Exact analytical solutions for ADAFs
Habibi, Asiyeh; Shadmehri, Mohsen
2016-01-01
We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is $T_{r\\varphi}$. Furthermore we assume that the value of viscosity coefficient $\\alpha$ varies with $\\theta$. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Analytic anisotropic solution for holography
Ren, Jie
2016-01-01
An exact solution to Einstein's equations for holographic models is presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined in detail. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimension reduction.
ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION
Institute of Scientific and Technical Information of China (English)
WANG Yue-peng; SHI Wei-hui
2008-01-01
The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.
Analytic solutions of nonlinear Cournot duopoly game
Directory of Open Access Journals (Sweden)
Akio Matsumoto
2005-01-01
Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.
Radiative Transfer in spheres I. Analytical Solutions
Aboughantous, C
2001-01-01
A nonsingular analytical solution for the transfer equation in a pure absorber is obtained in central symmetry and in a monochromatic radiation field. The native regular singularity of the equation is removed by applying a linear transformation to the frame of reference. Two different ap-proaches are used to carry out the solution. In the first approach the angular derivative is interpreted in an original way that made it possible to discard this derivative from the equation for all black body media without upsetting the conservation of energy. In this approach the analytic solution is expressible in terms of exponential integrals without approximations but for practical considerations the solution is presented in the form of Gauss-Legendre quadrature for quantitative evaluation of the solutions. In the second approach the angular derivative is approximated by a new set of discrete ordinates that guarantees the closer of the set of equations and the conservation of energy. The solutions from the two approache...
A Simple Analytic Solution for Tachyon Condensation
Erler, Theodore
2009-01-01
In this paper we present a new and simple analytic solution for tachyon condensation in open bosonic string field theory. Unlike the B_0 gauge solution, which requires a carefully regulated discrete sum of wedge states subtracted against a mysterious "phantom" counter term, this new solution involves a continuous integral of wedge states, and no regularization or phantom term is necessary. Moreover, we can evaluate the action and prove Sen's conjecture in a mere few lines of calculation.
Analytical solution methods for geodesic motion
Hackmann, Eva
2015-01-01
The observation of the motion of particles and light near a gravitating object is until now the only way to explore and to measure the gravitational field. In the case of exact black hole solutions of the Einstein equations the gravitational field is characterized by a small number of parameters which can be read off from the observables related to the orbits of test particles and light rays. Here we review the state of the art of analytical solutions of geodesic equations in various space--times. In particular we consider the four dimensional black hole space--times of Pleba\\'nski--Demia\\'nski type as far as the geodesic equation separates, as well as solutions in higher dimensions, and also solutions with cosmic strings. The mathematical tools used are elliptic and hyperelliptic functions. We present a list of analytic solutions which can be found in the literature.
Analytic solution for a quartic electron mirror
Energy Technology Data Exchange (ETDEWEB)
Straton, Jack C., E-mail: straton@pdx.edu
2015-01-15
A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.
Analytical solution for the Feynman ratchet.
Pesz, Karol; Gabryś, Barbara J; Bartkiewicz, Stanisław J
2002-12-01
A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric potentials (ratchets) is presented. It is found that logarithmic-type potential functions (related to "entropic" ratchets) allow for an approximate solution within a certain range of parameters. An expression for the net current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.
Maximum likelihood molecular clock comb: analytic solutions.
Chor, Benny; Khetan, Amit; Snir, Sagi
2006-04-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, R
2015-01-01
We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, Rafael; Manton, Nicholas S.
2015-06-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Analytic solutions of an unclassified artifact /
Energy Technology Data Exchange (ETDEWEB)
Trent, Bruce C.
2012-03-01
This report provides the technical detail for analytic solutions for the inner and outer profiles of the unclassified CMM Test Artifact (LANL Part Number 157Y-700373, 5/03/2001) in terms of radius and polar angle. Furthermore, analytic solutions are derived for the legacy Sheffield measurement hardware, also in terms of radius and polar angle, using part coordinates, i.e., relative to the analytic profile solutions obtained. The purpose of this work is to determine the exact solution for the “cosine correction” term inherent to measurement with the Sheffield hardware. The cosine correction is required in order to interpret the actual measurements taken by the hardware in terms of an actual part definition, or “knot-point spline definition,” that typically accompanies a component drawing. Specifically, there are two portions of the problem: first an analytic solution must be obtained for any point on the part, e.g., given the radii and the straight lines that define the part, it is required to find an exact solution for the inner and outer profile for any arbitrary polar angle. Next, the problem of the inspection of this part must be solved, i.e., given an arbitrary sphere (representing the inspection hardware) that comes in contact with the part (inner and outer profiles) at any arbitrary polar angle, it is required to determine the exact location of that intersection. This is trivial for the case of concentric circles. In the present case, however, the spherical portion of the profiles is offset from the defined center of the part, making the analysis nontrivial. Here, a simultaneous solution of the part profiles and the sphere was obtained.
On Analytical Solutions to Beam-Hardening
Rigaud, G.
2017-01-01
When polychromatic X-rays propagate through a material, for instance in computerized tomography (CT), low energy photons are more attenuated resulting in a "harder" beam. The beam-hardening phenomenon breaks the monochromatic radiation model based on the Radon transform giving rise to artifacts in CT reconstructions to the detriment of visual inspection and automated segmentation algorithms. We propose first a simplified analytic representation for the beam-hardening. Besides providing a general understanding of the phenomenon, this model proposes to invert the beam-hardening effect for homogeneous objects leading to classical monochromatic data. For heterogeneous objects, no analytical reconstruction of the density can be derived without more prior information. However, the beam-hardening is shown to be a smooth operation on the data and thus to preserve the encoding of the singularities of the attenuation map within the data. A microlocal analysis encourages the use of contour extraction methods to solve partially the beam-hardening effect even for heterogeneous objects. The application of both methods, exact analytical solution for homogeneous objects and feature extraction for heterogeneous ones, on real data demonstrates their relevancy and efficiency.
Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis
Directory of Open Access Journals (Sweden)
Przemysław Korohoda
2013-01-01
Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
LiuXinhe
2003-01-01
Let r be a given positive number.Denote by D=D the closed disc in the complex plane C whose center is the origin and radius is r.For any subset K of C and any integer m ≥1,write A(Dm,K)={f|f:Dm→Kis a continuous map,and f|(Dm)*is analytic).For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ψH(f)(z)=H(z,f(z)……fm=1(x)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,……,n.In this paper,the system of functional equations {F(z,f(z),f2(ψHz(f)(z))…,fn(ψk2(g)(x))… gn(ψKn(g)(z)))=0 G(z,f(z),f2(ψH2(f)(z))…fn(ψHn(f)(z)),g(z),g2(ψk2(g)(x))…,gn(ψkn(g)(z)))=0(z∈D)is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A（D，D）are given.
Analytical solutions of moisture flow equations and their numerical evaluation
Energy Technology Data Exchange (ETDEWEB)
Gibbs, A.G.
1981-04-01
The role of analytical solutions of idealized moisture flow problems is discussed. Some different formulations of the moisture flow problem are reviewed. A number of different analytical solutions are summarized, including the case of idealized coupled moisture and heat flow. The evaluation of special functions which commonly arise in analytical solutions is discussed, including some pitfalls in the evaluation of expressions involving combinations of special functions. Finally, perturbation theory methods are summarized which can be used to obtain good approximate analytical solutions to problems which are too complicated to solve exactly, but which are close to an analytically solvable problem.
Approximated analytical solution to an Ebola optimal control problem
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
Analytic solutions of a class of nonlinearly dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Wang, M-C [System Engineering Institute of Tianjin University, Tianjin, 300072 (China); Zhao, X-S; Liu, X [Tianjin University of Technology and Education, Tianjin, 300222 (China)], E-mail: mchwang123@163.com.cn, E-mail: xszhao@mail.nwpu.edu.cn, E-mail: liuxinhubei@163.com.cn
2008-02-15
In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently.
Migration of radionuclides through sorbing media analytical solutions--II
Energy Technology Data Exchange (ETDEWEB)
Pigford, T.H.; Chambre, P.L.; Albert, M.
1980-10-01
This report presents analytical solutions, and the results of such solutions, for the migration of radionuclides in geologic media. Volume 1 contains analytical solutions for one-dimensional equilibrium transport in infinite media and multilayered media. One-dimensional non-equilibrium transport solutions are also included. Volume 2 contains analytical solutions for transport in a one-dimensional field flow with transverse dispersion as well as transport in multi-dimensional flow. A finite element solution of the transport of radionuclides through porous media is discussed. (DMC)
Analytical solution of basic equations set of atmospheric motion
Institute of Scientific and Technical Information of China (English)
SHI Wei-hui; SHEN Chun; WANG Yue-peng
2007-01-01
On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the third-class initial value problem with typicaiity and application is analyzed. The calculational method and concrete expressions of analytical solution about the well-posed initial value problem of the third kind are given in the analytic function classes. Near an appointed point, the relevant theoretical and computational problems about analytical solution of initial value problem are solved completely in the meaning of local solution. Moreover, for other type of problems for determining solution, the computational method and process of their stable analytical solution can be obtained in a similar way given in this paper.
Analytical Solution for Stellar Density in Globular Clusters
Indian Academy of Sciences (India)
M. A. Sharaf; A. M. Sendi
2011-09-01
In this paper, four parameters analytical solution will be established for the stellar density function in globular clusters. The solution could be used for any arbitrary order of outward decrease of the cluster’s density.
The Analytical Approximate Solution of the 2D Thermal Displacement
Institute of Scientific and Technical Information of China (English)
Chu－QuanGuan; Zeng－YuanGuo; 等
1996-01-01
The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.
Analytical solutions of the lattice Boltzmann BGK model
Zou, Q; Doolen, G D; Zou, Qisu; Hou, Shuling; Doolen, Gary D.
1995-01-01
Abstract: Analytical solutions of the two dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plain Poiseuille flow and the plain Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time representation of these two flows without any approximation.
A compact analytic solution describing optoacoustic phenomenon in absorbing fluid
Cundin, Luisiana; Barsalou, Norman; Voss, Shannon
2012-01-01
Derivation of an analytic, closed-form solution for Q-switched laser induced optoacoustic phenomenon in absorbing fluid media is presented. The solution assumes spherical symmetry as well for the forcing function, which represents heat deposition from Q-switched lasers. The Greens solution provided is a suitable kernel to generate more complex solutions arising in optoacoustics, optoacoustic spectroscopy, photoacoustic and photothermal problems.
AN ANALYTICAL SOLUTION FOR AN EXPONENTIAL TYPE DISPERSION PROCESS
Institute of Scientific and Technical Information of China (English)
王子亭
2001-01-01
The dispersion process in heterogeneous porous media is distance-dependent,which results from multi-scaling property of heterogeneous structure. An analytical model describing the dispersion with an exponential dispersion function is built, which is transformed into ODE problem with variable coefficients, and obtained analytical solution for two type boundary conditions using hypergeometric function and inversion technique.According to the analytical solution and computing results the difference between the exponential dispersion and constant dispersion process is analyzed.
Semi-analytic solution to planar Helmholtz equation
Directory of Open Access Journals (Sweden)
Tukač M.
2013-06-01
Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.
A Comprehensive Analytical Solution of the Nonlinear Pendulum
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
Analytical solutions of coupled-mode equations for microring resonators
Indian Academy of Sciences (India)
ZHAO C Y
2016-06-01
We present a study on analytical solutions of coupled-mode equations for microring resonators with an emphasis on occurrence of all-optical EIT phenomenon, obtained by using a cofactor. As concrete examples, analytical solutions for a $3 \\times 3$ linearly distributed coupler and a circularly distributed coupler are obtained. The former corresponds to a non-degenerate eigenvalue problem and the latter corresponds to a degenerate eigenvalue problem. For comparison and without loss of generality, analytical solution for a $4 \\times 4$ linearly distributed coupler is also obtained. This paper may be of interest to optical physics and integrated photonics communities.
Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao
2016-06-01
This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.
Analytical Solution for Isentropic Flows in Solids
Heuzé, Olivier
2009-12-01
In the XIXth century, Riemann gave the equations system and the exact solution for the isentropic flows in the case of the ideal gas. But to our knowledge, nothing has been done to apply it to condensed media. Many materials of practical interest, for instance metals, obey to the linear law D = c+s u, where D is the shock velocity, u the particle velocity, and c and s properties of the material. We notice that s is strongly linked to the fundamental derivative. This means that the assumption of constant fundamental derivative is useful in this case, as it was with the isentropic gamma in the Riemann solution. Then we can apply the exact Riemann solution for these materials. Although the use of the hypergeometric function is complicated in this case, we obtain a very good approximation with the development in power series.
Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers
Directory of Open Access Journals (Sweden)
Zh. Kudyshev
2012-01-01
Full Text Available We find and analyze a generalized analytical solution for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, nonzero phase mismatch between the channels, and arbitrary nonlinear coefficients.
ANALYTICAL SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
胡建兰; 张汉林
2003-01-01
The following partial differential equations are studied: generaliz ed fifth-orderKdV equation, water wave equation, Kupershmidt equation, couples KdV equation. Theanalytical solutions to these problems via using various ansaiz es by introducing a second-order ordinary differential equation are found out.
Analytic solutions for marginal deformations in open superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Okawa, Y.
2007-04-15
We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)
New software solutions for analytical spectroscopists
Davies, Antony N.
1999-05-01
Analytical spectroscopists must be computer literate to effectively carry out the tasks assigned to them. This has often been resisted within organizations with insufficient funds to equip their staff properly, a lack of desire to deliver the essential training and a basic resistance amongst staff to learn the new techniques required for computer assisted analysis. In the past these problems were compounded by seriously flawed software which was being sold for spectroscopic applications. Owing to the limited market for such complex products the analytical spectroscopist often was faced with buying incomplete and unstable tools if the price was to remain reasonable. Long product lead times meant spectrometer manufacturers often ended up offering systems running under outdated and sometimes obscure operating systems. Not only did this mean special staff training for each instrument where the knowledge gained on one system could not be transferred to the neighbouring system but these spectrometers were often only capable of running in a stand-alone mode, cut-off from the rest of the laboratory environment. Fortunately a number of developments in recent years have substantially changed this depressing picture. A true multi-tasking operating system with a simple graphical user interface, Microsoft Windows NT4, has now been widely introduced into the spectroscopic computing environment which has provided a desktop operating system which has proved to be more stable and robust as well as requiring better programming techniques of software vendors. The opening up of the Internet has provided an easy way to access new tools for data handling and has forced a substantial re-think about results delivery (for example Chemical MIME types, IUPAC spectroscopic data exchange standards). Improved computing power and cheaper hardware now allows large spectroscopic data sets to be handled without too many problems. This includes the ability to carry out chemometric operations in
Zero Viscosity Limit for Analytic Solutions of the Primitive Equations
Kukavica, Igor; Lombardo, Maria Carmela; Sammartino, Marco
2016-10-01
The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be {O(√{ν})}. The main assumption is spatial analyticity of the initial datum.
Analytical solutions for the Rabi model
Yu, Lixian; Liang, Qifeng; Chen, Gang; Jia, Suotang
2012-01-01
The Rabi model that describes the fundamental interaction between a two-level system with a quantized harmonic oscillator is one of the simplest and most ubiquitous models in modern physics. However, this model has not been solved exactly because it is hard to find a second conserved quantity besides the energy. Here we present a unitary transformation to map this unsolvable Rabi model into a solvable Jaynes-Cummings-like model by choosing a proper variation parameter. As a result, the analytical energy spectrums and wavefunctions including both the ground and the excited states can be obtained easily. Moreover, these explicit results agree well with the direct numerical simulations in a wide range of the experimental parameters. In addition, based on our obtained energy spectrums, the recent experimental observation of Bloch-Siegert in the circuit quantum electrodynamics with the ultrastrong coupling can be explained perfectly. Our results have the potential application in the solid-state quantum information...
Analytical solutions for the fractional Fisher's equation
Directory of Open Access Journals (Sweden)
H. Kheiri
2015-06-01
Full Text Available In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified Homotopy perturbation method, it is possible to get an exact solution.
Analytical Solution for the Current Distribution in Multistrand Superconducting Cables
Bottura, L; Fabbri, M G
2002-01-01
Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady ...
