  5. GASEOUS EMISSIONS AND COMBUSTION EFFICIENCY ANALYSIS OF HYDROGEN-DIESEL DUAL FUEL ENGINE UNDER FUEL-LEAN CONDITION

    OpenAIRE

    Prateep Chaisermtawan; Sompop Jarungthammachote; Sathaporn Chuepeng; Thanya Kiatiwat

    2012-01-01

    Exhaust gas emissions from diesel engine combustion using alternative fuel may change in their quantities that can affect exhaust gas after-treatment devices and environmental ambient. This study presents theoretical analysis of combustion generated emissions and efficiency of hydrogen-diesel duel fuel in fuel-lean condition. A chemical equilibrium method by minimizing Gibbs free energy is employed to estimate exhaust gas products from diesel and hydrogen-diesel mode combustion. The combustio...

  6. Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency

    OpenAIRE

    Kroll, Douglas M.

    2010-01-01

    CIVINS Approved for public release; distribution is unlimited An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel. Operational restrictions limiting fuel use are temporary and cannot be dependably relied upon. Long term technical research toward improving fuel efficiency is ongoing and includes advanced gas turbines and integrated electric propulsion plants, but these will not be implem...

  7. TECHNOLOGY FOR EFFICIENT USAGE OF HYDROCARBON-CONTAINING WASTE IN PRODUCTION OF MULTI-COMPONENT SOLID FUEL

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2016-03-01

    Full Text Available The paper considers modern approaches to usage of hydrocarbon-containing waste as energy resources and presents description of investigations, statistic materials, analysis results on formation of hydrocarbon-containing waste in the Republic of Belarus. Main problems pertaining to usage of waste as a fuel and technologies for their application have been given in the paper. The paper describes main results of the investigations and a method for efficient application of viscous hydrocarbon-containing waste as an energy-packed component and a binding material while producing a solid fuel. A technological scheme, a prototype industrial unit which are necessary to realize a method for obtaining multi-component solid fuel are represented in the paper. A paper also provides a model of technological process with efficient sequence of technological operations and parameters of optimum component composition. Main factors exerting significant structure-formation influence in creation of structural composition of multi-component solid fuel have been presented in the paper. The paper gives a graphical representation of the principle for selection of mixture particles of various coarseness to form a solid fuel while using a briquetting method and comprising viscous hydrocarbon-containing waste. A dependence of dimensionless concentration g of emissions into atmosphere during burning of two-component solid fuel has been described in the paper. The paper analyzes an influence of the developed methodology for emission calculation of multi-component solid fuels and reveals a possibility to optimize the component composition in accordance with ecological function and individual peculiar features of fuel-burning equipment. Special features concerning storage and transportation, advantages and disadvantages, comparative characteristics, practical applicability of the developed multi-component solid fuel have been considered and presented in the paper. The paper

  8. Spin Contrast Variation Study of Fuel-efficient Tire Rubber

    Science.gov (United States)

    Noda, Yohei; Yamaguchi, Daisuke; Hashimoto, Takeji; Shamoto, Shin-ichi; Koizumi, Satoshi; Yuasa, Takeshi; Tominaga, Tetsuo; Sone, Takuo

    The scattering length of a proton against a polarized neutron depends strongly on the polarization of proton spins (PH). This dependence can be utilized for contrast variation in small angle neutron scattering (SANS). We applied this spin contrast variation technique to a silica-filled SBR rubber specimen, which is widely used for tread rubber of fuel-efficient tires. For realizing high PH, we used dynamic nuclear polarization (DNP) technique, in which large polarization of electron spin at low temperature and high magnetic field is transferred to proton spin by microwave irradiation with a tuned frequency. As this electron spin source, we doped stable radical TEMPO (2,2,6,6-tetramethyl piperidine 1-oxyl) into the rubber sample by use of a vapor sorption technique. For the TEMPO-doped rubber sample, SANS measurements were conducted at PH = -20%, 0%, and +13%, with almost fully polarized neutron beam %) with its wavelength of 6.5±0.6 Å. The SANS profile clearly changed as a function of PH, which can be explained by the PH dependence of the neutron scattering length densities of the main three components (SBR, silica and zinc oxide). By a linear transformation of the profiles obtained at the three different PH values, we successfully determined the partial scattering function of silica, which reflects the aggregation of silica particles.

  9. Analyzing Cost Efficient Production Behavior Under Economies of Scope : A Nonparametric Methodology

    OpenAIRE

    Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.

    2006-01-01

    In designing a production model for firms that generate multiple outputs, we take as a starting point that such multi-output production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost efficient behavior under these conditions, and subsequently institute necessary and sufficient conditions for data consistency with such efficient behavior that only include observed firm demand and supply dat...

  10. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    Science.gov (United States)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  11. Integrated indicator to evaluate vehicle performance across: Safety, fuel efficiency and green domains.

    Science.gov (United States)

    Torrao, G; Fontes, T; Coelho, M; Rouphail, N

    2016-07-01

    In general, car manufacturers face trade-offs between safety, efficiency and environmental performance when choosing between mass, length, engine power, and fuel efficiency. Moreover, the information available to the consumers makes difficult to assess all these components at once, especially when aiming to compare vehicles across different categories and/or to compare vehicles in the same category but across different model years. The main objective of this research was to develop an integrated tool able to assess vehicle's performance simultaneously for safety and environmental domains, leading to the research output of a Safety, Fuel Efficiency and Green Emissions (SEG) indicator able to evaluate and rank vehicle's performance across those three domains. For this purpose, crash data was gathered in Porto (Portugal) for the period 2006-2010 (N=1374). The crash database was analyzed and crash severity prediction models were developed using advanced logistic regression models. Following, the methodology for the SEG indicator was established combining the vehicle's safety and the environmental evaluation into an integrated analysis. The obtained results for the SEG indicator do not show any trade-off between vehicle's safety, fuel consumption and emissions. The best performance was achieved for newer gasoline passenger vehicles (performance. On the other hand, for larger engine size vehicles (>2000cm(3)) the combined score for safety user profile was in average more satisfactory than for vehicles in the smaller engine size group (support the decision-making process for transportation policy, safety and sustainable mobility, providing insights not only to policy makers, but also for general public guidance. PMID:27065053

  12. Analyzing Cost Efficient Production Behavior Under Economies of Scope : A Nonparametric Methodology

    NARCIS (Netherlands)

    Cherchye, L.J.H.; de Rock, B.; Vermeulen, F.M.P.

    2006-01-01

    In designing a production model for firms that generate multiple outputs, we take as a starting point that such multi-output production refers to economies of scope, which in turn originate from joint input use and input externalities. We provide a nonparametric characterization of cost efficient be

  13. Analyzing cost efficiency of customer service using the interactive kiosk : The case of Etäpalvelutekniikka Oy

    OpenAIRE

    Nguyen, Ngoc

    2014-01-01

    This research aims to study cost efficiency of customer service using the interactive kiosk. The first objective of my research is to find out how the interactive kiosk can be used to conduct customer service. The second objective of my research is to analyze cost efficiency of customer service using the interactive kiosk. The Chief Executive Officer in Etäpalvelutekniikka Oy commissioned this research. To achieve the research objectives, I studied previous literature and research on the ...

  14. Analyzing the Efficient Execution of In-Store Logistics Processes in Grocery Retailing

    DEFF Research Database (Denmark)

    Reiner, Gerald; Teller, Christop; Kotzab, Herbert

    2013-01-01

    grocery retailers' sales, profits, and image. In our empirical study, we survey in-store logistics processes in 202 grocery supermarkets and hypermarkets belonging to a major retail chain in central Europe. Using a data envelopment analysis (DEA) and simulation, we facilitate process benchmarking. In......In this article, we examine in-store logistics processes for handling dairy products, from the incoming dock to the shelves of supermarkets and hypermarkets. The efficient execution of the in-store logistics related to such fast-moving, sensitive, and essential items is challenging and crucial for...... particular, we identify ways of improving in-store logistics processes by showing the performance impacts of different managerial strategies and tactics. The DEA results indicate different efficiency levels for different store formats; the hybrid store format of the small hypermarket exhibits a comparatively...

  15. Modeling and analyzing of nuclear power peer review on enterprise operational efficiency

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the practice and analysis of peer review in nuclear power plants, the models on the Pareto improvement of peer review, governance entropy decrease of peer review are set up and discussed. The result shows that the peer review of nuclear power is actually a process of Pareto improvement, and of governance entropy decrease. It's a process of improvement of the enterprise operational efficiency accordingly.

  16. EVA: Exome Variation Analyzer, an efficient and versatile tool for filtering strategies in medical genomics

    OpenAIRE

    Coutant Sophie; Cabot Chloé; Lefebvre Arnaud; Léonard Martine; Prieur-Gaston Elise; Campion Dominique; Lecroq Thierry; Dauchel Hélène

    2012-01-01

    Abstract Background Whole exome sequencing (WES) has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogen...

  17. Analyzing the efficiency of small and medium-sized enterprises of a national technology innovation research and development program

    OpenAIRE

    Park, Sungmin

    2014-01-01

    This study analyzes the efficiency of small and medium-sized enterprises (SMEs) of a national technology innovation research and development (R&D) program. In particular, an empirical analysis is presented that aims to answer the following question: “Is there a difference in the efficiency between R&D collaboration types and between government R&D subsidy sizes?” Methodologically, the efficiency of a government-sponsored R&D project (i.e., GSP) is measured by Data Envelopment Analysis (DEA), ...

  18. Application of iron and aluminum electrodes in spectrograph emission for analyzing boron and cadmium in uranium nuclear fuel

    International Nuclear Information System (INIS)

    Analysis of boron and cadmium in nuclear fuel was carried out using iron and aluminum electrodes as well as X-ray film photographic for thorax in emission spectrograph. DC arc excitation source could not be used for iron and aluminum electrodes, since both electrodes melt even at current less than 10 ampere and excitation time less than 2 seconds. AC sparks excitation source using iron and aluminum electrodes could be used for analyzing boron and cadmium after extraction of uranium in nuclear fuel using TBP-kerosene solution. Graphite electrode was also utilized to analyze boron and cadmium with ac sparks method for comparison. X-ray film photographic for thorax was used to replace glass photographic film SA-1. Halogens elements could not be analyzed using this method because they needed higher temperature for excitation. Calibration curves for boron and cadmium were prepared for each electrode for quantitative analysis, sensitivity calculation and detection limit. It was found that the sensitivity for cadmium metal using aluminum electrode was higher than that using iron electrode, even with respect to graphite electrode. Limit of detection of cadmium using aluminum electrode was the lowest although its intercept was the highest. On the other hand, limit of detection of boron using graphite electrode was the lowest but its intercept was the highest. (author)

  19. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  20. Efficiency of membrane electrolyte assembly of hydrogen fuel cells : thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, T.; Marsik, F. [Inst. of Thermomechanics ASCR, Prague (Czech Republic). Dept. of Thermodynamics; Mican, O. [Czech Technical Univ., Prague (Czech Republic). Faculty of Technical and Nuclear Physics, Dept. of Mathematics

    2009-07-01

    The performance of hydrogen fuel cells is limited by water diffusivity and electric conductivity in polymer exchange membrane (PEM) and the redox affinity at the electrodes. This study analyzed gas diffusion electrodes, catalyst layers and the diffusion of protons and water through the PEM from an irreversible thermodynamics point of view. The minimum entropy production principle was used to calculate the unknown transport coefficients in the mass balance equations involving water and proton transport through the membrane. Redox processes in the fuel were described along with the catalytic activity of platinum. The redox affinity of electrochemical reactions taking place at the surfaces were coupled with the catalytic activity of platinum. The entire membrane electrode assembly (MEA) was analyzed and the affect of coupling on the total maximum efficiency was determined. The model was used to derive an explicit relation for the optimal coupling between water diffusion and electro-osmotic flux in a PEM, as well as the relations for the characteristic thickness of a PEM membrane. A 2D numerical simulation of water and electric potential distribution in a membrane for an unsteady loading was used to support the simplified analytic solution.

  1. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    International Nuclear Information System (INIS)

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R ampersand D issues

  2. Nuclear plant analyzer: An efficient tool for training and operational analyses

    International Nuclear Information System (INIS)

    The advanced computer technology available now at low cost, combined with the maturity of the best-estimate engineering codes are the fundamentals of the Nuclear Plant Analyzer (NPA). At Tractebel Energy Engineering (TEE), the RELAP5 advanced thermal-hydraulics code is used as basis for the NPA that is mainly used for the training of simulator instructors and plant personnel. Using the special graphical features of the NPA, a set of six course modules has been prepared to provide an in-depth physical understanding of the main thermal-hydraulic phenomena that dominate nuclear power plant behavior in normal and accidental plant conditions. (author)

  3. Novel Membrane for Highly Efficient Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  4. [Efficient transient expression to analyze miRNA targets in rice protoplasts].

    Science.gov (United States)

    Guo, Ping; Wu, Yao; Li, Jia; Fang, Rongxiang; Jia, Yantao

    2014-11-01

    Compared with the transgenic approach, transient assays provide a convenient alternative to analyze gene expression. To analyze the relationship between miRNAs and their target genes, a rice protoplast system to detect target gene activity was established. The MIRNA and GFP-fused target sequence (or GFP-fused mutated sequence as a non-target control) were constructed into the same plasmid, and then delivered into rice protoplasts. The GFP expression level decreased significantly when the protoplasts were transfected with the plasmid containing GFP-fused target compared to that of the plasmid with non-target sequence either by fluorescence microscopy or qRT-PCR method. Two microRNA genes, osaMIR156 and osaMIR397, and their target sequences were used to prove the feasibility of the rice protoplast transient assay system. This method will facilitate large-scale screening of rice miRNA target in vivo, and may be suitable for functional analysis of miRNAs of other monocot plants that might share the evolutionarily conserved small RNA processing system with rice. PMID:25985526

  5. Analyzing the efficiency of small and medium-sized enterprises of a national technology innovation research and development program.

    Science.gov (United States)

    Park, Sungmin

    2014-01-01

    This study analyzes the efficiency of small and medium-sized enterprises (SMEs) of a national technology innovation research and development (R&D) program. In particular, an empirical analysis is presented that aims to answer the following question: "Is there a difference in the efficiency between R&D collaboration types and between government R&D subsidy sizes?" Methodologically, the efficiency of a government-sponsored R&D project (i.e., GSP) is measured by Data Envelopment Analysis (DEA), and a nonparametric analysis of variance method, the Kruskal-Wallis (KW) test is adopted to see if the efficiency differences between R&D collaboration types and between government R&D subsidy sizes are statistically significant. This study's major findings are as follows. First, contrary to our hypothesis, when we controlled the influence of government R&D subsidy size, there was no statistically significant difference in the efficiency between R&D collaboration types. However, the R&D collaboration type, "SME-University-Laboratory" Joint-Venture was superior to the others, achieving the largest median and the smallest interquartile range of DEA efficiency scores. Second, the differences in the efficiency were statistically significant between government R&D subsidy sizes, and the phenomenon of diseconomies of scale was identified on the whole. As the government R&D subsidy size increases, the central measures of DEA efficiency scores were reduced, but the dispersion measures rather tended to get larger. PMID:25120949

  6. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  7. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    Science.gov (United States)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  8. Analyzing task-based user study data to determine colormap efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ashton, Zoe Charon Maria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turton, Terece [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Samsel, Francesca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-23

    Domain scientists need colormaps to visualize their data and are especially useful for identifying areas of interest, like in ocean data to identify eddies or characterize currents. However, traditional Rainbow colormap performs poorly for understanding details, because of the small perceptual range. In order to assist domain scientists in recognizing and identifying important details in their data, different colormaps need to be applied to allow higher perceptual definition. Visual artist Francesca Samsel used her understanding of color theory to create new colormaps to improve perception. While domain scientists find the new colormaps to be useful, we implemented a rigorous and quantitative study to determine whether or not the new colormaps have perceptually more colors. Color count data from one of these studies will be analyzed in depth in order to determine whether or not the new colormaps have more perceivable colors and what affects the number of perceivable colors.

  9. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  10. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  11. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how the...... fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...

  12. Fuel flexible distributed combustion for efficient and clean gas turbine engines

    International Nuclear Information System (INIS)

    Highlights: • Examined distributed combustion for gas turbines applications using HiTAC. • Gaseous, liquid, conventional and bio-fuels are examined with ultra-low emissions. • Novel design of fuel flexibility without any atomizer for liquid fuel sprays. • Demonstrated fuel flexibility with emissions x and CO, low noise, enhanced stability, higher efficiency and alleviation of combustion instability. Distributed reaction conditions were achieved using swirl for desirable controlled mixing between the injected air, fuel and hot reactive gases from within the combustor prior to mixture ignition. In this paper, distributed combustion is further investigated using a variety of fuels. Gaseous (methane, diluted methane, hydrogen enriched methane and propane) and liquid fuels, including both traditional (kerosene) and alternate fuels (ethanol) that cover a wide range of calorific values are investigated with emphasis on pollutants emission and combustor performance with each fuel. For liquid fuels, no atomization or spray device was used. Performance evaluation with the different fuels was established to outline the flexibility of the combustor using a wide range of fuels of different composition, phase and calorific value with specific focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH* chemiluminescence for the specific fuels at various equivalence ratios are presented. Near distributed combustion conditions with less than 8 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested at heat (energy) release intensity (HRI) of 27 MW/m3-atm. and a rather high equivalence ratio of 0.6. Higher equivalence ratios lacked favorable distributed combustion conditions. For the same conditions, CO emission varied for each fuel; less than 10 ppm were demonstrated for methane based fuels, while heavier liquid fuels provided less than 40 ppm CO emissions. Lower emissions of NO (x can be possible by

  13. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    OpenAIRE

    Wang, Hu; Zheng, Zunqing; Liu, Haifeng; Yao, Mingfa

    2015-01-01

    This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI) combustion, stratification controlled premixed charge compression ignition combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts wi...

  14. Cold-start effects on performance and efficiency for vehicle fuel cell systems

    OpenAIRE

    Gurski, Stephen Daniel

    2002-01-01

    In recent years government, academia and industry have been pursuing fuel cell technology as an alternative to current power generating technologies. The automotive industry has targeted fuel cell technology as a potential alternative to internal combustion engines. The goal of this research is to understand and quantify the impact and effects of low temperature operation has on the performance and efficiency of vehicle fuel cell systems through modeling. More specifically, this work addre...

  15. An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic

    Science.gov (United States)

    AsSadhan, Basil; Moura, José M.F.

    2013-01-01

    Botnets are large networks of bots (compromised machines) that are under the control of a small number of bot masters. They pose a significant threat to Internet’s communications and applications. A botnet relies on command and control (C2) communications channels traffic between its members for its attack execution. C2 traffic occurs prior to any attack; hence, the detection of botnet’s C2 traffic enables the detection of members of the botnet before any real harm happens. We analyze C2 traffic and find that it exhibits a periodic behavior. This is due to the pre-programmed behavior of bots that check for updates to download them every T seconds. We exploit this periodic behavior to detect C2 traffic. The detection involves evaluating the periodogram of the monitored traffic. Then applying Walker’s large sample test to the periodogram’s maximum ordinate in order to determine if it is due to a periodic component or not. If the periodogram of the monitored traffic contains a periodic component, then it is highly likely that it is due to a bot’s C2 traffic. The test looks only at aggregate control plane traffic behavior, which makes it more scalable than techniques that involve deep packet inspection (DPI) or tracking the communication flows of different hosts. We apply the test to two types of botnet, tinyP2P and IRC that are generated by SLINGbot. We verify the periodic behavior of their C2 traffic and compare it to the results we get on real traffic that is obtained from a secured enterprise network. We further study the characteristics of the test in the presence of injected HTTP background traffic and the effect of the duty cycle on the periodic behavior. PMID:25685512

  16. The role of fuel cells and electrolysers in future efficient energy systems

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mathiesen, Brian Vad; Pedersen, Allan S.;

    2012-01-01

    Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing...

  17. On efficiency of use of water-fuel emulsions in power systems

    OpenAIRE

    Gorbanov Timyr Ravilievich; Ilyin Roman Albertovich; Ilyin Albert Konstantinovich

    2011-01-01

    The basic characteristics of water-fuel emulsions, including experimental data of authors on size of diameter of water drops in emulsions are resulted. On this basis estimation of efficiency of emulsion use is made.

  18. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    OpenAIRE

    A. Nesenchuk; A. Begliak; T. Ryzhova; D. Shklovchik; V. Begliak; A. Аbrazovsky

    2014-01-01

    The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  19. Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Andrew Myers

    2005-12-30

    Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

  20. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  1. Use of vegetable oil as fuel to improve the efficiency of cooking stove

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, R.; Karthikeyan, N.S.; Agarwaal, Avinash [Energy Centre, School of Mechanical and Building Sciences, Vellore Institute of Technology University, Vellore 632 014 (India); Sathiyanarayanan, K. [Chemistry Division, School of Science and Humanities, Vellore Institute of Technology University, Vellore 632 014 (India)

    2008-11-15

    In this study, an attempt has been made to use waste vegetable oil as a fuel for a cooking stove. Suitable modifications have been made in the kerosene stove for use with vegetable oil as fuel. The efficiency of the stove using vegetable oil as fuel is observed to be as high as 48.9% as compared to 34.9% with that of a conventional stove when a flat copper bottom vessel is used. Corresponding efficiency increase is also observed with other vessels. (author)

  2. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  3. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  4. Constraints on the Required Number of Debris for the Nuclear Fuel Debris Trapping Efficiency Test

    International Nuclear Information System (INIS)

    It is reported that the percentage of the debris-induced fuel failure covers more than 35% for BWRs. Since debris is produced during nuclear power plant construction or overhaul period, types of debris may be dependent upon plant environment and systems. Debris that can generate the fuel failure is mostly metals having various shapes. Nuclear fuel vendors have their own test facilities for evaluating debris-filtering efficiency of nuclear fuels but every fuel vendor may seem to employ its own debris types for debris-filtering tests. In addition, its test method along with its test facility is different one another. To protect fuels from debris, fuel vendors including KEPCO NF (KEPCO Nuclear Fuel) provide the fuel with debris filtering capacity. During the fuel development process, debris filtering test is usually performed for filtering efficiency measurement. This paper discusses the required number of debris specimens for confident test results considering the constraints such as geometry, significance level, and economy. Debris induced fuel failure is one of major failure mechanism in the nuclear fuel. Therefore, the filtering capability should be implemented in the fuel. Debris filtering performance can be measured through a debris filtering test. In this paper, the constraints on the number of debris specimens was discussed. To guarantee independent filtering event for a specific debris, one must minimize the interference between themselves during the test. In addition, to acquire confident evaluation result, one must use lots of specimens. Trade-off of the two concepts was the motivation of the work. Thus, the authors developed a guidance to determine moderate number of specimen. Some of their work is still being verified, and their final work will also be reported

  5. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    Science.gov (United States)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  6. Rethinking the oilsands : new technologies target fuel use, upgrading efficiencies

    International Nuclear Information System (INIS)

    The Oil Sands Technology Roadmap has plans for the industry to produce 5 million barrels a day of bitumen production by 2030. The volume is in line with the size of the reserve of 175 billion barrels of recoverable oil using known technology. Currently the industry produces 1 million barrels per day and is prepared to raise production to 2 million barrels per day by 2012. However, while thermal recovery technologies open up more of the oil sands for production, they also come with the added cost of fuel for steam generation. Much of the research in the oilsands sector is focused on finding alternative fuels for power and steam and alternate sources of hydrogen for upgrading. A number of upgrading challenges were identified in the roadmap, such as reducing costs, improving the quality of synthetic crude and reducing the increasingly unsustainable use of natural gas consumption for both recovery and upgrading. Upgrading processes were reviewed in this article, with details of coking procedures, primary and secondary upgrading, as well as synthetic crude fractions and refining difficulties. Plans to use oil sands residues as an alternate energy source were discussed, in relation to the advantages of hydro-cracking and higher quality distillates. Details of a project using this procedure at the Nexen/OPTI Long Lake Project were presented. The project is designed to produce its own electricity and fuel, resulting in significant operating cost reductions. Suncor is also currently looking at gasification of by-products. Deer Creek's Joslyn oilsands project is currently testing Multi-Phase Superfine Atomized Residue (MSAR), which is a fuel designed to replace natural gas and is comprised of 70 per cent bitumen and 30 per cent water, with trace amounts of surfactants. Quadrise Canada Fuel Systems owns the rights to the new technology. MSAR is currently much cheaper than natural gas and there is an endless supply. It was suggested that delays in the Mackenzie Valley Pipeline

  7. Round Trip Energy Efficiency of NASA Glenn Regenerative Fuel Cell System

    Science.gov (United States)

    Garcia, Christopher P.; Chang, Bei-jiann; Johnson, Donald W.; Bents, David J.; Scullin, Vincent J.; Jakupca, Ian J.; Scullin, Vincent J.; Jakupca, Ian J.

    2006-01-01

    NASA Glenn Research Center (GRC) has recently demonstrated a Polymer Electrolyte Membrane (PEM) based hydrogen/oxygen regenerative fuel cell system (RFCS) that operated for a charge/discharge cycle with round trip efficiency (RTE) greater than 50 percent. The regenerative fuel cell system (RFCS) demonstrated closed loop energy storage over a pressure range of 90 to 190 psig. In charge mode, a constant electrical power profile of 7.1 kWe was absorbed by the RFCS and stored as pressurized hydrogen and oxygen gas. In discharge mode, the system delivered 3 to 4 kWe of electrical power along with product water. Fuel cell and electrolyzer power profiles and polarization performance are documented in this paper. Individual cell performance and the variation of cell voltages within the electrochemical stacks are also reported. Fuel cell efficiency, electrolyzer efficiency, and the system RTE were calculated from the test data and are included below.

  8. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  9. A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Lee, Doohwan; Lee, Hyun Chul; Lee, Kang Hee; Kim, Soonho

    A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells (PEMFCs) has been developed at the Samsung Advanced Institute of Technology (SAIT). The fuel processor, referred to as SFP-2, consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume including insulation is exceptionally small, namely, about 14 l. The SFP-2 produces hydrogen at 1000 l h -1 (STP) at full load with the carbon monoxide concentration in the process gas below 7000 ppmv (dry gas base). The maximum thermal efficiency is ∼78% (lower heating value) at full load and even ∼72% at 25% partial load. This fuel processor of small size with high thermal efficiency is one of the best such technologies for the above given H 2 throughputs. The time required for starting up the SFP-2 is within 20 min with the addition of external heating for the shift reactor. No additional medium, such as nitrogen, is required either for start-up or for shut down of the SFP-2, which is an advantage for application in residential PEMFC co-generations systems.

  10. GASEOUS EMISSIONS AND COMBUSTION EFFICIENCY ANALYSIS OF HYDROGEN-DIESEL DUAL FUEL ENGINE UNDER FUEL-LEAN CONDITION

    Directory of Open Access Journals (Sweden)

    Prateep Chaisermtawan

    2012-01-01

    Full Text Available Exhaust gas emissions from diesel engine combustion using alternative fuel may change in their quantities that can affect exhaust gas after-treatment devices and environmental ambient. This study presents theoretical analysis of combustion generated emissions and efficiency of hydrogen-diesel duel fuel in fuel-lean condition. A chemical equilibrium method by minimizing Gibbs free energy is employed to estimate exhaust gas products from diesel and hydrogen-diesel mode combustion. The combustion products, e.g., unburned hydrocarbons (CH4, hydrogen (H2, carbon dioxide (CO2, carbon monoxide (CO are comparatively investigated, based upon similar specific energy input. Subsequently, the obtained combustible products (CH4, H2 and CO are used to calculate combustion efficiency, based upon chemical energy left in waste exhaust gases. The main findings are associated with the reduction in CO2 corresponding to the increase in combustion efficiency in hydrogen-diesel combustion mode, depending on relative air-to-fuel ratios. Meanwhile, the CH4, H2 and CO contents in the flue gas increase in the operating conditions used

  11. Study of the performance of Efficiency Tracing technique on a TriCarb 2100TR liquid scintillation analyzer

    International Nuclear Information System (INIS)

    The liquid scintillation Efficiency Tracing (ET) technique is a practical method of quantifying radionuclides being analyzed in a liquid scintillation analyzer. This technique has several advantages over conventional liquid scintillation methods: no quench curve (quenched standard set) is required for each nuclide being analyzed; only a single unquenched 14C sample (same as that used to normalize the liquid scintillation analyzer) is required to calculate radionuclide activity (DPM) or concentration; the technique can be used effectively for almost all pure beta and beta-gamma emitters (minimum energy = 70 keV). A Tri-Carb 2100TR Liquid Scintillation Analyzer from Packard was used to perform a series of experimental works to assess performances of ET method. In this paper are presented the results obtained for activity determination of 14C samples with various quench and activity levels. The experimental tests were made using both the ET method implemented on the analyzer by the producer and our ET method, using the reference spectrum of the unquenched 14C standard, used to normalize the liquid scintillation analyzer. The results indicate that the measured values using implicit ET method are in good agreement (uncertainty ≤ 3,5 %) with the reference values only for samples with a quenching level not very high (quenching indicating parameter tSIE > 200 - 300). Otherwise, using our ET method, good results (percent recovery more than 96.5%) were obtained for any quenching level (tSIE > 100) even at a count rate level one order of magnitude lower than it is recommended for this method. (author)

  12. Using LMDI method to analyze the change of China's industrial CO{sub 2} emissions from final fuel use: An empirical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lancui; Fan Ying; Wu Gang [Center for Energy and Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100080 (China); Center of Forecasting Sciences, Chinese Academy of Sciences, Beijing 100080 (China); Wei Yiming [Center for Energy and Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100080 (China); Center of Forecasting Sciences, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: ymwei@deas.harvard.edu

    2007-11-15

    Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998-2005. The changes of industrial CO{sub 2} emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO{sub 2} emissions. The overwhelming contributors to the change of China's industrial sectors' carbon emissions in the period 1998-2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998-2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002-2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial

  13. Using LMDI method to analyze the change of China's industrial CO{sub 2} emissions from final fuel use: An empirical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lan-Cui; Fan, Ying; Wu, Gang; Wei, Yi-Ming [Chinese Academy of Sciences, Beijing (China). Institute of Policy and Management, Center for Energy and Environmental Policy Research; Chinese Academy of Sciences, Beijing (China). Center of Forecasting Sciences

    2007-11-15

    Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998-2005. The changes of industrial CO{sub 2} emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO{sub 2} emissions. The overwhelming contributors to the change of China's industrial sectors' carbon emissions in the period 1998-2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998-2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002-2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial

  14. High-efficiency spin-resolved and spin-integrated electron detection: Parallel mounting on a hemispherical analyzer

    Science.gov (United States)

    Ghiringhelli, G.; Larsson, K.; Brookes, N. B.

    1999-11-01

    We have mounted a compact 25 kV mini-Mott spin polarimeter on a commercial high-throughput hemispherical electron analyzer with a double purpose: to maximize the polarization detection and to preserve the original efficiency of the spectrometer in the spin-integrated measurements. We have thus replaced the 16-anode microchannel-plate detector with a 12-anode microsphere-plate detector in parallel with a Rice University retarding Mott spin polarimeter. Passing from one detection mode to the other is quick and easy. The transfer optics from the analyzer exit slit to the scattering target of the polarimeter allows the full potential of both the electron analyzer and the spin detector to be exploited. The expected effective Sherman function (Seff=0.17) and figure of merit (η0≅1.4×10-4) are found in the spin-resolved mode, and only 25% of the original efficiency is lost in the spin-integrated acquisitions.

  15. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  16. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  17. Efficiency of ideal fuel cell and Carnot cycle from a fundamental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh, H.; Mansouri, S.H.

    2005-06-15

    In this paper, we accept the fact that fuel cell and heat engine efficiencies are both constrained by the second law of thermodynamics and neither one is able to break this law. However, we have shown that this statement does not mean the two systems should have the same maximum thermal efficiency when being fed by the same amounts of chemical reactants. The intrinsic difference between fuel cells (electrochemical systems) and heat engines (combustion engines) efficiencies is a fundamental one with regard to the conversion of chemical energy of reactions into electrical work. The sole reason has been shown to be due to the combustion irreversibility of the latter. This has led to the statement that fuel cell efficiency is not limited by the Carnot cycle. Clarity is achieved by theoretical derivations and several numerical examples. (author)

  18. Development of breached pin performance analysis code SAFFRON (System of Analyzing Failed Fuel under Reactor Operation by Numerical method)

    Energy Technology Data Exchange (ETDEWEB)

    Ukai, Shigeharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1995-03-01

    On the assumption of fuel pin failure, the breached pin performance analysis code SAFFRON was developed to evaluate the fuel pin behavior in relation to the delayed neutron signal response during operational mode beyond the cladding failure. Following characteristic behavior in breached fuel pin is modeled in 3-dimensional finite element method : pellet swelling by fuel-sodium reaction, fuel temperature change, and resultant cladding breach extension and delayed neutron precursors release into coolant. Particularly, practical algorithm of numerical procedure in finite element method was originally developed in order to solve the 3-dimensional non-linear contact problem between the swollen pellet due to fuel-sodium reaction and breached cladding. (author).

  19. Fuel Efficient Galaxies: Sustaining Star Formation with Stellar Mass Loss

    CERN Document Server

    Leitner, Samuel N

    2010-01-01

    We examine the importance of secular stellar mass loss for fueling ongoing star formation in disk galaxies during the late stages of their evolution. For a galaxy of a given stellar mass, we calculate the total mass loss rate of its entire stellar population using star formation histories derived from the observed evolution of the M*-star formation rate relation, along with the predictions of standard stellar evolution models for stellar mass loss for a variety of initial stellar mass functions. Using cosmological simulations of galaxy formation, we test a prescription for modeling the rate at which gas that was returned by stars to interstellar medium will be consumed by star formation. Our model shows that recycled gas from stellar mass loss can provide most or all of the fuel required to sustain the current level of star formation in late type galaxies. Stellar mass loss can therefore remove the tension between the low gas infall rates that are derived from observations and the relatively rapid star format...

  20. Household fuel expenditure and residential building energy efficiency ratings in Ireland

    International Nuclear Information System (INIS)

    This paper examines the relationship between residential buildings' energy efficiency labels and household energy expenditure, complementing an existing literature comparing theoretical and actual energy use. Residential building energy performance certificates indicate a theoretical energy use based on standardised assumptions about occupancy and energy service demand and are a market signal about the energy performance of a property. This paper quantifies the empirical relationship between households’ expenditure on fuel and building energy performance using household expenditure survey data from the Republic of Ireland. The extent of this relationship, i.e. the size of the elasticity parameter, is of direct relevance to policy makers in the context of energy efficiency and climate policy targets. With building energy efficiency measured as a 15-point scale, we find that each rating decline along the scale is associated with a reduction in energy expenditure of 1.6%. - Highlights: • We model estimate building energy efficiency as function of building characteristics. • We estimate fuel expenditure as function of energy efficiency and household types. • Shows how expenditure by fuel type differs with building energy efficiency. • We report fuel expenditure elasticity of residential building energy efficiency

  1. The impact of energy efficient refurbishment on the space heating fuel consumption in English dwellings

    OpenAIRE

    S. H. HONG; Oreszczyn, T.; Ridley, I.; Warm Front Study Grp

    2006-01-01

    The aim of this study is to examine the effect of a major domestic energy efficiency refurbishment programme on domestic space heating fuel consumption. The case study dwellings were monitored either before or after (or both) the introduction of energy efficiency retrofit measures such as cavity wall insulation, loft insulation, draught stripping and energy efficient heating system. Property and utility consumption data were collected and half-hourly living room and main bedroom temperatures ...

  2. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  3. Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency

    International Nuclear Information System (INIS)

    There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over have been proposed. These new disposals have made it possible to introduce the concept of long term storage and retrievability and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  4. A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells

    OpenAIRE

    Favaro, Marco

    2014-01-01

    The PhD project has been performed in the Surfaces and Catalysts group active in the Department of Chemical Sciences, within the frame of the grant “A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells”, funded by CARIPARO foundation. The project has been focused on the preparation and characterization of new carbon-based materials for applications in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), also known as oxygen-hydrogen FCs. The pr...

  5. Changes in Household Fuel Expenditure Associated with Improvements in Building Energy Efficiency

    OpenAIRE

    Curtis, John; Pentecost, Anne

    2014-01-01

    This paper combines data on residential building energy performance certificates (EPC) and household energy expenditure to estimate expenditure equations (Engel curves) as a function of building energy efficiency and household characteristics. Engle curves for gas, oil, electricity, solid fuel, and aggregate fuel expenditure are estimated for a sample of 5,891 households in the Republic of Ireland. With building energy performance measured using a 7 point letter scale (A to G) our results fin...

  6. Fuel efficiency and CO2 emissions of biomass based haulage in Ireland - A case study

    OpenAIRE

    Devlin, Ger; Klvac, Radomir; McDonnell, Kevin

    2013-01-01

    The purpose of this study was to analyse how biomass based haulage in Ireland performed as a measure of efficiency under 4 main criteria; distance travelled, fuel consumption, fuel consumption per unit of biomass hauled and diesel CO2 emissions. The applicability of truck engine diagnostic equipment was tested to analyse the schedule of engine data that could be recorded in real-time from a 5 axle articulated biomass truck. This identified how new on board truck technology in Ireland could be...

  7. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    OpenAIRE

    Wah Ching Lee; Kim Fung Tsang; Hao Ran Chi; Faan Hei Hung; Chung Kit Wu; Kwok Tai Chui; Wing Hong Lau; Yat Wah Leung

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity fo...

  8. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  9. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  10. Sustainability of the Chinese nuclear expansion: Natural uranium resources availability, Pu cycle, fuel utilization efficiency and spent fuel management

    International Nuclear Information System (INIS)

    Highlights: • We simulated 4 different future nuclear fuel cycle scenarios. • The ADS and FRs impact on the future Chinese nuclear fuel cycle is studied. • The partition and transmutation option is compared against the simple reprocessing. • The U requirement, Pu flow and MA cycle are key aspects for decision makers. - Abstract: The civil nuclear energy deployment in China is important for future “Nuclear Renaissance” of China and worldwide. Compared to the other nations that developed their nuclear power energy system in last century, China can take advantage of the research and mistakes made by those states in relation to the back-end of the nuclear fuel cycle (NFC). The spent fuel accumulated by decades of operations of civil nuclear power is today a big burden for the industry. China must carefully plan the NFC for a sustainable development of the nuclear energy with special consideration to close the fuel cycle. The present paper addresses the NFC options and implications of a LWR scenario development and of a fast reactor park developed after 2035 and 2050, and covers the historical development of nuclear energy in China (i.e. from the first criticality of the first reactor) to the year 2100. The paper studies the partition and transmutation strategy with the use of accelerator driven system (ADS) to burn the minor actinides (MA) to understand the ADS impact on the NFC and to estimate the number and the necessary deploying schedule of the ADS reactors to limit the minor actinides stock build up. The other aspects taken into consideration for the comparison of the different scenarios are the natural uranium resourced used, the efficiency of fuel utilization, the proliferation and diversion risks associated to each scenario and the overall spent fuel production and flow. The code INFCIS developed by the International Atomic Energy Agency (IAEA) is used in the present study

  11. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  12. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  13. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    CERN Document Server

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  14. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    OpenAIRE

    Hahn, Robert; Wagner, Stefan; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and te...

  15. Fuel efficiency and fouling control coatings in maritime transport

    DEFF Research Database (Denmark)

    Lindholdt, Asger

    has been made. Also, the advantages and disadvantages of the reported methods are listed; these provide an assessment of the most efficient methods to quantify the drag performance of FCCs. In addition, the main parameters impacting FCCs and the main findings for the drag performance of the mostly...... with a radius of 11.45 cm. The drag performances in the newly applied coating condition and after one month of static immersion in natural seawater were measured using a friction disk machine (FDM). The four best performing coatings were re-examined for their drag performance after an additional 2...

  16. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  17. Fuel poverty and energy efficiency obligations – A critical assessment of the supplier obligation in the UK

    International Nuclear Information System (INIS)

    Energy efficiency obligations (or white certificates) are increasingly used to reduce carbon emissions. While the energy efficiency obligations were originally intended as carbon reduction and not fuel poverty policies, due to recognition of the potential for regressive outcomes they often include provisions for vulnerable and low-income customers. Intuitively, reducing carbon emissions and alleviating fuel poverty seem to be two sides of the same coin. There are, however, considerable tensions between the two when addressed through energy efficiency obligations, particularly arising from the potentially regressive impacts of rising energy prices resulting from such obligations, but also the complexity of targeting fuel poor households and the implications for deliverability. Despite those tensions, the UK government decided to use energy efficiency obligations, the supplier obligation, as the main policy for reducing fuel poverty. In light of the proposals, this paper provides an analysis of the main tensions between carbon reduction and fuel poverty alleviation within energy efficiency obligations, outlines the fuel poverty provisions of the British Supplier Obligation, assesses its rules for identifying the fuel poor, and provides a critical analysis of the planned policy changes. Based on this analysis, alternative approaches to targeting fuel poverty within future supplier obligations are proposed. - Highlights: • First comprehensive analysis of energy savings obligations and fuel poverty. • Systematic comparison of targeting efficiency of fuel poverty programmes. • Critical analysis of fuel poverty provisions in British supplier obligations. • Proposal of a new approach to targeting fuel poverty within energy savings obligations

  18. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  19. Direct measurement of the overall efficiency and annual fuel consumption of residential oil-fired boilers. Annual report, Fiscal Year 1977. Burner-boiler/furnace efficiency test project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, J E; Allen, T W; McDonald, R J; Hoppe, R J; Salzano, F J; Berlad, A L

    1978-01-01

    A direct measurement procedure has provided accurate evaluation of the efficiency of residential heating units during full-load and part-load operation. Laboratory-measured efficiency data for each heating unit are translated into a more useful form as annual fuel consumption and fuel-weighted seasonal efficiency values. The changes in fuel use and seasonal efficiency are evaluated for variations in operating conditions, including: geographic location, design head load of the building, domestic hot water use, and design fuel-firing rate. The combination of direct, accurate efficiency measurement and calculation of annual fuel use provide a standard method for comparison of individual heating units and retrofit modifications on a common and realistic basis. The cost-effectiveness and payback periods of equipment modifications can be quantitatively evaluated.

  20. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    Energy Technology Data Exchange (ETDEWEB)

    Kappel, J.; Vad Mathiesen, B.

    2013-04-15

    The purpose of this report is to evaluate the fuel efficiency of selected alternative fuels based on vehicle performance in a standardised drive cycle test. All studies reviewed are either based on computer modelling of current or future vehicles or tests of just one alternative fuel, under different conditions and concentrations against either petrol or diesel. No studies were found testing more than one type of alternative fuel in the same setup. Due to this one should be careful when comparing results on several alternative fuels. Only few studies have been focused on vehicle energy efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization for methanol-ethanol fuel mixes. (Author)

  1. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  2. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    International Nuclear Information System (INIS)

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle

  3. 48 CFR 908.1170 - Leasing of fuel-efficient vehicles.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Leasing of fuel-efficient vehicles. 908.1170 Section 908.1170 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Leasing of Motor Vehicles 908.1170 Leasing...

  4. 49 CFR 575.106 - Tire fuel efficiency consumer information program.

    Science.gov (United States)

    2010-10-01

    ...) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) CONSUMER... areas of fuel efficiency, safety, and durability. (b) Purpose. The purpose of this section is to aid... rim diameters of 12 inches or less, or to limited production tires as defined in § 575.104(c)(2)....

  5. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    Directory of Open Access Journals (Sweden)

    A. Nesenchuk

    2013-01-01

    Full Text Available The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  6. 48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.

    Science.gov (United States)

    2010-10-01

    ... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel efficiency. Link to an amendment published at 75 FR 57695, Sept. 22, 2010. As prescribed in 48 CFR 970.2307-2... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle...

  7. EFFICIENCY ESTIMATION OF THERMAL POWER PLANT WITHOUT DIVIDING FUEL CONSUMPTION IN PRODUCT TYPES

    OpenAIRE

    A. E. Piir; V. B. Kuntysh

    2016-01-01

    Combined Thermal Power Plant unit is considered as an exergy generator. Exergy is supplied to consumers by streams of various power carriers. It allows to exclude division of the equipment and fuel consumption in product types and to propose extremely simple methods for estimation of the unit efficiency, calculation of power rate supplied from Thermal Power Plant bus bars and collectors. 

  8. Disturbance rejection in diesel engines for low emissions and high fuel efficiency

    NARCIS (Netherlands)

    Criens, C.H.A.; Willems, F.P.T.; Keulen, T.A.C. van; Steinbuch, M.

    2015-01-01

    This brief presents a novel and time-efficient control design for modern heavy-duty diesel engines using a variable geometry turbine and an exhaust gas recirculation valve. The goal is to simultaneously and robustly achieve low fuel consumption and low emissions of nitrogen oxides (NOx) and particul

  9. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Science.gov (United States)

    2010-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact) shall...

  10. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  11. The role of fuel cells and electrolysers in future efficient energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vang Hendriksen, P.; Pedersen, Allan S.; Linderoth, S. [Technical Univ. of Denmark. DTU Energy Conversion, Roskilde (Denmark); Vad Mathiesen, B. [Aalborg Univ.. Dept. of Development and Planning, Aalborg (Denmark)

    2012-11-15

    Fuel cells possess a number of other characteristics which make them relevant to many different applications in the future energy system. They are by nature modular and may thus be used at a wide variety of scales: from battery replacements (0.1-1 kW), through combined heat and power (CHP) for single houses (1-10 kW) and decentralised units (100 kW-5 MW), to large centralised power and CHP plants (100-500 MW). Fuel cells may also be operated in reverse mode, as electrolysers, to convert electrical energy to chemical energy. An example is the reduction of steam to hydrogen and CO{sub 2} to CO; using well-known catalytic routes the resulting gases can be further converted to a range of hydrocarbons which may be used as transport fuels, such as methanol, DME and even synthetic diesel. Several different types of fuel cells exist. They can be classified by the type of electrolyte used. All have their advantages and disadvantages, but none has to date matured to a level where fuel cells are in widespread commercial use or play a significant role in the energy system. Alkaline fuel cells have been used for space and military applications but are expensive and challenging to use in other applications. Phosphoric acid (PAFC), molten carbonate (MCFC) and alkaline (AFC) fuel cells have historically attracted a lot of R and D, but still face a number of challenges for commercial use. Low- and high-temperature PEM and solid oxide (SOFC) fuel cells are currently attracting the largest development efforts for CHP and transport applications. Domestic CHP units based on both PEMFCs and SOFCs have recently been launched by industrial suppliers as have larger units for distributed generation. Fuel cells and electrolysis cells are still to enter a wide spread use, but the technologies have great potential in a future more efficient and more sustainable energy system. (LN)

  12. Results of post-irradiation examination to validate WWER-440 and WWER-1000 fuel efficiency at high burnups

    International Nuclear Information System (INIS)

    During the last 10 years on the basis of commercial operation of WWER reactors, a conversion from three to four year fuel cycle operation has been succeeded for WWER-440 fuel. This paper presents the examinations of fuel rods and fuel assemblies operated at different NPPs of Russia and Eastern Europe. Three WWER-440 fuel assemblies with different burnups and different irradiation in the core (3, 4 and 5 years fuel cycle) have passed full-scale examinations including both: destructive and non-destructive methods. The results of examinations have revealed that the irregularity of the field of the energy release may result in increased cladding oxidation. A validation of WWER-440 and WWER-1000 fuel efficiency during 4 and 5 years fuel cycles is also made on the basis of assessment of fuel rod and assembly mechanical state and changes in their geometry. The status of the fuel column including grain size, fuel swelling, rim layer and fission gas release depending on fuel burnup are investigated. During examinations mechanical properties and oxidation of the cladding, mechanical and corrosion state of the spacer grid, ultimate stress, hardness and plasticity of central tube and relaxation of spring unit are studied at the maximal fuel burnup 64 MWd/kgU for WWER-440 and 58 MWd/kgU for WWER-1000. Based on the examination results for the principal parameters determined fuel resource (variation in form, material structure and properties, corrosion resistance of the claddings, FGR form the fuel, fuel cladding interaction degree) reliable fuel operation at the burnups corresponding to four and five fuel cycles may be predicted. None of fuel efficiency factors in up-to date FA design are limited for operation during five fuel cycles

  13. PURCHASE AND UTILIZATION OF NEW FUEL EFFICIENT VEHICLES IN THE US: EVIDENCE FROM THE 2009 NATIONAL HOUSEHOLD TRANSPORTATION SURVEY DATA

    Directory of Open Access Journals (Sweden)

    Qing Su

    2014-01-01

    Full Text Available This paper applies a simultaneous equation model to examine the relationship between choices of new fuel efficient vehicles and their utilization using the 2009 NHTS data. The regression results indicate that travelers purchasing new fuel efficient vehicles with a fuel economy of at least 30 mpg drive more on a monthly basis than others owning a new vehicle with lower fuel economy. In addition, those who travel more are more likely to purchase a new fuel efficient vehicle with a fuel economy of at least 30 mpg in the study period. The gasoline price has a significant negative impact on new vehicle utilization while a significant positive impact on choices of new vehicles with a fuel economy of at least 30 mpg.

  14. Solid oxide fuel cell and biomass gasification systems for better efficiency and environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Colpan, C. Ozgur [Carleton Univ., Ottawa, ON (Canada). Mechanical and Aerospace Engineering Dept.; Hamdullahpur, Feridun [Waterloo Univ., ON (Canada). Mechanical and Mechatronics Engineering Dept.; Dincer, Ibrahim [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2010-07-01

    In this paper, a conventional biomass fueled power production system is compared with a SOFC and biomass gasification system in terms of efficiency and greenhouse gas emissions. A heat transfer model of the SOFC and thermodynamic models for the other components of the systems are used to find the performance assessment parameters of the systems. These parameters are taken as electrical and exergetic efficiencies. In addition, specific greenhouse gas emissions are calculated to evaluate the impact of these systems on the environment. The results show that the SOFC and biomass gasification system has higher electrical and exergetic efficiencies and lower greenhouse gas emissions. (orig.)

  15. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wah Ching Lee

    2015-01-01

    Full Text Available A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.

  16. A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.

    Science.gov (United States)

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  17. Analysis of Twenty-Two Performance Properties of Diesel, Gasoline, and Jet Fuels Using a Field-Portable Near-Infrared (NIR) Analyzer.

    Science.gov (United States)

    Brouillette, Carl; Smith, Wayne; Shende, Chetan; Gladding, Zack; Farquharson, Stuart; Morris, Robert E; Cramer, Jeffrey A; Schmitigal, Joel

    2016-05-01

    The change in custody of fuel shipments at depots, pipelines, and ports could benefit from an analyzer that could rapidly verify that properties are within specifications. To meet this need, the design requirements for a fuel analyzer based on near-infrared (NIR) spectroscopy, such as spectral region and resolution, were examined. It was found that the 1000 to 1600 nm region, containing the second CH overtone and combination vibrational modes of hydrocarbons, provided the best near-infrared to fuel property correlations when path length was taken into account, whereas 4 cm(-1) resolution provided only a modest improvement compared to 16 cm(-1) resolution when four or more latent variables were used. Based on these results, a field-portable near-infrared fuel analyzer was built that employed an incandescent light source, sample compartment optics to hold 2 mL glass sample vials with ∼1 cm path length, a transmission grating, and a 256 channel InGaAs detector that measured the above stated wavelength range with 5-6 nm (∼32 cm(-1)) resolution. The analyzer produced high signal-to-noise ratio (SNR) spectra of samples in 5 s. Twenty-two property correlation models were developed for diesel, gasoline, and jet fuels with root mean squared error of correlation - cross-validated values that compared favorably to corresponding ASTM reproducibility values. The standard deviations of predicted properties for repeat measurements at 4, 24, and 38℃ were often better than ASTM documented repeatability values. The analyzer and diesel property models were tested by measuring seven diesel samples at a local ASTM certification laboratory. The standard deviations between the analyzer determined values and the ASTM measured values for these samples were generally better than the model root mean squared error of correlation-cross-validated values for each property. PMID:27006025

  18. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Directory of Open Access Journals (Sweden)

    Yen Kuei Tseng, Hsien Chang Cheng

    2011-07-01

    Full Text Available In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series burning tests, the fuel saving can be over 8~15%. Also, from the comparison of decline for the heat value and total energy output of varies emulsified fuel, one can find that the water as the dispersed phase in the combustion process will leading a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, that means the reduction of the exhaust gas is truly effectively. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  19. The Role of X-Ray Diffraction for Analyzing Zr-Sn-Nb-Fe Alloys as Power Reactor Fuel Cladding

    International Nuclear Information System (INIS)

    Synthesis of Zr- 1%Nb- 1%Sn- 1%Fe alloy is undertaken in order to develop fuel cladding alloy at high burn-up. Powder specimens of Zr-Sn-Nb-Fe alloy were prepared and then formed into pellets with a dimension of 10 mm in height x 10 mm in diameter using a pressure of 1.2 ton/cm2. The 5 gram green pellets were then melted in an arc furnace crucible under argon atmosphere. The pressure in the furnace was set at 2 psi and the current was 50 A. Afterwards, the ingots were heated at a temperature of 1100 oC for 2 hours and subsequently quenched in water. The ingots then underwent annealing at temperatures of 400 oC, 500 oC, 600 oC, 700 oC, and 750 oC for 2 hours. The specimens were analyzed using X-ray diffraction in order to construct diffractograms. Results of the diffraction patterns were fitted with data from JCPDF (Joint Committee Powder Diffraction File) to determine the type of crystals in the elements or substances. The greater the crystallite dimension, the smaller the dislocation density. Agreeable results for hardening or strengthening were obtained at annealing temperatures of 500 oC and 700, whereas for softening or residual stress at 600 oC and 750 oC. The nucleation of the secondary phase precipitate (SPP) was favourable at annealing temperatures of 400 oC, 500 oC, and 700 oC. For Zr- 1%Nb- 1%Sn- 1%Fe alloy with annealing temperatures between 400 oC to 800 oC, precipitates of Fe2Nb, ZrSn2,FeSn, SnZr, NbSn2, Zr0.68Nb0.25Fe0.08, Fe2Nb0.4Zr0.6, Fe37Nb9Zr54, and ω-Zr were observed. Satisfactory precipitate stabilization was achieved at annealing temperature of 800 oC, growth of precipitates at temperature between 500 oC to 600 oC, and minimization of precipitate size at 700 oC. (author)

  20. The Role of X-Ray Diffraction for Analyzing Zr-Sn-Nb-Fe Alloys as Power Reactor Fuel Cladding

    Directory of Open Access Journals (Sweden)

    Sugondo

    2010-08-01

    Full Text Available Synthesis of Zr-1%Nb-1%Sn-1%Fe alloy is undertaken in order to develop fuel cladding alloy at high burn-up. Powder specimens of Zr-Sn-Nb-Fe alloy were prepared and then formed into pellets with a dimension of 10 mm in height 10 mm in diameter using a pressure of 1.2 ton/cm2. The 5 gram green pellets were then melted in an arc furnace crucible under argon atmosphere. The pressure in the furnace was set at 2 psi and the current was 50 A. Afterwards, the ingots were heated at a temperature of 1100°C for 2 hours and subsequently quenched in water. The ingots then underwent annealing at temperatures of 400°C, 500°C, 600°C, 700°C, and 750°C for 2 hours. The specimens were analyzed using X-ray diffraction in order to construct diffractograms. Results of the diffraction patterns were fitted with data from JCPDF (Joint Committee Powder Diffraction File to determine the type of crystals in the elements or substances. The greater the crystallite dimension, the smaller the dislocation density. Agreeable results for hardening or strengthening were obtained at annealing temperatures of 500°C and 700, whereas for softening or residual stress at 600°C and 750°C. The nucleation of the secondary phase precipitate (SPP was favourable at annealing temperatures of 400°C, 500°C, and 700°C. For Zr-1%Nb-1%Sn-1%Fe alloy with annealing temperatures between 400°C to 800°C, precipitates of Fe2Nb, ZrSn2,FeSn, SnZr, NbSn2, Zr0.68Nb0.25Fe0.08, Fe2Nb0.4Zr0.6, Fe37Nb9Zr54, and ω-Zr were observed. Satisfactory precipitate stabilization was achieved at annealing temperature of 800°C, growth of precipitates at temperature between 500°C to 600°C, and minimization of precipitate size at 700°C.