Big Data Security Analytic Solution using Splunk
Directory of Open Access Journals (Sweden)
P.Charishma,
2015-04-01
Full Text Available Over the past decade, usage of online applications is experiencing remarkable growth. One of the main reasons for the success of web application is its “Ease of Access” and availability on internet. The simplicity of the HTTP protocol makes it easy to steal and spoof identity. The business liability associated with protecting online information has increased significantly and this is an issue that must be addressed. According to SANSTop20, 2013 list the number one targeted server side vulnerability are Web Applications. So, this has made detecting and preventing attacks on web applications a top priority for IT companies. In this paper, a rational solution is brought to detect events on web application and provides Security intelligence, log management and extensible reporting by analyzing web server logs.
Analytic solution of simplified Cardan's shaft model
Directory of Open Access Journals (Sweden)
Zajíček M.
2014-12-01
Full Text Available Torsional oscillations and stability assessment of the homokinetic Cardan shaft with a small misalignment angle is described in this paper. The simplified mathematical model of this system leads to the linearized equation of the Mathieu's type. This equation with and without a stationary damping parameter is considered. The solution of the original differential equation is identical with those one of the Fredholm’s integral equation with degenerated kernel assembled by means of a periodic Green's function. The conditions of solvability of such problem enable the identification of the borders between stability and instability regions. These results are presented in the form of stability charts and they are verified using the Floquet theory. The correctness of oscillation results for the system with periodic stiffness is then validated by means of the Runge-Kutta integration method.
Analytical Solution of the Time Fractional Fokker-Planck Equation
Directory of Open Access Journals (Sweden)
Sutradhar T.
2014-05-01
Full Text Available A nonperturbative approximate analytic solution is derived for the time fractional Fokker-Planck (F-P equation by using Adomian’s Decomposition Method (ADM. The solution is expressed in terms of Mittag- Leffler function. The present method performs extremely well in terms of accuracy, efficiency and simplicity.
AN ANALYTICAL SOLUTION FOR CALCULATING THE INITIATION OF SEDIMENT MOTION
Institute of Scientific and Technical Information of China (English)
Thomas LUCKNER; Ulrich ZANKE
2007-01-01
This paper presents an analytical solution for calculating the initiation of sediment motion and the risk of river bed movement. It thus deals with a fundamental problem in sediment transport, for which no complete analytical solution has yet been found. The analytical solution presented here is based on forces acting on a single grain in state of initiation of sediment motion. The previous procedures for calculating the initiation of sediment motion are complemented by an innovative combination of optical surface measurement technology for determining geometrical parameters and their statistical derivation as well as a novel approach for determining the turbulence effects of velocity fluctuations. This two aspects and the comparison of the solution functions presented here with the well known data and functions of different authors mainly differ the presented solution model for calculating the initiation of sediment motion from previous approaches. The defined values of required geometrical parameters are based on hydraulically laboratory tests with spheres. With this limitations the derivated solution functions permit the calculation of the effective critical transport parameters of a single grain, the calculation of averaged critical parameters for describing the state of initiation of sediment motion on the river bed, the calculation of the probability density of the effective critical velocity as well as the calculation of the risk of river bed movement. The main advantage of the presented model is the closed analytical solution from the equilibrium of forces on a single grain to the solution functions describing the initiation of sediment motion.
Analytic solution of an oscillatory migratory alpha^2 stellar dynamo
Brandenburg, Axel
2016-01-01
Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for uniform helical turbulence or constant alpha effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant alpha. We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant alpha, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two ends. We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory dynamos are possible for dynamos with...
Transmission Line Adapted Analytical Power Charts Solution
Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu
2016-08-01
The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.
Analytical modeling of bargaining solutions for multicast cellular services
Directory of Open Access Journals (Sweden)
Giuseppe Araniti
2013-07-01
Full Text Available Nowadays, the growing demand for group-oriented services over mobile devices has lead to the definition of new communication standards and multimedia applications in cellular systems. In this article we study the use of game theoretic solutions for these services to model and perform a trade-off analysis between fairness and efficiency in the resources allocation. More precisely, we model bargaining solutions for the multicast data services provisioning and introduce the analytical resolution for the proposed solutions.
A hybrid ICT-solution for smart meter data analytics
DEFF Research Database (Denmark)
Liu, Xiufeng; Nielsen, Per Sieverts
2016-01-01
Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 min. Smart meter data are typically bundled with social economic data in analytics, such as meter geographic locations, weather...... conditions and user information, which makes the data sets very sizable and the analytics complex. Data mining and emerging cloud computing technologies make collecting, processing, and analyzing the so-called big data possible. This paper proposes an innovative ICT-solution to streamline smart meter data...... analytics. The proposed solution offers an information integration pipeline for ingesting data from smart meters, a scalable platform for processing and mining big data sets, and a web portal for visualizing analytics results. The implemented system has a hybrid architecture of using Spark or Hive for big...
Analytical solutions of the simplified Mathieu’s equation
Directory of Open Access Journals (Sweden)
Nicolae MARCOV
2016-03-01
Full Text Available Consider a second order differential linear periodic equation. The periodic coefficient is an approximation of the Mathieu’s coefficient. This equation is recast as a first-order homogeneous system. For this system we obtain analytical solutions in an explicit form. The first solution is a periodic function. The second solution is a sum of two functions, the first is a continuous periodic function, but the second is an oscillating function with monotone linear increasing amplitude. We give a formula to directly compute the slope of this increase, without knowing the second numeric solution. The periodic term of the second solution may be computed directly. The coefficients of fundamental matrix of the system are analytical functions.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.
2016-09-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
Helical tractor beam: analytical solution of Rayleigh particle dynamics.
Carretero, Luis; Acebal, Pablo; Garcia, Celia; Blaya, Salvador
2015-08-10
We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories. Therefore, by tuning the intensity value the particle can describe helical trajectories upstream and downstream, a circular trajectory in a fixed plane, or a linear displacement in the propagation direction. The approximated analytical solutions show good agreement to the corresponding numerical solutions of the exact dynamical differential equations.
ANALYTIC SOLUTION AND NUMERICAL SOLUTION TO ENDOLYMPH EQUATION USING FRACTIONAL DERIVATIVE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffler functions.We then evaluate the approximate numerical solution using MATLAB.
Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions
Ashoori, E.
2012-01-01
Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo
Analytical solutions for geodesics in black hole spacetimes
Hackmann, Eva
2015-01-01
We review the analytical solution methods for the geodesic equations in Kerr-Newman-Taub-NUT-de Sitter spacetimes and its subclasses in terms of elliptic and hyperelliptic functions. A short guide to corresponding literature for general timelike and lightlike motion is also presented.
Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Decision Exploration Lab : A Visual Analytics Solution for Decision Management
Broeksema, Bertjan; Baudel, Thomas; Telea, Alex; Crisafulli, Paolo
2013-01-01
We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business goa
Analytical solutions for Tokamak equilibria with reversed toroidal current
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)
2011-08-15
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.
Nonlinear inertial oscillations of a multilayer eddy: An analytical solution
Dotsenko, S. F.; Rubino, A.
2008-06-01
Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.
ANALYTICAL SOLUTION OF FILLING AND EXHAUSTING PROCESS IN PNEUMATIC SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The filling and exhausting processes in a pneumatic system are involved with many factors,and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory,and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.
Analytical Solutions for Beams Passing Apertures with Sharp Boundaries
Luz, Eitam; Malomed, Boris A
2016-01-01
An approximation is elaborated for the paraxial propagation of diffracted beams, with both one- and two-dimensional cross sections, which are released from apertures with sharp boundaries. The approximation applies to any beam under the condition that the thickness of its edges is much smaller than any other length scale in the beam's initial profile. The approximation can be easily generalized for any beam whose initial profile has several sharp features. Therefore, this method can be used as a tool to investigate the diffraction of beams on complex obstacles. The analytical results are compared to numerical solutions and experimental findings, which demonstrates high accuracy of the approximation. For an initially uniform field confined by sharp boundaries, this solution becomes exact for any propagation distance and any sharpness of the edges. Thus, it can be used as an efficient tool to represent the beams, produced by series of slits with a complex structure, by a simple but exact analytical solution.
Institute of Scientific and Technical Information of China (English)
熊岳山; 韦永康
2001-01-01
The sediment reaction and diffusion equation with generalized initial and boundary condition is studied. By using Laplace transform and Jordan lemma , an analytical solution is got, which is an extension of analytical solution provided by Cheng Kwokming James ( only diffusion was considered in analytical solution of Cheng ). Some problems arisen in the computation of analytical solution formula are also analysed.
A composite analytical solution for large break LOCA
Energy Technology Data Exchange (ETDEWEB)
Purdy, P. [Bruce Power, Tiverton, Ontario (Canada); Girard, R. [Hydro-Quebec, Quebec (Canada); Marczak, J. [Ontario Power Generation, Ontario (Canada); Taylor, D. [New Brunswick Power, Fredericton, New Brunswick (Canada); Zemdegs, R. [Candu Energy Inc., Mississauga, Ontario (Canada); Kapaklili, T. [CANDU Owner' s Group, Toronto, Ontario (Canada); Balog, G. [AMEC NSS, Ontario (Canada); Kozluk, M. [Independent Consultant (Canada); Oliva, A. [Candesco, Ontario (Canada)
2011-07-01
The Canadian CANDU Industry is implementing a composite analytical solution to demonstrate, with high confidence, adequate safety margins for Large Break Loss of Coolant Accidents (LBLOCA) in existing CANDU reactors. The approach involves consolidating a number of individual approaches in a manner that alleviates reliance on any single analytical method or activity. Using a multi-layered approach, the objective of this composite solution is to use a variety of reinforcing analytical approaches such that they complement one another to collectively form a robust solution. The composite approach involves: i) systematic reclassification of LBLOCA to beyond design basis events based on the frequency of the limiting initiating events; ii) more realistic modeling of break opening characteristics; iii) application of Best Estimate and Uncertainty (BEAU) analysis methodology to provide a more realistic representation of the margins; iv) continued application of Limit of Operating Envelope (LOE) methodology to demonstrate the adequacy of margins at the extremes of the operating envelope; v) characterizing the coolant void reactivity, with associated uncertainties; and vi) defining suitable acceptance criteria, accounting for the available experimental database and uncertainties. The approach is expected to confirm the adequacy of existing design provisions and, as such, better characterize the overall safety significance of LBLOCA in CANDU reactors. This paper describes the composite analytical approach and its development, implementation and current status. (author)
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.
2015-09-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
Analytic solution of an oscillatory migratory α2 stellar dynamo
Brandenburg, A.
2017-02-01
Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence or constant α effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant α. Aims: We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant α, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries. Methods: We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. Results: The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the sign of α. Conclusions: The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory migratory dynamos are possible with constant α.
Analytical exact solution of the non-linear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica
2011-07-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
Analytic Solution to Nonlinear Dynamical System of Dragon Washbasin
Institute of Scientific and Technical Information of China (English)
贾启芬; 李芳; 于雯; 刘习军; 王大钧
2004-01-01
Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.
An analytic cosmology solution of Poincaré gauge gravity
Lu, Jianbo; Chee, Guoying
2016-06-01
A cosmology of Poincaré gauge theory is developed. An analytic solution is obtained. The calculation results agree with observation data and can be compared with the ΛCDM model. The cosmological constant puzzle is the coincidence and fine tuning problem are solved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe, and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.
Analytic solutions for unconfined groundwater flow over a stepped base
Fitts, Charles R.; Strack, Otto D. L.
1996-03-01
Two new exact solutions are presented for uniform unconfined groundwater flow over a stepped base; one for a step down in the direction of flow, the other for a step up in the direction of flow. These are two-dimensional solutions of Laplace's equation in the vertical plane, and are derived using the hodograph method and conformal mappings on Riemann surfaces. The exact solutions are compared with approximate one-dimensional solutions which neglect the resistance to vertical flow. For small horizontal hydraulic gradients typical of regional groundwater flow, little error is introduced by neglecting the vertical resistance to flow. This conclusion may be extended to two-dimensional analytical models in the horizontal plane, which neglect the vertical resistance to flow and treat the aquifer base as a series of flat steps.
Analytical solution for inviscid flow inside an evaporating sessile drop
Masoud, Hassan; Felske, James D.
2008-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation, E^2(Psi)=0, is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and non-wetting contact angles are considered with flow patter...
Analytical Analysis and Numerical Solution of Two Flavours Skyrmion
Hadi, Miftachul; Hermawanto, Denny
2010-01-01
Two flavours Skyrmion will be analyzed analytically, in case of static and rotational Skyrme equations. Numerical solution of a nonlinear scalar field equation, i.e. the Skyrme equation, will be worked with finite difference method. This article is a more comprehensive version of \\textit{SU(2) Skyrme Model for Hadron} which have been published at Journal of Theoretical and Computational Studies, Volume \\textbf{3} (2004) 0407.
Molecular clock fork phylogenies: closed form analytic maximum likelihood solutions.
Chor, Benny; Snir, Sagi
2004-12-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point.
N Level System with RWA and Analytical Solutions Revisited
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2003-01-01
In this paper we consider a model of an atom with n energy levels interacting with n(n-1)/2 external (laser) fields which is a natural extension of two level system, and assume the rotating wave approximation (RWA) from the beginning. We revisit some construction of analytical solutions (which correspond to Rabi oscillations) of the model in the general case and examine it in detail in the case of three level system.
JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS
Energy Technology Data Exchange (ETDEWEB)
Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)
2013-04-20
We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.
ANALYTICAL SOLUTION OF GROUNDWATER FLUCTUATIONS IN ESTUARINE AQUIFER
Institute of Scientific and Technical Information of China (English)
CHEN Jing; ZHOU Zhi-fang; JIA Suo-bao
2005-01-01
As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.
Comparison between analytical and numerical solution of mathematical drying model
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Analytic solution to a class of integro-differential equations
Directory of Open Access Journals (Sweden)
Xuming Xie
2003-03-01
Full Text Available In this paper, we consider the integro-differential equation $$ epsilon^2 y''(x+L(xmathcal{H}(y=N(epsilon,x,y,mathcal{H}(y, $$ where $mathcal{H}(y[x]=frac{1}{pi}(Pint_{-infty}^{infty} frac{y(t}{t-x}dt$ is the Hilbert transform. The existence and uniqueness of analytic solution in appropriately chosen space is proved. Our method consists of extending the equation to an appropriately chosen region in the complex plane, then use the Contraction Mapping Theorem.
Analytic solution of differential equation for gyroscope's motions
Tyurekhodjaev, Abibulla N.; Mamatova, Gulnar U.
2016-08-01
Problems of motion of a rigid body with a fixed point are one of the urgent problems in classical mechanics. A feature of this problem is that, despite the important results achieved by outstanding mathematicians in the last two centuries, there is still no complete solution. This paper obtains an analytical solution of the problem of motion of an axisymmetric rigid body with variable inertia moments in resistant environment described by the system of nonlinear differential equations of L. Euler, involving the partial discretization method for nonlinear differential equations, which was built by A. N. Tyurekhodjaev based on the theory of generalized functions. To such problems belong gyroscopic instruments, in particular, and especially gyroscopes.
The Analytic Solution of the s-Process for Heavy Element
Institute of Scientific and Technical Information of China (English)
2002-01-01
In this paper, we investigate the net-work equation of s-process. After divide the s-process into twostandard forms, we get the analytic solution of the net-work equation. With our analytic solution, we
New chemical evolution analytical solutions including environment effects
Spitoni, E
2015-01-01
In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if co...
Analytic solutions of tunneling time through smooth barriers
Xiao, Zhi; Huang, Hai
2016-03-01
In the discussion of temporary behaviors of quantum tunneling, people usually like to focus their attention on rectangular barrier with steep edges, or to deal with smooth barrier with semi-classical or even numerical calculations. Very few discussions on analytic solutions of tunneling through smooth barrier appear in the literature. In this paper, we provide two such examples, a semi-infinite long barrier V ( x ) = /A 2 [ 1 + tanh ( x / a ) ] and a finite barrier V(x) = A sech2(x/a). To each barrier, we calculate the associated phase time and dwell time after obtaining the analytic solution. The results show that, different from rectangular barrier, phase time or dwell time does increase with the length parameter a controlling the effective extension of the barrier. More interestingly, for the finite barrier, phase time or dwell time exhibits a peak in k-space. A detailed analysis shows that this interesting behavior can be attributed to the strange tunneling probability Ts(k), i.e., Ts(k) displays a unit step function-like profile Θ(k - k0), especially when a is large, say, a ≫ 1/κ, 1/k. And k 0 ≡ √{ m A } / ħ is exactly where the peak appears in phase or dwell time k-spectrum. Thus only those particles with k in a very narrow interval around k0 are capable to dwell in the central region of the barrier sufficiently long.