  1. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... parts 523 and 535), which were published in the Federal Register of Thursday, September 15, 2011 (76 FR... Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles AGENCY... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty...

  2. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  3. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    OpenAIRE

    Yen Kuei Tseng, Hsien Chang Cheng

    2011-01-01

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this sys...

  4. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  5. Increase of the fuel cell system efficiency - Modular testing, analysis and development environment

    Science.gov (United States)

    König, P.; Ivers-Tiffée, E.

    The main issue in preparing fuel cell systems for the future market is system reliability and efficiency. Apart from successful field test trials, any type of stationary, in general automotive or portable fuel cell systems are at the development stage. One task to deal with is to increase the component and system efficiencies by facilitating the system construction or eliminating parasitic components.With newly established effective standardised system and component tests, linked with a flexible modelling and simulation environment, the development process and the determination of the system efficiencies as well as the inaccessible system values can be accelerated.In this work a modular model-aided system analysis and development environment is presented which has been evaluated and validated at the IWE. The tool, a combination of standardised testing, modelling and simulation, has been applied to different types of fuel cell systems showing the tool flexibility, modularity and accuracy. In the presented case the tool was used for system analysis and studies on efficiency increase of a complex prototype stationary PEMFC system.

  6. Fuel taxes, motor vehicle emission standards and patents related to the fuel-efficiency and emissions of motor vehicles. Joint Meetings of Tax and Environment Experts

    Energy Technology Data Exchange (ETDEWEB)

    Vollebergh, H. [Netherlands Environmental Assessment Agency MNP, Den Haag (Netherlands)

    2010-01-21

    Contribution to the project on Taxation, Innovation and the Environment of OECD's Joint Meetings of Tax and Environment Experts. It studies the impacts of motor vehicle fuel taxes and mandatory fuel efficiency standards on relevant car-related innovation activity in selected car-producing countries.

  7. Fuel taxes, motor vehicle emission standards and patents related to the fuel-efficiency and emissions of motor vehicles. Joint Meetings of Tax and Environment Experts

    International Nuclear Information System (INIS)

    Contribution to the project on Taxation, Innovation and the Environment of OECD's Joint Meetings of Tax and Environment Experts. It studies the impacts of motor vehicle fuel taxes and mandatory fuel efficiency standards on relevant car-related innovation activity in selected car-producing countries.

  8. High Efficiency Interleaved Active Clamped Dc-Dc Converter with Fuel Cell for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Sona P

    2014-02-01

    Full Text Available A high efficiency interleaved ZVS active clamped current fed dc-dc converter is proposed in this paper specially used for fuel cell applications. As the fuel cell output is very low we are in need of a step up dc-dc converter. Here a current fed dc-dc converter is used. Two current fed dc-dc converters are interleaved by connecting their inputs in parallel and outputs in series. With this proposed methodology input current ripples in the fuel cell stacks can be reduced and a regulated output voltage ripples can be obtained. The active clamping circuit used in this model absorbs the turn off voltage spikes hence low voltage devices with low on state resistance can be used.Voltage doubler circuits will give double the output voltage than normal with smaller transformer turns ratio and flexibility. The proposed method is simulated in MATLAB for verifying the accuracy of the proposed design.

  9. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Directory of Open Access Journals (Sweden)

    N. Seshaiah

    2010-09-01

    Full Text Available Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene, and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  10. Improvement of operation efficiency for WWER-440 and WWER-1000 for TRIGON fuel assembly design features

    International Nuclear Information System (INIS)

    TRIGON 440 and TRIGON 1000 fuel assemblies and their assembly matching counterparts are described. Their role in increasing the efficiency of WWER reactors is stressed. Special attention is paid to their design features as well as calibrated means of predicting behaviour under irradiation from light water reactor core operation. They reduce the fuel cycle cost as a result of the reduced need for natural uranium which have to be enriched and of the smaller number of fuel assemblies which have to be fabricated, stored or reprocessed. The improved control assemblies bring comfort to the plant operator due to intrinsic progress in safety with respect to accidental situation, trouble-free behaviour and long time utilization in the reactor. 14 figs

  11. Fuel Economy Regulations and Efficiency Technology Improvements in U.S. Cars Since 1975

    Science.gov (United States)

    MacKenzie, Donald Warren

    Light-duty vehicles account for 43% of petroleum consumption and 23% of greenhouse gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum consumption in the U.S., and are set to tighten substantially through 2025. In this dissertation, I address several interconnected questions on the technical, policy, and market aspects of fuel consumption reduction. I begin by quantifying historic improvements in fuel efficiency technologies since the 1970s. First. I develop a linear regression model of acceleration performance conditional on power, weight, powertrain, and body characteristics, showing that vehicles today accelerate 20-30% faster than vehicles with similar specifications in the 1970s. Second, I find that growing use of alternative materials and a switch to more weight-efficient vehicle architectures since 1975 have cut the weight of today's new cars by approximately 790 kg (46%). Integrating these results with model-level specification data, I estimate that the average fuel economy of new cars could have tripled from 1975-2009, if not for changes in performance, size, and features over this period. The pace of improvements was not uniform, averaging 5% annually from 1975-1990, but only 2% annually since then. I conclude that the 2025 standards can be met through improvements in efficiency technology, if we can return to 1980s rates of improvement, and growth in acceleration performance and feature content is curtailed. I next test the hypotheses that higher fuel prices and more stringent CAFE standards cause automotive firms to deploy efficiency technologies more rapidly. I find some evidence that higher fuel prices cause more rapid changes in technology, but little to no evidence that tighter CAFE standards increase rates of technology change. I conclude that standards alone, without continued high gasoline prices, may not drive technology improvements at rates needed to meet the 2025

  12. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  13. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  14. Technological Developments in Safe and Efficient Fabrication of Fast Reactor Fuel Elements

    International Nuclear Information System (INIS)

    The Fuel for 500 MWe Prototype Fast Breeder Reactor ( PFBR ) coming up at Kalpakkam, India consists of Mixed Oxide ( MOX ) fuel containing PuO2 and UO2.The fabrication MOX fuel elements for this reactor core is a challenging task as it involves issues related to radiological safety due to Plutonium handling, radiation exposure concerns and issues like efficient production and quality assurance. This paper deals with the technological developments carried out and their incorporation in the fabrication line to achieve higher throughput with low man-rem consumption. Vibratory bowl and linear feeders are being utilized for arranging the stack of small size i.e 5.5 mm diameter pellets and loading the stack inside the clad tube. Inactive bottom end plug welding has been successfully implemented using laser welding technique. The top end plug welding is carried out inside specially designed chamber in a glove box using TIG welding technique. The top end plug welding by laser welding technique has been demonstrated successfully and is going to be implemented shortly. Ultrasonic and laser decontamination techniques have been used to reduce transferable contamination on welded fuel pins. Issues related to radiological and criticality safety , safe handling of fuel elements and measures taken for exposure control are also discussed in this paper. (author)

  15. Efficient Management of Insecure Fossil Fuel Imports through Taxing (!) Domestic Green Energy?

    OpenAIRE

    Eichner, Thomas; Pethig, Rüdiger

    2010-01-01

    A small open economy produces a consumer good, green and black energy, and imports fossil fuel at an uncertain price. Unregulated competitive markets are shown to be inefficient. The implied market failures are due to the agents' attitudes toward risk, to risk shifting and the uniform price for both types of energy. Under the plausible assumptions that consumers are prudent and at least as risk averse as the producers of black energy, the risk can be efficiently managed by taxing emissions an...

  16. Fuel-Efficient Control of Merging Maneuvers for Heavy-Duty Vehicle Platooning

    OpenAIRE

    Grossmann Colin, Alex

    2014-01-01

    With the rapid increase in the research of promising technologies such as vehicle platooning, which are trying to find more fuel-efficient ways of operating our transportation systems, complex questions requiring creative solutions arise. Regarded as an up-and-coming technology that is expected to be highly relevant and widely applied in the near future, vehicle platooning allows the smart manipulation of the traffic by grouping two or more vehicles into a single convoy and coordinating its b...

  17. Options for the Swedish steel industry - Energy efficiency measures and fuel conversion

    OpenAIRE

    Johansson, Maria; Söderström, Mats

    2011-01-01

    The processes of iron and steel making are energy intensive and consume large quantities of electricity and fossil fuels. In order to meet future climate targets and energy prices, the iron and steel industry has to improve its energy and resource efficiency. For the iron and steel industry to utilize its energy resources more efficiently and at the same time reduce its CO2 emissions a number of options are available. In this paper, opportunities for both integrated and scrap-based steel plan...

  18. Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Highlights: ► Micro-emulsion composition phase study to obtain low fuel dilutions. ► Automated and instantaneous in-line preparation of micro-emulsions for metals determinations. ► A versatile piston-driven form of “Flow-batch Analysis”. ► Rheological considerations explored including a mathematical derivation of flow parameters. - Abstract: The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0 ± 3.5% for Pb in the naphtha samples, and 100.2 ± 3.4% and 100.7 ± 4.6% for Cu and Cr, respectively in gasoline samples.

  19. Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Francisco Antonio S. [Universidade Federal da Paraiba, CCEN, Departamento de Quimica, P. Box 5093, 58051-970, Joao Pessoa, PB (Brazil); Sousa, Rafael A. [Institute of Chemistry-University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP (Brazil); Harding, David P. [Universidade Federal da Paraiba, CCEN, Departamento de Quimica, P. Box 5093, 58051-970, Joao Pessoa, PB (Brazil); Cadore, Solange [Institute of Chemistry-University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP (Brazil); Almeida, Luciano F. [Universidade Federal da Paraiba, CCEN, Departamento de Quimica, P. Box 5093, 58051-970, Joao Pessoa, PB (Brazil); Araujo, Mario Cesar U., E-mail: laqa@quimica.ufpb.br [Universidade Federal da Paraiba, CCEN, Departamento de Quimica, P. Box 5093, 58051-970, Joao Pessoa, PB (Brazil)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Micro-emulsion composition phase study to obtain low fuel dilutions. Black-Right-Pointing-Pointer Automated and instantaneous in-line preparation of micro-emulsions for metals determinations. Black-Right-Pointing-Pointer A versatile piston-driven form of 'Flow-batch Analysis'. Black-Right-Pointing-Pointer Rheological considerations explored including a mathematical derivation of flow parameters. - Abstract: The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0 {+-} 3.5% for Pb in the naphtha samples, and 100.2 {+-} 3.4% and 100.7 {+-} 4.6% for Cu and Cr, respectively in gasoline samples.

  20. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  1. Process consideration of fry-drying combined with steam compression for efficient fuel production from sewage sludge

    International Nuclear Information System (INIS)

    Highlights: ► A process for energy-efficient fry-drying of wet sewage sludge is proposed. ► Steam compression enables the recovery of the latent heat in steam. ► The oil circulated from the bath is used as a medium for heat recovery from steam. ► The effects of process parameters on the energy efficiency are investigated. -- Abstract: The fry-drying and steam compression of wet sewage sludge were studied as part of efforts to enable the efficient production of fuel from wet sludge, the applicability of which requires energy-efficient drying. Fry-drying sludge in hot oil is fast and effective, while steam compressed to several bar enables the recovery of the latent heat of the steam evaporated from the sludge. The circulation of oil from the fry-drying bath to a steam condenser was examined as a medium of heat transfer for the absorption of the latent heat. The mass and energy flows through the process components were analyzed in order to evaluate the effects of important design parameters. Optimal ranges of steam pressure and oil circulation rate were identified to maximize heat recovery while maintaining an appropriate oil temperature.

  2. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    DEFF Research Database (Denmark)

    Kappel, Jannik; Mathiesen, Brian Vad

    different conditions and concentrations against either petrol or diesel. No studies were found testing more than one type of alternative fuel in the same setup. Do to this one should be careful when comparing results on several alternative fuels. Only few studies have been focused on vehicle energy...... efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization for...

  3. Analyzing and Evaluating of Recirculating Aquaculture Systems (RAS) of Rainbow Trout in Order to Designing a Conceptual Model of Efficient RAS in Iran (Tehran)

    OpenAIRE

    M. Mahmoodzadeh; M Almassi; A.M. Borghei; B. Beheshti

    2013-01-01

    In this study, Recirculation Aquaculture Systems (RAS) of rainbow trout were analyzed and evaluated in Iran (Tehran). After analyzing these systems it was found which of them were better than others and then their parameters were used for designing a conceptual model of efficient RAS. This study was conducted in Iran (Tehran) in 2012 and statistical population and samples were 8 systems. Systems were analyzed and evaluated by five criteria which were as follows: economy, energy, consumption a...

  4. Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Operating a proton exchange membrane fuel cell (PEMFC) system to produce power at the maximum power efficiency is one of the key issues in PEMFC's wide-spread applications. However, power density exhibits complex behavior and nonlinear dynamics with respect to the output cell voltage, fuel cell temperature, anode and cathode pressure, inlet gas humidity, and so on. In this paper, the distribution of power density in the domain of the output cell voltage and fuel cell temperature is delineated. By this delineation, the quadratic polynomial fitting was used to approximate the power density curve in local interval and estimate the maximum power efficiency point. Generalized predictive control (GPC) is presented to overcome the problem of time-varying dynamics of PEMFC in real time via applying a forgetting factor recursive least square (FFRLS) method. Based on the approximation and generalized predictive control strategy, maximum power efficiency operation of PEMFC is applied. The results of this work can contribute to the operation of PEMFC at the maximum power point, which guarantees the plant generating maximum power at the lowest consumption of hydrogen. - Highlights: • Operating the PEMFC at the maximum power efficiency point is achieved with the lowest consumption of hydrogen. • The quadratic polynomial fitting method is used to estimate the maximum power efficiency point in local interval. • A data-driven predictive model is introduced to overcome the time-varying dynamics of PEMFC in real time. • Generalized predictive control (GPC) strategy is designed to optimize flow rates of hydrogen and coolant on-line

  5. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  6. The Role of X-Ray Diffraction for Analyzing Zr-Sn-Nb-Fe Alloys as Power Reactor Fuel Cladding

    OpenAIRE

    Sugondo

    2010-01-01

    Synthesis of Zr-1%Nb-1%Sn-1%Fe alloy is undertaken in order to develop fuel cladding alloy at high burn-up. Powder specimens of Zr-Sn-Nb-Fe alloy were prepared and then formed into pellets with a dimension of 10 mm in height 10 mm in diameter using a pressure of 1.2 ton/cm2. The 5 gram green pellets were then melted in an arc furnace crucible under argon atmosphere. The pressure in the furnace was set at 2 psi and the current was 50 A. Afterwards, the ingots were heated at a temperature of 11...

  7. Comparative analysis of the efficiency of minor actinide burning in the accelerator-driven system and critical reactors within various scenarios for closing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The choice of efficient types of systems for the utilization of long-lived radioactive wastes (RW) of nuclear power is one of the highest priority concerns in nuclear sphere. The accelerator-driven systems (ADS) with heavy liquid metal coolant (HLMC) and fast neutron spectrum are considered among the most efficient nuclear devices for burning minor actinides (MA). Results of numerical studies for the optimization of characteristics of an ADS-system with lead-bismuth coolant for burning minor actinides produced in the open fuel cycle of thermal reactors have been summarized. Criteria of efficiency of MA burning have been determined (time of transmutation, etc.). It has been shown that neutronic characteristics ensuring nuclear safety in an analogous critical reactor - MA burner - are significantly inferior vs. fast critical reactor with UO2 fuel. In order to define whether or not it is justified to use ADS in different scenarios for the nuclear fuel cycle closure, a comparative study has been fulfilled on radiation and technological characteristics of spent fuel from subcritical reactor ADS and on fuel from other nuclear facilities. The VVER-1000 reactor and the variant of fast reactor with lead-bismuth coolant were chosen for the comparison. SVBR-100 reactor can be considered as a prototype of the latter facility. Two options of closing the fuel cycle have been analyzed: the variant with recycling U,Pu without MA, the variant with total recycling of U and all transuranic isotopes (Pu, Np, Am, Cm). The differences have been defined in terms of specific values of radioactivity, residual heat release, intensity of sources of neutrons and gamma-radiation of spent fuel. (author)

  8. Enhanced Emission Performance and Fuel Efficiency for HD Methane Engines. Literature Study. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Broman, R.; Staalhammar, P.; Erlandsson, L.

    2010-05-15

    A literature survey has been conducted in order to define state-of-the-art for methane fuelled engines to be used in heavy duty vehicles. Use of methane can be favourable to increase security of supply and mitigate CO2 emissions, especially when the methane origins from biomass. Furthermore, methane used as a fuel in heavy duty engines has a potential to reduce toxic exhaust emissions. Historically, use of methane in heavy duty engines has often been hampered by poor efficiency, i.e. high fuel consumption when using the Otto-cycle. However, current generation technology engines might be within 5-10 % of the efficiency of Diesel engine technology. In this context it is worth mentioning that compliance-driven changes for meeting future emission regulations for Diesel engines may have a negative impact on fuel efficiency, thereby narrowing the gap. This may present an opportunity for heavy methane fuelled engines. The reliability and durability of the exhaust aftertreatment devices for methane fuelled engines has also given rise to some concerns. Some concepts are performing acceptable while others do not meet expectations. This is partly due to difficulties in handling methane in the aftertreatment device and partly to issues in the design of the ignition system. Methane is a fuel used worldwide and has a potential to be an important complement to Diesel oil. There are two categories of HD methane engines available to end-users: Retrofitted engines, which often include computer controlled retrofit systems developed as 'bolt-on' technologies that can be removed if necessary, to resell the vehicle with a normal diesel engine, and those developed specifically for and in conjunction with engine manufacturers and delivered to customers as factory-built engines or vehicles (OEM). Additionally, both these categories can include engines that use the Otto- or Diesel combustion cycles. When adapting a HD Diesel engine to run on methane there are two options, either

  9. Engineering a 70-percent efficient, indirect-fired fuel-cell bottomed turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C.; Micheli, P.L.; Parson, E.L. Jr. [Dept. of Energy, Morgantown, WV (United States)

    1995-08-01

    We introduce the natural gas, indirect-fired fuel-cell bottomed turbine cycle (NG-IFFC) as a novel power plant system for the distributed power and on-site markets in the 20 to 200 megawatt (MW) size range. The NG-IFFC system is a new METC-patented system. This power-plant system links the ambient pressure, carbonate fuel cell in tandem with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations based on Advanced System for Process Engineering (ASPEN) simulations show material and energy balances with expected power output. Early results indicated efficiencies and heat rates for the NG-EFFC are comparable to conventionally bottomed, carbonate fuel-cell steam-bottomed cycles, but with smaller and less expensive components. More recent calculations extended the in-tandem concept to produce near-stoichiometric usage of the oxygen. This is made possible by reforming the anode stream to completion and using all hydrogen fuel in what will need to be a special combustor. The performance increases dramatically to greater than 70 percent.

  10. Glass microporous fiber/nanoporous polytetrafluoroethene composite membranes for high efficient phosphoric acid fuel cell

    International Nuclear Information System (INIS)

    This paper reports a high efficient phosphoric acid fuel cell by employing a micro/nano composite proton exchange membrane incorporating glass microfiber (GMF) sealed by polytetrafluoroethylene (PTFE) nano-porous film. This multilayer membrane not only possesses both thermal and chemical stability at phosphoric acid fuel cell working temperature at 150∼220°C but also is cost effective. As a result, the inclusion of the high porosity and proton conductivity from glass microfiber and the prevention of phosphoric acid leakage from PTEF nano film can be achieved at the same time.The composite membrane maximum proton conductivity achieves 0.71 S/cm at 150 °C from AC impedance analysis, much higher than common phosphoric acid porous membranes For single cell test, The GMF fuel cell provides a 63.6mW/cm2 power density at 200mA/cm2 current density while GMF plus methanol treated PTFE (GMF+mPTFE) provides 59.2mW/cm2 power density at 160mA/cm2 current density for hydrogen and oxygen supply at 150 °C. When we change the electrodes that are more suited for phosphoric acid fuel cell, the GMF+mPTFE single cell gets higher performance which achieve 296mW/cm2 power density at 900mA/cm2 current density for hydrogen and oxygen supply at 150 °C

  11. Induced motor vehicle travel from improved fuel efficiency and road expansion

    International Nuclear Information System (INIS)

    This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001-2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26. - Highlights: → We estimate two effects: the rebound effect and induced travel effect at the state level. → System dynamic panel data approach is used to address endogeneity issue. → In the period of 2001-2008, the rebound effect is 0.0276 in the short run and 0.11 in the long run. → Increase in road capacity induces motor vehicle travel. → Induced travel effect is 0. 0.066 in the short run and 0.26 in the long run.

  12. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.

  13. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    A new very high efficiency 10 kW isolated R4 boost converter for low-voltage high-power fuel cell applications is presented. Using a new concept for partially paralleling of isolated boost converters, only the critical high ac-current parts are paralleled. Four 2.5 kW power stages, consisting of......W prototype converter is presented. Input voltage range is 30-60 V and output voltage is 800 V. Test results, including voltage- and current waveforms and efficiency measurements, are presented. A record high converter efficiency of 98.2 % is achieved. The proposed R4 boost converter thus constitutes a low...... fullbridge switching stages and power transformers, operate in parallel on primary side and in series on secondary side. Current sharing is guaranteed by series connection of transformer secondary windings and three small cascaded current balancing transformers on primary side. The detailed design of a 10 k...

  14. Increasing the economic efficiency of nuclear fuel usage in the BN-600 reactor of the Beloyarsk NPP

    International Nuclear Information System (INIS)

    Improvement of technical and economic indices of the BN-600 reactor is largely dictated by increase in the efficiency of nuclear fuel use. In the period from 1980 to 2003 two modernizations (01M and 01M1 cores) were carried out. Conversion to the 01M2 core with a four-time fuel assemblies reloading and fuel assembly life of 560 effective days was started in 2004. Major neutronic characteristics of the BN-600 reactor cores are provided

  15. The influence of the types of marine fuel over the Energy Efficiency Operational Index

    Science.gov (United States)

    Acomi, Nicoleta; Acomi, Ovidiu

    2014-05-01

    One of the main concerns of our society is certainly the environment protection. The international efforts for maintaining the environment clean are various and this paper refers to the efforts in the maritime transport field. Marine pollution consists of the water pollution and also the air pollution. Regardless of the delay in recognizing the later type of pollution, it rapidly gains many organizations to argue on it. The first step was including a dedicated annex (Annex VI) in the International Convention for the Prevention of Pollution from Ships, in 1997, which seeks to minimize the airborne emissions from ships. In order to control and minimize the air pollution, the International Maritime Organization has also developed a series of measures for monitoring the emissions. These measures are grouped in three main directions: technical, operational and management related. The subject of our study is the concept of Energy Efficiency Operational Index (EEOI), developed to provide ship-owners with assistance in the process of establishing the emissions from ships in operation, and to suggest the methods for achieving their reduction. As a monitoring tool, EEOI represents the mass of CO2 emitted per unit of transport work. The actual CO2 emission from combustion of fuel on board a ship during each voyage is calculated by multiplying total fuel consumption for each type of fuel (e.g. diesel oil, gas oil, light fuel oil, heavy fuel oil, liquefied petroleum gas, liquefied natural gas) with the carbon to CO2 conversion factor for the fuel in question. The performed transport work is calculated by multiplying mass of cargo (tonnes, number of TEU/cars, or number of passengers) with the distance in nautical miles corresponding to the transport work done. Using the software developed by the author it will be emphasized the variation of the EEOI value for one vessel using different types of fuel for the voyage's legs (distance to discharge port, distance to loading port, the

  16. Computational efficiency analysis of fuel pin damage registration and fuel assembly damage location by means of a sector fuel failure detection and location system

    International Nuclear Information System (INIS)

    approximation and La Grange approximation). First case is solution of a 3-D mass transfer equation; second case is movement path calculation for well established velocity fields of the fission products ingressed into coolant flow. Both approaches account fission products decay in the course of their in-core transport. For known delayed neutron source concentration fields, FPCILRS detector signal have been approximated by bulk in-core concentration field with a space weight factor which accounts delayed neutron absorption and scattering along a path from given point to a detector. The factor has been computed after neutronics computational procedures. Initiating failure has been assumed as follows: - major fission products ingress across fuel pin clad leakage point at steady velocity as long as 2 seconds; fuel pin clad integrity loss point is located at upper reactor core end level. Parameters have been varied as follows: radial and azimuthal location of fuel pin clad leakage against the reactor core; half-time period of delayed neutron sources ingressed after fuel pin clad integrity loss. Typical computed FPCILRS detector signal value/time dependence is presented. The calculation runs resulted in conclusions as follows: - isotopic composition of particulated fuel ingressing after loss of fuel pin clad integrity into coolant flow is major factor impacting on opportunity to detect an accident by means of the FPCILRS detectors. Transportation time for delayed neutron precursors ingressed into coolant flow from core up to FPCILRS detectors is as long as 5/10 seconds. Therefore, precursors with commensurable half-time period will be decayed considerably during their drift toward the detector operation range. It a reason of more pronounced contribution of the long-lived isotopes. E.g. namely group with half-time period 31.03 sec presents maximum contribution; - accident detection efficiency is under strong impact of radial and azimuthal location of a failed fuel pin rod. There are

  17. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  18. Analyze the effect of window layer (AlAs) for increasing the efficiency of GaAs based solar cell

    OpenAIRE

    Arifina Rahman Tumpa; Eity Sarker; Shagufta Anjum; Nasrin Sultana

    2015-01-01

    Solar energy is the most important renewable source and convertible into useful form with no transmission cost and environment pollution. The main drawback of currently used photovoltaic cell is its low conversion efficiency and materials with the appropriate band gaps. Recently it has been shown that the GaAs based p-i-n solar cell becomes a promising material for very high efficiency solar cell. An ideal model for p-i-n reference cell has been developed and used to theoretically explore the...