Analytical Solution of Projectile Motion with Quadratic Resistance and Generalisations
Ray, Shouryya
2013-01-01
The paper considers the motion of a body under the influence of gravity and drag of the surrounding fluid. Depending on the fluid mechanical regime, the drag force can exhibit a linear, quadratic or even more general dependence on the velocity of the body relative to the fluid. The case of quadratic drag is substantially more complex than the linear case, as it nonlinearly couples both components of the momentum equation, and no explicit analytic solution is known for a general trajectory. After a detailed account of the literature, the paper provides such a solution in form of a series expansion. This result is discussed in detail and related to other approaches previously proposed. In particular, it is shown to yield certain approximate solutions proposed in the literature as limiting cases. The solution technique employs a strategy to reduce systems of ordinary differential equations with a triangular dependence of the right-hand side on the vector of unknowns to a single equation in an auxiliary variable....
FORECAST OF WATER TEMPERATURE IN RESERVOIR BASED ON ANALYTICAL SOLUTION
Institute of Scientific and Technical Information of China (English)
JI Shun-wen; ZHU Yue-ming; QIANG Sheng; ZENG Deng-feng
2008-01-01
The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.
Analytic solution of Hubbell's model of local community dynamics
McKane, A; Sole, R; Kane, Alan Mc; Alonso, David; Sole, Ricard
2003-01-01
Recent theoretical approaches to community structure and dynamics reveal that many large-scale features of community structure (such as species-rank distributions and species-area relations) can be explained by a so-called neutral model. Using this approach, species are taken to be equivalent and trophic relations are not taken into account explicitly. Here we provide a general analytic solution to the local community model of Hubbell's neutral theory of biodiversity by recasting it as an urn model i.e.a Markovian description of states and their transitions. Both stationary and time-dependent distributions are analysed. The stationary distribution -- also called the zero-sum multinomial -- is given in closed form. An approximate form for the time-dependence is obtained by using an expansion of the master equation. The temporal evolution of the approximate distribution is shown to be a good representation for the true temporal evolution for a large range of parameter values.
Pseudo analytical solution to time periodic stiffness systems
Institute of Scientific and Technical Information of China (English)
Wang Yan-Zhong; Zhou Yuan-Zi
2011-01-01
An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudoclosed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.
Analytical solution for inviscid flow inside an evaporating sessile drop.
Masoud, Hassan; Felske, James D
2009-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation E;{2}psi=0 is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and nonwetting contact angles are considered, with flow patterns in each case being illustrated. The limiting behaviors of small contact angle and droplets of hemispherical shape are treated. All of the above categories are considered for the cases of droplets whose contact lines are either pinned or free to move during evaporation.
An analytic solution to asymmetrical bending problem of diaphragm coupling
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Because rigidity of either hub or rim of diaphragm coupling is much greater than that of the disk, and asymmetrical bending is under the condition of high speed revolution, an assumption is made that each circle in the middle plane before deforma-tion keeps its radius unchanged after deformation, but the plane on which the circle lies has a varying deflecting angle. Based on this assumption, and according to the principle of energy variation, the corresponding Euler's equation can be obtained, which has the primary integral. By neglecting some subsidiary factors, an analytic solution is obtained. Applying these formulas to a hyperbolic model of diaphragm, the results show that the octahedral shear stress varies less along either radial or thickness direction, but fluctu-ates greatly and periodically along circumferential direction. Thus asymmetrical bending significantly affects the material's fatigue.
Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure
Energy Technology Data Exchange (ETDEWEB)
Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-11-01
This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce ^{99m}Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of ^{99}Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)_{3}. The precipitate of Gd(OH)_{3} carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity ^{99}Mo and ^{99m}Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-09-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-12-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
General analytical solutions for DC/AC circuit network analysis
Rubido, Nicolás; Baptista, Murilo S
2014-01-01
In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that o...
POLYNOMIAL SOLUTIONS TO PIEZOELECTRIC BEAMS(Ⅱ)--ANALYTICAL SOLUTIONS TO TYPICAL PROBLEMS
Institute of Scientific and Technical Information of China (English)
DING Hao-jiang; JIANG Ai-min
2005-01-01
For the orthotropic piezoelectric plane problem, a series of piezoelectric beams is solved and the corresponding analytical solutions are obtained with the trialand-error method on the basis of the general solution in the case of three distinct eigenvalues, in which all displacements, electrical potential, stresses and electrical displacements are expressed by three displacement functions in terms of harmonic polynomials. These problems are cantilever beam with cross force and point charge at free end, cantilever beam and simply-supported beam subjected to uniform loads on the upper and lower surfaces, and cantilever beam subjected to linear electrical potential.
Concerning an analytical solution of some families of Kepler’s transcendental equation
Directory of Open Access Journals (Sweden)
Slavica M. Perovich
2016-03-01
Full Text Available The problem of finding an analytical solution of some families of Kepler transcendental equation is studied in some detail, by the Special Trans Functions Theory – STFT. Thus, the STFT mathematical approach in the form of STFT iterative methods with a novel analytical solutions are presented. Structure of the STFT solutions, numerical results and graphical simulations confirm the validity of the basic principle of the STFT. In addition, the obtained analytical results are compared with the calculated values of other analytical methods for alternative proving its significance. Undoubtedly, the proposed novel analytical approach implies qualitative improvement in comparison with conventional numerical and analytical methods.
Institute of Scientific and Technical Information of China (English)
XIAZhi
2004-01-01
Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
Food Adulteration: From Vulnerability Assessment to New Analytical Solutions.
Cavin, Christophe; Cottenet, Geoffrey; Blancpain, Carine; Bessaire, Thomas; Frank, Nancy; Zbinden, Pascal
2016-01-01
Crises related to the presence of melamine in milk or horse meat in beef have been a wake-up call to the whole food industry showing that adulteration of food raw materials is a complex issue. By analysing the situation, it became clear that the risk-based approach applied to ensure the safety related to chemical contaminants in food is not adequate for food fraud. Therefore, a specific approach has been developed to evaluate adulteration vulnerabilities within the food chain. Vulnerabilities will require the development of new analytical solutions. Fingerprinting methodologies can be very powerful in determining the status of a raw material without knowing the identity of each constituent. Milk adulterated by addition of adulterants with very different chemical properties could be detected rapidly by Fourier-transformed mid-infrared spectroscopy (FT-mid-IR) fingerprinting technology. In parallel, a fast and simple multi-analytes liquid-chromatography tandem mass-spectrometry (LC/MS-MS) method has been developed to detect either high levels of nitrogen-rich compounds resulting from adulteration or low levels due to accidental contamination either in milk or in other sensitive food matrices. To verify meat species authenticity, DNA-based methods are preferred for both raw ingredients and processed food. DNA macro-array, and more specifically the Meat LCD Array have showed efficient and reliable meat identification, allowing the simultaneous detection of 32 meat species. While the Meat LCD Array is still a targeted approach, DNA sequencing is a significant step towards an untargeted one.
An analytical solution to patient prioritisation in radiotherapy based on utilitarian optimisation.
Ebert, M A; Li, W; Jennings, L
2014-03-01
The detrimental impact of a radiotherapy waiting list can in part be compensated by patient prioritisation. Such prioritisation is phrased as an optimisation problem where the probability of local control for the overall population is the objective to be maximised and a simple analytical solution derived. This solution is compared with a simulation of a waiting list for the same population of patients. It is found that the analytical solution can provide an optimal ordering of patients though cannot explicitly constrain optimal waiting times. The simulation-based solution was undertaken using both the analytical solution and a numerical optimisation routine for daily patient ordering. Both solutions provided very similar results with the analytical approach reducing the calculation time of the numerical solution by several orders of magnitude. It is suggested that treatment delays due to resource limitations and resulting waiting lists be incorporated into treatment optimisation and that the derived analytical solution provides a mechanism for this to occur.
Approximate analytic solutions to the NPDD: Short exposure approximations
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Electromechanics: An analytic solution for graded biological cell.
Chan, Kin Lok; Yu, K. W.
2007-03-01
Electromechanics of graded material has been established recently to study the effective response of inhomogeneous graded spherical particles under an external ac electric field.[1, 2]Such particles having a complex dielectric profile varies along the radius of the particles. The gradation in the colloidal particles is modeled by assuming both the dielectric and conductivity vary along the radius. More precisely, both the dielectric and conductivity function are assumed to be a isotopic linear function dependence on the radius variable r, namely, ɛ(r)=ɛ(0)+A1r, σ(r)=σ(0)+A2r.In this talk, we will present the exact analytical solutions of the dipole moment of such particle in terms of the hypergeometric functions, and the effective electric response in dilute limit. Moreover, we applied the dielectric dispersion spectral representation (DDSR) to study the Debye Behavior of the cell. Our exact results may be applied to graded biological cell suspensions, as their interior must be inhomogeneous in nature. [1] En-Bo Wei, L. Dong, K. W. Yu, Journal of Applied Physics 99, 054101(2006) [2] L. Dong, Mikko Karttunen, K. W. Yu, Phys. Rev. E, Vol. 72, art. no. 016613 (2005)
New analytic solutions for modeling vertical gravity gradient anomalies
Kim, Seung-Sep; Wessel, Paul
2016-05-01
Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.
Electronic states of graphene nanoribbons and analytical solutions
Directory of Open Access Journals (Sweden)
Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki
2010-01-01
Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.
STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
闫振亚; 张鸿庆
2001-01-01
The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
Mehdi Delkhosh; Mohammad Delkhosh
2012-01-01
Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011). In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011;...
Approximate analytical solutions to the condensation-coagulation equation of aerosols
Smith, Naftali; Svensmark, Henrik
2015-01-01
We present analytical solutions to the steady state injection-condensation-coagulation equation of aerosols in the atmosphere. These solutions are appropriate under different limits but more general than previously derived analytical solutions. For example, we provide an analytic solution to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate of sulfuric acid.
An analytical solution for light field modes in waveguides with nonideal cladding
Arslanov, N M; Moiseev, S A
2015-01-01
We have obtained an analytical solution for the dispersion relation of the light field modes in the nanowaveguide structure. The solution has been analyzed for the planar waveguide with metamaterial claddings and dielectric core. The analytical solution is valid within the broadband spectral range and is confirmed by existing numerical calculations. The developed theoretical approach opens vast possibilities for the analytical investigations of the light fields in the various waveguides.
Approximate analytical solution for the isothermal Lane Emden equation in a spherical geometry
Soliman, Moustafa Aly; Al-Zeghayer, Yousef
2015-10-01
This paper obtains an approximate analytical solution for the isothermal Lane-Emden equation that models a self-gravitating isothermal sphere. The approximate solution is obtained by perturbation methods in terms of small and large distance parameters. The approximate solution is compared with the numerical solution. The approximate solution obtained is valid for all values of the distance parameter.
ANALYTICAL SOLUTION FOR FIXED-FIXED ANISOTROPIC BEAM SUBJECTED TO UNIFORM LOAD
Institute of Scientific and Technical Information of China (English)
DING Hao-jiang; HUANG De-jin; WANG Hui-ming
2006-01-01
The analytical solutions of the stresses and displacements were obtained for fixed-fixed anisotropic beams subjected to uniform load. A stress function involving unknown coefficients was constructed, and the general expressions of stress and displacement were obtained by means of Airy stress function method. Two types of the description for the fixed end boundary condition were considered. The introduced unknown coefficients in stress function were determined by using the boundary conditions. The analytical solutions for stresses and displacements were finally obtained. Numerical tests show that the analytical solutions agree with the FEM results. The analytical solution supplies a classical example for the elasticity theory.
Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet
Institute of Scientific and Technical Information of China (English)
DING Qi; ZHANG Hong-Qing
2009-01-01
A steady two-dimensional magnetohydrodynamic stagnation point flow towards a stretching sheet with variable surface temperature is investigated. The analytic solution is obtained by homotopy analysis method. Theconvergence region is computed and the feature of the solution is discussed.
Approximate analytic solutions of stagnation point flow in a porous medium
Kumaran, V.; Tamizharasi, R.; Vajravelu, K.
2009-06-01
An efficient and new implicit perturbation technique is used to obtain approximate analytical series solution of Brinkmann equation governing the two-dimensional stagnation point flow in a porous medium. Analytical approximate solution of the classical two-dimensional stagnation point flow is obtained as a limiting case. Also, it is shown that the obtained higher order series solutions agree well with the computed numerical solutions.
Troch, P.A.A.; Loon, van A.H.; Hilberts, A.G.J.
2004-01-01
This technical note presents an analytical solution to the linearized hillslope-storage Boussinesq equation for subsurface flow along complex hillslopes with exponential width functions and discusses the application of analytical solutions to storage-based subsurface flow equations in catchment stud
Analytical mechanics solutions to problems in classical physics
Merches, Ioan
2014-01-01
Fundamentals of Analytical Mechanics Constraints Classification Criteria for Constraints The Fundamental Dynamical Problem for a Constrained Particle System of Particles Subject to Constraints Lagrange Equations of the First KindElementary Displacements Generalities Real, Possible and Virtual Displacements Virtual Work and Connected Principles Principle of Virtual WorkPrinciple of Virtual Velocities Torricelli's Principle Principles of Analytical Mechanics D'alembert's Principle Configuration Space Generalized Forces Hamilton's Principle The Simple Pendulum Problem Classical (Newtonian) Formal
Indian Academy of Sciences (India)
Zehra Pinar; Abhishek Dutta; Guido Bény; Turgut Öziş
2015-01-01
This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use of appropriate solution(s) of associated complementary equation via auxiliary equation method (AEM). Travelling wave solutions of the complementary equation of a nonlinear PBE with appropriately chosen parameters is taken to be analogous to the description of the dynamic behaviour of the particulate processes. For an initial proof-of-concept, a general case when the number of particles varies with respect to time is chosen. Three cases, i.e. (1) balanced aggregation and breakage, (2) when aggregation can dominate and (3) breakage can dominate, are selected and solved for their corresponding analytical solutions. The results are then compared with the available analytical solution, based on Laplace transform obtained from literature. In this communication, it is shown that the solution approach proposed via AEM is flexible and therefore more efficient than the analytical approach used in the literature.
Can We Remove Secular Terms for Analytical Solution of Groundwater Response under Tidal Influence?
Munusamy, Selva Balaji
2016-01-01
This paper presents a secular term removal methodology based on the homotopy perturbation method for analytical solutions of nonlinear problems with periodic boundary condition. The analytical solution for groundwater response to tidal fluctuation in a coastal unconfined aquifer system with the vertical beach is provided as an example. The non-linear one-dimensional Boussinesq's equation is considered as the governing equation for the groundwater flow. An analytical solution is provided for non-dimensional Boussinesq's equation with cosine harmonic boundary condition representing tidal boundary condition. The analytical solution is obtained by using homotopy perturbation method with a virtual embedding parameter. The present approach does not require pre-specified perturbation parameter and also facilitates secular terms elimination in the perturbation solution. The solutions starting from zeroth-order up to third-order are obtained. The non-dimensional expression, $A/D_{\\infty}$ emerges as an implicit parame...
Directory of Open Access Journals (Sweden)
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
On analytical solutions of the generalized Boussinesq equation
Kudryashov, Nikolay A.; Volkov, Alexandr K.
2016-06-01
Extended Boussinesq equation for the description of the Fermi-Pasta-Ulam problem is studied. It is analysed with the Painlevé test. It is shown, that the equation does not pass the Painlevé test, although necessary conditions for existence of the meromorphic solution are carried out. Method of the logistic function is introduced for Solitary wave solutions of the considered equation. Elliptic solutions for studied equation are constructed and discussed.
Analytic continuation of solutions of some nonlinear convolution partial differential equations
Directory of Open Access Journals (Sweden)
Hidetoshi Tahara
2015-01-01
Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.
Explicit Analytical Solutions of Coupled Fluid Flow Transfer Equation in Heterogeneous Porous Media
Institute of Scientific and Technical Information of China (English)
张娜; 蔡睿贤
2002-01-01
Explicit analytical solutions are presented for the coupled fluid flow transfer equation in heterogeneous porous media. These analytical solutions are useful for their description of actual flow fields and as benchmark solutions to check the rapidly developing numerical calculations and to study various computational methods such as the discrete approximations of the governing equations and grid generation methods. In addition, some novel mathematical methods are used in the analyses.
Analytical Applications of Electrified Interfaces Between Two Immiscible Solutions
1993-04-07
electrode potentiostate needed for the iwork is described. Experimental techniques involving potentiometry , polarography with dropping electrode...convert any potentiostat to the 4-electrode potentiostat needed for the work is described. Experimental techniques involving potentiometry , polarography...potentiostat input. Analytical applications Potentiometry Potentiometric measurements on ITIES are related to the principle of ionl selective electrodes (ISE
Explicit analytical wave solutions of unsteady 1D ideal gas flow with friction and heat transfer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Several families of algebraically explicit analytical wavesolutions are derived for the unsteady 1D ideal gas flow with friction and heat-transfer, which include one family of travelling wave solutions, three families of standing wave solutions and one standing wave solution. \\{Among\\} them, the former four solution families contain arbitrary functions, so actually there are infinite analytical wave solutions having been derived. Besides their very important theoretical meaning, such analytical wave solutions can guide the development of some new equipment, and can be the benchmark solutions to promote the development of computational fluid dynamics. For example, we can use them to check the accuracy, convergence and effectiveness of various numerical computational methods and to improve the numerical computation skills such as differential schemes, grid generation ways and so on.
Directory of Open Access Journals (Sweden)
Mehdi Delkhosh
2012-01-01
Full Text Available Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011. In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011; Borhanifar et al. 2011; Sweilam and Nagy, 2011; Gülsu et al. 2011; Mohyud-Din et al. 2010; and Li et al. 1996.
Analytic Solution of Strongly Coupling Schr(o)dinger Equations
Institute of Scientific and Technical Information of China (English)
LIAO Jin-Feng; ZHUANG Peng-Fei
2004-01-01
A recently developed expansion method for analytically solving the ground states of strongly coupling Schrodinger equations by Friedberg,Lee,and Zhao is extended to excited states and applied to power-law central forces for which scaling properties are proposed.As examples for application of the extended method,the Hydrogen atom problem is resolved and the low-lying states of Yukawa potential are approximately obtained.
Analytic solutions of transcendental equations with application to automatics
Directory of Open Access Journals (Sweden)
Górecki Henryk
2016-12-01
Full Text Available In the paper the extremal dynamic error x(τ and the moment of time τ are considered. The extremal value of dynamic error gives information about accuracy of the system. The time τ gives information about velocity of transient. The analytical formulae enable design of the system with prescribed properties. These formulae are calculated due to the assumption that x(τ is a function of the roots s1, ..., sn of the characteristic equation.
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
Analytical solutions of the electrostatically actuated curled beam problem
Younis, Mohammad I.
2014-07-24
This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximation. In such cases, multi-mode reduced order models are shown to yield accurate results. © 2014 Springer-Verlag Berlin Heidelberg.
Institute of Scientific and Technical Information of China (English)
TsuiChih－Ya
1992-01-01
A set of new gasdynamic functions with varying specific heat are deriveo for the first time.An original analytical solution of normal shock waves is owrked out therewith.This solution is thereafter further improved by not involving total temperature,Illustrative examples of comparison are given,including also some approximate solutions to show the orders of their errors.
Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads
Institute of Scientific and Technical Information of China (English)
陈江英; 丁皓江; 侯鹏飞
2003-01-01
In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.
Verhoest, N.E.C.; Pauwels, V.R.N.; Troch, P.A.; Troch, De F.P.
2002-01-01
This paper presents two analytical solutions of the linearized Boussinesq equation for an inclined aquifer, drained by ditches, subjected to a constant recharge rate. These solutions are based on different initial conditions. First, the transient solution is obtained for an initially fully saturated
Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
Institute of Scientific and Technical Information of China (English)
GENG You-lin; HE Sai-ling
2006-01-01
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain,an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering ofa uniaxial anisotropic sphere by a plane wave are given.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
General Analytical Solutions of Scalar Field Cosmology with Arbitrary Potential
Dimakis, N; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T; Terzis, Petros A
2016-01-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a FLRW metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. The case for both spatially flat and non flat are studied first in the presence of only the scalar field and subsequently with the addition of non interacting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Analytical solution for multilayer plates using general layerwise plate theory
Directory of Open Access Journals (Sweden)
Vuksanović Đorđe M.
2005-01-01
Full Text Available This paper deals with closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory (GLPT. The mathematical model assumes piece-wise linear variation of in-plane displacement components and a constant transverse displacement through the thickness. It also include discrete transverse shear effect into the assumed displacement field, thus providing accurate prediction of transverse shear stresses. Namely, transverse stresses satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. With assumed displacement field, linear strain-displacement relation, and constitutive equations of the lamina, equilibrium equations are derived using principle of virtual displacements. Navier-type closed form solution of GLPT, is derived for simply supported plate, made of orthotropic laminae, loaded by harmonic and uniform distribution of transverse pressure. Results are compared with 3D elasticity solutions and excellent agreement is found.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
The analyticity of solutions to a class of degenerate elliptic equations
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coerciveness.
Institute of Scientific and Technical Information of China (English)
侯进军
2007-01-01
@@ 1 Seed Selection Genetic Programming In Genetic Programming, each tree in population shows an algebraic or surmounting expression, and each algebraic or surmounting expression shows an approximate analytic solution to differential equations.
Approximation analytical solutions for a unified plasma sheath model by double decomposition method
Institute of Scientific and Technical Information of China (English)
FangJin－Qing
1998-01-01
A unified plasma sheath model and its potential equation are proposed.Any higher-order approximation analytical solutions for the unified plasma sheath potential equation are derived by double decomposition method.
Analytical solutions for transport processes fluid mechanics, heat and mass transfer
Brenn, Günter
2017-01-01
This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .
Directory of Open Access Journals (Sweden)
Partner L. Ndlovu
2013-01-01
Full Text Available Explicit analytical expressions for the temperature profile, fin efficiency, and heat flux in a longitudinal fin are derived. Here, thermal conductivity and heat transfer coefficient depend on the temperature. The differential transform method (DTM is employed to construct the analytical (series solutions. Thermal conductivity is considered to be given by the power law in one case and by the linear function of temperature in the other, whereas heat transfer coefficient is only given by the power law. The analytical solutions constructed by the DTM agree very well with the exact solutions even when both the thermal conductivity and the heat transfer coefficient are given by the power law. The analytical solutions are obtained for the problems which cannot be solved exactly. The effects of some physical parameters such as the thermogeometric fin parameter and thermal conductivity gradient on temperature distribution are illustrated and explained.
Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit
Cho, Hancheol; Park, Sang-Young; Choi, Kyu-Hong
2008-09-01
The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.
Analytic method for solitary solutions of some partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr
2007-10-22
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
General scalar-tensor cosmology: analytical solutions via noether symmetry
Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza
2017-02-01
We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system.
An Analytical Solution for Acoustic Emission Source Location for Known P Wave Velocity System
Directory of Open Access Journals (Sweden)
Longjun Dong
2014-01-01
Full Text Available This paper presents a three-dimensional analytical solution for acoustic emission source location using time difference of arrival (TDOA measurements from N receivers, N⩾5. The nonlinear location equations for TDOA are simplified to linear equations, and the direct analytical solution is obtained by solving the linear equations. There are not calculations of square roots in solution equations. The method solved the problems of the existence and multiplicity of solutions induced by the calculations of square roots in existed close-form methods. Simulations are included to study the algorithms' performance and compare with the existing technique.
Analytical solution based on stream-aquifer interactions in partially penetrating streams
Institute of Scientific and Technical Information of China (English)
Yong HUANG; Zhi-fang ZHOU; Zhong-bo YU
2010-01-01
An analytical solution of drawdown caused by pumping was developed for an aquifer partially penetrated by two streams.The proposed analytical solution modifies Hunt's analytical solution and considers the effects of stream width and the interaction of two streams on drawdown.Advantages of the solution include its simple structure,consisting of the Theis well function and parameters of aquifer and streambed semipervious material.The calculated results show that the proposed analytical solution agrees with a previously developed acceptable solution and the errors between the two solutions are equal to zero without consideration of the effect of stream width.Also,deviations between the two analytical solutions incrcase with stream width.Four cases were studied to examine the effect of two streams on drawdown,assuming that some parameters were changeable,and other parameters were constant,such as the stream width,the distance between the stream and the pumping well,the stream recharge rate,and the leakage coefficient of streambed semipervious material.
Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations
Institute of Scientific and Technical Information of China (English)
Seripah Awang Kechil; Ishak Hashim; Sim Siaw Jiet
2007-01-01
A simple and efficient approximate analytical technique is presented to obtain solutions to a class of two-point boundary value similarity problems in fluid mechanics. This technique is based on the decomposition method which yields a general analytic solution in the form of a convergent infinite series with easily computable terms. Comparative study is carried out to show the accuracy and effectiveness of the technique.
Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics
Gao, Hui; Xu, Tianzhou; Fan, Tianyou; Wang, Gangwei
2017-03-01
The Born-Infeld equation is an important nonlinear partial differential equation in theoretical and mathematical physics. The Lie group method is used for simplifying the nonlinear partial differential equation, which is partly solved, in which there are some difficulties; to overcome the difficulties, we develop a power series method, and find the solutions in analytic form. In the mean time, a wave propagation (traveling wave) method is developed for solving the equation, and analytic solutions are also constructed.
Analytical solutions for the slow neutron capture process of heavy element nucleosynthesis
Institute of Scientific and Technical Information of China (English)
Wu Kai-Su
2009-01-01
In this paper,the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition,a group of analytical solutions for the network equation are obtained. With the analytical solutions,a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.
An analytical solution in the complex plane for the luminosity distance in flat cosmology
Zaninetti, L
2016-01-01
We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters $H_0$ and $\\om$. A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the minimax approximation.
Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations
Kudryashov, N. A.
2015-01-01
The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution
Analytic Solutions of Three-Level Dressed-Atom Model
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ling; YIN Jian-Ping
2004-01-01
On the basis of the dressed-atom model, the general analytic expressions for the eigenenergies, eigenstates and their optical potentials of the A-configuration three-level atom system are derived and analysed. From the calculation of dipole matrix element of different dressed states, we obtain the spontaneous-emission rates in the dressed-atom picture. We find that our general expressions of optical potentials for the three-level dressed atom can be reduced to the same as ones in previous references under the approximation of a small saturation parameter. We also analyse the dependences of the optical potentials of a three-level 85Rb atom on the laser detuning and the dependences of spontaneous-emission rates on the radial position in the dark hollow beam, and discuss the probability (population) evolutions of dressed-atomic eigenstates in three levels in the hollow beam.
Methods for estimating uncertainty in factor analytic solutions
Directory of Open Access Journals (Sweden)
P. Paatero
2013-08-01
Full Text Available EPA PMF version 5.0 and the underlying multilinear engine executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS, displacement of factor elements (DISP, and bootstrap enhanced by displacement of factor elements (BS-DISP. The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.
Analytical solutions for space charge fields in TPC drift volumes
Rossegger, S; Schnizer, B
2011-01-01
At high particle rates and high multiplicities, Time Projection Chambers can suffer from field distortions due to slow moving ions that accumulate within the drift volume. These variations modify the electron trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in a TPC, novel representations of the Green's function for a TPC-like geometry were worked out. This analytical approach permits accurate predictions of track distortions due to an arbitrary space charge distribution (by solving the Langevin equation) as well as the possibility to benchmark common numerical methods to calculate such space charge fields. (C) 2011 Elsevier B.V. All rights reserved.
Analytical solution for wave-induced response of isotropic poro-elastic seabed
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
By use of separation of variables,the governing equations describing the Biot consolidation model is firstly transformed into a complex coefficient linear homogeneous ordinary differential equation,and the general solution of the horizontal displacement of seabed is constructed by employing a complex wave number,thus,all the explicit analytical solutions of the Biot consolidation model are determined. By comparing with the experimental results and analytical solution of Yamamoto etc. and the analytical solution of Hsu and Jeng,the validity and superiority of the suggested solution are verified. After investigating the influence of seabed depth on the wave-induced response of isotropic poro-elastic seabed based on the present theory,it can be concluded that the influence depth of wave-induced hydrodynamic pressure in the seabed is equal to the wave length.
Analytical solutions for Dirac and Klein-Gordon equations using Backlund transformations
Energy Technology Data Exchange (ETDEWEB)
Zabadal, Jorge R.; Borges, Volnei, E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio, E-mail: marciophd@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos Interdisciplinares
2015-07-01
This work presents a new analytical method for solving Klein-Gordon type equations via Backlund transformations. The method consists in mapping the Klein-Gordon model into a first order system of partial differential equations, which contains a generalized velocity field instead of the Dirac matrices. This system is a tensor model for quantum field theory whose space solution is wider than the Dirac model in the original form. Thus, after finding analytical expressions for the wave functions, the Maxwell field can be readily obtained from the Dirac equations, furnishing a self-consistent field solution for the Maxwell-Dirac system. Analytical and numerical results are reported. (author)
Directory of Open Access Journals (Sweden)
Paulo Rangel Rios
2009-06-01
Full Text Available Microstructural evolution in three dimensions of nucleation and growth transformations is simulated by means of cellular automata (CA. In the simulation, nuclei are located in space according to a heterogeneous Poisson point processes. The simulation is compared with exact analytical solution recently obtained by Rios and Villa supposing that the intensity is a harmonic function of the spatial coordinate. The simulated data gives very good agreement with the analytical solution provided that the correct shape factor for the growing CA grains is used. This good agreement is auspicious because the analytical expressions were derived and thus are exact only if the shape of the growing regions is spherical.
On the Poynting-Robertson Effect and Analytical Solutions
Klacka, J
2000-01-01
Solutions of the two-body problem with the simultaneous action of the solar electromagnetic radiation in the form of the Poynting-Robertson effect are discussed. Special attention is devoted to pseudo-circular orbits and terminal values of osculating elements. The obtained results complete those of Klacka and Kaufmannova (1992) and Breiter and Jackson (1998). Terminal values of osculating elements presented in Breiter and Jackson (1998) are of no physical sense due to the fact that relativistic equation of motion containing only first order of $\\vec{v}/c$ was used in the paper.
Analytic solutions for degenerate Raman-coupled model
Institute of Scientific and Technical Information of China (English)
Zhang Zhi-Ming; Yu Ya-Fei
2008-01-01
The Raman-coupled interaction between an atom and a single mode of a cavity field is studied. For the cases in which a light field is initially in a coherent state and in a thermal state separately, we have derived the analytic expressions for the time evolutions of atomic population difference W, modulus B of the Bloch vector, and entropy E. We find that the time evolutions of these quantities are periodic with a period of e. The maxima of W and B appear at the scaled interaction time points (τ) = κπ(κ =0, 1, 2,...). At these time points, E = 0, which shows that the atom and the field are not entangled. Between these time points, E ≠ 0, which means that the atom and the field are entangled. When the field is initially in a coherent state, near the maxima, the envelope of W is a Gaussian function with a variance of 1/(4(-n)) ((-n) is the mean number of photons). Under the envelope, W oscillates at a frequency of (-n)/e.When the field is initially in a thermal state, near the maxima, W is a Lorentz function with a width of 1/(-n).
Approximate analytical solutions for excitation and propagation in cardiac tissue
Greene, D'Artagnan; Shiferaw, Yohannes
2015-04-01
It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium release (SCR). However, it is not understood how the size and morphology of these focal excitations are related to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage dependence of the inward rectifier potassium current (IK 1) , and is insensitive to the detailed properties of the sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required to induce a propagating action potential (AP), and argue that this relationship determines the necessary number of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel properties and important tissue scale processes such as excitation and propagation.