  19. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  20. Texas Disasters II: Utilizing NASA Earth Observations to Assist the Texas Forest Service in Mapping and Analyzing Fuel Loads and Phenology in Texas Grasslands

    Science.gov (United States)

    Brooke, Michael; Williams, Meredith; Fenn, Teresa

    2016-01-01

    The risk of severe wildfires in Texas has been related to weather phenomena such as climate change and recent urban expansion into wild land areas. During recent years, Texas wild land areas have experienced sequences of wet and dry years that have contributed to increased wildfire risk and frequency. To prevent and contain wildfires, the Texas Forest Service (TFS) is tasked with evaluating and reducing potential fire risk to better manage and distribute resources. This task is made more difficult due to the vast and varied landscape of Texas. The TFS assesses fire risk by understanding vegetative fuel types and fuel loads. To better assist the TFS, NASA Earth observations, including Landsat and Moderate Resolution Imaging Specrtoradiometer (MODIS) data, were analyzed to produce maps of vegetation type and specific vegetation phenology as it related to potential wildfire fuel loads. Fuel maps from 2010-2011 and 2014-2015 fire seasons, created by the Texas Disasters I project, were used and provided alternating, complementary map indicators of wildfire risk in Texas. The TFS will utilize the end products and capabilities to evaluate and better understand wildfire risk across Texas.

  1. Efficiency Calibration of LaBr3(Ce) γ Spectroscopy in Analyzing Radionucles in Reactor Loop Water

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; QIN; Guo-xiu; GUO; Xiao-qing; CHEN; Yong-yong; MENG; Jun

    2013-01-01

    Monitoring the occurring and radioactivity concentration of fission products in nuclear reactor loop water is important for the nuclear reactor safe running evaluation,prevention of accidence and safe protection of working personnel.Study on the efficiency calibration for a LaBr3(Ce)detector experimental

  2. Analyze the effect of window layer (AlAs for increasing the efficiency of GaAs based solar cell

    Directory of Open Access Journals (Sweden)

    Arifina Rahman Tumpa

    2015-07-01

    Full Text Available Solar energy is the most important renewable source and convertible into useful form with no transmission cost and environment pollution. The main drawback of currently used photovoltaic cell is its low conversion efficiency and materials with the appropriate band gaps. Recently it has been shown that the GaAs based p-i-n solar cell becomes a promising material for very high efficiency solar cell. An ideal model for p-i-n reference cell has been developed and used to theoretically explore the current-voltage characteristics on the host cell properties. The purpose of this paper is to study the performance of AlAs material use as window layer in p-i-n reference cell instead of AlGaAs and evaluated the performance with various parameters. Short circuit current density, open circuit voltage and efficiency are needed to be calculated with the dependencies of band gap energy, carrier concentration and temperature. Significant effects of width lengths on the performance of window layer are evaluated. These calculations will do at cell temperature of 300k. After all comparing these, GaAs based p-i-n reference cell with AlAs window layer offers the maximum efficiency.

  3. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  4. Ztek`s ultra high efficiency fuel cell/gas turbine combination

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States)

    1995-10-19

    Ztek is proceeding on development of an ultra-high efficiency hybrid system of its Planar SOFC with a gas turbine, realizing shared cost and performance benefits. The gas turbine as the Balance-of-Plant was a logical selection from a fuel cell system perspective because of (1) the high-power-density energy conversion of gas turbines; (2) the unique compatibility of the Ztek Planar SOFC with gas turbines, and (3) the availability of low-cost commercial gas turbine systems. A Tennessee Valley Authority/Ztek program is ongoing, which addresses operation of the advanced Planar SOFC stacks and design scale-up for utility power generation applications.

  5. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    Science.gov (United States)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  6. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  7. Impact of sowing date on yield and water use efficiency of wheat analyzed through spatial modeling and FORMOSAT-2 images

    OpenAIRE

    Benoit Duchemin; Rémy Fieuzal; Miguel Augustin Rivera; Jamal Ezzahar; Lionel Jarlan; Julio César Rodriguez; Olivier Hagolle; Christopher Watts

    2015-01-01

    Regional analysis of water use efficiency (WUE) is a relevant method for diagnosing the performance of irrigation systems in water-limited environments. In this study, we investigated the potential of FORMOSAT-2 images to provide spatial estimates of WUE over irrigated wheat crops cultivated within the semi-arid Yaqui Valley, in the northwest of Mexico. FORMOSAT-2 provided us with a unique dataset of 36 images at a high resolution (8 m) encompassing the wheat growing season from November 2007...

  8. Association efficiency of three ionic forms of oxytetracycline to cationic and anionic oil-in-water nanoemulsions analyzed by diafiltration.

    Science.gov (United States)

    Orellana, Sandra L; Torres-Gallegos, Cesar; Araya-Hermosilla, Rodrigo; Oyarzun-Ampuero, Felipe; Moreno-Villoslada, Ignacio

    2015-03-01

    The association efficiency of oxytetracycline (OTC) to pharmaceutical available, ionic oil-in-water nanoemulsions is studied. Theoretical mathematical developments allowed us to differentiate by diafiltration (DF) between thermodynamically and kinetically controlled binding of the drug to the nanoemulsions, and relate these important magnitudes to the association efficiency. The nanoemulsions have been prepared by the solvent displacement technique in the presence of cationic and anionic surfactants. The resulting nanoemulsions were stable at 4°C and 25°C for 60 days, have a size of ∼ 200 nm, showing polydispersity indexes ranging between 0.11 and 0.23, and present zeta potentials ranging between -90 and +60 mV, depending on the charge of the surfactants used. The zeta potential of the nanoemulsions influenced the interaction with OTC, having three ionic forms at different pH, namely, cationic, zwitterionic, and anionic. DF proved to be a powerful tool for the quantification of the drug association efficiency, achieving values up to 84%. Furthermore, this technique allowed obtaining different values of the drug fractions reversibly bound (11%-57%) and irreversibly bound (10%-40%) to the nanoemulsions depending on the surfactants used and pH. These findings may be useful for the development of new drug delivery systems, and as routine assays in academia and pharmaceutical industries. PMID:25557590

  9. Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell

    Science.gov (United States)

    Liao, Tianjun; Cai, Ling; Zhao, Yingru; Chen, Jincan

    2016-02-01

    Through the combination of the current models of solid oxide fuel cells (SOFCs) and thermophotovoltaic cells (TPVCs), a new model of the hybrid device composed of an SOFC, a regenerator, and a TPVC with integrated back surface reflector (BSR) is proposed. Analytical expressions for the power output and efficiency of two subsystems and hybrid device are derived. The relations between the performance of the TPVC and the operating current density of the SOFC in the hybrid device are revealed. The performance characteristics of the hybrid device are discussed in detail. The maximum power output density is calculated. The optimally operating region of the hybrid device is determined, compared with the performance of the SOFC in the hybrid device. The choice criteria of some key parameters are given. Moreover, it is proved that the proposed model can exploit the waste heat produced in SOFCs more efficiently than other SOFC-based hybrid systems.

  10. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 oC were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O3-δ, Ni-(CeO2)1-x(SmO1.5) x cermet anode, and Sm(Sr)CoO3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 oC was obtained using high temperature off-gas from SOFC

  11. Fuel efficiency of the Austrian passenger vehicle fleet-Analysis of trends in the technological profile and related impacts on CO2 emissions

    International Nuclear Information System (INIS)

    This paper analyzes trends in the technological profile of the Austrian personnel vehicle fleet from 1990 to 2007. This includes the parameters of power, engine size and weight, which beyond the technological efficiency of the motor engine itself, are considered to be the main determinants of the fuel efficiency of the average car stock. Investigating the drivers of ever rising transport related greenhouse gas emissions is crucial in order to derive policies that strive towards more energy-efficient on-road passenger mobility. We focus on the efficacy of technological efficiency improvements in mitigating climate-relevant emissions from car use in light of shifting demand patterns towards bigger, heavier and more powerful cars. The analysis is descriptive in nature and based on a bottom-up database that was originally collated for the purpose of the present study. Technological data on car models, which includes tested fuel consumption, engine size, power and weight, is related to registered car stock and, in parts, to newly registered cars. From this, we obtain an original database of the Austrian passenger car fleet, i.e. information on consumer choice of specific car models, segregated by gasoline and diesel fuelled engines. Conclusions are derived for policies aimed at reducing the fossil fuel consumption of the moving vehicle fleet in order to contribute to a low carbon society.

  12. Effect of soil washing on diesel fuel removal efficiency and hydraulic conductivity

    International Nuclear Information System (INIS)

    In porous media contaminated by petroleum products or organic chemicals, large concentrations of residual oils typically remain after gravity drainage. These residues often act as long-term sources of groundwater contamination. A remediation option for subsurface soils contaminated with residual oils is chemically enhanced in-situ soil washing, an adaptation of enhanced oil recovery techniques commonly used in the petroleum industry. A series of one-dimensional leaching column experiments was conducted to investigate the effect of various parameters on recovery efficiency and hydraulic conductivity. Tests were carried out on various combinations of soils contaminated by diesel fuel to examine the effects of such parameters as normal and hot water injection, normal and hot water injection enhanced by a surfactant, different soil-grain-size distribution, and different time limits. The well-known, fairly dramatic effect of the first one or two pore volumes sweeps by the soil washing liquid was of secondary interest in the experiments. The longer 10-100+ pore volumes sweeps are studied in detail. The results show that hydrocarbon removal efficiency curves consisted of three periods: a rapid decrease in effluent carbon; a knee which probably marks the end of removal of free oil from the pores; and a slow release period. An increase in temperature results in a significant increase in diesel fuel removal efficiency. Slower moving water, or water plus surfactant, is more efficient at removing oil. Influent with both water and surfactant resulted in only a slight increase in diesel removal than influent with water alone. 58 refs.,

  13. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  14. ROUTE OPTIMIZATION TO INCREASE ENERGY EFFICIENCY AND REDUCE FUEL CONSUMPTION OF COMMUNAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Nebojša M Jovičić

    2010-01-01

    Full Text Available Collection and transportation within the system of solid waste management may account more than 60% of the overall budget, most of which is for fuel costs. Furthermore, municipal vehicles have great environmental impact through exhaust gases emissions. The aim of this research was to estimate the potential for reduction of fuel consumption and thus the emission of CO2 through the communal vehicles route optimization. General methodology for route optimization is also presented. For the area under study, detailed field experimental research in the City of Kragujevac was conducted. Using GIS and GPS technology, whole municipally infrastructure for waste collection was scanned and all paths of communal tracks was recorded and allocated in developed database. Based on experimental and numerical results, one typical municipal vehicle route was analyzed by using ArcGis software. The obtained result indicates 2700 km of possible savings per year concerning one communal vehicle. In addition, the most fuel-economical route was extracted and compared with the original route, and with the routes extracted from criterions concerning the traffic time and shortest distance. According to available information for the City of Kragujevac and the results from this study, it was estimated that the total savings could be 20% in costs and the associated emissions.

  15. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Ronald [Chrysler Group LLC., Auburn Hills, MI (United States)

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  16. Analyzing the Food-Fuel-Environment Tri-Lemma Facing World Agriculture: Global Land Use in the Coming Century

    Science.gov (United States)

    Hertel, T. W.; Steinbuks, J.

    2011-12-01

    The number of people which the world must feed is expected to increase by another 3 billion people by 2100. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. At the same time, the growing use of biomass for energy generation has introduced an important new source of industrial demand in agricultural markets. To compound matters, water, a key input into agricultural production, is rapidly diminishing in availability in large parts of the world and many soils are degrading. In addition, agriculture and forestry are increasingly envisioned as key sectors for climate change mitigation policy. Any serious attempt to reduce land-based emissions will involve changes in the way farming is conducted, as well as placing limits on the expansion of farming - particularly in the tropics, where most of the agricultural land conversion has come at the expense of forests, either directly, or indirectly via a cascading of land use requirements with crops moving into pasture and pasture into forest. Finally, agriculture and forestry are likely to be the economic sectors whose productivity is most sharply affected by climate change. In light of these challenges facing the global farm and food system, this paper will review the main sources of supply and demand for the world's cropland, and then provide a quantitative assessment of the impact of these forces on global land use over the coming century. The model incorporates forward looking behavior and examines competition between land used for ecosystem services, forestry, food and fuel. Explicit account is taken of emissions associated with both the intensive and extensive margins of agricultural expansion, as well as carbon sequestration and energy combustion. Key findings include: (a) energy prices and environmental policies will be increasingly important drivers of land use

  17. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe2O3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO2 compression and the SOFC. (4) Compared with the CLC Fe2O3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first analysis

  18. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    International Nuclear Information System (INIS)

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: → We study innovation in efficiency-improving electricity generation technologies. → Relevant patents are identified and used as an indicator of innovation. → We show that there is significant technology transfer in this field. → Most patents are first filed in OECD countries and then in non-OECD countries. → Patents in non-OECD countries are mostly marketed domestically.

  19. Emissions trading and fuel efficiency in road transport. An analysis of the benefits of combining instruments

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Bettina; Davidson, Marc D.; Faber, Jasper (CE, Delft (Netherlands))

    2008-11-15

    higher than in the wider EU ETS. This could drive fuel prices up to a level that would be politically unacceptable. It also indicates that expensive measures are taken within the transport sector while cheaper measures within other sectors remain unused. If road transport is included in the EU ETS, total costs of emission reduction are reduced and the price increase of fuel remains limited. However, this may lead to an increase of the price of allowances which may have a negative impact on competitive power of companies exposed to international competition, and lead to CO{sub 2} leakage to countries outside the EU. This impact seems to be relatively low at lower levels of CO{sub 2} reduction, but may increase as the cap is tightened further. Various means to reduce this impact are identified in the literature. A solution to some of these problems might be to combine emissions trading with fuel efficiency regulation for vehicles. Fuel efficiency improvements in passenger cars are a relatively cost-effective measure to reduce emissions, with significant CO{sub 2} reduction potential. However, due to temporal myopia of car buyers, this measure is insufficiently addressed by price incentives created by emissions trading. Fuel efficiency regulation might thus - promote RandD and innovation efforts of the car and engine manufacturers, - lower the costs of emission reduction in transport and - weaken the negative effects of inclusion of transport in the EU ETS for other sectors. Furthermore, fuel efficiency regulation can be introduced on a shorter timescale than emissions trading. At the same time, an emissions trading system can be complementary to fuel efficiency regulation, as it can alleviate a number of disadvantages of regulation. - It can increase the efficiency of CO{sub 2} mitigation in road transport, since it promotes all available mitigation options. - It offers certainty about the achieved emission reductions, and - it has no rebound effect. Furthermore, once it

  20. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best

  1. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    Science.gov (United States)

    McDonough, Kevin K.

    The dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed, modeling of fuel consumption through the use of a neural network, and the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. The fuel economy improvements with the proposed policies are quantified through simulations and vehicle experiments. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns that are referred to as time-varying cruise. Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. Motivated by these results, a simpler implementation strategy that is more appealing for practical implementation is also developed. This strategy relies on a finite state machine and state transition threshold optimization, and its benefits are quantified through model-based simulations and vehicle experiments. Several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. The use of linear discrete-time models is emphasized as they lead to fast computational procedures. Examples of

  2. Critical Processes Involved in Formulation of Water-in-Oil Fuel Emulsions, Combustion Efficiency of the Emulsified Fuels and Their Possible Environmental Impacts

    Directory of Open Access Journals (Sweden)

    A.N. Dibofori-Orji

    2011-08-01

    Full Text Available The aim of this study is to highlight some problems encountered during the formulation of water-inoil (w/o emulsions of diesel fuel. The combustion efficiency of the resultant emulsions and some pollutant gas emissions were determined. The paper also discussed possible environmental impacts of these emissions. Internal Combustion Engines (ICE find application in many modes of transportation including marine, land and air transportation. Economic and environmental considerations have led to the quest for improved combustion efficiency of the various fossil fuels used for these modes of transportation. The possibility of combustion of emulsified fuels has been the centre of some research efforts in the search for improved combustion efficiency. Diesel is mixed with water to form fuel-oil emulsions for combustion in some internal combustion engines. Depending on certain factors, two possible types of fuel-oil emulsions can be obtained: Oil in water and water in oil emulsions. Combustibility of the resulting emulsions was investigated. In this study, neat diesel was emulsified using polyethylene glycol as the emulsifying agent to produce water in oil emulsions. The water in oil emulsion was found to be combustible within certain limits of percentage content of water and air/fuel ratios. Problems encountered in the attempts to burn the emulsions include the nature and type of emulsifying agent, the method and means of mixing, as well as stability of the emulsions. This study shows that the emulsion containing 5% water had the highest combustion efficiency. Combustion of fuels, whether neat or emulsified, has some environmental impacts. Different noxious substances as exhaust products of combustion when emitted into the atmosphere could be injurious to human health, plants and animals within or close to the operating environments. In this study, the exhaust gases were analysed and their possible environmental impacts were discussed. The emulsion

  3. Analyzing and Evaluating of Recirculating Aquaculture Systems (RAS of Rainbow Trout in Order to Designing a Conceptual Model of Efficient RAS in Iran (Tehran

    Directory of Open Access Journals (Sweden)

    M. Mahmoodzadeh

    2013-09-01

    Full Text Available In this study, Recirculation Aquaculture Systems (RAS of rainbow trout were analyzed and evaluated in Iran (Tehran. After analyzing these systems it was found which of them were better than others and then their parameters were used for designing a conceptual model of efficient RAS. This study was conducted in Iran (Tehran in 2012 and statistical population and samples were 8 systems. Systems were analyzed and evaluated by five criteria which were as follows: economy, energy, consumption and recycling of water, technical and engineering and management. Analyzing and evaluating were conducted by Data Envelopment Analysis (DEA method and also GAMS software was used for solving DEA model. It was found that in economy, energy, water consumption and recycling, technical and engineering and management criteria systems were efficient systems respectively. Based on the results, system 3th with regard to all the criteria was efficient system. Quality and quantity factors and equipments of system 3th were used in order to design a conceptual model of RAS in rainbow trout.

  4. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    Science.gov (United States)

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation. PMID:26237538

  5. A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    Science.gov (United States)

    Thomas, R. Q.; Williams, M.

    2014-09-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data

  6. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States); Bradshaw, D.T. [Tennessee Valley Authority, Chattanooga, TN (United States)] [and others

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  7. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  8. Analysis of the efficiency and effectiveness of distributed generation in the power station (fuel) Sancti Spiritus

    International Nuclear Information System (INIS)

    The severe crisis in the National Electric System (SEN) suffered by Cuba in the late 90's and early 2000 forced to change the design to keep the generation matrix supported in large plants towards where distributed generation small plants throughout the country, the state assumed demand and residential sector. From tools frequently used to evaluate the quality of processes (Scatter diagram, Pareto diagram, Ishikawa diagram and function quality loss Taguchi) was evaluated from indicators index fuel consumption and availability, efficiency and effectiveness of the generation process identifying areas within the plant that the greatest impact on the deviation of both indicators and the impact generated in the services, the economy and the environment. To develop this evaluation the operating data of the years 2012, 2013 and 2014 of the power plant were taken Sancti Spiritus. (full text)

  9. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.

    Science.gov (United States)

    Liu, Yaxuan; Shen, Jingya; Huang, Liping; Wu, Dan

    2013-11-15

    Enhancement of both cobalt leaching from LiCoO2 and acid utilization efficiency (AUE) in microbial fuel cells (MFCs) was successfully achieved by the addition of Cu(II). A dosage of 10mg/L Cu(II) improved both cobalt leaching up to 308% and AUE of 171% compared to the controls with no presence of Cu(II). The apparent activation energy of cobalt leaching catalyzed by Cu(II) in MFCs was only 11.8 kJ/mol. These results demonstrate cobalt leaching in MFCs using Cu(II) as a catalyst may be an effective strategy for cobalt recovery and recycle of spent Li-ion batteries, and the evidence of influence factors including solid/liquid ratio, temperature, and pH and solution conductivity can contribute to improving understanding of and optimizing cobalt leaching catalyzed by Cu(II) in MFCs. PMID:24007993

  10. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  11. Influence of diffusion of fuel-efficient motor vehicles on gasoline demand for individual user owned passenger cars

    International Nuclear Information System (INIS)

    Trends in the demand for petrol in Japan for cars owned by individuals are discussed with reference to expected improvements in fuel efficiency for new models and the results of a survey of user preferences for fuel-efficient vehicles. Demand for petrol in Japan has continued to increase in line with the number of cars used by individual owners. A questionnaire on motor vehicles sent to households found that, while cost and body style were the primary factors in car purchase, three-quarters of respondents would consider buying a low fuel consumption (LFC) version of the model chosen. The influence of LFC vehicles on future demand for petrol was estimated for up to 2015 by combining market timing with consumer preferences. Comparison of the estimated petrol consumption by LFC cars with the Government's requirement for reduced energy use by the transport sector in order to meet its climate change targets indicated a shortfall and a need to increase consumer demand for LFC vehicles. Government measures to reduce energy use in the transport sector, fuel efficiency targets for 2010, major LFC cars, fuel efficiency improvements by major Japanese motor manufacturers and scenarios for assessing the influence of LFC cars are summarised in five tables. Trends in petrol consumption and estimated use by individual user owned passenger cars are shown graphically

  12. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    Science.gov (United States)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  13. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    Science.gov (United States)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  14. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development...

  15. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    Science.gov (United States)

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-01-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed. PMID:27502051

  16. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels

    Science.gov (United States)

    Yan, Jingbo; Chen, Hao; Dogdibegovic, Emir; Stevenson, Jeffry W.; Cheng, Mojie; Zhou, Xiao-Dong

    2014-04-01

    Electrochemical reduction of carbon dioxide in the intermediate temperature region was investigated by utilizing a reversible solid oxide electrolysis cell (SOEC). The current-potential (i-V) curve exhibited a nonlinear characteristic at low current density. Differentiation of i-V curves revealed that the cell area specific resistance (ASR) was current-dependent and had its maximum in electrolysis mode and minimum in fuel cell mode. Impedance measurements were performed under different current densities and gas compositions, and the results were analyzed by calculating the distribution of relaxation times. The ASR variation resulted from the difference in electrochemical reactions occurring on the Ni-YSZ electrode, i.e., Ni-YSZ is a better electrode for CO oxidation than for CO2 reduction. Coke formation on Ni-YSZ played a crucial role in affecting its electrolysis performance in the intermediate temperature region. The ASR apex was associated with a decrease in cell temperature during electrolysis due to the endothermic nature of CO2 reduction reaction. It was postulated that such a decrease in temperature and rise in CO concentration led to coke formation. As a consequence, higher temperature (>700 °C), higher CO2 concentration (>50%), and the presence of hydrogen or steam are recommended for efficient CO2 reduction in solid oxide electrochemical cells.

  17. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  18. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  19. CONOCOPHILLIPS FUEL EFFICIENT HIGH-PERFORMANCE(FEHP) SAE 75W90 REAR AXLE GEAR LUBRICANT

    Science.gov (United States)

    This report is on the Environmental Verification Test of a ConocoPhillips real axle gear lubricant to determine whether it could save vehicle fuel. It determined that a verifyable fuel savings could be measured.

  20. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells

    NARCIS (Netherlands)

    Heijne, ter A.; Hamelers, H.V.M.; Wilde, de V.; Rozendal, R.A.; Buisman, C.J.N.

    2006-01-01

    There is a need for alternative catalysts for oxygen reduction in the cathodic compartment of a microbial fuel cell (MFC). In this study, we show that a bipolar membrane combined with ferric iron reduction on a graphite electrode is an efficient cathode system in MFCs. A flat plate MFC with graphite

  1. Critical Processes Involved in Formulation of Water-in-Oil Fuel Emulsions, Combustion Efficiency of the Emulsified Fuels and Their Possible Environmental Impacts

    OpenAIRE

    A.N. Dibofori-Orji

    2011-01-01

    The aim of this study is to highlight some problems encountered during the formulation of water-inoil (w/o) emulsions of diesel fuel. The combustion efficiency of the resultant emulsions and some pollutant gas emissions were determined. The paper also discussed possible environmental impacts of these emissions. Internal Combustion Engines (ICE) find application in many modes of transportation including marine, land and air transportation. Economic and environmental considerations have led to ...

  2. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  3. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell.

    Science.gov (United States)

    Zhang, Guodong; Zhao, Qingliang; Jiao, Yan; Wang, Kun; Lee, Duu-Jong; Ren, Nanqi

    2012-01-01

    Microbial fuel cells (MFCs) with abiotic cathodes require expensive catalyst (such as Pt) or catholyte (such as hexacynoferrate) to facilitate oxidation reactions. This study incorporated biocathodes into a three-chamber MFC to yield electricity from sewage sludge at maximum power output of 13.2 ± 1.7 W/m(3) during polarization, much higher than those previously reported. After 15 d operation, the total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of cell reached 40.8 ± 9.0% and 19.4 ± 4.3%, respectively. The anolyte comprised principally acetate and propionate (minor) as metabolites. The use of biocathodes produced an internal resistance of 36-46 Ω, lower than those reported in literature works, hence yielding higher maximum power density from MFC. The massively parallel sequencing technology, 454 pyrosequencing technique, was adopted to probe microbial community on anode biofilm, with dominant phyla belonging to Proteobacteria (45% of total bacteria), Bacteroidetes (19%), Uncultured bacteria (9%), Actinobacteria (7%), Firmicutes (7%), Chloroflex (7%). At genera level, Rhodoferax, Ferruginibacter, Propionibacterium, Rhodopseudomonas, Ferribacterium, Clostridium, Chlorobaculum, Rhodobacter, Bradyrhizobium were the abundant taxa (relative abundances>2.0%). PMID:22078254

  4. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment.

    Science.gov (United States)

    Wu, Shijia; Li, Hui; Zhou, Xuechen; Liang, Peng; Zhang, Xiaoyuan; Jiang, Yong; Huang, Xia

    2016-07-01

    A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems. PMID:27131320

  5. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    Energy Technology Data Exchange (ETDEWEB)

    Elnashaie, S. [Auburn Univ., Chemical Engineering Dept., Auburn, Alabama (United States)]|[Univ. of British Columbia, Chemical and Biological Engineering Dept., Vancouver, British Columbia, (Canada)]. E-mail: nashaie@eng.auburn.edu.; nashaie@chml.ubc.ca

    2005-07-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO{sub 2} sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO{sub 2} sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  6. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  7. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NOx emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and CxHy emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas CxHy emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O2, CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  8. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    Energy Technology Data Exchange (ETDEWEB)

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively

  9. Operator experiences with international safeguards in the back end of the fuel cycle-geared to economic efficiency

    International Nuclear Information System (INIS)

    The nuclear industry in the Federal Republic of Germany (FRG) started at an early date to close the nuclear fuel cycle. Today, facilities operate for the enrichment of 235U, for its conversion, and for the fabrication of both uranium and uranium-plutonium mixed-oxide fuel elements. Pilot plants for the chemical processing of spent-fuel elements, as well as for the vitrification of the highly radioactive waste solutions, are also being operated on an industrial scale. This development has been generously sponsored by the Federal Minister of Research and Technology. This paper, which reports on the commitment of industry in the FRG to close the back end of the nuclear fuel cycle and the interaction of industrial activities with international safeguards, includes a discussion of efforts to implement a second way of entsorgung, the direct disposal of spent-fuel elements. International safeguards in German nuclear installations have proven to be sufficient to provide a high degree of guarantee against diversion at the various stages of the fuel cycle. Moreover, the state of the art that has been achieved and the improvements discussed will enable both the inspectorates and the operator to exercise efficient safeguards in future plants, including bulk-handling facilities, without impairing the economy of operation of the facilities

  10. Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China

    International Nuclear Information System (INIS)

    Interests in biomass-based fuel ethanol (BFE) have been re-boosted due to oil shortage and environmental deterioration. Biomass-based fuel ethanol is renewable and, apparently, environmentally friendly. Biomass-based E10 (a blend of 10% ethanol and 90% gasoline by volume) is a promising conventional gasoline substitute, because vehicle engines require no modifications to run on E10 and vehicle warranties are unaffected. This paper presented life cycle assessments (LCAs) of energy efficiency of wheat-based E10 from central China, corn-based E10 from northeast China, and cassava-based E10 from southwest China. The respective energy flow-based evaluation model of wheat-, corn-, and cassava-based E10 was built based on data from pilot BFE plants. Monte Carlo method is applied to deal with the uncertain parameters and input and output variables of the evaluation model because of its wide application and easy development of statistical dispersion of calculated quantities. According to the assessment results, the average energy input/output ratio of wheat-based fuel ethanol (WFE), corn-based fuel ethanol (CFE), and cassava-based fuel ethanol (KFE) is 0.70, 0.75, and 0.54, respectively, and biomass-based E10 vehicle can have less fossil energy demand than gasoline-fueled ones.