Analysing an Analytical Solution Model for Simultaneous Mobility
Directory of Open Access Journals (Sweden)
Md. Ibrahim Chowdhury
2013-12-01
Full Text Available Current mobility models for simultaneous mobility h ave their convolution in designing simultaneous movement where mobile nodes (MNs travel randomly f rom the two adjacent cells at the same time and also have their complexity in the measurement of th e occurrences of simultaneous handover. Simultaneou s mobility problem incurs when two of the MNs start h andover approximately at the same time. As Simultaneous mobility is different for the other mo bility pattern, generally occurs less number of tim es in real time; we analyze that a simplified simultaneou s mobility model can be considered by taking only symmetric positions of MNs with random steps. In ad dition to that, we simulated the model using mSCTP and compare the simulation results in different sce narios with customized cell ranges. The analytical results shows that with the bigger the cell sizes, simultaneous handover with random steps occurrences become lees and for the sequential mobility (where initial positions of MNs is predetermined with ran dom steps, simultaneous handover is more frequent.
An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil
Directory of Open Access Journals (Sweden)
Shirish Vichare
2010-07-01
Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.
General Scalar-Tensor cosmology: Analytical solutions via Noether symmetry
Masaeli, Erfan; Sepangi, Hamid Reza
2016-01-01
We analyze the cosmology of a general Scalar-Tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galileon gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which dynamics of the system allow transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the mo...
Analytic crack solutions for tilt fields around hydraulic fractures
Energy Technology Data Exchange (ETDEWEB)
Warpinski, N.R.
2000-01-05
The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.
Super stellar clusters with a bimodal hydrodynamic solution: an Approximate Analytic Approach
Wünsch, R; Palous, J; Tenorio-Tagle, G
2007-01-01
We look for a simple analytic model to distinguish between stellar clusters undergoing a bimodal hydrodynamic solution from those able to drive only a stationary wind. Clusters in the bimodal regime undergo strong radiative cooling within their densest inner regions, which results in the accumulation of the matter injected by supernovae and stellar winds and eventually in the formation of further stellar generations, while their outer regions sustain a stationary wind. The analytic formulae are derived from the basic hydrodynamic equations. Our main assumption, that the density at the star cluster surface scales almost linearly with that at the stagnation radius, is based on results from semi-analytic and full numerical calculations. The analytic formulation allows for the determination of the threshold mechanical luminosity that separates clusters evolving in either of the two solutions. It is possible to fix the stagnation radius by simple analytic expressions and thus to determine the fractions of the depo...
Institute of Scientific and Technical Information of China (English)
2008-01-01
Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.
Cutting solid figures by plane - analytical solution and spreadsheet implementation
Benacka, Jan
2012-07-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.
Nonlinear Helicons ---an analytical solution elucidating multi-scale structure
Abdelhamid, Hamdi M
2016-01-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here we elucidate an intrinsic multi-scale property embodied by the combination of dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-08-01
Full Text Available We present the detailed construction of a manufactured analytical solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Some analytical properties of solutions of differential equations of noninteger order
Directory of Open Access Journals (Sweden)
S. M. Momani
2004-01-01
Full Text Available The analytical properties of solutions of the nonlinear differential equations x(α(t=f(t,x, α∈ℝ, 0<α≤1 of noninteger order have been investigated. We obtained two results concerning the frame curves of solutions. Moreover, we proved a result on differential inequality with fractional derivatives.
Analytical solutions for spin response functions in model storage rings with Siberian Snakes
Energy Technology Data Exchange (ETDEWEB)
Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net
2009-03-01
I present analytical solutions for the spin response functions for radial field rf dipole spin flippers in models of storage rings with one Siberian Snake or two diametrically opposed orthogonal Siberian Snakes. The solutions can serve as benchmarks tests for computer programs. The spin response functions can be used to calculate the resonance strengths for radial field rf dipole spin flippers in storage rings.
Plasma flow structures as analytical solution of a magneto-hydro-dynamic model with pressure
Paccagnella, R.
2012-03-01
In this work starting from a set of magnetohydrodynamic (MHD) equations that describe the dynamical evolution for the pressure driven resistive/interchange modes in a magnetic confinement system, global solutions for the plasma flow relevant for toroidal pinches like tokamaks and reversed field pinches (RFPs) are derived. Analytical solutions for the flow stream function associated with the dominant modes are presented.
Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers
Directory of Open Access Journals (Sweden)
Belkacem Meziane
2008-01-01
Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.
Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading
Institute of Scientific and Technical Information of China (English)
XIE Kang-he; QI Tian; DONG Ya-qin
2006-01-01
This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth. It is verified by the existing analytical solutions in special cases. Using the solution obtained, some diagrams are prepared and the relevant consolidation behavior is investigated.
Institute of Scientific and Technical Information of China (English)
CAI; Ruixian(蔡睿贤); ZHANG; Na(张娜)
2002-01-01
Some algebraically explicit analytical solutions are derived for the anisotropic Brinkman model an improved Darcy model describing the natural convection in porous media. Besides their important theoretical meaning (for example, to analyze the non-Darcy and anisotropic effects on the convection), such analytical solutions can be the benchmark solutions to promoting the develop ment of computational heat and mass transfer. For instance, we can use them to check the accuracy,convergence and effectiveness of various numerical computational methods and to improve numerical calculation skills such as differential schemes and grid generation ways.
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
Energy Technology Data Exchange (ETDEWEB)
Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)
2009-10-01
We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.
Directory of Open Access Journals (Sweden)
Soheil Salahshour
2015-02-01
Full Text Available In this paper, we apply the concept of Caputo’s H-differentiability, constructed based on the generalized Hukuhara difference, to solve the fuzzy fractional differential equation (FFDE with uncertainty. This is in contrast to conventional solutions that either require a quantity of fractional derivatives of unknown solution at the initial point (Riemann–Liouville or a solution with increasing length of their support (Hukuhara difference. Then, in order to solve the FFDE analytically, we introduce the fuzzy Laplace transform of the Caputo H-derivative. To the best of our knowledge, there is limited research devoted to the analytical methods to solve the FFDE under the fuzzy Caputo fractional differentiability. An analytical solution is presented to confirm the capability of the proposed method.
Directory of Open Access Journals (Sweden)
Ilmārs Grants
2016-06-01
Full Text Available Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter
2016-06-01
Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Institute of Scientific and Technical Information of China (English)
CAI; Ruixian; GOU; Chenhua
2006-01-01
This paper presents two algebraically explicit analytical solutions for the incompressible unsteady rotational flow of Oldroyd-B type in an annular pipe. The first solution is derived with the common method of separation of variables. The second one is deduced with the method of separation of variables with addition developed in recent years. The first analytical solution is of clear physical meaning and both of them are fairly simple and valuable for the newly developing computational fluid dynamics. They can be used as the benchmark solutions to verify the applicability of the existing numerical computational methods and to inspire new differencing schemes, grid generation ways, etc. Moreover, a steady solution for the generalized second grade rheologic fluid flow is also presented. The correctness of these solutions can be easily proven by substituting them into the original governing equation.
Analytic solution of Riccati equations occurring in open-loop Nash multiplayer differential games
Directory of Open Access Journals (Sweden)
L. Jódar
1992-01-01
Full Text Available In this paper we present explicit analytic solutions of coupled Riccati matrix differential systems appearing in open-loop Nash games. Two different cases are considered. Firstly, by means of appropriate algebraic transformations the problem is decoupled so that an explicit solution of the problem is available. The second is based on the existence of a solution of a rectangular Riccati type algebraic matrix equation associated with the problem.
Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures.
Kominis, Y
2006-06-01
A phase space method is employed for the construction of analytical solitary wave solutions of the nonlinear Kronig-Penney model in a photonic structure. This class of solutions is obtained under quite generic conditions, while the method is applicable to a large variety of systems. The location of the solutions on the spectral band gap structure as well as on the low dimensional space of system's conserved quantities is studied, and robust solitary wave propagation is shown.
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
Abrupt PN junctions: Analytical solutions under equilibrium and non-equilibrium
Khorasani, Sina
2016-08-01
We present an explicit solution of carrier and field distributions in abrupt PN junctions under equilibrium. An accurate logarithmic numerical method is implemented and results are compared to the analytical solutions. Analysis of results shows reasonable agreement with numerical solution as well as the depletion layer approximation. We discuss extensions to the asymmetric junctions. Approximate relations for differential capacitance C-V and current-voltage I-V characteristics are also found under non-zero external bias.
Analytical Solution for the SU(2)Hedgehog Skyrmion and Static Properties of Nucleons
Institute of Scientific and Technical Information of China (English)
JIA Duo-Jie; WANG Xiao-Wei; LIU Feng
2010-01-01
@@ An analytical solution for symmetric Skyrmion is proposed for the SU(2)Skyrme model,which takes the form of the hybrid form of a kink-like solution,given by the instanton method.The static properties of nucleons is then computed within the framework of collective quantization of the Skyrme model,in a good agreement with that given by the exact numeric solution.The comparisons with the previous results as well as the experimental values are also presented.
An analytical dynamo solution for large-scale magnetic fields of galaxies
Chamandy, Luke
2016-01-01
We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parameterized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-$z$' approximation and the dynamical $\\alpha$-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted onto galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure (RM) datasets. Further, we explore the properties of our numerical solut...
Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian
2016-06-01
Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system.
Kurylyk, Barret L.; Irvine, Dylan J.
2016-02-01
This study details the derivation and application of a new analytical solution to the one-dimensional, transient conduction-advection equation that is applied to trace vertical subsurface fluid fluxes. The solution employs a flexible initial condition that allows for nonlinear temperature-depth profiles, providing a key improvement over most previous solutions. The boundary condition is composed of any number of superimposed step changes in surface temperature, and thus it accommodates intermittent warming and cooling periods due to long-term changes in climate or land cover. The solution is verified using an established numerical model of coupled groundwater flow and heat transport. A new computer program FAST (Flexible Analytical Solution using Temperature) is also presented to facilitate the inversion of this analytical solution to estimate vertical groundwater flow. The program requires surface temperature history (which can be estimated from historic climate data), subsurface thermal properties, a present-day temperature-depth profile, and reasonable initial conditions. FAST is written in the Python computing language and can be run using a free graphical user interface. Herein, we demonstrate the utility of the analytical solution and FAST using measured subsurface temperature and climate data from the Sendia Plain, Japan. Results from these illustrative examples highlight the influence of the chosen initial and boundary conditions on estimated vertical flow rates.
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media
Institute of Scientific and Technical Information of China (English)
CAI Ruixian; ZHANG Na; LIU Weiwei
2003-01-01
Analytical solutions of governing equations of various physical phenomena have their own irreplaceable theoretical meaning. In addition, they can also be the benchmark solutions to verify the outcomes and codes of numerical solution, and to develop various numerical methods such as their differencing schemes and grid generation skills as well. In order to promote the development of the discipline of natural convection, three simple algebraically explicit analytical solution sets are derived for a non-linear simultaneous partial differential equation set with five dependent unknown variables, which represents the natural convection in porous media with both temperature and concentration gradients. An extraordinary method separating variables with addition is applied in this paper to deduce solutions.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-04-01
Full Text Available We present the detailed construction of an exact solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Analytical solution of the Gross-Neveu model at finite density
Thies, M
2003-01-01
Recent numerical calculations have shown that the ground state of the Gross-Neveu model at finite density is a crystal. Guided by these results, we can now present the analytical solution to this problem in terms of elliptic functions. The scalar potential is the superpotential of the non-relativistic Lame Hamiltonian. This model can also serve as analytically solvable toy model for a relativistic superconductor in the Larkin-Ovchinnikov-Fulde-Ferrell phase.
Institute of Scientific and Technical Information of China (English)
LIU Hong-Zhun; PAN Zu-Liang; LI Peng
2006-01-01
In this article, we will derive an equality, where the Taylor series expansion around ε = 0for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted.By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-B(a)cklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-B(a)cklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
Analytic Solutions of a Polynomial-Like Iterative Functional Equation near Resonance
Institute of Scientific and Technical Information of China (English)
LIU Ling Xia; SI Jian Guo
2009-01-01
In this paper existence of local analytic solutions of a polynomial-like iterative functional equation is studied. As well as in previous work, we reduce this problem with the Schroder transformation to finding analytic solutions of a functional equation without iteration of the unknown function f. For technical reasons, in previous work the constant α given in the Schr(o)der transformation, i.e., the eigenvalue of the linearized f at its fixed point O, is required to fulfill that α is off the unit circle S1 or lies on the circle with the Diophantine condition. In this paper,we obtain results of analytic solutions in the case of α at resonance, i.e., at a root of the unity and the case of α near resonance under the Brjuno condition.
Corrected Analytical Solution of the Generalized Woods-Saxon Potential for Arbitrary $\\ell$ States
Bayrak, O
2015-01-01
The bound state solution of the radial Schr\\"{o}dinger equation with the generalized Woods-Saxon potential is carefully examined by using the Pekeris approximation for arbitrary $\\ell$ states. The energy eigenvalues and the corresponding eigenfunctions are analytically obtained for different $n$ and $\\ell$ quantum numbers. The obtained closed forms are applied to calculate the single particle energy levels of neutron orbiting around $^{56}$Fe nucleus in order to check consistency between the analytical and Gamow code results. The analytical results are in good agreement with the results obtained by Gamow code for $\\ell=0$.
Institute of Scientific and Technical Information of China (English)
WANG Chun-ling; HUANG Yi; JIA Ji-hong
2007-01-01
The method of double Fourier transform was employed in the analysis of the semi-infinite elastic foundation with vertical load. And an integral representations for the displacements of the semi-infinite elastic foundation was presented. The analytical solution of steady vibration of an elastic rectangle plate with four free edges on the semi-infinite elastic foundation was also given by combining the analytical solution of the elastic rectangle plate with the integral representation for displacements of the semiinfinite elastic foundation. Some computational results and the analysis on the influence of parameters were presented.
An analytical solution to the equation of motion for the damped nonlinear pendulum
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
An analytical approximation of the solution to the differential equation describing the oscillations of the damped nonlinear pendulum at large angles is presented. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical...... of the damped nonlinear pendulum is presented, and it is shown that the period of oscillation is dependent on time. It is established that, in general, the period is longer than that of a linearized model, asymptotically approaching the period of oscillation of a damped linear pendulum....
AN EXACT ANALYTICAL SOLUTION FOR THE INTERSTELLAR MAGNETIC FIELD IN THE VICINITY OF THE HELIOSPHERE
Energy Technology Data Exchange (ETDEWEB)
Röken, Christian [Universität Regensburg, Fakultät für Mathematik, Regensburg (Germany); Kleimann, Jens; Fichtner, Horst, E-mail: christian.roeken@mathematik.uni-regensburg.de, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de [Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Bochum (Germany)
2015-06-01
An analytical representation of the interstellar magnetic field in the vicinity of the heliosphere is derived. The three-dimensional field structure close to the heliopause is calculated as a solution of the induction equation under the assumption that it is frozen into a prescribed plasma flow resembling the characteristic interaction of the solar wind with the local interstellar medium. The usefulness of this analytical solution as an approximation to self-consistent magnetic field configurations obtained numerically from the full MHD equations is illustrated by quantitative comparisons.
Seidi, M.; Behnia, S.; Khodabakhsh, R.
2014-09-01
Point reactor kinetics equations with one group of delayed neutrons in the presence of the time-dependent external neutron source are solved analytically during the start-up of a nuclear reactor. Our model incorporates the random nature of the source and linear reactivity variation. We establish a general relationship between the expectation values of source intensity and the expectation values of neutron density of the sub-critical reactor by ignoring the term of the second derivative for neutron density in neutron point kinetics equations. The results of the analytical solution are in good agreement with the results obtained with numerical solution.
ANALYTICAL SOLUTION OF BENDING-COMPRESSION COLUMN USING DIFFERENT TENSION-COMPRESSION MODULUS
Institute of Scientific and Technical Information of China (English)
姚文娟; 叶志明
2004-01-01
Based on elastic theory of different tension-compression modulus, the analytical solution was deduced for bending-compression column subject to combined loadings by the flowing coordinate system and phased integration method. The formulations for the neutral axis, stress, strain and displacement were developed, the finite element program was compiled for calculation, and the comparison between the result of finite element and analytical solution were given too. Finally, compare and analyze the result of different modulus and the same modulus, obtain the difference of two theories in result, and propose the reasonable suggestion for the calculation of this structure.
An Analytic and Optimal Inverse Kinematic Solution for a 7-DOF Space Manipulator
Institute of Scientific and Technical Information of China (English)
WANG Yingshi; SUN Lei; YAN Wenbin; LIU Jingtai
2014-01-01
An analytic inverse kinematic solution is presented for a 7-DOF (degree of freedom) redundant space manipu-lator. The proposed method can obtain all the feasible solutions in the global joint space, which are denoted by a joint angle parameter. Meanwhile, both the singularity problem and the joint limits are considered in detail. Besides, an optimization approach is provided to get one near optimal inverse kinematic solution from all the feasible solutions. The proposed method can reduce effectively the computational complexity, so that it can be applied online. Finally, the method’s validity is shown by kinematic simulations.
Institute of Scientific and Technical Information of China (English)
CAI Ruixian; ZHANG Na
2004-01-01
The analytical solutions of unsteady heat conduction with variable thermal properties(thermal conductivity,density and specific heat are functions of temperature or coordinates)are meaningful in theory.In addition,they are very useful to the computational heat conduction to check the numerical solutions and to develop numerical schemes,grid generation methods and so forth.Such solutions in rectangular coordinates have been derived by the authors.Some other solutions for 1-D and 2-D axisymmetrical heat conduction in cylin drical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.
Analytical self-dual solutions in a nonstandard Yang-Mills-Higgs scenario
Casana, R; da Hora, E; Santos, C dos
2013-01-01
We have found analytical self-dual solutions within the generalized Yang-Mills-Higgs model introduced in Phys. Rev. D 86, 085034 (2012). Such solutions are magnetic monopoles satisfying Bogomol'nyi-Prasad-Sommerfield (BPS) equations and usual finite energy boundary conditions. Moreover, the new solutions are classified in two different types according to their capability of recovering (or not) the usual 't Hooft--Polyakov monopole. Finally, we compare the profiles of the solutions we found with the standard ones, from which we comment about the main features exhibited by the new configurations.
Pérez Guerrero, J. S.; Skaggs, T. H.
2010-08-01
SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
Analytical solution of the simplified spherical harmonics equations in spherical turbid media
Edjlali, Ehsan; Bérubé-Lauzière, Yves
2016-10-01
We present for the first time an analytical solution for the simplified spherical harmonics equations (so-called SPN equations) in the case of a steady-state isotropic point source inside a spherical homogeneous absorbing and scattering medium. The SPN equations provide a reliable approximation to the radiative transfer equation for describing light transport inside turbid media. The SPN equations consist of a set of coupled partial differential equations and the eigen method is used to obtain a set of decoupled equations, each resembling the heat equation in the Laplace domain. The equations are solved for the realistic partial reflection boundary conditions accounting for the difference in refractive indices between the turbid medium and its environment (air) as occurs in practical cases of interest in biomedical optics. Specifically, we provide the complete solution methodology for the SP3, which is readily applicable to higher orders as well, and also give results for the SP5. This computationally easy to obtain solution is investigated for different optical properties of the turbid medium. For validation, the solution is also compared to the analytical solution of the diffusion equation and to gold standard Monte Carlo simulation results. The SP3 and SP5 analytical solutions prove to be in good agreement with the Monte Carlo results. This work provides an additional tool for validating numerical solutions of the SPN equations for curved geometries.
Kabala, Z. J.
1997-08-01
Under the assumption that local solute dispersion is negligible, a new general formula (in the form of a convolution integral) is found for the arbitrary k-point ensemble moment of the local concentration of a solute convected in arbitrary m spatial dimensions with general sure initial conditions. From this general formula new closed-form solutions in m=2 spatial dimensions are derived for 2-point ensemble moments of the local solute concentration for the impulse (Dirac delta) and Gaussian initial conditions. When integrated over an averaging window, these solutions lead to new closed-form expressions for the first two ensemble moments of the volume-averaged solute concentration and to the corresponding concentration coefficients of variation (CV). Also, for the impulse (Dirac delta) solute concentration initial condition, the second ensemble moment of the solute point concentration in two spatial dimensions and the corresponding CV are demonstrated to be unbound. For impulse initial conditions the CVs for volume-averaged concentrations axe compared with each other for a tracer from the Borden aquifer experiment. The point-concentration CV is unacceptably large in the whole domain, implying that the ensemble mean concentration is inappropriate for predicting the actual concentration values. The volume-averaged concentration CV decreases significantly with an increasing averaging volume. Since local dispersion is neglected, the new solutions should be interpreted as upper limits for the yet to be derived solutions that account for local dispersion; and so should the presented CVs for Borden tracers. The new analytical solutions may be used to test the accuracy of Monte Carlo simulations or other numerical algorithms that deal with the stochastic solute transport. They may also be used to determine the size of the averaging volume needed to make a quasi-sure statement about the solute mass contained in it.
Approximate analytical solution of MHD flow of an Oldroyd 8-constant fluid in a porous medium
Directory of Open Access Journals (Sweden)
Faisal Salah
2014-12-01
Full Text Available The steady flow in an incompressible, magnetohydrodynamic (MHD Oldroyd 8-constant fluid in a porous medium with the motion of an infinite plate is investigated. Using modified Darcy’s law of an Oldroyd 8-constant fluid, the equations governing the flow are modelled. The resulting nonlinear boundary value problem is solved using the homotopy analysis method (HAM. The obtained approximate analytical solutions clearly satisfy the governing nonlinear equations and all the imposed initial and boundary conditions. The convergence of the HAM solutions for different orders of approximation is demonstrated. For the Newtonian case, the approximate analytical solution via HAM is shown to be in close agreement with the exact solution. Finally, the variations of velocity field with respect to the magnetic field, porosity and non-Newtonian fluid parameters are graphically shown and discussed.
Analytical approximate solution of the cooling problem by Adomian decomposition method
Alizadeh, Ebrahim; Sedighi, Kurosh; Farhadi, Mousa; Ebrahimi-Kebria, H. R.
2009-02-01
The Adomian decomposition method (ADM) can provide analytical approximation or approximated solution to a rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, closure approximation, or discretization methods. In the present work, ADM is employed to solve the momentum and energy equations for laminar boundary layer flow over flat plate at zero incidences with neglecting the frictional heating. A trial and error strategy has been used to obtain the constant coefficient in the approximated solution. ADM provides an analytical solution in the form of an infinite power series. The effect of Adomian polynomial terms is considered and shows that the accuracy of results is increased with the increasing of Adomian polynomial terms. The velocity and thermal profiles on the boundary layer are calculated. Also the effect of the Prandtl number on the thermal boundary layer is obtained. Results show ADM can solve the nonlinear differential equations with negligible error compared to the exact solution.
Nonlinear Whitham-Broer-Kaup Wave Equation in an Analytical Solution
Directory of Open Access Journals (Sweden)
S. A. Zahedi
2008-01-01
Full Text Available This study presented a new approach for the analysis of a nonlinear Whitham-Broer-Kaup equation dealing with propagation of shallow water waves with different dispersion relations. The analysis was based on a kind of analytical method, called Variational Iteration Method (VIM. To illustrate the capability of the approach, some numerical examples were given and the propagation and the error of solutions were shown in comparison to those of exact solution. In clear conclusion, the approach was efficient and capable to obtain the analytical approximate solution of this set of wave equations while these solutions could straightforwardly show some facts of the described process deeply such as the propagation. This method can be easily extended to other nonlinear wave equations and so can be found widely applicable in this field of science.
Mathematic Model and Analytic Solution for a Cylinder Subject to Exponential Function
Institute of Scientific and Technical Information of China (English)
LIU Wen; SHAN Rui
2009-01-01
Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lamè solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
Institute of Scientific and Technical Information of China (English)
HOU Bang-Pin; WANG Shun-Jin; YU Wan-Lun; SUN Wei-Li; WANG Gang
2004-01-01
@@ We obtain the analytical solution to the master equation in the photon number representation by using algebraic dynamical method in the nonautonomous case. Based on the solution we find that a two-mode coherent sate can be produced within dissipative background, and the averaged photon number for each mode is related to the damping constant, external field amplitude and coupling constant between two modes.
An approximate and an analytical solution to the carousel-pendulum problem
Energy Technology Data Exchange (ETDEWEB)
Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr
2009-09-15
We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)
Exact Analytical Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length
Institute of Scientific and Technical Information of China (English)
CHEN Yong; LI Biao; ZHENG Yu
2007-01-01
In the paper, the generalized Riccati equation rational expansion method is presented. Making use of the method and symbolic computation, we present three families of exact analytical solutions of Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Then the dynamics of two anlytical solutions are demonstrated by computer simulations under some selectable parameters including the Feshbach-managed nonlinear coefficient and the hyperbolic secant function coefficient.
Leray, Sarah; Engdahl, Nicholas B.; Massoudieh, Arash; Bresciani, Etienne; McCallum, James
2016-12-01
This review presents the physical mechanisms generating residence time distributions (RTDs) in hydrologic systems with a focus on steady-state analytical solutions. Steady-state approximations of the RTD in hydrologic systems have seen widespread use over the last half-century because they provide a convenient, simplified modeling framework for a wide range of problems. The concept of an RTD is useful anytime that characterization of the timescales of flow and transport in hydrologic systems is important, which includes topics like water quality, water resource management, contaminant transport, and ecosystem preservation. Analytical solutions are often adopted as a model of the RTD and a broad spectrum of models from many disciplines has been applied. Although these solutions are typically reduced in dimensionality and limited in complexity, their ease of use makes them preferred tools, specifically for the interpretation of tracer data. Our review begins with the mechanistic basis for the governing equations, highlighting the physics for generating a RTD, and a catalog of analytical solutions follows. This catalog explains the geometry, boundary conditions and physical aspects of the hydrologic systems, as well as the sampling conditions, that altogether give rise to specific RTDs. The similarities between models are noted, as are the appropriate conditions for their applicability. The presentation of simple solutions is followed by a presentation of more complicated analytical models for RTDs, including serial and parallel combinations, lagged systems, and non-Fickian models. The conditions for the appropriate use of analytical solutions are discussed, and we close with some thoughts on potential applications, alternative approaches, and future directions for modeling hydrologic residence time.
Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers
Lu, Chunhui; Xin, Pei; Kong, Jun; Li, Ling; Luo, Jian
2016-09-01
Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer.
On the analytical solution of Fornberg–Whitham equation with the new fractional derivative
Indian Academy of Sciences (India)
Olaniyi Samuel Iyiola; Gbenga Olayinka Ojo
2015-10-01
Motivated by the simplicity, natural and efficient nature of the new fractional derivative introduced by R Khalil et al in J. Comput. Appl. Math. 264, 65 (2014), analytical solution of space-time fractional Fornberg–Whitham equation is obtained in series form using the relatively new method called q-homotopy analysis method (q-HAM). The new fractional derivative makes it possible to introduce fractional order in space to the Fornberg–Whitham equation and be able to obtain its solution. This work displays the elegant nature of the application of q-HAM to solve strongly nonlinear fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for nonlinear differential equations. Comparisons are made on the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
Institute of Scientific and Technical Information of China (English)
Yi Yang; Jike Liu; Chengwu Cai
2008-01-01
The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods.For the problem with a rectangular hole,only approximate results are derived.This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions.By using the U-transformation technique and the finite element method,the analytical displacement solutions of the finite element equations are derived in the series form.Therefore,the stress concentration can then be discussed easily and conveniently.For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method.The stress concentration factors for various ratios of height to width of the hole are obtained.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré, Pierre Emmanuel
2011-12-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan
2017-02-01
We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.
Analytical solution of magnetothermoelastic interaction in a fiber-reinforced anisotropic material
Hobiny, Aatef D.; Abbas, Ibrahim A.
2016-12-01
The present paper is concerned with the investigation of the analytical solution of a fiber-reinforced anisotropic material under generalized magnetothermoelastic theory using the eigenvalue approach. Based on the Lord-Shulman theory, the formulation is applied to generalized magnetothermoelasticity with one relaxation time. Based on eigenvalue approach, exponential Fourier transform and Laplace techniques, the analytical solutions has been obtained. The inverses of Fourier transforms are obtained analytically. Numerical computations for a fiber-reinforced-like material have been performed and the results are presented graphically. The results of the temperature, displacement components and stress components have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement.
Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields.
Kuru, S; Negro, J; Nieto, L M
2009-11-11
Exact analytical solutions for the bound states of a graphene Dirac electron in various magnetic fields with translational symmetry are obtained. In order to solve the time-independent Dirac-Weyl equation the factorization method used in supersymmetric quantum mechanics is adapted to this problem. The behavior of the discrete spectrum, probability and current densities are discussed.
Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow
Troch, P.A.; Loon, van E.; Hilberts, A.
2002-01-01
Hillslope response has traditionally been studied by means of the hydraulic groundwater theory. Subsurface flow from a one-dimensional hillslope with a sloping aquifer can be described by the Boussinesq equation [Mem. Acad. Sci. Inst. Fr. 23 (1) (1877) 252–260]. Analytical solutions to Boussinesq's
Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry
Ojo, Michael O.
2016-01-01
The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…
Exact Analytical Solution of the Klein-Gordon Equation in the Generalized Woods-Saxon Potential
Bayrak, O.; Sahin, D.
2015-09-01
The exact analytical solution of the Klein-Gordon equation for the spin-0 particles in the generalized Woods-Saxon potential is presented. The bound state energy eigenvalues and corresponding wave functions are obtained in the closed forms. The correlations between the potential parameters and energy eigenvalues are examined for π0 particles.
Microchannel electrokinetics of charged analytes in buffered solutions near floating electrodes
DEFF Research Database (Denmark)
Andersen, Mathias Bækbo; Wolfcale, Trevor; Gregersen, Misha Marie;
We present both experimental and numerical studies of nonlinear electrokinetic flow of buffered solutions seeded with dilute analytes in a straight microchannel (0.6 μm high, 250 μm wide, and 9000 μm long) with a 0.15 μm high 60 μm wide electrode situated at the bottom center of the channel...
On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin
2011-01-01
An analytical solution for non-orthogonal stagnation point for the steady flow of a viscous and incompressible fluid is presented. The governing nonlinear partial differential equations for the flow field are reduced to ordinary differential equations by using similarity transformations existed i...
Hilpert, Markus
2010-07-15
The displacement of a gas by a liquid in both horizontal and inclined capillary tubes where the tube inlet is connected to a liquid reservoir of constant pressure can be described by the Lucas-Washburn theory. One can also use the Lucas-Washburn theory to model the reverse flow, that is, liquid withdrawal, even though the latter case has received relatively little attention. In this paper, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position can be obtained by numerically integrating the numerically inverted interface velocity. Therefore we refer to these solutions as (semi)-analytical. We neglect inertial forces. However, we account for a dynamic contact angle where the nondimensional non-equilibrium Young force depends on the capillary number in the form of either a power law or a power series. We explore the entire nondimensional parameter space. The analytical solutions allow us to show that five different liquid withdrawal scenarios may occur that differ in the direction of flow and the sign of the acceleration of the gas-liquid interface: horizontal, upward, steady-state downward, accelerating downward, and decelerating downward flow. In the last case, the liquid is withdrawn from the tube either completely or partially. The (semi)-analytical solutions are also valid within the limit where the contact angle is constant.
Hilpert, Markus
2009-09-01
We generalize Washburn's analytical solution for capillary flow in a horizontally oriented tube by accounting for a dynamic contact angle. We consider two general models for dynamic contact angle: the uncompensated Young force on the contact line depends on the capillary number in the form of either (1) a power law with exponent beta or (2) a power series. By considering the ordinary differential equation (ODE) for the velocity of the gas-liquid interface instead of the ODE for the interface position, we are able to derive new analytical solutions. For both dynamic contact angle models, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position as a function of time can be obtained through numerical integration. For the power law and beta=1 (an approximation of Cox's model for dynamic contact angle), we obtain an analytical solution for both interface position and velocity as a function of time. For the power law and beta=3, we can express the interface velocity as a function of time.
DEFF Research Database (Denmark)
Dinca, Andreea; Miclea, P. T.; Lupei, V.;
1998-01-01
The paper describes the application of the complete-admittance matching in the design of two dichroic mirrors. The matching stacks were analytically synthesized and all solutions with 1, 2 and 3 periods were investigated in order to obtain a large transmission band and preserve the high reflectan...