  11. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  12. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the...

  13. Analyzing the Effect of Multi-fuel and Practical Constraints on Realistic Economic Load Dispatch using Novel Two-stage PSO

    Science.gov (United States)

    Chintalapudi, V. S.; Sirigiri, Sivanagaraju

    2016-07-01

    In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.

  14. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  15. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    Science.gov (United States)

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. PMID:22025216

  16. From here to efficiency : time lags between the introduction of new technology and the achievement of fuel savings

    International Nuclear Information System (INIS)

    In this paper, the energy savings of new technology offering significant improvements in fuel efficiency are tracked for over 20 years as vehicles incorporating that technology enter the fleet and replace conventional light-duty vehicles. Two separate analyses are discussed: a life-cycle analysis of aluminum-intensive vehicles and a fuel-cycle analysis of the energy and greenhouse gas emissions of double vs. triple fuel-economy vehicles. In both efforts, market-penetration modeling is used to simulate the rate at which new technology enters the new fleet, and stock-adjustment modeling is used to capture the inertia in turnover of new and existing current-technology vehicles. Together, these two effects--slowed market penetration and delayed vehicle replacement--increase the time lag between market introduction and the achievement of substantial energy savings. In both cases, 15-20 years elapse, before savings approach these levels

  17. Role of Water Diffusivity in PEM for the Hydrogen Fuel Cell Efficiency

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Novotný, P.

    Cambridge : Zing, 2013. s. 22-22. [International Hydrogen & Fuel Cells Conference 2013. 12.07.2013 -15.07.2013, Napa Valle] R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : irreversible thermodynamics * hydrogen fuel cells * polymer membrane conductivity Subject RIV: BJ - Thermodynamics

  18. Development of an efficient catalyst for the pyrolytic conversion of biomass into transport fuel

    NARCIS (Netherlands)

    Nguyen, Tang Son

    2014-01-01

    Fast pyrolysis is a promising technique to convert biomass into a liquid fuel/fuel precursor, known as bio-oil. However, compared to conventional crude oil, bio-oil has much higher oxygen content which results in various detrimental properties and limits its application. Thus the first part of this

  19. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel.

    Science.gov (United States)

    Chang, Kao-Der; Li, Chang-Yi; Pan, Jui-Wen; Cheng, Kuei-Yuan

    2014-03-10

    Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system in this study. We adopt a hybrid simulated method to evaluate the light extraction efficiency (LEE) and far-field pattern in the air, and study the relationship between them. The simulation results show that OLEDs implanted with the QC structure can provide a collimated far-field pattern to increase the brightness. Using this 10-fold QC arrangement the maxima LEE of the OLEDs can be increased by 1.20 times. Compared with conventional OLEDs, the viewing angle of the OLED panel decreases from 120 degrees to 26 degrees with an improvement in the optical efficiency of the HMD system by 2.66 times. Moreover, the normalized on-axis intensity in the pupil of the eyepiece can be enlarged up to 3.95 times which suggests that the OLED panel can save 74.68% energy while achieving the same on-axis intensity as conventional OLEDs. PMID:24922267

  20. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    Directory of Open Access Journals (Sweden)

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  1. DEVELOPMENT OF FUEL AND ENERGY COMPLEX OF KRASNODAR REGION BASED ON INNOVATIVE ENERGY CONSERVATION AND ENERGY EFFICIENCY TECHNOLOGIES

    OpenAIRE

    Koshcheev Stanislav Viktorovich; Kuchenko Sergey Sergeevich

    2012-01-01

    Possibilities of solar collectors’ utilization in Krasnodar region as one of advanced direction of regions’ fuel and energy complex based on modern projects in energy conservation, energy efficiency and renewables’ technologies were reviewed in the article. Prospects of solar collectors’ utilization in Krasnodar region as alternative «green» energy source were presented. Modern science concepts of as alternative «green» energy source were presented, results of the research us of hospitality i...

  2. Impact of Tax Cuts on the Purchasing Behavior of Low-Pollution Vehicles, Fuel-Efficient Vehicles (Japanese)

    OpenAIRE

    Fujiwara, Toru

    2011-01-01

    This paper focuses on anti-warming measures in the passenger vehicle sector and estimates the impacts of three policies in the green car taxation plan on consumer behavior with respect to car purchases. The three policies refer specifically to, first, preferential taxation for green vehicles; second, special treatment of the vehicle acquisition tax when acquiring fuel-efficient vehicles; and third, special treatment of the vehicle acquisition tax when acquiring low-pollution vehicles. Our est...

  3. Technology for Efficient Usage of Hydrocarbon-Containing Waste in Production of Multi-Component Solid Fuel

    OpenAIRE

    B. M. Khroustalev; A. N. Pekhota

    2016-01-01

    The paper considers modern approaches to usage of hydrocarbon-containing waste as energy resources and presents description of investigations, statistic materials, analysis results on formation of hydrocarbon-containing waste in the Republic of Belarus. Main problems pertaining to usage of waste as a fuel and technologies for their application have been given in the paper. The paper describes main results of the investigations and a method for efficient application of viscous hydrocarbon-cont...

  4. High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Brown

    2000-01-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999. The highlights for this period are: (1) The methodologies for searching the literature for potentially attractive thermochemical water-splitting cycles, storing cycle and reference data, and screening the cycles have been established; and (2) The water-splitting cycle screening criteria were established on schedule.

  5. The Need for a Higher Fuel Efficiency of the Electricity Sector - An Analysis of Opportunities and Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Klimstra, J.

    2007-07-01

    The electricity sector is the single largest user of primary energy in the world. The issues of fuel prices, security of supply and greenhouse gas emissions are therefore closely connected with electricity generation. The total energy efficiency of the electricity sector is only 32.5% so that quick improvements are required. However, the uncertainty over fuel prices and technology preferences is such that most investors are hesitant. The life of existing, often low-efficiency, power plants is therefore extended. At the same time, the demand for electricity is rapidly increasing and the gap between capacity and demand decreases. This paper intends to bring more clarity into the economic and environmental boundary conditions of power plants. The goal is to find an attractive way for rapid efficiency improvement with an even better system reliability without increasing the costs. The paper discusses fuel price developments and the costs of generating technologies in connection with the typical demand pattern of electricity. Ultimately, it appears that local generation, preferably coupled with cogeneration, can be an important part of the solution. (auth)

  6. Areva new fuel designs; increased reliability, operating margins and operating efficiency

    International Nuclear Information System (INIS)

    AREVA is continuously working on the improvement of the fuel design to address immediate and future needs of the utilities. This improvement process regularly leads to incremental changes but also to breakthrough changes addressing the next needs of the market. Since a few years now, the improvements of the fuel design and licensing benefit from the improvement and upgrade in codes and methods and computational capabilities. Changes in design are sustained by these more powerful and phenomenological tools which secure and fasten the fuel design optimization and its implementation. (Author)

  7. Apparatus for improving the fuel efficiency of a gas turbine engine

    Science.gov (United States)

    Coffinberry, G. A. (Inventor)

    1983-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  8. Method for improving the fuel efficiency of a gas turbine engine

    Science.gov (United States)

    Coffinberry, G. A. (Inventor)

    1985-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  9. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Ralph [Auburn University, AL (United States); Schindler, Anton [Auburn University, AL (United States); Duke, Steve [Auburn University, AL (United States); Burch, Thom [Auburn University, AL (United States); Bransby, David [Auburn University, AL (United States); Stafford, Don [Lafarge North America, Inc., Alpharetta, GA (United States)

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  10. Efficient transport of commercial wood fuels and its impacts on resource conservation and environment

    International Nuclear Information System (INIS)

    Like most of the developing countries wood fuels will remain the most important energy source available for use particularly in the household sector in Sudan. According to he recent FAO/Forests national corporation study, almost an equivalent of 14 millions cubic meters of wood were consumed as fuel in form of charcoal or firewood only in the 16 northern states of Sudan. The total forest area of Sudan was estimated in in 1985 to be about 85 million hectares and total annual allowable cut to be about 90 millions cubic meters. The surplus in the national demand/supply balance may be misleading in understanding the real problem. The classification of regions in Africa by population density and vegetation zones allow a more precise statement of the nature of wood fuels problem. What is needed particularly for household energy resources are reliable statistics at a more micro level, within wood fuel catchments for population concentrations. This applies particularly to those catchments for people in urban areas. For these, wood fuel extraction may have a more marked effect on woody biomass resources and the environment. As regards wood fuel extraction and conversion, the supply system prevailing in most developing countries seem to play a more active role in the process of environmental degradation

  11. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    Directory of Open Access Journals (Sweden)

    Donghai Yuan

    2012-01-01

    Full Text Available An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  12. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  13. Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Cunha, Francisco Antônio S; Sousa, Rafael A; Harding, David P; Cadore, Solange; Almeida, Luciano F; Araújo, Mário César U

    2012-05-21

    The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0±3.5% for Pb in the naphtha samples, and 100.2±3.4% and 100.7±4.6% for Cu and Cr, respectively in gasoline samples. PMID:22541820

  14. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  15. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  16. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  17. Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance

    OpenAIRE

    Pål Börjesson; Thomas Prade; Mikael Lantz; Lovisa Björnsson

    2015-01-01

    The production of biogas from six agricultural crops was analysed regarding energy efficiency and greenhouse gas (GHG) performance for vehicle fuel from a field-to-tank perspective, with focus on critical parameters and on calculation methods. The energy efficiency varied from 35% to 44%, expressed as primary energy input per energy unit vehicle gas produced. The GHG reduction varied from 70% to 120%, compared with fossil liquid fuels, when the GHG credit of the digestate produced was include...

  18. Fuel efficient operation of compressor stations using simulation-based optimization

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswami, P.; Chapman, K.S.; Abbaspour, M. [Kansas State Univ., Manhattan, KS (United States). National Gas Machinery Laboratory

    2004-07-01

    This paper presented a powerful solution process for optimizing the operation of a gas compressor station by minimizing fuel consumption while maintaining the desired throughput of natural gas in a pipeline. The first step in the solution process involved the creation of an analysis scheme that provided the simulation support needed by the optimization. This was accomplished by developing an implicit finite difference formulation of the continuity, momentum and energy equations for flow under non-isothermal conditions. The performance of each compressor unit was simulated by fitting polynomials to the compressor map. These were then appended to the flow equations to derive a complete set of system governing equations. A Newton-Raphson operation was used to obtain system performance of the resulting nonlinear algebraic equations. The design variables in the nonlinear programming (NLP) problem included compressor unit speed and the objective to minimize fuel consumption. In order to ensure that adequate flow was maintained while minimizing fuel consumption, a constraint was placed on the minimum flow rate through the compressor station. A sequential unconstrained minimization technique (SUMT) was used to solve the NLP. The simulation algorithm can be used whenever it is necessary to evaluate the system response at any given operating point. The simulation was shown to satisfactorily predict system response and was highly effective in minimizing fuel consumption. It was concluded that the approach can be utilized in single or sequence gas compressor stations along a pipeline. 23 refs., 5 tabs., 9 figs.

  19. Cost and fuel efficient SCR-only solution for post-2010 HD emission standards

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.; Heijden, P.V.A.M. van der

    2009-01-01

    A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment c

  20. Competing for development : a case study of fuel-efficient stoves for Darfur

    Energy Technology Data Exchange (ETDEWEB)

    Abdelnour, S.; Branzei, O. [Western Ontario Univ., London, ON (Canada). Richard Ivey School of Business

    2008-07-01

    This paper discussed the Darfur Stoves Project. The project was designed to provide local support to non-government organizations (NGOs) to set up production facilities capable of producing 100 stoves per day. The Berkeley-Darfur stove design was based on a survey conducted in Darfur of cooking methods, tools, household fuels, and food requirements. The stove was designed to perform well in windy conditions. A pilot production facility was conducted to ensure that the stoves were easily built and assembled using simple hand tools. The stoves save the average family $250 per year in fuel wood and labour costs. The project is now examining methods of setting up multiple full-scale assembly shops to ensure that 300,000 stoves are built and distributed to households and displaced communities in the Darfur region. The need to save fuel wood has grown since the onset of armed conflict in the region. The combined concerns of deforestation, starvation, and violence against women as they searched for fuel wood has become a central concern in the region. The stove design is one of several designs currently being adopted by development agencies in the region. 32 refs., 11 figs.

  1. Competing for development : a case study of fuel-efficient stoves for Darfur

    International Nuclear Information System (INIS)

    This paper discussed the Darfur Stoves Project. The project was designed to provide local support to non-government organizations (NGOs) to set up production facilities capable of producing 100 stoves per day. The Berkeley-Darfur stove design was based on a survey conducted in Darfur of cooking methods, tools, household fuels, and food requirements. The stove was designed to perform well in windy conditions. A pilot production facility was conducted to ensure that the stoves were easily built and assembled using simple hand tools. The stoves save the average family $250 per year in fuel wood and labour costs. The project is now examining methods of setting up multiple full-scale assembly shops to ensure that 300,000 stoves are built and distributed to households and displaced communities in the Darfur region. The need to save fuel wood has grown since the onset of armed conflict in the region. The combined concerns of deforestation, starvation, and violence against women as they searched for fuel wood has become a central concern in the region. The stove design is one of several designs currently being adopted by development agencies in the region. 32 refs., 11 figs

  2. Stable and Efficient Advanced Oxygen Reduction Alloy Catalysts for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Human exploration of space demands highly efficient, light-weight, long lifetime and maintenance-free power generation systems. Energy storage applications,...

  3. The Challenge of Efficient Synthesis of Biofuels from Lignocellulose for Future Renewable Transportation Fuels

    Directory of Open Access Journals (Sweden)

    Päivi Mäki-Arvela

    2012-01-01

    Full Text Available Dehydration of sugars to 5-hydroxymethylfurfural (HMF has recently been under intensive study by a multitude of research groups. On the other hand, when lignocellulosic biomass is applied as the starting material, very few studies can be found in the open literature. The direct synthesis of HMF, in line with the idea of “one-pot” synthesis strategy from lignocellulose, is demanding since the overall process should encompass dissolution, hydrolysis, and dehydration steps in a single processing unit. Ionic liquid-assisted methods to produce hydroxymethyl-furfural directly from lignocellulosic biomass are reported here together with a short overview of the most important biofuels. In reality, HMF is not suitable to be used as a single-component fuel as such, and, consequently, methods to produce HMF derivatives suitable as liquid fuels are reported.

  4. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?

    OpenAIRE

    Liang, Kuo-Yun; Mårtensson, Jonas; Johansson, Karl Henrik

    2013-01-01

    Vehicle platooning has in recent years become an important research eld for thevehicle industry. By establishing a platoon of heavy duty vehicles, the fuel consumption can bereduced for the follower vehicles due to the slipstream eect. However, as vehicles are scatteredon the road driving by themselves, coordination amongst the vehicles is required. In this paperwe study the problem of when it is benecial for a heavy duty vehicle to drive faster in orderto catch up and join a platoon. We deri...

  5. Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation

    International Nuclear Information System (INIS)

    Research and development studies of molten-salt reactors (MSRs) for special purposes have been under way since 1947 and for possible application as possible commercial nuclear electric power generators since 1956. For the latter, the previous emphasis has been on breeding performance and low fissile inventory to help limit the demand on nonrenewable natural resources (uranium) in an expanding nuclear economy; little or no thought has been given to alternative uses of nuclear fuels such as proliferation of nuclear explosives. As a consequence, the conceptual designs that evolved (e.g., the ORNL reference design MSBR) all favored enriched 233U as fuel with an on-site chemical processing facility from which portions of that fuel could be diverted fairly easily. With the current interest in limiting the proliferation potential of nuclear electric power systems, a redirected study of MSRs was undertaken in an effort to identify conceptual systems that would be attractive in this situation. It appears that practical proliferation-resistant MSRs could be designed and built, and the report describes a particularly attractive break-even breeder that includes an on-site chemical reprocessing facility within the reactor primary containment

  6. User's guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    Science.gov (United States)

    Marr, W. W.

    1995-01-01

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  7. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context

    International Nuclear Information System (INIS)

    Interest has been renewed in bio-ethanol products for their contributions in moderating oil crises. So far, most research on bio-ethanol in China is based on pilot-level experimental studies. But this work only discloses information regarding material balances and reached yields without any further energy analysis. This paper aims to assess the energy efficiency of the cassava-based fuel ethanol (KFE) product from southwest China. For the purpose of a life cycle study of the KFE product as replacement transportation fuel, the study chose a 'vehicle fueled by cassava-based E10 (a blend of 10% ethanol and 90% gasoline by volume)' as the subject and accordingly defined the scope of this study. Then, the life cycle model of the KFE product concerning energetically relevant in- and outputs was built. Due to variations in data collected, as well as some estimates and assumptions used in this study, the Monte Carlo method was introduced to develop the statistical dispersion of calculated outputs of the assessing model. Assessment results show that, within the boundary of this study, KFE has a positive net energy value, with an energy ratio of around 0.70 MJ/MJ, which means 7 MJ into the processing for each MJ of KFE output

  8. Oxygen analyzer

    Science.gov (United States)

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  9. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    Energy Technology Data Exchange (ETDEWEB)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  10. Car ownership and status. Implications for fuel efficiency policies from the viewpoint of theories of happiness and welfare economics

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.T. [Free University Amsterdam, Department of Spatial Economics, Amsterdam (Netherlands); Van Wee, B. [National Institute of Public Health and the Environment (RIVM), Bilthoven (Netherlands)

    2000-07-01

    Research on 'happiness' suggests that once an average per capita income of around US$10,000 is achieved in a country, further increases in income will not lead to a significant increase in happiness. Additional income will probably often be spent on the satisfaction of mainly 'relative' needs, of which 'status goods' would be one example. From that perspective, an overall shift to more fuel-efficient cars (i.e. smaller cars with less power) would not necessarily, or only to a limited extent, result in less happiness. From a welfare economic perspective, the satisfaction of the relative needs pertaining to consumption can be considered as a form of consumption externalities. This creates a welfare economic basis for government intervention. A model in which these consumption externalities are studied is presented here. Government intervention would include stimulating consumption of lower-status goods and discouraging consumption of higher-status ones. We speculate, however, that to achieve a significant increase in the fuel efficiency of a country's car fleet through pricing policies, huge price increases may often be needed. As acceptance of price increases as a policy instrument is often low, 'fee-bates' and tradeable permits may be more preferable instruments. 36 refs.

  11. Thermal analysis of air-cooled fuel cells

    OpenAIRE

    Shahsavari, Setareh

    2011-01-01

    Temperature distribution in a fuel cell significantly affects the performance and efficiency of the fuel cell system. Particularly, in low temperature fuel cells, improvement of the system requires proper thermal management, which indicates the need for developing accurate thermal models. In this study, a 3D numerical thermal model is presented to analyze the heat transfer and predict the temperature distribution in air-cooled proton exchange membrane fuel cells (PEMFC). In the modeled fuel c...

  12. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance in Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL

    2013-01-01

    Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under startup/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 g/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

  13. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, Arup [Ford Motor Company, Dearborn, MI (United States); McWatt, D. G. [Ford Motor Company, Dearborn, MI (United States); Zdrodowski, R. J. [Ford Motor Company, Dearborn, MI (United States); Liu, Zak [Ford Motor Company, Dearborn, MI (United States); Elie, Larry [Ford Motor Company, Dearborn, MI (United States); Simko, S. J. [Ford Motor Company, Dearborn, MI (United States); Erdemir, Ali [Argonne National Lab. (ANL), Argonne, IL (United States); Ramirez, Giovanni [Argonne National Lab. (ANL), Argonne, IL (United States); Cuthbert, J. [Dow Chemical Company, Midland, MI (United States); Hock, E. D. [Dow Chemical Company, Midland, MI (United States)

    2015-09-30

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, its application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal

  14. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    Science.gov (United States)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These

  15. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    of fullbridge switching stages and power transformers, operate in parallel on primary side and in series on secondary side. Current sharing is guaranteed by series connection of transformer secondary windings and three small cascaded current balancing transformers on primary side. The detailed design of a 10 k...... cost solution to achieve very high conversion efficiency in high input current applications....

  16. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  17. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    Science.gov (United States)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  18. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  19. Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-30

    The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight efficiency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold significant potential for market success.

  20. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft(regsign) Access database was created. In the Microsoft(regsign) Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation

  1. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft(regsign) Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft(regsign) Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the queries

  2. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  3. Improvement of visualization efficiency for the nondestructive inspection image of internal defects in plate type nuclear fuel

    International Nuclear Information System (INIS)

    Plate type nuclear fuel has been adopted in most research reactors. The production quality of the fuel is a key part for an efficient and stable generation of thermal energy in research reactors. Thus, a nondestructive quality inspection for the internal defects of plate type nuclear fuel is a key process during the production of nuclear fuel for safety insurance. Nondestructive quality inspections based on X rays and ultrasounds have been widely used for the defect detection of plate type nuclear fuel. X ray testing is a simple and fast inspection method, and provides an image in real time as the inspection results. Thus, the testing can be carried out by a non expert field worker. However, it is hard to detect closed type defects that should be detected during the production of plate type nuclear fuel. Ultrasonic testing is a powerful tool to detect internal defects including open type and closed type defects in plate type nuclear fuel. However, the inspection process is complicated because an immersion test should be carried out in a water tank. It is also a time consuming inspection method because area testing to acquire image is based on the scanning of the point by point inspections. Among nondestructive inspection techniques, the techniques based on laser interferometry and infrared thermography have been widely used in the detection of internal defects of plate type composite materials, such as aircraft, automotive etc. While infrared thermography technique (IRT) analyses the thermal behavior of the specimen surface, laser interferometry technique (LIT) analyses the deformation field. Both techniques are useful tools for detection and evaluation of internal defects in composite materials. Especially, the laser interferometry technique can provide the depth information of internal defects. Laser interferometry technique (LIT) is a non contact inspection method faster than thermography. Also, this technique requires less energy than thermography and the

  4. Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Highlights: • Efficiency optimization associated with simultaneous power and thermal management. • Fast load tracing, fuel starvation, high efficiency and operating safety are considered. • Open loop pre-conditioning current strategy is proposed for load step-up transients. • Feedback control scheme is proposed for load step-up transients. - Abstract: The slow power tracking, operating safety, especially the fuel exhaustion, and high efficiency considerations are the key issues for integrated solid oxide fuel cell (SOFC) systems during power step up transients, resulting in the relatively poor dynamic capabilities and make the transient load following very challenging and must be enhanced. To this end, this paper first focus on addressing the efficiency optimization associated with simultaneous power and thermal management of a 5-kW SOFC system. Particularly, a traverse optimization process including cubic convolution interpolation algorithm are proposed to obtain optimal operating points (OOPs) with the maximum efficiency. Then this paper investigate the current implications on system step-up transient performance, then a two stage pre-conditioning current strategy and a feedback power reference control scheme is proposed for load step-up transients to balance fast load following and fuel starvation, after that safe thermal transient is validated. Simulation results show the efficacy of the control design by demonstrating the fast load following ability while maintaining the safe operation, thus safe; efficient and fast load transition can be achieved

  5. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells

    Science.gov (United States)

    Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata

    2016-06-01

    Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.

  6. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. PMID:25950933

  7. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia-Esparza, Angel T.

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  8. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    Science.gov (United States)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  9. Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces

    International Nuclear Information System (INIS)

    Highlights: ► This review examines hydrogenases as suitable biocatalysts for H2/O2 biofuel cells. ► It focuses on a O2, CO and temperature-resistant hydrogenase from Aquifex aeolicus. ► Electrically connected hydrogenase amount increases on carbon nanotube network. ► Hydrogenase orientation at the interface controls the electron transfer process. ► Hydrogenase insertion into liposomes enhances its stability. - Abstract: Hydrogenases are the key enzymes for hydrogen metabolism in many microorganisms. Due to the high efficiency they develop for H2 oxidation, research in the last five years has aimed towards their use as biocatalysts for H2/O2 biofuel cells to replace platinum-based chemical catalysts. We report in this review the major issues that have been addressed in view of the future development of such a novel biotechnological device. This includes enhancing the stability of either the enzyme itself or its immobilization onto conductive supports, increasing the amount of electrically connected enzymes and, finally, controlling hydrogenase orientation at the electrode surface, and hence the electron transfer process. We specifically focus on a particular [NiFe] membrane-bound hydrogenase purified from the hyperthermophilic and microaerophilic bacterium Aquifex aeolicus. This enzyme resists to O2, CO, and high temperatures making it potentially efficient as a biocatalyst. Recent progress in these domains strengthens the credibility of a viable H2/O2 biofuel cell and opens new avenues for biofuel cell design.

  10. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel

    Science.gov (United States)

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-05-01

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity.Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity. Electronic supplementary information (ESI) available: The synthetic procedure, facilities information, EDX patterns and UV-Vis data. See DOI: 10.1039/c6nr02525k

  11. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.; Pierce, B. [eds.

    1995-06-01

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  12. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  13. GOVERNOR ELECTRONICS FOR DIESEL ENGINES : High availability platform for real-time control and advanced fuel efficiency algorithms

    OpenAIRE

    Holmström, Johnny

    2013-01-01

    Fossil fuel is a rare commodity and the combustion of this fuel results in negative environmental effects. This paper evaluates and validates the electronics needed to run intelligent algorithms to lower the fuel consumption for commercial vessels. This is done by integrating advanced fuel saving functions into an electronic device that controls the fuel injection of large diesel engines, as known as a diesel engine governor. The control system is classified as a safety critical system. This ...

  14. InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor.

    OpenAIRE

    Coletta, Alain; Molter, Colin; Duque, Robin; Steenhoff, David; Taminau, Jonatan; de Schaetzen, Virginie; Meganck, Stijn; Lazar, Cosmin; Venet, David; Detours, Vincent; Nowe, Ann; Bersini, Hugues; Weiss Solis, David Y

    2012-01-01

    ABSTRACT: Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platfo...