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
Hayek, Mohamed
2016-06-01
A general analytical model for one-dimensional transient vertical infiltration is presented. The model is based on a combination of the Brooks and Corey soil water retention function and a generalized hydraulic conductivity function. This leads to power law diffusivity and convective term for which the exponents are functions of the inverse of the pore size distribution index. Accordingly, the proposed analytical solution covers many existing realistic models in the literature. The general form of the analytical solution is simple and it expresses implicitly the depth as function of water content and time. It can be used to model infiltration through semi-infinite dry soils with prescribed water content or flux boundary conditions. Some mathematical expressions of practical importance are also derived. The general form solution is useful for comparison between models, validation of numerical solutions and for better understanding the effect of some hydraulic parameters. Based on the analytical expression, a complete inverse procedure which allows the estimation of the hydraulic parameters from water content measurements is presented.
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
Analytical Solution of Coupled Laminar Heat-Mass Transfer in a Tube with Uniform Heat Flux
Institute of Scientific and Technical Information of China (English)
无
1992-01-01
Analytical solution is obtained of coupled laminar heat-mass transfer in a tube with uniform heat flux.This corresponds to the case when a layer of sublimable material is coated on the inner surface of a tube with its outer surface heated by uniform heat flux and this coated material will sublime as gas flows throught the tube.
An analytic solution of the static problem of inclined risers conveying fluid
Alfosail, Feras K.
2016-05-28
We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht
Application of an analytical method for solution of thermal hydraulic conservation equations
Energy Technology Data Exchange (ETDEWEB)
Fakory, M.R. [Simulation, Systems & Services Technologies Company (S3 Technologies), Columbia, MD (United States)
1995-09-01
An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.
Analytic solutions for seismic travel time and ray path geometry through simple velocity models.
Energy Technology Data Exchange (ETDEWEB)
Ballard, Sanford
2007-12-01
The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.
A New Homotopy Analysis Method for Approximating the Analytic Solution of KdV Equation
Directory of Open Access Journals (Sweden)
Vahid Barati
2014-01-01
Full Text Available In this study a new technique of the Homotopy Analysis Method (nHAM is applied to obtain an approximate analytic solution of the well-known Korteweg-de Vries (KdV equation. This method removes the extra terms and decreases the time taken in the original HAM by converting the KdV equation to a system of first order differential equations. The resulted nHAM solution at third order approximation is then compared with that of the exact soliton solution of the KdV equation and found to be in excellent agreement.
Directory of Open Access Journals (Sweden)
Mohsen Alipour
2013-01-01
Full Text Available We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein polynomials (BPs. In the first method, we use the operational matrix of Caputo fractional derivative (OMCFD, and in the second one, we apply the operational matrix of Riemann-Liouville fractional integral (OMRLFI. The obtained results are in good agreement with each other as well as with the analytical solutions. We show that the solutions approach to classical solutions as the order of the fractional derivatives approaches 1.
Institute of Scientific and Technical Information of China (English)
刘林; C.K.Shum
2000-01-01
The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for0< e< 1, where e is the orbital eccentricity of the orbiter. in the solution, it is as-sumed that the rotation of the central body is slow, and its astronomical background is clear. Examples for such planets in the solar system are Ven黶 and Mercury. The perturbation solution is tested numer-ically on two Venusian orbiters with eccentric orbits, PVO and Magellan, and found to be effective.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for 0＜e＜1,where e is the orbital eccentricity of the orbiter.In the solution,it is assumed that the rotation of the central body is slow,and its astronomical background is clear.Examples for such planets in the solar system are Venus and Mercury.The perturbation solution is tested numerically on two Venusian orbiters with eccentric orbits,PVO and Magellan,and found to be effective.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo;
2010-01-01
In this work, an analytical method, which is referred to as Parameter-expansion Method is used to obtain the exact solution for the problem of nonlinear vibrations of an inextensible beam. It is shown that one term in the series expansion is sufficient to obtain a highly accurate solution, which ...... is valid for the whole domain of the problem. A comparison of the obtained the numerical solution demonstrates that PEM is effective and convenient for solving such problems. After validation of the obtained results, the system response and stability are also discussed....
Energy Technology Data Exchange (ETDEWEB)
Moawad, S. M., E-mail: smmoawad@hotmail.com [Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)
2015-02-15
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.
Institute of Scientific and Technical Information of China (English)
G. Darmani; S. Setayeshi; H. Ramezanpour
2012-01-01
In this paper an efficient computational method based on extending the sensitivity approach （SA） is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations （DDEs）, the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach.
Editorial: Special Issue on Analytical and Approximate Solutions for Numerical Problems
Directory of Open Access Journals (Sweden)
Walailak Journal of Science and Technology
2014-08-01
Full Text Available Though methods and algorithms in numerical analysis are not new, they have become increasingly popular with the development of high speed computing capabilities. Indeed, the ready availability of high speed modern digital computers and easy-to-employ powerful software packages has had a major impact on science, engineering education and practice in the recent past. Researchers in the past had to depend on analytical skills to solve significant engineering problems but, nowadays, researchers have access to tremendous amount of computation power under their fingertips, and they mostly require understanding the physical nature of the problem and interpreting the results. For some problems, several approximate analytical solutions already exist for simple cases but finding new solution to complex problems by designing and developing novel techniques and algorithms are indeed a great challenging task to give approximate solutions and sufficient accuracy especially for engineering purposes. In particular, it is frequently assumed that deriving an analytical solution for any problem is simpler than obtaining a numerical solution for the same problem. But in most of the cases relationships between numerical and analytical solutions complexities are exactly opposite to each other. In addition, analytical solutions are limited to relatively simple problems while numerical ones can be obtained for complex realistic situations. Indeed, analytical solutions are very useful for testing (benchmarking numerical codes and for understanding principal physical controls of complex processes that are modeled numerically. During the recent past, in order to overcome some numerical difficulties a variety of numerical approaches were introduced, such as the finite difference methods (FDM, the finite element methods (FEM, and other alternative methods. Numerical methods typically include material on such topics as computer precision, root finding techniques, solving
Modelling stellar jets with magnetospheres using as initial states analytical MHD solutions
Todorov, P; Cayatte, V; Sauty, C; Lima, J J G; Tsinganos, K
2016-01-01
In this paper we focus on the construction of stellar outflow models emerging from a polar coronal hole-type region surrounded by a magnetosphere in the equatorial regions during phases of quiescent accretion. The models are based on initial analytical solutions. We adopt a meridionally self-similar solution of the time-independent and axisymmetric MHD equations which describes effectively a jet originating from the corona of a star. We modify appropriately this solution in order to incorporate a physically consistent stellar magnetosphere. We find that the closed fieldline region may exhibit different behaviour depending on the associated boundary conditions and the distribution of the heat flux. However, the stellar jet in all final equilibrium states is very similar to the analytical one prescribed in the initial conditions. When the initial net heat flux is maintained, the magnetosphere takes the form of a dynamical helmet streamer with a quasi steady state slow magnetospheric wind. With no heat flux, a s...
Caciotta, G
2016-01-01
The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem, due to the intrinsic hyperbolicity of the Einstein equations. The magnitude of this region depends only on suitable $H_s$ Sobolev norms of the initial data for a fixed $s\\leq 7$ and if the initial data are sufficiently small the analytic solution is global. In a previous paper, hereafter "I", we have described a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering and a local solution in a suitable "double null cone gauge" characterized by the use of a double null cone foliation of the spacetime.
An analytical solution for transient radial flow through unsaturated fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Shu; Pan, Lehua
2004-02-13
This paper presents analytical solutions for one-dimensional radial transient flow through horizontal, unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured media is described by a linearized Richards' equation, while fracture-matrix interaction is handled using the dual-continuum concept. Although linearizing Richards' equation requires a specially correlated relationship between relative permeability and capillary pressure functions for both fractures and matrix, these specially formed relative permeability and capillary pressure functions are still physically meaningful. These analytical solutions can thus be used to describe the transient behavior of unsaturated flow in fractured media under the described model conditions. They can also be useful in verifying numerical simulation results, which, as demonstrated in this paper, are otherwise difficult to validate.
MATHEMATIC MODEL AND ANALYTIC SOLUTION FOR CYLINDER SUBJECT TO UNEVEN PRESSURES
Institute of Scientific and Technical Information of China (English)
LIU Wen
2006-01-01
According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab.When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the model building of hollow cylinder and for the analytic solution of hollow cylinder with randomly uneven pressure.
Baseline configuration for GNSS attitude determination with an analytical least-squares solution
Chang, Guobin; Xu, Tianhe; Wang, Qianxin
2016-12-01
The GNSS attitude determination using carrier phase measurements with 4 antennas is studied on condition that the integer ambiguities have been resolved. The solution to the nonlinear least-squares is often obtained iteratively, however an analytical solution can exist for specific baseline configurations. The main aim of this work is to design this class of configurations. Both single and double difference measurements are treated which refer to the dedicated and non-dedicated receivers respectively. More realistic error models are employed in which the correlations between different measurements are given full consideration. The desired configurations are worked out. The configurations are rotation and scale equivariant and can be applied to both the dedicated and non-dedicated receivers. For these configurations, the analytical and optimal solution for the attitude is also given together with its error variance-covariance matrix.
Lindén, Fredrik; Zettergren, Henning
2016-01-01
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Belay, T.; Kim, C. I.; Schiavone, P.
2016-03-01
We develop a complete analytical solution predicting the deformation of rectangular lipid membranes resulting from boundary forces acting on the perimeter of the membrane. The shape equation describing the equilibrium state of a lipid membrane is taken from the classical Helfrich model. A linearized version of the shape equation describing membrane morphology (within the Monge representation) is obtained via a limit of superposed incremental deformations. We obtain a complete analytical solution by reducing the corresponding problem to a single partial differential equation and by using Fourier series representations for various types of boundary forces. The solution obtained predicts smooth morphological transition over the domain of interest. Finally, we note that the methods used in our analysis are not restricted to the particular type of boundary conditions considered here and can accommodate a wide class of practical and important edge conditions.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E.; Effenberger, Frederic, E-mail: yuril@waikato.ac.nz [Department of Mathematics, University of Waikato, P.B. 3105 Hamilton (New Zealand)
2014-12-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Analytical solution and optimal design for galloping-based piezoelectric energy harvesters
Tan, T.; Yan, Z.
2016-12-01
The performance of the galloping-based piezoelectric energy harvester is usually investigated numerically. Instead of performing case studies by numerical simulations, analytical solutions of the nonlinear distributed parameter model are derived to capture the intrinsic effects of the physical parameters on the performance of such energy harvesters. The analytical solutions are confirmed with the numerical solutions. Optimal performance of such energy harvesters is therefore revealed theoretically. The electric damping due to the electromechanical coupling is defined. The design at the optimal electrical damping with smaller onset speed to galloping, higher harvested power, and acceptable tip displacement is superior than the design at the maximal electrical damping, as long as the optimal electrical damping can be achieved. Otherwise, the design at the maximal electrical damping should be then adopted. As the wind speed and aerodynamic empirical coefficients increase, the tip displacement and harvested power increase. This study provides a theoretical design and optimization procedure for galloping-based piezoelectric energy harvesters.
An Analytical Solution by HAM for Nonlinear Simulation of Deepwater SCR Installation
Directory of Open Access Journals (Sweden)
Yi Wang
2014-01-01
Full Text Available Steel catenary riser (SCR is a cost-effective riser system that is widely used in deepwater offshore oilfields development. During SCR J-lay installation, the movement of pull-head must be carefully controlled to ensure riser safety. Since the SCR installation path calculation through numerical simulation software is usually time-consuming, this paper has established a mechanical model for SCR installation by making use of homotopy analysis method (HAM to simplify its analytical solution, and dimensional analysis was considered in making initial guess solution. Based on this analytical solution, a program within the framework of MATLAB was developed to predict the two-dimensional riser behavior during installation, and a sensitivity analysis for different values of the control variables was carried out. Engineers may efficiently optimize the installation path by the application of this technique.
Kostanyan, Artak E
2015-08-07
In closed-loop recycling (CLR) chromatography, the effluent from the outlet of a column is directly returned into the column through the sample feed line and continuously recycled until the required separation is reached. To select optimal operating conditions for the separation of a given feed mixture, an appropriate mathematical description of the process is required. This work is concerned with the analysis of models for the CLR separations. Due to the effect of counteracting mechanisms on separation of solutes, analytical solutions of the models could be helpful to understand and optimize chromatographic processes. The objective of this work was to develop analytical expressions to describe the CLR counter-current (liquid-liquid) chromatography (CCC). The equilibrium dispersion and cell models were used to describe the transport and separation of solutes inside a CLR CCC column. The Laplace transformation is applied to solve the model equations. Several possible CLR chromatography methods for the binary and complex mixture separations are simulated.
Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; Wang, Yanli; Singler, Timothy
2017-03-01
Due to the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl-Hecky membrane indented by a frictionless spherical indenter. In this study, experiments of spherical indentation has been performed, and the exact analytical solution presented in this paper is compared against experimental data from existing literature as well as our own experimental results.
A transversely localized light in a waveguide: the analytical solution and its potential application
Arslanov, Narkis M.; Moiseev, Sergey A.; Kamli, Ali A.
2017-02-01
Investigation of light in waveguide structures is a topical modern problem that has long-standing historical roots. A parallel-plate waveguide is a basic model in these studies and is intensively used in numerous investigations of nano-optics, integrated circuits and nanoplasmonics. In this letter we have first found an approximate analytical solution which describes the light modes with high accuracy in the subwavelength waveguides. The solution provides a way of obtaining a clear understanding of the light properties within the broadband spectral range in the waveguide with various physical parameters. The potential of the analytical solution for studies of light fields in the waveguides of nano-optics and nanoplasmonics has also been discussed.
Analytical Solutions of a Nonlinear Convection-Diﬀusion Equation With Polynomial Sources
Directory of Open Access Journals (Sweden)
N. A. Kudryashov
2016-01-01
Full Text Available Nonlinear convection–diﬀusion equations are widely used for the description of various processes and phenomena in physics, mechanics and biology. In this work we consider a family of nonlinear ordinary diﬀerential equations which is a traveling wave reduction of a nonlinear convection–diﬀusion equation with a polynomial source. We study a question about integrability of this family of nonlinear ordinary diﬀerential equations. We consider both stationary and non–stationary cases of this equation with and without convection. In order to construct general analytical solutions of equations from this family we use an approach based on nonlocal transformations which generalize the Sundman transformations. We show that in the stationary case without convection the general analytical solution of the considered family of equations can be constructed without any constraints on its parameters and can be expressed via the Weierstrass elliptic function. Since in the general case this solution has a cumbersome form we ﬁnd some correlations on the parameters which allow us to construct the general solution in the explicit form. We show that in the non–stationary case both with and without convection we can ﬁnd a general analytical solution of the considered equation only imposing some correlation on the parameters. To this aim we use criteria for the integrability of the Lienard equation which have recently been obtained. We ﬁnd explicit expressions in terms of exponential and elliptic functions for the corresponding analytical solutions.
An Analytical Solution for Lateral Buckling Critical Load Calculation of Leaning-Type Arch Bridge
Directory of Open Access Journals (Sweden)
Ai-rong Liu
2014-01-01
Full Text Available An analytical solution for lateral buckling critical load of leaning-type arch bridge was presented in this paper. New tangential and radial buckling models of the transverse brace between the main and stable arch ribs are established. Based on the Ritz method, the analytical solution for lateral buckling critical load of the leaning-type arch bridge with different central angles of main arch ribs and leaning arch ribs under different boundary conditions is derived for the first time. Comparison between the analytical results and the FEM calculated results shows that the analytical solution presented in this paper is sufficiently accurate. The parametric analysis results show that the lateral buckling critical load of the arch bridge with fixed boundary conditions is about 1.14 to 1.16 times as large as that of the arch bridge with hinged boundary condition. The lateral buckling critical load increases by approximately 31.5% to 41.2% when stable arch ribs are added, and the critical load increases as the inclined angle of stable arch rib increases. The differences in the center angles of the main arch rib and the stable arch rib have little effect on the lateral buckling critical load.
Comparison of input parameters regarding rock mass in analytical solution and numerical modelling
Yasitli, N. E.