  15. Issues and suggestions for public perception of the safety of the high-level radioactive waste disposal. Through analyzing the case of the environmental assessment and review process for the nuclear fuel waste management and disposal concept of Canada

    International Nuclear Information System (INIS)

    The concerns of the Japanese public about the disposal of high-level radioactive waste (HLW) increase as the nuclear fuel cycle program makes progress. For responding to public concerns, the Japanese government is taking measures of developing the framework of the HLW disposal project such as preparing legislation and establishing the implementing entity. The activities for public acceptance of this project have been initiated recently. In the process of siting, the implementing entity will be required to gain public confidence in the safety of the disposal concept. This paper first summarizes the technical aspects of the HLW disposal projects in various countries. Then, it discusses the issues for public perception of the safety of the HLW disposal with analyzing the case of the environmental assessment and review process for the nuclear fuel waste management and disposal concept administered in Canada and makes suggestions for future steps to be taken in Japan. (author)

  16. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    Science.gov (United States)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode. PMID:17764355

  17. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    International Nuclear Information System (INIS)

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency

  18. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process

    International Nuclear Information System (INIS)

    Bio-oil can't be directly used as fuel due to its deteriorate properties. Here, an efficient catalytic upgrading process for the bio-oil, including esterification, hydrogenation, hydrodeoxygenation and depolymerization, is proposed with multifunctional catalyst Ni/SiO2–ZrO2 and biomass-derived solvent ethanol. Results showed that esters, alcohols, phenolics, and cyclo-ketones were the main components in the upgraded bio-oil while aldehydes were removed completely via catalytic hydrogenation and acids were removed by catalytic esterification with supercritical ethanol. The pH value of upgraded bio-oil rose drastically from 2.38 to 5.24, and the high heating value increased to 24.4 MJ kg−1. Comparison characterization on the upgraded and crude bio-oil using FT-IR, GPC (Gel permeation chromatography) and 13C NMR (Nuclear Magnetic Resonance) demonstrated that lignin-derived oligomers contained in crude bio-oil were further depolymerized over Ni/SiO2–ZrO2 catalyst. The improved properties suggest that the upgraded bio-oil is more suitable to be used as boiler fuel. Furthermore, the loss of carbon is negligible because formation of coke is suppressed during the upgrading process. - Highlights: • Acid can be converted via catalytic esterification in supercritical ethanol. • Aldehydes can be removed completely during the upgrading process. • Lignin-derived oligomers were further depolymerized during the upgrading process. • Formation of coke is effectively inhibited during the upgrading process

  19. COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization

    International Nuclear Information System (INIS)

    A novel liquefied natural gas (LNG) fueled power plant is proposed, which has virtually zero CO2 and other emissions and a high efficiency. The plant operates as a subcritical CO2 Rankine-like cycle. Beside the power generation, the system provides refrigeration in the CO2 subcritical evaporation process, thus it is a cogeneration system with two valued products. By coupling with the LNG evaporation system as the cycle cold sink, the cycle condensation process can be achieved at a temperature much lower than ambient, and high-pressure liquid CO2 can be withdrawn from the cycle without consuming additional power. Two system variants are analyzed and compared, COOLCEP-S and COOLCEP-C. In the COOLCEP-S cycle configuration, the working fluid in the main turbine expands only to the CO2 condensation pressure; in the COOLCEP-C cycle configuration, the turbine working fluid expands to a much lower pressure (near-ambient) to produce more power. The effects of some key parameters, the turbine inlet temperature and the backpressure, on the systems' performance are investigated. It was found that at the turbine inlet temperature of 900 oC, the energy efficiency of the COOLCEP-S system reaches 59%, which is higher than the 52% of the COOLCEP-C one. The capital investment cost of the economically optimized plant is estimated to be about 750 EUR/kWe and the payback period is about 8-9 years including the construction period, and the cost of electricity is estimated to be 0.031-0.034 EUR/kWh.

  20. Using Finite Model Analysis and Out of Hot Cell Surrogate Rod Testing to Analyze High Burnup Used Nuclear Fuel Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL; Wang, Hong [ORNL

    2014-07-01

    Based on a series of FEA simulations, the discussions and the conclusions concerning the impact of the interface bonding efficiency to SNF vibration integrity are provided in this report; this includes the moment carrying capacity distribution between pellets and clad, and the impact of cohesion bonding on the flexural rigidity of the surrogate rod system. As progressive de-bonding occurs at the pellet-pellet interfaces and at the pellet-clad interface, the load ratio of the bending moment carrying capacity gradually shifts from the pellets to the clad; the clad starts to carry a significant portion of the bending moment resistance until reaching the full de-bonding state at the pellet-pellet interface regions. This results in localized plastic deformation of the clad at the pellet-pellet-clad interface region; the associated plastic deformations of SS clad leads to a significant degradation in the stiffness of the surrogate rod. For instance, the flexural rigidity was reduced by 39% from the perfect bond state to the de-bonded state at the pellet-pellet interfaces.

  1. 40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1221-90 Hydrocarbon analyzer calibration. The FID... methanol-fueled vehicles shall be operated at 235° ±15 °F (113° ±8 °C)). Analyzers used with gasoline-fuel...-fuel may be optimized using methane, or if calibrated using propane the FID response to methane...

  2. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  3. Analyzing the Low Efficiency of Chinese Stock Market with An Institutional view%中国证券市场低效率的制度分析

    Institute of Scientific and Technical Information of China (English)

    张宗新

    2001-01-01

    @@ 一、问题的提出 证券市场效率,一直是证券市场发展中的核心问题,也是金融研究的重要课题.在金融经济理论中,关于证券市场效率问题最有影响力的理论应首推E.F.Fama在1970年提出的"有效率市场假说"(Efficient Market Hypothesis).该假说认为,若证券市场在价格形成中充分而准确地反映全部相关信息,则称该市场为有效率的.若证券价格并不由于向所有证券交易参与者公布了信息集Ф而受到影响,那么,就说该市场对信息集Ф是有效率的.换言之,能够有效地利用经济、金融等各方面信息的证券市场,就是"有效率市场".

  4. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  5. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  7. Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels

    International Nuclear Information System (INIS)

    Exergy analysis of any thermodynamic system can take care of the limitations of energy analysis such as irreversible losses, their magnitude and the source of thermodynamic inefficiencies apart from energy losses. In the present study, both the analyses along with heat release analysis are conducted on a natural aspirated diesel engine fuelled separately with palm biodiesel (PB), karanja biodiesel (KB), and petrodiesel (PD) using the experimental data. Since the engine performs best at about 85% loading condition, the energetic and exergetic performance parameters of the engine are evaluated at 85% loading condition for each type of fuel. The aim of the study is to determine the effect of fuel oxygen on energy and exergy efficiencies of a CI (compression ignition) engine. Various exergy losses, exergy destruction and their ratios associated with the heat transfer through cooling water, radiation, exhaust gas, friction, and some uncounted exergy destruction are investigated. Apart from exergy loss due to heat transfer; the uncounted exergy destruction (due to combustion) also plays a major role in the system inefficiency. Based on the comparative assessment of the obtained results, it is concluded that a better combustion with less irreversibility is possible with the increase in O2 content in the fuel. - Highlights: • Efficiency of a CI engine increases with the increase in oxygen quantity in the fuel. • Irreversibility of a CI engine decreases with increase in oxygen content in the fuel. • Palm biodiesel performs better than karanja biodiesel and petrodiesel for a CI engine

  8. RUN DMC: AN EFFICIENT, PARALLEL CODE FOR ANALYZING RADIAL VELOCITY OBSERVATIONS USING N-BODY INTEGRATIONS AND DIFFERENTIAL EVOLUTION MARKOV CHAIN MONTE CARLO

    International Nuclear Information System (INIS)

    In the 20+ years of Doppler observations of stars, scientists have uncovered a diverse population of extrasolar multi-planet systems. A common technique for characterizing the orbital elements of these planets is the Markov Chain Monte Carlo (MCMC), using a Keplerian model with random walk proposals and paired with the Metropolis-Hastings algorithm. For approximately a couple of dozen planetary systems with Doppler observations, there are strong planet-planet interactions due to the system being in or near a mean-motion resonance (MMR). An N-body model is often required to accurately describe these systems. Further computational difficulties arise from exploring a high-dimensional parameter space (∼7 × number of planets) that can have complex parameter correlations, particularly for systems near a MMR. To surmount these challenges, we introduce a differential evolution MCMC (DEMCMC) algorithm applied to radial velocity data while incorporating self-consistent N-body integrations. Our Radial velocity Using N-body DEMCMC (RUN DMC) algorithm improves upon the random walk proposal distribution of the traditional MCMC by using an ensemble of Markov chains to adaptively improve the proposal distribution. RUN DMC can sample more efficiently from high-dimensional parameter spaces that have strong correlations between model parameters. We describe the methodology behind the algorithm, along with results of tests for accuracy and performance. We find that most algorithm parameters have a modest effect on the rate of convergence. However, the size of the ensemble can have a strong effect on performance. We show that the optimal choice depends on the number of planets in a system, as well as the computer architecture used and the resulting extent of parallelization. While the exact choices of optimal algorithm parameters will inevitably vary due to the details of individual planetary systems (e.g., number of planets, number of observations, orbital periods, and signal

  9. Studies on the efficiency during reactivation of a generation system based on natural gas reformer and a 5 k W fuel cell; Estudos de eficiencia durante reativacao de um sistema de geracao baseado em reformador de gas natural e celula a combustivel de 5 kW

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Francisco da Costa; Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues da; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: fcl@cepel.br

    2008-07-01

    Fuel cell based power generation systems have been pointing as promising technology for stationary applications mainly to supply power to critical loads. Among several types of fuel cells the Polymer Electrolyte Membrane Fuel Cells (PEMFC) are the main type used around the world. Nowadays reformers are widely employed to produce hydrogen for fuel cells. The Fuel Cell Laboratory of CEPEL has a power plant based on a 5 kW PEMFC and a natural gas reformer. For a long time the PEMFC was inoperable due to reformer malfunctioning and during this time the full power availability of PEMFC was lost due to deactivation of its catalytic sites. In most cases this deactivation is reversible. So it was started a reactivation process aiming to recover the full operational condition of the PEMFC unit. During this process the gas flow relationship and efficiency of the reformer were studied. An analysis of the PEMFC reactivation was conducted where it was noted that the reactivation took place as expected. During the reactivation process the PEMFC and the whole system efficiency were analyzed. The results suggest that the PEMFC can reach efficiency compatible with conventional power generation systems thus allowing PEMFC technology to compete with these energy sources in point of efficiency. (author)

  10. Fuel flowmeters - measurements of fuel consumption

    OpenAIRE

    Nešpor, Martin

    2012-01-01

    This work is devoted to measuring the fuel consumption. Generally deals with factors affecting consumption and fuels. Furthermore, it describes methods of measuring fuel consumption under the driving modes. Finally, the paper deals with the calculations, the actual selection of fuel gauge, economy and efficiency evaluation of fuel consumption. The conclusion of this work summarizes the above findings.

  11. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    OpenAIRE

    M. SHIVA SHANKAR; A. V. KRISHNA REDDY; K. APPARAO

    2010-01-01

    The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for whic...

  12. PhosphoSiteAnalyzer

    DEFF Research Database (Denmark)

    Bennetzen, Martin V; Cox, Jürgen; Mann, Matthias; Andersen, Jens S.

    2012-01-01

    Phosphoproteomic experiments are routinely conducted in laboratories worldwide, and because of the fast development of mass spectrometric techniques and efficient phosphopeptide enrichment methods, researchers frequently end up having lists with tens of thousands of phosphorylation sites for...... sets that have been subjected to kinase prediction using the previously published NetworKIN algorithm. NetworKIN applies sophisticated linear motif analysis and contextual network modeling to obtain kinase-substrate associations with high accuracy and sensitivity. PhosphoSiteAnalyzer provides an...

  13. Analyzing business process management

    OpenAIRE

    Skjæveland, Børge

    2013-01-01

    Within the Oil & Gas Industry, the market is constantly growing more competitive, forcing companies to continually adapt to changes. Companies need to cut costs and improve the business efficiency. One way of successfully managing these challenges is to implement business process management in the organization. This thesis will analyze how Oceaneering Asset Integrity AS handled the implementation of a Business Process Management System and the effects it had on the employees. The main goal...

  14. PAC-Car I - A highly efficient vehicle with hydrogen fuel cell; PAC-Car I - Vehicule ultra efficient a pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L.; Paganelli, G. [Swiss Federal Institute of Technology (EPFZ), Institut fuer Mess- und Regeltechnik, ETH Zentrum, Zuerich (Switzerland); Santin, J.-J. [UVHC - Campus du Mont Houy, Valenciennes (France)

    2003-07-01

    This report presents a very low energy consumption vehicle developed for the 2003 edition of the Shell Eco-marathon race. Innovating developments were needed for most of its components, which are not yet available on the market. The chemical energy of hydrogen gas is first converted into electrical energy by a 900 W Proton Exchange Membrane Fuel Cell (PEMFC). The car is driven by two DC powered electrical motors, which get their energy from a power electronic converter supplied by the fuel cell. Hydrogen is stored as metal hydride, in the solid state. The report gives a detailed description of the fuel cell, the control system principles as well as a presentation of the hydrogen tank. Various pictures show the vehicle and some of its mechanical details. Performance monitoring indicated a fuel consumption of only 15.9 grams of hydrogen per 100 km; this corresponds to an equivalent of 1694 km for the consumption of one litre of lead-free 95 gasoline in a usual internal combustion engine. However, as the vehicle used for the race had not been specifically developed for the fuel cell based equipment and the research efforts were focused on the advanced propulsion systems, the overall performance could still be significantly improved by optimising the vehicle itself.

  15. Flow characteristics of various swirl-can module designs. [exhaust flow simulation, flow characteristics, and combustion efficiency of jet engine fuels

    Science.gov (United States)

    Mularz, E. J.

    1975-01-01

    Flow measurements were performed on each of six swirl-can combustor module designs under simulated combustor operating conditions to find the design which exhibited a small recirculation zone, intense air mixing, and good fuel distribution in its wake. Conditions that are favorable for producing low oxides of nitrogen emissions and high combustion efficiency were investigated. The recirculation zone, the turbulence intensity and the fuel distribution pattern are obtained in the wake region of the center module of a three module array. The most promising swirl-can module design incorporates two air swirlers which discharge air in opposite directions (contraswirl), mixes the fuel and air upstream of the inner swirler, and has a flow area blockage of 64.3% for the three module array.

  16. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  17. Forecasting of efficiency of solar and solar-fuel power plants with Stirling engines in the conditions of Central Asia

    International Nuclear Information System (INIS)

    Accounting method of electricity generation by solar power plant with Stirling engine (SPP) with taking into account of real duration of solar radiance is worked out. The calculation of SPP productivity on the basis of many years observations in Tashkent is done. The fuel economy while SPP is working at combined solar-fuel regime is estimated. author). 8 refs., 2 figs., 1 tab

  18. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  19. Assessment of efficiency of various techniques of flow area blocking detection of single fuel assembly for sodium fast reactors

    International Nuclear Information System (INIS)

    Mathematical calculations of the hypothetic beyond design basis accident scenario Immediate flow area blocking of single fuel assembly (among all in reactor core) and corresponding experiments which make it possible to assess the lead times. It is pointed out that today the processes which bring out blocking in time less than 1 min can be classified as immediate flow area blocking of fuel assemblies. To detect the fact of such blocking it is necessary to use the amplitude analysis. Slowly evolving processes of fuel assembly blocking can be controlled reliably by all control systems, and accident progression can be prevented according to the signals of failed element detection of location sectoral system. Maintenance of control on reactivity and neutron noises allow to prevent accident progression out of seven fuel assemblies

  20. Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation

    Science.gov (United States)

    This paper describes the method and test results of the engine dyno portion of the benchmarking test results including engine fuel consumption maps showing the effects of cylinder deactivation engine technology.

  1. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  2. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.

    Science.gov (United States)

    Sengodan, Sivaprakash; Choi, Sihyuk; Jun, Areum; Shin, Tae Ho; Ju, Young-Wan; Jeong, Hu Young; Shin, Jeeyoung; Irvine, John T S; Kim, Guntae

    2015-02-01

    Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3-δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm(-1) in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm(-2) at 850 °C using humidified hydrogen and propane fuels, respectively. PMID:25532072

  3. Definition of efficiency criteria for a fuel cell humidifier: Application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures

    International Nuclear Information System (INIS)

    The humidifier plays a key role in fuel cells system by ensuring good hydration of membranes and transferring part of the exhaust heat to the cells. To characterise this device and evaluate its performance at negative ambient temperatures, several methods from different fields of engineering can be adopted. In our investigation, we first tested the performance criteria applicable to a heat exchanger since the humidifier can be considered a heat and mass exchanger. To estimate mass exchange, i.e., moisture transfer, the criteria used in industrial drying were tested. Eventually, to consider irreversibilities involved in the humidification process, exergetic criteria were defined. Following the design of experiments (DOE) method, we fit all performance criteria into a linear model. An analysis of variance showed that only the exergy yield ζ model is robust and reliable. A study of this model helps us present several recommendations for optimizing humidifier performance. The DOE results reveal that between −20 °C and 0 °C, the ambient temperature does not have a significant impact on the exergy yield. This indicates that humidifier sizing and optimisation made at a given ambient temperature would be applicable for other ambient temperatures. -- Highlights: • A fuel cell humidifier is studied via an exergetic approach. • Method of Design Of Experiments (DOE) is used to select a suitable criteria. • On top of experiments a statistical model is given

  4. Efficiency and effect of different soot blowing methods on boilers using different types of fuels; Sotningsmetodernas effektivitet och konsekvenser paa foerbraenningsanlaeggningar foer olika typer av braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Rodin, Aasa

    2004-09-01

    Increased use of recovered wood fuel, waste fuel and new types of wood fuel, have increased the amount of fouling in the superheater and economizer. Deposits in the boilers heat-absorbing banks reduces the boiler efficiency and increases the exit flue gas temperatures. Thus, efficient soot blowing practice is now in focus with the aim of reducing the amount of fouling. This report evaluates the function and efficiency of the commonly used soot blowing methods at boilers in the range of 10 to 130 MW. The investigated soot blowing methods are: steam-, acoustic-, shot-, water-, hammer- and detonation cleaning. Plant experience and data has been acquired from the following six plants: Fortum Hoegdalen, Haesselby and Brista, Stora Enso Hyltebruk, Tekniska Verken i Linkoeping, kraftvaermeverket and C4-Energi, Alloeverket. Participating plants have shown a wide variety in: different boiler designs, different design of superheater and economizer, different kinds of used fuels and different kinds of fouling problems. Soot blowing efficiency is basically a function of three parameters: 1. Characteristics of the deposit regarding to hardness, toughness, homogeneity, amount and coverage, this is often due to the characteristics of the fired fuel. 2. Design of the heat absorbing banks regarding the risk of deposit formation and clogging. 3. Characteristics of the soot blowing method regarding the cleaning effect, bank penetration, high temperature endurance and suitability in different parts of the boiler. These three parameters coincide and together they decide the performance efficiency of the soot blowing method. Used fuel can be divided in to three groups depending on the formed deposits: Firing of mainly wood fuels resulted in no or minor problem with fouling. Firing of waste fuels resulted in hard and tough deposits. Participating waste fired boilers was, however, designed with consideration to these types of deposits and, therefore, these deposits was in reality not a

  5. Glass-based seal for solid oxide fuel cells could help bring this efficient energy technology to market

    OpenAIRE

    Trulove, Susan

    2009-01-01

    Solid oxide fuel cells (SOFCs) have great potential for stationary and mobile applications. Stationary use ranges from residential applications to power plants. Mobile applications include power for ships at sea and in space, as well as for autos. In addition to electricity, when SOFCs are operated in reverse mode as solid oxide electrolyzer cells, pure hydrogen can be generated by splitting water.

  6. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    Science.gov (United States)

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. PMID:27126079

  7. Characterization of Regional Marginal Abatement Cost Curves for NOx that Incorporate Control Measures, Renewable Energy, Energy Efficiency and Fuel Switching

    Science.gov (United States)

    Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...

  8. The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Ale, Marcel Tutor;

    2014-01-01

    Microbial fuel cells (MFCs) can be used for electricity generation via bioconversion of wastewater and organic waste substrates. MFCs also hold potential for production of certain chemicals, such as H2 and H2O2. The studies of electricity generation in MFCs have mainly focused on the microbial co...

  9. High-Efficiency Isolated Boost DCDC Converter for High-Power Low-Voltage Fuel-Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2010-01-01

    high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing of...... and demonstrate very high conversion efficiency. The efficiency at minimum input voltage and maximum power is 96.8%. The maximum efficiency of the proposed converter is 98%....

  10. Impact of energy efficiency and replacement of diesel fuel with natural gas in public transport on reducing emissions of nitrogen oxides

    International Nuclear Information System (INIS)

    This paper analyzes the direct emissions of nitrogen oxides from the public transport (bus) in urban areas in the Republic of Macedonia. As influential factors on which to compare the quantity of these emissions are taken: Penetration of new (energy efficient) technologies in bus transport, the intensity of the bus fleet renewal for public transport and replacement of diesel with natural gas. (Author)

  11. Fuel Efficient Stoves for Darfur Camps of Internally DisplacedPersons - Report of Field Trip to North and South Darfur, Nov. 16 -Dec.17, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark; Lee, Yoo-Mi

    2006-02-01

    Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG'' stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire

  12. 我国校企技术转移效率及影响因素分析%Analyzing on University-Enterprise Technology Transfer Efficiency and Its Influencing Factors in China

    Institute of Scientific and Technical Information of China (English)

    廖述梅; 徐升华

    2009-01-01

    高校对企业的技术转移是国家创新体系建设的主要工作之一.采用SFE方法测算了我国27个省市高校从2000-2006年以来对企业的技术转移效率,并分析了非效率因素.分析发现,我国总体上校企技术转移效率比较低,各省市差异大;校企技术转移受到了诸如专利、地区人均研发投入等内外部因素的影响较大.分别从政府、高校和企业三个方面给出了提高校企技术转移效率的政策性建议.%Technology transfer from university to enterprise is one of the important works to develop national innovation systems.Based on 27 provincial panel data from 2000 to 2006,this paper measures the efficiency of technology transfer from university to enterprise,and analyzes inefficiency factors by SFE.The results suggest that the overall efficiencies ale low,and heterogeneity among region.Moreover,the inefficiency model shows that inner and environmental factors,such as patents and R&D investment per head have significant impact on technology transfer.Lastly,some suggestions are put forward to promote technology transfer efficiency from government,university,and enterprise perspectives.

  13. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater.

    Science.gov (United States)

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2015-12-01

    Single chambered up-flow membrane-less microbial fuel cell (UFML MFC) was developed to study the feasibility of the bioreactor for decolorization of Acid Orange 7 (AO7) and electricity generation simultaneously. The performance of UFML MFC was evaluated in terms of voltage output, chemical oxygen demand (COD) and color removal efficiency by varying the concentration of AO7 in synthetic wastewater. The results shown the voltage generation and COD removal efficiency decreased as the initial AO7 concentration increased; this indicates there is electron competition between anode and azo dye. Furthermore, there was a phenomenon of further decolorization at cathode region which indicates the oxygen and azo dye are both compete as electron acceptor. Based on the UV-visible spectra analysis, the breakdown of the azo bond and naphthalene compound in AO7 were confirmed. These findings show the capability of integrated UFML MFC in azo dye wastewater treatment and simultaneous electricity generation. PMID:26342340

  14. User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    Energy Technology Data Exchange (ETDEWEB)

    Marr, W.W.

    1995-01-01

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  15. Development of High Efficiency Diesel Fuel Additive for Emission Control%环保型高效柴油添加剂的研制

    Institute of Scientific and Technical Information of China (English)

    梁荣光; 李肖力; 简弃非

    2001-01-01

    For the purpose of efficient combustion, SFC reduction and cleanexhaust emission, a kind of additive was developed for the diesel fuel property improvement. After the theorefical analysis and the experimental comparison,the composition of the diesel fuel additive was determined based on the optimization. With this diesel fuel additive, the power output of diesel engines increased by an average of 3.4 %,the SFC dropped by 4.3 % and the smoke index in the free acceleration operation condition dropped by 27.2 %.%经过理论研究和试验对比,在优化组合的基础上,确定了新研制的柴油添加剂的配方。新的柴油添加剂,使柴油机功率平均提高3.4%,油耗率平均降低4.3%,自由加速烟度降低27.2%。

  16. BIN Simplified Method Applied for Analyzing Energy Efficiency of HVAC%BIN简化法在空调系统节能效益分析中的应用*

    Institute of Scientific and Technical Information of China (English)

    廖深瓶

    2013-01-01

      节能效益的优劣是地源热泵空调系统方案选择及运行效果评价的重要依据,而准确计算出建筑耗冷量是节能效益评估的前提。针对BIN简化法及BIN参数在地源热泵空调系统节能效益评估中的应用开展分析讨论,结果表明BIN简化法与标准BIN法的计算结果误差基本在15%以内;为准确评估系统节能效益,通过实例分析对BIN简化法和14个设区城市的BIN参数进行了验证分析,BIN简化法及统计获得的BIN参数可用于节能效益评估中,但应确保t1<t2,且取值不应均大于项目所在地夏季空调室外计算干球温度。%Energy efficiency level, which is calculated by building cooling consumption, is the key point for program optimization and operation characteristics of ground source heat pump air conditioning system. BIN simplified method is analyzed, as well as BIN parameter for evaluating energy efficiency of ground source heat pump air conditioning system. The results show that the calculation error between BIN simplified method and standard BIN method is less than 15%. The BIN simplified method and BIN parameters can be utilized to analyze and evaluate energy efficiency, which is verified by a case. However, t1 should be less than t2, and their values should not be greater than air con-ditioning outdoor dry bulb temperature in summer.

  17. The long and winding road … that leads to energy efficiency: from mere engineering issue to first fuel

    International Nuclear Information System (INIS)

    The 1973 oil crisis acted as the Big Bang of energy efficiency; at that time, it emerged as a distinct field of interest, rather than a subsidiary engineering issue. With each passing decade, energy efficiency has scaled up its role in energy policy. In recent years, attention to energy efficiency has grown, from the lack of visibility inherent in its past identification as “the hidden fuel” (i.e. measured and valued only as the negative quantity of energy not used) to an increasing recognition as the “first fuel”

  18. Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and operational mode

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2014-11-01

    Full Text Available The intrinsic factor of variability of renewable energy sources often limits their broader use. The photovoltaic solar systems can be provided with a power back up based on a combination of an electrolyser and a fuel cell stack. The integration of solar hydrogen power systems with greenhouse heating equipment can provide a possible option for powering stand-alone greenhouses. The aim of the research under development at the experimental farm of Department of Agro-Environmental Sciences of the University of Bari Aldo Moro is to investigate on the suitable solutions of a power system based on photovoltaic energy and on the use of hydrogen as energy vector, integrated with a ground source heat pump for greenhouse heating in a self sustained way. The excess energy produced by a purpose-built array of solar photovoltaic modules supplies an alkaline electrolyser; the produced hydrogen gas is stored in pressured storage tank. When the solar radiation level is insufficient to meet the heat pump power demand, the fuel cell starts converting the chemical energy stored by the hydrogen fuel into electricity. This paper reports on the description of the realised system. Furthermore the efficiency and the operational mode of the electrolyser were evaluated during a trial period characterised by mutable solar radiant energy. Anyway the electrolyser worked continuously in a transient state producing fluctuations of the hydrogen production and without ever reaching the steady-state conditions. The Faradic efficiency, evaluated by means of an empirical mathematic model, highlights that the suitable working range of the electrolyser was 1.5÷2.5 kW and then for hydrogen production more than 0.21 Nm3h–1.

  19. Candu fuel and fuel cycles

    International Nuclear Information System (INIS)

    A primary rationale for Indonesia to proceed with a nuclear power program is to diversity its energy sources and achieve freedom from future resource constraints. While other considerations, such as economy of power supply, hedging against potential future increases in the price of fossil fuels, fostering the technological development of the Indonesia economy and minimizing greenhouse and other gaseous emissions are important, the strategic resource issue is key. In considering candidate nuclear power technologies upon which to base such a program, a major consideration will be the potential for those technologies to be economically sustained in the face of large future increases in demand for nuclear fuels. The technology or technologies selected should be amenable to evaluation in a rapidly changing technical, economic, resource and environmental policy. The world's proven uranium resources which can be economically recovered represent a fairly modest energy resource if utilization is based on the currently commercialized fuel cycles, even with the use of recovered plutonium in mixed oxide fuels. In the long term, fuel cycles relying solely on the use of light water reactors will encounter increasing fuel supply constraints. Because of its outstanding neutron economy and the flexibility of on-power refueling, CANDU reactors are the most fuel resource efficient commercial reactors and offer the potential for accommodating an almost unlimited variety of advanced and even more fuel efficient cycles. Most of these cycles utilize nuclear fuels which are too low grade to be used in light water reactors, including many products now considered to be waste, such as spent light water reactor fuel and reprocessing products such as recovered uranium. The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long terms. Most of the potential CANDU fuel cycle developments can be accommodated in existing

  20. A High Power Density, High Efficiency Hydrogen-Chlorine Regenerative Fuel Cell with a Low Precious Metal Content Catalyst

    OpenAIRE

    Huskinson, Brian; Rugolo, Jason; Mondal, Sujit K.; Aziz, Michael J.

    2012-01-01

    We report the performance of a hydrogen-chlorine electrochemical cell with a chlorine electrode employing a low precious metal content alloy oxide electrocatalyst for the chlorine electrode: (Ru_0.09Co_0.91)_3O_4. The cell employs a commercial hydrogen fuel cell electrode and transports protons through a Nafion membrane in both galvanic and electrolytic mode. The peak galvanic power density exceeds 1 W cm^-2, which is twice previous literature values. The precious metal loading of the chlorin...

  1. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  2. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  3. Evaluating energy efficiency and emissions of charred biomass used as a fuel for household cooking in rural Kenya

    OpenAIRE

    Achour, Nemer

    2015-01-01

    In sub-Saharan Africa a large share of the energy use utilize biomass as a fuel. In some countries more than 90 percent of the energy use is biomass. This energy is primarily used for cooking, heating and drying. Cooking food on an open fire or using a traditional stove will combust the firewood inefficiently and leads to pollution in the form of particulate matter, carbon monoxide and other hazardous pollutants. Indoor pollution has serious health effects and especially women and children ar...

  4. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  5. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    International Nuclear Information System (INIS)

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical

  6. Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2012-09-01

    Large scale applications of microbial fuel cells (MFCs) have been severely hindered by several problems such as high internal resistance, low power output, expensive materials, and complicated configuration. To address these issues, a granular activated carbon based single chamber microbial fuel cell (GACB-SCMFC) has been designed using GAC-biocathodes without using any expensive materials for the simultaneous decolorization of real dye wastewater and electricity generation. The GACB-SCMFC produced a power density of 8 W/m(3) which indicates the GAC-biocathode can be a good alternative to platinum and other chemical catalysts. The dye wastewater was primarily treated at the anode and further polishing steps were occurred at the aerobic cathode. Toxicity measurement shows that the effluent after GACB-SCMFC operation was much less toxic compared to the original dye wastewater. Additional advantage of the GACB-SCMFC is that pH was automatically adjusted from 12.2 to 8 during 48 h of hydraulic retention time (HRT). PMID:22728177

  7. Effects of GDL structure with an efficient approach to the management of liquid water in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Erin E.; Benziger, Jay B.; Kevrekidis, Yannis G. [Department of Chemical Engineering Princeton University, Princeton, NJ 08544 (United States)

    2010-08-15

    A model fuel cell with a single transparent straight flow channel and segmented anode was constructed to measure the direct correlation of liquid water movement with the local currents along the flow channel. Water drops emerge through the largest pores of the GDL with the size of the droplets that emerge on the surface determined by the size of the pore and its location under the gas flow channel or under the land. Gravity, surface tension, and the shearing force from the gas flow control the movement of liquid in the gas flow channel. By creating a single large diameter pore in the GDL (gas diffusion layer), liquid water flow emergent from the GDL was forced to be in specific locations along the length of the channel and either under the land or under the channel. The effects of gravity were amplified when the large pore was under the channel, but diminished with the large pore under the land. Current fluctuations were minimised when the dominant water transport from the GDL pore was near the cathode outlet. The results show that it is possible to engineer the water distribution in PEM fuel cells by modifying the pore sizes in the GDL. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. A metal-organic framework with immobilized Ag(i) for highly efficient desulfurization of liquid fuels.

    Science.gov (United States)

    Huang, Minhui; Chang, Ganggang; Su, Ye; Xing, Huabin; Zhang, Zhiguo; Yang, Yiwen; Ren, Qilong; Bao, Zongbi; Chen, Banglin

    2015-08-01

    A metal-organic framework immobilized with Ag(i) sites, namely, (Cr)-MIL-101-SO3Ag, was successfully developed as a highly efficient desulfurization adsorbent because of the strong binding of these Ag(i) sites for thiophene derivatives. PMID:26136210

  9. Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions

    International Nuclear Information System (INIS)

    Nowadays the control of greenhouse gas is probably the most challenging environmental policy issue. Since CO2 is considered the major greenhouse gas (GHG) that contributes to the global warming, enforcing technological strategies aiming to avoid or reuse CO2 emissions becomes crucial, in order to mitigate GHG environmental impact. Currently, solutions conventionally adopted to this purpose are carbon capture and storage (CCS) technologies. In this context, instead, the followed strategy aims to further improvements in energetic conversion efficiency with related reduced specific CO2 emissions (per produced kWhe). Therefore, with particular reference to the electric power generation, this paper proposes an innovative energy conversion system, based on solid oxide fuel cell (SOFC), characterized by higher efficiency and reduced CO2 emission factor respect to an analogous conventional energy plant. In particular, the innovative solution consists of combining SOFC to methane dry reforming technology, while the conventional system refers to steam methane reforming-SOFC coupling. The innovative system performance up to 65% electric efficiency as cited in the paper, was validated through simulations carried out in Aspen Plus environment. - Highlights: • An innovative high efficiency plant with low CO2 emissions is presented. • The new solution combined SOFC to methane dry reforming technology (CDR–SOFC). • A comparison between CDR–SOFC and SMR–SOFC system was carried out in Aspen Plus. • CDR–SOFC efficiency is greater of 6.4% percentage points respect to SMR–SOFC. • A CO2 emission factor reduction of about 10% was achieved by CDR–SOFC plant

  10. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  11. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  12. An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants

    International Nuclear Information System (INIS)

    This paper presents an interactive fuzzy satisfying method based on Hybrid Modified Honey Bee Mating Optimization (HMHBMO). Its purpose is to solve the Multi-objective Optimal Operation Management (MOOM) problem which can be affected by Fuel cell power plants (FCPPs). Minimizing total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources and deviation of bus voltages are the objective functions in this method. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy targets for each of the objective functions. Through the interaction with the DM, the fuzzy goals are quantified by eliciting the corresponding membership functions. Considering the current solution, the DM updates the reference membership values until the best solution can be obtain. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Therefore, evolutionary methods can be used to solve this problem since they are independence of objective function's type and constraints. Recently researchers have presented a new evolutionary method called Honey Bee Mating Optimizations (HBMO) algorithm. Original HBMO often converges to local optima and this is a disadvantage of this method. In order to avoid this shortcoming we propose a new method. This method improves the mating process and also combines the modified HBMO with a Chaotic Local Search (CLS). Numerical results on a distribution test system have been presented to illustrate the performance and applicability of the proposed method.

  13. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO2, MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  14. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-01

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive. PMID:27508312

  15. Power generation from fossil fuels. Efficiency and emission. Erzeugung von elektrischem Strom aus fossilen Brennstoffen. Wirkungsgrade und Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Kuenstle, K.; Lezuo, A.; Reiter, K. (Siemens AG Unternehmensbereich KWU, Erlangen (Germany, F.R.). Bereich Energieerzeugung)

    1990-09-01

    Electricity assumes a special role in the energy supply of a modern society. The efforts while producing and supplying electricity consider on the one hand the need to handle the reserves with care, and on the other hand the ecology aspects. Efficiency improvements are a vital contribution towards saving energy reserves. Measures to cut down the emission in order to protect life, environment and the climatic stability now and in the long run are extensive. Thereby technological innovations are as necessary as far-sighted regional and global planning. Even if all the specific emission limits are attained, yet the challenge posed by the growing world population with its energy demand is to be faced. (orig.).

  16. Application of rare earths to environmental science. On 'high-efficient use of solar cell' and on 'effective use of spent nuclear fuels'

    International Nuclear Information System (INIS)

    Firstly, by using a wavelength-converting layer doped with rate earth (RE) ion, it is possible to modify the solar spectrum to make match better the spectroscopic sensitivity curve of the solar cell to enable improvement of the conversion efficiency. High transparent and low refractive fluoride single crystal selected as a photo-precursor doped with each RE: Eu, Sm and Tb was investigated by putting on top of c-Si, a-Si and CdS/CdTe solar cells. All the crystals doped with the rare earth ion exhibited the increases of conversion efficiencies from 1 to 45%, as compared with the pure crystals. Next, new RE doped scintillators were grown to change the radioactive energies of spent nuclear fuels exhausted out of atomic power plants to UV-light, followed by making absorb into the photo-catalyst soaked in water to get yield hydrogen and oxygen gas. These gas are effectively applied for environmental and medical usage, respectively. Inorganic single crystals, borate glasses and nanoparticles with broad and intense emission bands from 300 to 400 nm fitting to the fundamental absorption band tail below 430 nm in a photo-catalyst TiO2 and its derivatives were attempted. Eventually, by using the distilled water with both nanoparticle of the scintillator CaF2:Eu, Ce and the photo-catalyst TiO2:Eu, N, F, we succeeded to make generate hydrogen and oxygen gas. (author)

  17. Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System

    Institute of Scientific and Technical Information of China (English)

    LI Pimao; ZHANG Youtong; LI Tieshuan; XIE Lizhe

    2015-01-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  18. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  19. The Economical Efficiency Analyze for Radiate Shielding Calculation Conservative Property to Engineering Investment%屏蔽估算保守性对工程投资的经济性分析

    Institute of Scientific and Technical Information of China (English)

    冀东; 许忠扬; 谢占军; 黄春锋; 王宏良; 张云涛

    2014-01-01

    针对核技术利用设施,在设施屏蔽设计目标值确定的条件下,利用1/10值层法、查表法、点核积分法和MCNP程序对单一无限大屏蔽介质的厚度进行设计,分析各种屏蔽估算的保守性及其对工程投资的经济性进行分析。对于简单的核技术利用设施优先采用点核积分法进行设计,对于复杂的核技术利用设施优先采用MCNP程序进行设计。通过对设计结果与屏蔽介质的实际厚度对比得知,上述4种方法均存在一定的保守性,会不同程度地增加设施的工程投资。其中1/10值层法增加土建工程投资高达30%以上,查表法可控制在10%左右,点核积分法可控制在10%以下,MCNP程序可控制在5%以下。%Under the condition of defining designed target shield value , tenth attenuation method , check table method, QAD and MCNP were used to design the thickness of single infinite shield medium for nuclear technol -ogy utility facilities .Moreover , the conservative property and applicability of each method and the economical efficiency for engineering investment were analyzed .Priority was given to QAD for designing a simple nuclear technology utility facility;MCNP was recommended to design a complicated facility .By comparing the designed thickness and actual thickness of shield medium , it is found that each method incorporated conservative property in certain level .The conservative nature of these methods may raise the project investment for constructing a fa -cility:tenth attenuation method can cause more than 30%increase in the shielding , while the number for check table method , QAD and MCNP were around 10%, below 10%and 5%respectively .

  20. The increase of the efficiency for comprehensive utilization of the fuel and energetic resources (The use coal enterprises of Kazakhstan as example)

    International Nuclear Information System (INIS)

    In Kazakhstan during the period of transition to the market economy in the condition of reduction of coal production and increasing expenditures in coal branch, the problem of of the rational utilization of coal resources becomes the most vital issue. In the thesis theoretical and methodological aspects of socio-economic efficiency of utilization of the fuel and energetic resources are investigated. Different fields of usage of coal and coal wastes are studied, economic evaluation of mechanic and thermo-chemical methods of producing coal in process of bringing resources saving technologies; the national efficiency of using products in the quantity of technological raw and energetic fuel is brought out; the influence refining for the widening of the raw-base of industry, promoting the economic results of production and the lowering environmental pollution. It was estimated that the extracted coal of the region includes 1020 thousand tonne of aluminium oxide and 996 thousand tonne of sulphur; in the course of extracting and coal processing 3650 thousand tonne of firm wastes appeared; during the extracting of Ehkibastuz coal - 90970 thousand tonne, and the Karaganda coal - 40040 thousand tonne.The coal components and wastes mentioned above should be considered not only as source of environment pollution but also as potential resource for the production of industrial goods according to their qualitative characteristics and the availability of technical ideas of the processing. The implementation of the mentioned pre-sup-positions in the conditions of the forming market economy will allow to use the organic part of coal more competently, to involve the other useful components of coal in the sphere of production consumption, to utilize gaseous and firm wastes and to gain of the basis the expansion of resource base of same branches of industry and the reduction of environment pollution. It will be also accompanied by the needs in capital investments for the industrial

  1. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  2. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    International Nuclear Information System (INIS)

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm− 1 due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains

  3. High Efficient and Low NOx Centrally Fuel Rich Swirl Burner with Multi-stage Combustion Technology%多次分级中心给粉旋流煤粉高效低氮氧化物燃烧技术

    Institute of Scientific and Technical Information of China (English)

    遆曙光; 陈智超; 蒋炳坤; 曾令艳; 宗秋冬; 李松; 李争起; 朱群益

    2015-01-01

    为了实现煤粉高效燃烧和低 NOx排放,将中心给粉旋流燃烧器与燃烬风技术相结合,形成多次分级中心给粉旋流燃烧技术。阐述多次分级中心给粉旋流煤粉燃烧技术原理和特点,并指出该技术不仅可以大幅降低 NOx排放,同时还具有燃烧效率高、防止结渣和高温腐蚀的优点,并通过实验室试验和工业试验验证该技术的原理。在实验室和实际锅炉上,采用飘带示踪法对不同燃烬风率和外二次风叶片角度下的空气动力场进行测量。试验表明,该燃烧器可以在燃烬风率为25%时可以形成稳定的中心回流区,回流区随着外二次风叶片角度减小而增大。采用三维激光多普勒动态粒子分析仪对采用多次分级技术条件下中心给粉旋流燃烧器出口气固流动特性进行测量。试验表明,颗粒相对数密度峰值出现位置靠近燃烧器中心位置。在一台600 MW机组锅炉上进行热态试验。试验表明,煤粉在距离喷口约为0.1 m位置着火,具有较强的稳燃能力。同时,介绍该技术的应用情况。%The combination of centrally fuel rich swirl burners with over fire air technology formed a centrally fuel rich swirl burner with multi-stage combustion technology for getting higher efficiency and controlling NOx emission. The theory and characteristics of this technology is introduced and analyzed. This technology owns the following characters:Low NOx emission, high combustion efficiency, slagging resistance and high temperature corrosion resistance. Laboratory and Industrial experiments and tested the theory. Single-phase cold flow air experiments on a centrally fuel-rich swirl burner are carried out to investigate the influence of the over fire air ratios and the outer secondary air angle on the flow characteristics in the laboratory and real boiler. The results show that a stable central recirculation zone is formed when an over fire air ratio of

  4. Innovative once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    An advanced once-through thorium fuel cycle for the innovative reactor concept, termed the pressure tube light water reactor with variable moderator control (PTVM LWR), is proposed. The PTVM LWR makes use of a seed-blanket geometry, whereby the core is divided into separated regions of thorium fuel channel assemblies (blanket) and low-enriched uranium fuel channel assemblies (seed). A novel fuel management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic analysis indicates that the novel scheme has the potential to utilize both seed and blanket in an efficient manner. (author)

  5. Mechanism of Diesel Fuel Burning in Methanol Mixture with High Efficiency and Low Emission%柴油在甲醇氛围中高效清洁燃烧机理

    Institute of Scientific and Technical Information of China (English)

    姚春德; 夏琦; 陈绪平; 阳向兰; 魏立江

    2011-01-01

    Based on the operation cycle in internal combustion engines, a novel mode was proposed to improve the fuel economy of diesel engine by burning diesel fuel in methanol mixture. Methanol was injected into the manifold to form a homogeneous air/methanol mixture which was then ignited by diesel fuel spray under the diesel/methanol compound combustion (DMCC) mode. When the engine operated in this mode, its power increased by 2% and its brake specific fuel consumption decreased by 2.2%, compared with those of the baseline engine. And a 15% decrease in intake air temperature and a 9.3% drop in exhaust temperature were also gained. Besides, both Nox and paniculate matter (PM) emission were remarkably reduced. Therefore, in terms of emission level, a Chinese II diesel engine can be upgraded to a National Ⅲ, with its original injection system unchanged. Furthermore, the results of road test showed that fuel economy was improved by 10%, higher than that of the baseline engine. The mechanism of the engine operating in this mode was analyzed with p-V operation diagram. It indicates that the DMCC mode can improve efficiency dramatically and reduce exhaust emissions for diesel engine. Meanwhile, it also provides a novel way to make use of methanol in compression ignition engines.%根据内燃机燃烧循环的特点,提出用柴油在甲醇混合气中燃烧以大幅度提高柴油机燃料效率的模式.在柴油机上采用柴油/甲醇组合燃烧模式,甲醇通过进气道喷射与空气混合形成均质混合气由柴油引燃.与原杌相比,该模式下发动机的动力性提高2%,比油耗减少2.2%,排气温度降低15%,进气温度降低9.3%,同时实现了NOx和微粒(PM)的大幅度下降,使得在不改变原机机械式喷油系统的前提下,将仅满足国Ⅱ排放的发动机提升到了国Ⅲ排放水平.道路试验结果表明,柴油在甲醇氛围中燃烧,其燃料效率比原机提高了10%以上.结合采用此种模式工作的发动机p-V图对

  6. Efficient Anaerobic Fermentation of Simple Sugars by Yeast Fuels Resistance Candida spp. Infections to Eradication by Drugs

    Directory of Open Access Journals (Sweden)

    Nedosa I. Valentine

    2011-01-01

    the glucose present in the host tissues (for tissue respiration than they would produce from the fermentation of unhydrolyzed starch outside the body tissues of the host (like from undigested starchy food trapped in the mouth and throat by oropharyngeal Candida infections. Conclusion: The findings of the study enables us to conclude that this innate ability of yeast species to easily produce large yields of ethanol from anaerobic fermentation of simple sugars like glucose creates a competitive advantage which enhances their continuous survival in systemic human body tissues where glucose available for host tissue respiration is ever present. The efficient eradication of such yeast infections in human victims (and animals should incorporate ways of diminishing the availability of excess hydrolyzed sugars in the host tissues (which the yeast colonies easily survive on. The escalating effect of stress (including oxidative stress on Candidiasis lnfection proliferation should also be communicated to systemic Candidiasis patients.

  7. Fueling the central engine of radio galaxies. III. Molecular gas and star formation efficiency of 3C 293

    Science.gov (United States)

    Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Piqueras López, J.; Fuente, A.; Hunt, L.; Neri, R.

    2014-04-01

    Context. Powerful radio galaxies show evidence of ongoing active galactic nuclei (AGN) feedback, mainly in the form of fast, massive outflows. But it is not clear how these outflows affect the star formation of their hosts. Aims: We investigate the different manifestations of AGN feedback in the evolved, powerful radio source 3C 293 and their impact on the molecular gas of its host galaxy, which harbors young star-forming regions and fast outflows of H i and ionized gas. Methods: We study the distribution and kinematics of the molecular gas of 3C 293 using high spatial resolution observations of the 12CO(1-0) and 12CO(2-1) lines, and the 3 mm and 1 continuum taken with the IRAM Plateau de Bure interferometer. We mapped the molecular gas of 3C 293 and compared it with the dust and star-formation images of the host. We searched for signatures of outflow motions in the CO kinematics, and re-examined the evidence of outflowing gas in the H i spectra. We also derived the star formation rate (SFR) and star formation efficiency (SFE) of the host with all available SFR tracers from the literature, and compared them with the SFE of young and evolved radio galaxies and normal star-forming galaxies. Results: The 12CO(1-0) emission line shows that the molecular gas in 3C 293 is distributed along a massive (M(H2) ~ 2.2 × 1010M⊙) ~24″(21 kpc-) diameter warped disk, that rotates around the AGN. Our data show that the dust and the star formation are clearly associated with the CO disk. The 12CO(2-1) emission is located in the inner 7 kpc (diameter) region around the AGN, coincident with the inner part of the 12CO(1-0) disk. Both the 12CO(1-0) and 12CO(2-1) spectra reveal the presence of an absorber against the central regions of 3C 293 that is associated with the disk. We do not detect any fast (≳500 km s-1) outflow motions in the cold molecular gas. The host of 3C 293 shows an SFE consistent with the Kennicutt-Schmidt law of normal galaxies and young radio galaxies, and it

  8. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  9. Fuel cells - from the laboratory to the road

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H. [Delphi Energy and Engine Management Systems, Rochester, NY (United States)

    1996-12-31

    The polymer electrolyte membrane (PEM) Fuel Cell faces stiff competition from existing automotive powerplants and other Hybrid APUs. To be successful, the Fuel Cell will have to demonstrate real customer advantages such as fuel economy and emissions. The PEM technology has an inherent advantage over other powerplants in both thermal efficiency and emission performance, and as such fits in very well with the future regulations that strive to clean up the environment. In addition, it will need to be cost competitive and provide acceptable performance. The majority of development activity on PEM Fuel Cells to date has concentrated primarily in the area of Stack refinement and optimization with improvements coming in higher power densities and higher specific power. To make the Fuel Cell compatible with an automotive environment the entire system will need to be analyzed, understood, and then engineered to work together in an efficient manner.

  10. Fine lattice stochastic modeling of particle fuels in HTGR fuel elements

    International Nuclear Information System (INIS)

    There is growing interest worldwide in high temperature gas-cooled reactors (HTGRs) as candidates for next generation reactor systems. Either in a pebble type or in a prismatic type HTGR, coated particle fuel (TRISO fuel) appears to be the most promising fuel candidate to be used. For design and analysis of such a reactor, transport models, in particular, stochastic models that permit the simulation of neutron transport through the stochastic mixture of fuel and moderator materials, are becoming essential and gaining importance. Naturally, the Monte Carlo methods have been used for this situation. However, the methods reported in the literature all have their own deficiencies. In this thesis, we propose a new Monte Carlo method named fine lattice stochastic (FLS) modeling that is distinct from others. This method is based on fine lattice system in which a lattice circumscribes a fuel particle. Once the problem is given, an interface Fortran code gives out the TRISO particle fuel configurations (a set of lattice center points only) for MCNP input. The number of available lattice center points is far larger than the number of fuel particles according to packing fraction of the fuel element. We apply discrete random sampling here to choose a certain number of lattices to fill with fuel particles. In this aspect, FLS modeling allows more realistic fuel particle distributions. In this thesis, only simple cube (SC) structure is used in cubic lattice. However, FLS model can be easily extended to BCC, FCC structures or hexagonal prism type lattice. The criticality calculations for our FLS modeling were first tested on a small cube problem and compared with other models. The results indicate that the new stochastic model is an accurate and efficient approach to analyze TRISO particle fuel configurations. Then the FLS modeling was performed to analyze HTGR fuel elements for both pebble type and prismatic type and the results were also good as expected

  11. HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells.

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou

    2011-06-01

    Full Text Available Male circumcision reduces acquisition of HIV-1 by 60%. Hence, the foreskin is an HIV-1 entry portal during sexual transmission. We recently reported that efficient HIV-1 transmission occurs following 1 h of polarized exposure of the inner, but not outer, foreskin to HIV-1-infected cells, but not to cell-free virus. At this early time point, Langerhans cells (LCs and T-cells within the inner foreskin epidermis are the first cells targeted by the virus. To gain in-depth insight into the molecular mechanisms governing inner foreskin HIV-1 entry, foreskin explants were inoculated with HIV-1-infeceted cells for 4 h. The chemokine/cytokine milieu secreted by the foreskin tissue, and resulting modifications in density and spatial distribution of T-cells and LCs, were then investigated. Our studies show that in the inner foreskin, inoculation with HIV-1-infected cells induces increased CCL5/RANTES (1.63-fold and decreased CCL20/MIP-3-alpha (0.62-fold secretion. Elevated CCL5/RANTES mediates recruitment of T-cells from the dermis into the epidermis, which is blocked by a neutralizing CCL5/RANTES Ab. In parallel, HIV-1-infected cells mediate a bi-phasic modification in the spatial distribution of epidermal LCs: attraction to the apical surface at 1 h, followed by migration back towards the basement membrane later on at 4 h, in correlation with reduced CCL20/MIP-3-alpha at this time point. T-cell recruitment fuels the continuous formation of LC-T-cell conjugates, permitting the transfer of HIV-1 captured by LCs. Together, these results reveal that HIV-1 induces a dynamic process of immune cells relocation in the inner foreskin that is associated with specific chemokines secretion, which favors efficient HIV-1 entry at this site.

  12. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  13. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  14. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells.

    Science.gov (United States)

    Cao, Chun; Wei, Liling; Su, Min; Wang, Gang; Shen, Jianquan

    2016-08-01

    A novel low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon (N/Fe-C) with three-dimensional porous structure is employed as efficient oxygen reduction catalyst in microbial fuel cells (MFCs). The electrochemical active area is significantly improved to 617.19m(2)g(-1) in N/Fe-C by Fe-doping. And N/Fe-C (4.21at.% N, 0.11at.% Fe) exhibits excellent electrocatalytic activity with the oxygen reduction potential of -0.07V (vs. Ag/AgCl) which is comparable to commercial Pt/C. In MFCs tests, the maximum power density and output voltage with N/Fe-C are enhanced to 745mWm(-2) and 562mV (external resistance 1kΩ), which are 11% and 0.72% higher than Pt/C (0.5mgPtcm(-2)), respectively. Besides, the long-term stability of N/Fe-C retains better for more than one week. Moreover, the charge transfer resistance (Rct) values are recorded by the impedance measurements, and the low Rct of N/Fe-C is also result in better catalytic activity. PMID:27155262

  15. Analyzing in the Present

    DEFF Research Database (Denmark)

    Revsbæk, Line; Pedersen, Lene Tanggaard

    2015-01-01

    The article presents a notion of “analyzing in the present” as a source of inspiration in analyzing qualitative research materials. The term emerged from extensive listening to interview recordings during everyday commuting to university campus. Paying attention to the way different parts of...... various interviews conveyed diverse significance to the listening researcher at different times became a method of continuously opening up the empirical material in a reflexive, breakdown-oriented process of analysis. We argue that situating analysis in the present of analyzing emphasizes and acknowledges...... contributes to an ongoing methodological conversation problematizing the notion of “data” and the use of “data-reliant” methods of analysis....

  16. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  17. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids. Whereas studies about the design of fuel ...

  18. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.Whereas studies about the design of fuel ce...

  19. Design of an Instrumented Fuel Capsule(09F-08K) for an Irradiation Test of the Double Cladding Fuel Rods at HANARO

    International Nuclear Information System (INIS)

    An instrumented capsule for a nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule'), which is crucial for the verification of a nuclear fuel performance and safety, has been developed to measure the fuel characteristics. Specifically, these areas are the centerline and surface temperatures of the nuclear fuel, the internal pressure of a fuel rod and the elongation of the fuel pellet and the neutron fluxes during an irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). Through the irradiation tests of capsules as shown in Fig. 1, the design specifications and safety of the instrumented fuel capsules had been verified successfully. And the dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of the irradiation test using the instrumented fuel capsule. In this paper, we designed a double cladding fuel rod for the high temperature of nuclear fuels during an irradiation test at HANARO and an instrumented fuel capsule(09F-08K) for an irradiation test of the double cladding fuel rods. We had performed the out-pile tests using the double cladding fuel rod mockups to analyze an effect of a gap size(between an outer cladding and an inner cladding) on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. Through the results of the out-pile tests, we have found the effects of a gap size and a gas mixture ratio on the temperature of nuclear fuels. Therefore, these double cladding fuel rods and the 09F-08K instrumented fuel capsule were designed on the basis of the results of the out-pile tests and the design of the 07F-06K instrumented fuel capsule

  20. Design and Fabrication of the Double Cladding Instrumented Fuel Rods and the Instrumented Fuel Capsule(07F-06K) for the Irradiation Test at HANARO

    International Nuclear Information System (INIS)

    An instrumented capsule for a nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule'), which is crucial for the verification of a nuclear fuel performance and safety, has been developed to measure the fuel characteristics, such as the centerline and surface temperatures of the nuclear fuel, the internal pressure of a fuel rod, the elongation of the fuel pellet and the neutron fluxes during an irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). The irradiation test of the first instrumented fuel capsule(02F-11K) was carried out for verification test at HANARO in March 2003. Through the irradiation tests of the some capsules, the design specifications and safety of the instrumented fuel capsule were verified successfully. And the dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of the irradiation test using the instrumented fuel capsule. In this paper, we designed and fabricated a double cladding fuel rod to control the high temperature of nuclear fuels during an irradiation test at HANARO. And we design an instrumented fuel capsule(07F-06K) for an irradiation test of the double cladding fuel rods. We have designed and fabricated the double cladding fuel rod mockups and performed the out-pile tests using these mockups. The purposes of the out-pile tests were to analyze an effect of a gap size(between an outer cladding and an inner cladding) on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. Through the results of the out-pile tests, we have obtained the effects of a gap size and a gas mixture ratio on the temperature of nuclear fuels. Therefore an double cladding fuel rod and the 07F- 06K instrumented fuel capsule were designed on the base of the results of the out-pile tests using the mockups

  1. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  2. Software Design Analyzer System

    Science.gov (United States)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  3. Direct Methanol Fuel Cell, DMFC

    OpenAIRE

    Amornpitoksuk, P.

    2003-01-01

    Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefor...

  4. Total organic carbon analyzer

    Science.gov (United States)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  5. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies

    International Nuclear Information System (INIS)

    This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs

  6. Better and more efficient collaboration for increased use of field fuel in heating plants; Baettre och effektivare samverkan foer oekad anvaendning av aakerbraenslen i vaermeverken

    Energy Technology Data Exchange (ETDEWEB)

    Arkeloev, Olof (Agrovaest, Skara (Sweden)); Hellstroem, Chris; Hollsten, Ronnie (KanEnergi Sweden AB, Skara (Sweden)); Lindh, Carina (LRF Konsult, Skara (Sweden))

    2010-05-15

    Despite that the potential for field fuels in SW Sweden is great and that the combustion characteristics of fuels are known, the interest for field fuels has been low from farmers and heating plants. The purpose of the project is to identify why the introduction of field fuel into heating plants is going so slow and to suggest possible solutions. Field fuel is missing the general structure and tradition that is found in forest fuels in terms of harvesting, processing, logistics and business models. The overall long-term objective is a better and more effective cooperation between heating plants, farmers and logistic companies for the increased use of field fuels in heating plants. The potential for field fuel in the area is great but won't be sufficient to cover the need. The raw materials that exist today and are deemed will be relevant in the future are willow, straw and grain kernel. We have divided the heating plants into two groups; Small plants with a furnace less than 35 MW, and large plants with an effect over 35 MW. Common to both small and large heating plants is that there must be a willingness to receive and combust field fuels for the share of field fuels to increase. For the small heating plants to be able to receive and combust field fuels the knowledge of the combustion properties of these fuels must increase. Larger heating plants have better opportunities to use field fuels in their boilers when it comes to the technology and the know how. They have a more controlled handling and receiving of fuels. It is not uncommon that storing and blending of fuels will take place at their own facility. They also have more experience of handling a larger number of suppliers at the same time. The heating plants would like to see standardization in terms of fuel characteristics, and they prefer to obtain approximately the same burning performance regardless of delivery date. Today, the small heating plants do not have the routines to manage multiple small

  7. List mode multichannel analyzer

    Science.gov (United States)

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  8. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  9. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  10. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  11. Optimization of General Arrangement for Fuel Handling Equipment in Fuel Handling Area

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sanggyoon; Choi, Taeksang [KEPCO Engineering and Construction Company, Inc., Daejeon (Korea, Republic of); Moon, Duckhee [Korea Hydro and Nuclear Power Co., Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this study is to provide an optimized general arrangement for fuel handling in fuel handling area for APR1400. The general arrangement for fuel handling area should be optimized in the viewpoints of safety functions for fuel handling, efficiency for operation and maintenance of fuel handling equipment during the fuel handling from receipt of new fuel to shipment of spent fuel. In this study, general arrangement for the fuel handling area was evaluated and proposed to ensure a safe and efficient operation and maintenance for the fuel handling equipment in the fuel handling area. The results of this study can be a beneficial suggestion regarding the general arrangement of the fuel handling areas and equipment. The general arrangement in the fuel handling area is optimized in the viewpoints of safety functions for fuel handling, efficiency for operation and maintenance for fuel handling equipment.

  12. Nuclear propulsion technology advanced fuels technology

    Science.gov (United States)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  13. Analyzed Using Statistical Moments

    International Nuclear Information System (INIS)

    Diffraction enhanced imaging (DEl) technique is a new x-ray imaging method derived from radiography. The method uses a monorheumetten x-ray beam and introduces an analyzer crystal between an object and a detector Narrow angular acceptance of the analyzer crystal generates an improved contrast over the evaluation radiography. While standart radiography can produce an 'absorption image', DEl produces 'apparent absorption' and 'apparent refraction' images with superior quality. Objects with similar absorption properties may not be distinguished with conventional techniques due to close absorption coefficients. This problem becomes more dominant when an object has scattering properties. A simple approach is introduced to utilize scattered radiation to obtain 'pure absorption' and 'pure refraction' images

  14. Lear CAN analyzer

    OpenAIRE

    Peiró Ibañez, Felipe

    2013-01-01

    Since it was introduced in the automotive industry, the protocol CAN (Controller Area Network) has been widely used for its benefits. This has led many companies to offer several hardware and software solutions in order to monitor the communications that gives this protocol. The current master thesis presents the Lear CAN Analyzer as a software tool developed within the company LEAR Corporation. It is designed to be used in the automobile industry as a complement or substitute for other co...

  15. Magnetoresistive Emulsion Analyzer

    OpenAIRE

    Lin, Gungun; Baraban, Larysa; Han, Luyang; Karnaushenko, Daniil; Makarov, Denys; Cuniberti, Gianaurelio; Schmidt, Oliver G.

    2013-01-01

    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and n...

  16. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  17. IPv6 Protocol Analyzer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the emerging of next generation Intemet protocol (IPv6), it is expected to replace the current version of Internet protocol (IPv4) that will be exhausted in the near future. Besides providing adequate address space, some other new features are included into the new 128 bits of IP such as IP auto configuration, quality of service, simple routing capability, security, mobility and multicasting. The current protocol analyzer will not be able to handle IPv6 packets. This paper will focus on developing protocol analyzer that decodes IPv6 packet. IPv6 protocol analyzer is an application module,which is able to decode the IPv6 packet and provide detail breakdown of the construction of the packet. It has to understand the detail construction of the IPv6, and provide a high level abstraction of bits and bytes of the IPv6 packet.Thus it increases network administrators' understanding of a network protocol,helps he/she in solving protocol related problem in a IPv6 network environment.

  18. MOX fuel assembly

    International Nuclear Information System (INIS)

    The fuel assembly of the present invention comprises at least one water rod, first fuel rods filled with uranium/plutonium mixed oxide fuels, second fuel rods having axial length shorter than that of the first fuel rods and third fuel rods containing burnable poisons. If the third fuel rods are arranged on the same row and adjacent columns or on the same column and adjacent row relative to the positions where the second fuel rods are arranged or the position of the water rod replacing fuel rods, in other words, at a position extremely close to them, neutron spectrum is made softer and the neutron flux distribution is made higher. As a result, negative reactivity worth of the burnable poisons contained in the third fuel rods is enhanced, accordingly, a reactivity suppression effect comparable with that in conventional cases can be obtained by so much even if the number of the third fuel rods is reduced. The number of the MOX fuel rods is increased than a conventional case by so much as replacing the third fuel rods with the MOX fuel rods by the reduced amount thereby enabling to improve the efficiency using plutonium. (N.H.)

  19. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  20. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233U

  1. Fluorescence analyzer for lignin

    Science.gov (United States)

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  2. Analyzing Chinese Financial Reporting

    Institute of Scientific and Technical Information of China (English)

    SABRINA; ZHANG

    2008-01-01

    If the world’s capital markets could use a harmonized accounting framework it would not be necessary for a comparison between two or more sets of accounting standards. However,there is much to do before this becomes reality.This article aims to pres- ent a general overview of China’s General Accepted Accounting Principles(GAAP), U.S.General Accepted Accounting Principles and International Financial Reporting Standards(IFRS),and to analyze the differ- ences among IFRS,U.S.GAAP and China GAAP using fixed assets as an example.

  3. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  4. Field Deployable DNA analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  5. Ring Image Analyzer

    Science.gov (United States)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  6. Fuel cycle. Fuel reprocessing

    International Nuclear Information System (INIS)

    Reprocessing includes mechanical and chemical operations on spent fuel for extraction of valuable materials. These operations are a part of the fuel cycle. In this paper are given technical data on spent fuels, transport, storage, decladding, dissolution, Purex process, elaboration of U and Pu and reprocessing engineering. This article is completed by 106 references

  7. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  8. Residual gas analyzer calibration

    Science.gov (United States)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  9. Analyzing Cosmic Bubble Collisions

    CERN Document Server

    Gobbetti, Roberto

    2012-01-01

    We develop a set of controlled, analytic approximations to study the effects of bubble collisions on cosmology. We expand the initial perturbation to the inflaton field caused by the collision in a general power series, and determine its time evolution during inflation in terms of the coefficients in the expansion. In models where the observer's bubble undergoes sufficient slow-roll inflation to solve the flatness problem, in the thin wall limit only one coefficient in the expansion is relevant to observational cosmology, allowing nearly model-independent predictions. We discuss two approaches to determining the initial perturbation to the inflaton and the implications for the sign of the effect (a hot or cold spot on the Cosmic Microwave Background temperature map). Lastly, we analyze the effects of collisions with thick-wall bubbles, i.e. away from the thin-wall limit.

  10. Analyzing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian

    2014-01-01

    New types of disclosure and reporting are argued to be vital in order to convey a transparent picture of the true state of the company. However, they are unfortunately not without problems as these types of information are somewhat more complex than the information provided in the traditional......, because the costs of processing and analyzing it exceed the benefits indicating bounded rationality. Hutton (2002) concludes that the analyst community’s inability to raise important questions on quality of management and the viability of its business model inevitably led to the Enron debacle. There seems...... to be evidence of the fact that all types of corporate stakeholders from management to employees, owners, the media and politicians have grave difficulties in interpreting new forms of reporting. One hypothesis could be that if managements’ own understanding of value creation is disclosed to the...

  11. Analyzing architecture articles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present study, we express the quality, function, and characteristics of architecture to help people comprehensively understand what architecture is. We also reveal the problems and conflict found in population, land, water resources, pollution, energy, and the organization systems in construction. China’s economy is transforming. We should focus on the cities, architectural environment, energy conservation, emission-reduction, and low-carbon output that will result in successful green development. We should macroscopically and microscopically analyze the development, from the natural environment to the artificial environment; from the relationship between human beings and nature to the combination of social ecology in cities, and farmlands. We must learn to develop and control them harmoniously and scientifically to provide a foundation for the methods used in architecture research.

  12. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  13. Component Cost of Fuel Oil of Waste Transportation Cost

    Directory of Open Access Journals (Sweden)

    Burhamtoro

    2013-10-01

    Full Text Available The success of the transportation system can be measured based on four things, namely the efficiency of time, energy and fuel efficiency, environmental impact, and safety. Efficiency of energy and fuel is often stated as part of vehicle operating costs (VOC. So need to know the amount of the percentage of the fuel cost component of vehicle operating costs. The purpose of this study was to determine the percentage of the fuel cost component of the total cost of transportation. Research object is a dump truck or on the SCS transport system that serves the city of Malang. Stages of research begins with getting the data needed to analyze the cost of transporting waste. Furthermore, the analysis performed to determine the percentage of each component of transport costs. Results of the analysis showed that the greatest percentage of the cost of each component of the cost of transporting waste is a component of the fuel, while the smallest percentage of the cost of the mechanical components. For the percentage of fuel costs by 28.90% of the variable cost per kilometer, while the percentage of fuel costs by 27.45% of the total cost of transporting waste on his m3each.

  14. Comparison of traditional nondestructive analysis of RERTR fuel plates with digital radiographic techniques

    International Nuclear Information System (INIS)

    The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method. Additional possible improvements suggested by the new digital method are also raised. (author)

  15. Optimization of nuclear fuels spatial distribution by neural network techniques

    International Nuclear Information System (INIS)

    In this work an algorithm was developed to optimize the fuel loading pattern design. An artificial neural network was used for generation of the arrangements for the fuel elements, coupled to the codes WIMS-D4 and CITATION-LD12 for the calculation of the core parameters. The objective consists of determining the fuel loading pattern that minimizes the power peaking factor. The tests were made supposing the insertion of about 1/3 of reprocessed fuel in a PWR reactor. Were considered the AIROX, coprocessing and PUREX reprocessing techniques, being analyzed the neutronic behaviour of the obtained arrangements and the efficiency of the implemented algorithm. As result, was obtained several configurations presenting better characteristic than the configurations presenting better characteristic than the configuration of reference adopted, indicating the viability of the applied methodology. In spite of having been developed seeking optimizing of batches of reprocessed fuel, nothing impedes the use of the algorithm in normal reloads. (author)

  16. The ways of SOFC systems efficiency increasing

    Energy Technology Data Exchange (ETDEWEB)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  17. Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems

    International Nuclear Information System (INIS)

    High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have received substantial attention due to their high CO (carbon monoxide) tolerance and simplified water management. The hydrogen and CO fractions affect the HT-PEMFC performance and different fuel sources for hydrogen production result in different product gas compositions. Therefore, the aim of this study is to investigate the theoretical performance of HT-PEMFCs fueled by the reformate gas derived from various fuel options (i.e., methane, methanol, ethanol, and glycerol). Effects of fuel types and CO poisoning on the HT-PEMFC performance are analyzed. Furthermore, the necessity of a water-gas shift (WGS) reactor as a CO removal unit for pretreating the reformate gas is investigated for each fuel type. The methane steam reforming shows the highest possibility of CO formation, whereas the methanol steam reforming produces the lowest quantity of CO in the reformate gas. The methane fuel processing gives the maximum fraction of hydrogen (≈0.79) when the WGS reactor is included. The most suitable fuel is the one with the lowest CO poisoning effect and the maximum fuel cell performance. It is found that the HT-PEMFC system fueled by methanol without the WGS reactor and methane with WGS reactor shows the highest system efficiency (≈50%). - Highlights: • Performance of HT-PEMFC run on different fuel options is theoretically investigated. • Glycerol, methanol, ethanol and methane are hydrogen sources for the HT-PEMFC system. • Effect of CO poisoning on the HT-PEMFC performance is taken into account. • The suitable fuel for HT-PEMFC system is identified regarding the system efficiency

  18. ROBOT TASK SCENE ANALYZER

    Energy Technology Data Exchange (ETDEWEB)

    William R. Hamel; Steven Everett

    2000-08-01

    Environmental restoration and waste management (ER and WM) challenges in the United States Department of Energy (DOE), and around the world, involve radiation or other hazards which will necessitate the use of remote operations to protect human workers from dangerous exposures. Remote operations carry the implication of greater costs since remote work systems are inherently less productive than contact human work due to the inefficiencies/complexities of teleoperation. To reduce costs and improve quality, much attention has been focused on methods to improve the productivity of combined human operator/remote equipment systems; the achievements to date are modest at best. The most promising avenue in the near term is to supplement conventional remote work systems with robotic planning and control techniques borrowed from manufacturing and other domains where robotic automation has been used. Practical combinations of teleoperation and robotic control will yield telerobotic work systems that outperform currently available remote equipment. It is believed that practical telerobotic systems may increase remote work efficiencies significantly. Increases of 30% to 50% have been conservatively estimated for typical remote operations. It is important to recognize that the basic hardware and software features of most modern remote manipulation systems can readily accommodate the functionality required for telerobotics. Further, several of the additional system ingredients necessary to implement telerobotic control--machine vision, 3D object and workspace modeling, automatic tool path generation and collision-free trajectory planning--are existent.

  19. ROBOT TASK SCENE ANALYZER

    International Nuclear Information System (INIS)

    Environmental restoration and waste management (ER and WM) challenges in the United States Department of Energy (DOE), and around the world, involve radiation or other hazards which will necessitate the use of remote operations to protect human workers from dangerous exposures. Remote operations carry the implication of greater costs since remote work systems are inherently less productive than contact human work due to the inefficiencies/complexities of teleoperation. To reduce costs and improve quality, much attention has been focused on methods to improve the productivity of combined human operator/remote equipment systems; the achievements to date are modest at best. The most promising avenue in the near term is to supplement conventional remote work systems with robotic planning and control techniques borrowed from manufacturing and other domains where robotic automation has been used. Practical combinations of teleoperation and robotic control will yield telerobotic work systems that outperform currently available remote equipment. It is believed that practical telerobotic systems may increase remote work efficiencies significantly. Increases of 30% to 50% have been conservatively estimated for typical remote operations. It is important to recognize that the basic hardware and software features of most modern remote manipulation systems can readily accommodate the functionality required for telerobotics. Further, several of the additional system ingredients necessary to implement telerobotic control--machine vision, 3D object and workspace modeling, automatic tool path generation and collision-free trajectory planning--are existent

  20. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  1. Pseudostupidity and analyzability.

    Science.gov (United States)

    Cohn, L S

    1989-01-01

    This paper seeks to heighten awareness of pseudostupidity and the potential analyzability of patients who manifest it by defining and explicating it, reviewing the literature, and presenting in detail the psychoanalytic treatment of a pseudostupid patient. Pseudostupidity is caused by an inhibition of the integration and synthesis of thoughts resulting in a discrepancy between intellectual capacity and apparent intellect. The patient's pseudostupidity was determined in part by his need to prevent his being more successful than father, i.e., defeating his oedipal rival. Knowing and learning were instinctualized. The patient libidinally and defensively identified with father's passive, masochistic position. He needed to frustrate the analyst as he had felt excited and frustrated by his parents' nudity and thwarted by his inhibitions. He wanted to cause the analyst to feel as helpless as he, the patient, felt. Countertransference frustration was relevant and clinically useful in the analysis. Interpretation of evolving relevant issues led to more anxiety and guilt, less pseudostupidity, a heightened alliance, and eventual working through. Negative therapeutic reactions followed the resolution of pseudostupidity. PMID:2708771

  2. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  3. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  4. Nonlinear dynamical systems analyzer

    Science.gov (United States)

    Coffey, Adrian S.; Johnson, Martin; Jones, Robin

    1994-10-01

    Computationally intensive algorithms are an ever more common requirement of modern signal processing. Following the work of Gentleman and Kung, McWhirter, Shepherd and Proudler suggested that certain matrix-orientated algorithms can be mapped onto systolic array architectures for adaptive linear signal processing. This has been extended by Broomhead et al. to the calculation of nonlinear predictive models and applied by Jones et al. to target identification and recognition. We shall show that predictive models are extremely sharp discriminators. Our chosen problem, if implemented as a systolic array, would require 3403 processors which would result in high through-put rate at excessive cost. We are developing an efficient sub-optimally implemented systolic array; one processor servicing more than one systolic node. We describe a prototype Heuristic Processor which computes a multi- dimensional, nonlinear, predictive model. It consists of a Radial Basis Function Network and a least squares optimizer using QR decomposition. The optimized solution of a set of simultaneous equations in 81 unknowns is calculated in 150 (mu) S. The QR section emulates a triangular systolic array by the novel use of an array of 40 mature silicon DSP chips costing under DOL100 each. The DSP chips operate in synchronism at a 50 MHz clock rate passing data to each other through multi-port memories on a dead-letter box principle; there are no memory access conflicts and only two-port and three-port memories are required. The processor provides 1-GFlop of computing power per cubic-foot of electronics for a component cost of approximately DOL15,000.

  5. Saving, efficiency and management of electric sector demand

    International Nuclear Information System (INIS)

    Spanish economic model of development is based on energy consumption, and its main source is imported fossil fuels, which have some environmental and scarcity consequences in the mid term, among others. These problems could be reduced in two ways: economic activity reduction or energy efficiency improvement. In the presence of these possibilities, It may be desirable to bet for saving and energy efficiency, to maintain the economic development. This assignment analyzes the main available regulatory and social mechanisms to promote saving and energy efficiency in the power sector, like systems to internalize social costs in the electricity price, efficiency standards, and encourage the new saving culture. (Author) 15 refs

  6. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  7. Energy Efficiency Evaluation of Fuel Cells and Batteries Hybid Railway Vehicles%燃料电池/蓄电池混合动力车辆能效评估

    Institute of Scientific and Technical Information of China (English)

    潘西湘; 王月明; 唐阳

    2013-01-01

    A new type of fuel cell-powered railway vehicle was developed to replace conventional diesel vehicles in non-electrified sections .In this work ,a hybrid system using fuel cells and batteries was installed on test vehicles ,which were then subjected to running tests on test track .This paper described the development of fuel cells and batteries hybrid test vehicles and the evaluation of this hybrid system’s energy efficiency and fuel consumption rate .%为替代传统车辆的非电气化区段内燃机驱动,研发了用燃料电池系统进行牵引供电的新型车辆。将燃料电池/蓄电池(简称 FC/Batt )混合动力系统装于试验车辆上,并在试验轨道上进行运行试验。阐述了FC/Batt混合动力试验车辆的研发过程,并对混合动力系统的能效和燃料消耗率做了评估。

  8. Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p-11B fuels

    Science.gov (United States)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.

    2015-05-01

    The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.

  9. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  10. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  11. COBSTRAN - COMPOSITE BLADE STRUCTURAL ANALYZER

    Science.gov (United States)

    Aiello, R. A.

    1994-01-01

    The COBSTRAN (COmposite Blade STRuctural ANalyzer) program is a pre- and post-processor that facilitates the design and analysis of composite turbofan and turboprop blades, as well as composite wind turbine blades. COBSTRAN combines composite mechanics and laminate theory with a data base of fiber and matrix properties. As a preprocessor for NASTRAN or another Finite Element Method (FEM) program, COBSTRAN generates an FEM model with anisotropic homogeneous material properties. Stress output from the FEM program is provided as input to the COBSTRAN postprocessor. The postprocessor then uses the composite mechanics and laminate theory routines to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. COBSTRAN is designed to carry out the many linear analyses required to efficiently model and analyze blade-like structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials can also be modeled as a special case of COBSTRAN. NASTRAN MAT1 or MAT2 material cards are generated according to user supplied properties. COBSTRAN is written in FORTRAN 77 and was implemented on a CRAY X-MP with a UNICOS 5.0.12 operating system. The program requires either COSMIC NASTRAN or MSC NASTRAN as a structural analysis package. COBSTRAN was developed in 1989, and has a memory requirement of 262,066 64 bit words.

  12. Ultra Efficient CHHP Using a High Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Fred C. [Fuelcell Energy, Inc., Danbury, CT (United States)

    2015-06-30

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the research program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.

  13. Soft Decision Analyzer

    Science.gov (United States)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  14. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  15. Thermodynamic Analysis of Methane-fueled Solid Oxide Fuel Cells Considering CO Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Qiong Sun; Keqing Zheng; Meng Ni⁎

    2014-01-01

    abstract Thermodynamic analyses in the literature have shown that solid oxide fuel cells (SOFCs) with proton conducting electrolyte (H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte (O-SOFC). However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.

  16. Evaluation for the application of metal fuel in the spent fuel dry storage system

    International Nuclear Information System (INIS)

    Evaluation for application of reduced metal fuel in the day storage system has been carried out for selection of optimum storage method. The state of art has been analyzed for dry storage system of spent fuel. Design basis fuel has been decided with burn-up of 48,000 MWD/MTU for storage of metal fuel. Safety analyses have been carried out for existing dry storage system loaded by reduced metal fuel with storage capacity of four times. Maximum temperatures of metal fuel were calculated about 350 .deg. C and 250 .deg. C for 5 years and 10 years cooling times, respectively. The results of criticality analysis showed that the existing dry storage system has been identified to be adequate for the reduced metal storage. As the results of analysis for application of reduced metal fuel, metal cask and MVDS have the advantage for structural safety respect and cooling efficiency, respectively. Therefore, metal cask and MVDS were selected with optimum storage method

  17. Uncertainty of efficiency of a fuel cell with the establishing of suitable instrumentation for his measurement; Incerteza da eficiencia de uma celula a combustivel com o estabelecimento da instrumentacao adequada para a sua medicao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Sergio Pinheiro de; Trota Filho, Jorge; Couto, Paulo Roberto Guimaraes; Rocha, Adriana da Cunha [Instituto Nacional de Metrologia Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias, RJ (Brazil)]. E-mail: spoliveira@inmetro.gov.br

    2008-07-01

    This work presents and compares the results obtained from the assessment of the uncertainty of measurement of the energetic efficiency calculations of a PEM unit fuel cell and from the total electrical power of a PEM fuel cell stack. This assessment makes use of three different methods of calculation: the Classical method and the Kragten method, both described in the ISO GUM 95 'Guide to the expression of uncertainty in measurement' and the Monte Carlo method, described in the Supplement 1 to the ISO GUM 95. Concerning the energetic efficiency, both the Classical and Kragten methods presented the same uncertainty values, 0.00029 whereas the Monte Carlo method presented a value of 0.00021. The difference between these two values (0.8 x 10{sup -5}) was greater than the {delta} criteria tolerance established in the Supplement 1 (0.5 x 10{sup -5}). This fact though, has not invalidated the results of the ISO GUM 95, as this work focused on the conservative value of the uncertainty. With respect to the uncertainty of the total electrical power of the fuel cell stack it has been observed that the main contribution for the uncertainty calculation, i.e., the higher uncertainty source (92.8%), was given by the accuracy class of the multimeter employed in the measurements. Additionally to the comparative study of the methods for the uncertainty calculations, this work establishes the correct accuracy class of a multimeter used for the measurement of the given/consumed electric potential by a fuel cell stack, aiming the cost/benefit relation of the process. (author)

  18. Report of Ad Hoc Committee on Appliance and Apparatus Efficiency to the Interdepartmental Fuel and Energy Committee of the State of New York. Final Report.

    Science.gov (United States)

    New York State Interdepartmental Fuel and Energy Committee, Albany.

    High and wasteful energy consumption practices have become a part of the American life style. The United States, with six percent of the world's population, is responsible for 33 percent of the world's energy consumption. Americans are now faced with shortages of primary fuels, especially natural gas and oil, and with stringency of electric power…

  19. Fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  20. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.