2016-12-01
Characteristics of stress redistribution around a tunnel excavated in rock are of prime importance for an efficient tunnelling operation and maintaining stability. As it is a well known fact that rock mass properties are the most important factors affecting stability together with in-situ stress field and tunnel geometry. Induced stresses and resultant deformation around a tunnel can be approximated by means of analytical solutions and application of numerical modelling. However, success of these methods depends on assumptions and input parameters which must be representative for the rock mass. However, mechanical properties of intact rock can be found by laboratory testing. The aim of this paper is to demonstrate the importance of proper representation of rock mass properties as input data for analytical solution and numerical modelling. For this purpose, intact rock data were converted into rock mass data by using the Hoek-Brown failure criterion and empirical relations. Stress-deformation analyses together with yield zone thickness determination have been carried out by using analytical solutions and numerical analyses by using FLAC3D programme. Analyses results have indicated that incomplete and incorrect design causes stability and economic problems in the tunnel. For this reason during the tunnel design analytical data and rock mass data should be used together. In addition, this study was carried out to prove theoretically that numerical modelling results should be applied to the tunnel design for the stability and for the economy of the support.
An analytical dynamo solution for large-scale magnetic fields of galaxies
Chamandy, Luke
2016-11-01
We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parametrized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-z' approximation and the dynamical α-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted on to galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure data sets. Further, we explore the properties of our numerical solutions, and their dependence on certain parameter values. We illustrate and assess the degree to which numerical solutions based on various levels of approximation, common in the dynamo literature, agree with one another.
Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma
Camporeale, E; MacDonald, E A
2015-01-01
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979), Korsun and Tverdokhlebova (1997), and Ashkenazy and Fruchtman (2001). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.
An analytic solution for barotropic flow along a variable slope topography
Kuehl, Joseph J.
2014-11-01
An analytic solution is derived for the generic oceanographic situation of a barotropic current flowing along sloping topography. It is shown that the shallow water equations can be reduced to a heat-like equation in which βeffect is balanced by Ekman dissipation. For constant topography, the system is found to admit a well-known similarity solution and this solution is generalized to the case of variable topography. Several properties of the solution are explored, and an example is given for flow along the northern Gulf of Mexico slope, between the De Soto Canyon and the Mississippi Canyon. This "Topographic β-plume" solution may serve as a model for further research concerning the influence exerted by geophysical boundary layers on the interior flow via their structure and stability.
El-Ajou, Ahmad; Arqub, Omar Abu; Momani, Shaher
2015-07-01
In this paper, explicit and approximate solutions of the nonlinear fractional KdV-Burgers equation with time-space-fractional derivatives are presented and discussed. The solutions of our equation are calculated in the form of rabidly convergent series with easily computable components. The utilized method is a numerical technique based on the generalized Taylor series formula which constructs an analytical solution in the form of a convergent series. Five illustrative applications are given to demonstrate the effectiveness and the leverage of the present method. Graphical results and series formulas are utilized and discussed quantitatively to illustrate the solution. The results reveal that the method is very effective and simple in determination of solution of the fractional KdV-Burgers equation.
A Hybrid Analytical-Numerical Solution to the Laminar Flow inside Biconical Ducts
Directory of Open Access Journals (Sweden)
Thiago Antonini Alves
2015-10-01
Full Text Available In this work was presented a hybrid analytical-numerical solution to hydrodynamic problem of fully developed Newtonian laminar flow inside biconical ducts employing the Generalized Integral Transform Technique (GITT. In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform was used to change the domain into a more suitable coordinate system. Thereafter, the GITT was applied on the momentum equation to obtain the velocity field. Numerical results were obtained for quantities of practical interest, such as maximum and minimum velocity, Fanning friction factor, Poiseuille number, Hagenbach factor and hydrodynamic entry length.
Institute of Scientific and Technical Information of China (English)
SU Xiao-hong; ZHENG Lian-cun; JIANG Feng
2008-01-01
This paper presents a theoretical analysis for laminar boundary layer flow in a power law non-Newtonian fluids.The Adomian analytical decomposition technique is presented and an approximate analytical solution is obtained.The approximate analytical solution can be expressed in terms of a rapid convergent power series with easily computable terms.Reliability and efficiency of the approximate solution are verified by comparing with numerical solutions in the literature.Moreover,the approximate solution can be successfully applied to provide values for the skin friction coefficient of the laminar boundary layer flow in power law non-Newtonian fluids.
Akbar, Fathan
2016-01-01
In this paper we examine more deeply about the bending mechanism of rod-shaped fireworks which burned from the free end. We derived new analytic equations. Surprisingly, we obtained the bending patterns are similar to the cornu spiral. With a few simple steps we proved that positions of points throughout the fireworks are given by Fresnel integrals, C(x) and S(x), which are generally found in phenomena of electromagnetic wave diffraction. Although we deeply discussed bending of fireworks rods, however the proposed method is likely to explain any phenomena in nature related to an evolving length scale associated with some material that becomes progressively stiff or dry, such as the growth of resin exuded from trees.
Institute of Scientific and Technical Information of China (English)
KONG Jun; SONG Zhi-yao; XIN Pei; SHEN Cheng-ji
2011-01-01
Deriving analytical solutions for tide-induced groundwater fluctuations in unconfined aquifers confronts two problems:(1) As the Boussinesq equation itself contains nonlinear terms,the “secular term” would be generated in derivation,thus making perturbation solution unable to be deduced to higher order; (2) for aquifers with sloping beaches,the perturbation parameter in existing analytical solution integrating the beach slope and hydrogeological property would be sometimes larger than 1.So the application of perturbation solutions is relatively limited.Furthermore,as the beach slope decreases,the error of analytical solution would gradually increase.Given that water table over-height would increase the aquifer thickness and speed up wave propagation,this paper integrates over-height into the perturbation parameter and adjusts boundary conditions to settle the problem of “secular term” and to derive a new high-order analytical solution for nonlinear Boussinesq equation in terms of sloping beaches.Results show that the new analytical solution is more reasonable,and the analytical accuracy is obviously improved in comparison with the existing analytical solution for a gentle slope.The new analytical solution provides a theoretical basis for analyzing the propagation characteristics (e.g.,wave length and over-height variation) of tide-induced groundwater wave in unconfined aquifers,particularly those with sloping beaches.
Mathias, S. A.; Hardisty, P. E.; Trudell, M. R.; Zimmerman, R. W.
2008-12-01
If geo-sequestration of CO2 is to be employed as a key greenhouse gas reduction method in the global effort to mitigate climate change, simple yet robust methods must be available to help design and monitor injection into saline aquifers. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption of previous has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In the present work, we relax this restriction by incorporating fluid and formation compressibility into our governing equations. These equations are transformed into ordinary differential equations using a similarity transformation, and are then solved using the method of matched asymptotic expansions. By allowing for compressibility in the fluids and formation, the solutions improve on previous work by not requiring the specification of an arbitrary radius of influence. Our solution is also capable of accounting for non-Darcy inertial effects modeled by the Forchheimer equation. These analytical solutions are validated by comparison with finite difference solutions. Our analysis leads to a simple yet highly accurate algebraic equation for estimating the evolution of a CO2 plume, and the associated pressure buildup, as a function of time.
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
Institute of Scientific and Technical Information of China (English)
姚文娟; 叶志明
2004-01-01
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
An Analytical Solution of Partially Penetrating Hydraulic Fractures in a Box-Shaped Reservoir
Directory of Open Access Journals (Sweden)
He Zhang
2015-01-01
Full Text Available This paper presents a new method to give an analytical solution in Laplace domain directly that is used to describe pressure transient behavior of partially penetrating hydraulic fractures in a box-shaped reservoir with closed boundaries. The basic building block of the method is to solve diffusivity equation with the integration of Dirac function over the distance that is presented for the first time. Different from the traditional method of using the source solution and Green’s function presented by Gringarten and Ramey, this paper uses Laplace transform and Fourier transform to solve the diffusivity equation and the analytical solution obtained is accurate and simple. The effects of parameters including fracture height, fracture length, the position of the fracture, and reservoir width on the pressure and pressure derivative are fully investigated. The advantage of the analytical solution is easy to incorporate storage coefficient and skin factor. It can also reduce the amount of computation and compute efficiently and quickly.
New Analytic Solution to the Lane-Emden Equation of Index 2
Directory of Open Access Journals (Sweden)
S. S. Motsa
2012-01-01
Full Text Available We present two new analytic methods that are used for solving initial value problems that model polytropic and stellar structures in astrophysics and mathematical physics. The applicability, effectiveness, and reliability of the methods are assessed on the Lane-Emden equation which is described by a second-order nonlinear differential equation. The results obtained in this work are also compared with numerical results of Horedt (1986 which are widely used as a benchmark for testing new methods of solution. Good agreement is observed between the present results and the numerical results. Comparison is also made between the proposed new methods and existing analytical methods and it is found that the new methods are more efficient and have several advantages over some of the existing analytical methods.
Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem
Younis, Mohammad I.
2014-08-17
We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data in the literature and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximations they are based on. In such cases, multi-mode reduced order models need to be utilized.
Analytic solutions for links and triangles distributions in finite Barabási-Albert networks
Ferreira, Ricardo M.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-01-01
Barabási-Albert model describes many different natural networks, often yielding sensible explanations to the subjacent dynamics. However, finite size effects may prevent from discerning among different underlying physical mechanisms and from determining whether a particular finite system is driven by Barabási-Albert dynamics. Here we propose master equations for the evolution of the degrees, links and triangles distributions, solve them both analytically and by numerical iteration, and compare with numerical simulations. The analytic solutions for all these distributions predict the network evolution for systems as small as 100 nodes. The analytic method we developed is applicable for other classes of networks, representing a powerful tool to investigate the evolution of natural networks.
Two dimensional analytical solution for a partially vegetated compound channel flow
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong
2008-01-01
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
Indian Academy of Sciences (India)
Jianping Shi; Jibin Li; Shumin Li
2013-11-01
By using dynamical system method, this paper considers the (2+1)-dimensional Davey–Stewartson-type equations. The analytical parametric representations of solitary wave solutions, periodic wave solutions as well as unbounded wave solutions are obtained under different parameter conditions. A few diagrams corresponding to certain solutions illustrate some dynamical properties of the equations.
Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried
2014-05-01
Rock glaciers as aquifer systems in alpine catchments may strongly influence the hydrological characteristics of these catchments. Thus, they have a high impact on the ecosystem and potential natural hazards such as for example debris flow. Therefore, knowledge of the hydrodynamic processes, internal structure and properties of these aquifers is important for resource management and risk assessment. The investigation of such aquifers often turns out to be expensive and technically complicated because of their strongly limited accessibility. Analytical solutions of discharge recession provide a quick and easy way to estimate aquifer parameters. However, due to simplifying assumptions the validity of the interpretation is often questionable. In this study we compared results of an analytical solution of discharge recessions with results based on a numerical model. This was done in order to analyse the range of uncertainties and the applicability of the analytical method in alpine catchment areas. The research area is a 0.76 km² large catchment in the Seckauer Tauern Range, Austria. The dominant aquifer in this catchment is a rock glacier, namely the Schöneben Rock Glacier. This relict rock glacier (i.e. containing no permafrost at present) covers an area of 0.11 km² and is drained by one spring at the rock glacier front. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is automatically measured since 2002. Electric conductivity and water temperature is monitored since 2008. An automatic weather station was installed in 2011 in the central part of the catchment. Additionally data of geophysical surveys (refraction seismic and ground penetrating radar) have been used to analyse the base slope and inner structure of the rock glacier. The measured data are incorporated into a numerical model implemented in MODFLOW. The numerical
An analytical solution for the model of drug distribution and absorption in small intestine
Mingyu, Xu
1990-11-01
According to the physiological and anatomical characteristics of small intestine, neglecting the effect of its motility on the distribution and absorption of drug and nutrient, Y. Miyamoto et al.[1] proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drug by numerical analysis. In this paper, we give a steady state analytical solution of the above model including deactivation term. The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence provides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.
Modeling of the anode side of a direct methanol fuel cell with analytical solutions
Mosquera, Martín A
2010-01-01
In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...
An analytical solution describing the shape of a yield stress material subjected to an overpressure
DEFF Research Database (Denmark)
Hovad, Emil; Spangenberg, Jon; Larsen, P.;
2016-01-01
Many fluids and granular materials are able to withstand a limited shear stress without flowing. These materials are known as yields stress materials. Previously, an analytical solution was presented to quantify the yield stress for such materials. The yields stress is obtained based on the density...... as well as the spread length and height of the material when deformed in a box due to gravity. In the present work, the analytical solution is extended with the addition of an overpressure that acts over the entire body of the material. This extension enables finding the shape of a yield stress material...... with known density and yield stress when for instance deformed under water or subjected to a forced air pressure....
Sakamoto, Y.; Vodenska, I.
2016-09-01
We investigate the Japanese banking crisis in the late 1990s with a simple network based mathematical model, which allows us to simulate the crisis as well as to obtain new perspective through analytic solution of our network model. We effectively identify the actual bankrupted banks and the robustness of the banking system using a simulation model based on properties of a bi-partite bank-asset network. We show the mean time property and analytical solution of the model revealing aggregate time dynamics of bank asset prices throughout the banking crisis. The results disclose simple but fundamental property of asset growth, instrumental for understanding the bank crisis. We also estimate the selling pressure for each asset type, derived from a Cascading Failure Model (CFM), offering new perspective for investigating the phenomenon of banking crisis.
An analytical solution for VOCs emission from multiple sources/sinks in buildings
Institute of Scientific and Technical Information of China (English)
DENG BaoQing; YU Bo; Chang Nyung KIM
2008-01-01
An analytical solution is presented to describe the emission/sorption of volatile organic compounds (VOCs) from/on multiple single-layer materials coexisting in buildings. The diffusion of VOCs within each material is described by a transient diffusion equation. All diffusion equations are coupled with each other through the equation of mass conservation in the air. The analytical solution is validated by the experimental data in literature, Compared to the one-material case, the coexistence of multiple materials may decrease the emission rate of VOCs from each material. The smaller the diffusion coef-ficient is, the more the emission rate decreases. Whether a material is a source or a sink in the case of multiple materials coexisting is not affected by the diffusion coefficient. For the case of multiple mate-rials with different partition coefficients, a material with a high partition coefficient may become a sink. This may promote the emission of VOCs from other materials.
Analytical Solution for the Size of the Minimum Dominating Set in Complex Networks
Nacher, Jose C
2016-01-01
Domination is the fastest-growing field within graph theory with a profound diversity and impact in real-world applications, such as the recent breakthrough approach that identifies optimized subsets of proteins enriched with cancer-related genes. Despite its conceptual simplicity, domination is a classical NP-complete decision problem which makes analytical solutions elusive and poses difficulties to design optimization algorithms for finding a dominating set of minimum cardinality in a large network. Here we derive for the first time an approximate analytical solution for the density of the minimum dominating set (MDS) by using a combination of cavity method and Ultra-Discretization (UD) procedure. The derived equation allows us to compute the size of MDS by only using as an input the information of the degree distribution of a given network.
Institute of Scientific and Technical Information of China (English)
CHEN Jiang-ying; CHEN Wei-qiu
2007-01-01
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media.The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.
AN ANALYTICAL SOLUTION OF KINEMATIC WAVE EQUATIONS FOR OVERLAND FLOW UNDER GREEN-AMPT INFILTRATION
Directory of Open Access Journals (Sweden)
Giorgio Baiamonte
2010-03-01
Full Text Available This paper deals with the analytical solution of kinematic wave equations for overland flow occurring in an infiltrating hillslope. The infiltration process is described by the Green-Ampt model. The solution is derived only for the case of an intermediate flow regime between laminar and turbulent ones. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to raindrop impact. With reference to the simple case of an impervious hillslope, a comparison was carried out between the present solution and the non-linear storage model. Some applications of the present solution were performed to investigate the effect of main parameter variability on the hillslope response. Particularly, the effect of hillslope geometry and rainfall intensity on the time to equilibrium is shown.
Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits
Sochi, Taha
2015-01-01
In this paper, analytical expressions correlating the volumetric flow rate to the pressure drop are derived for the flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin slits. The derivation is based on the application of Weissenberg-Rabinowitsch-Mooney-Schofield method to obtain flow solutions for generalized Newtonian fluids through pipes and our adaptation of this method to the flow through slits. The derived expressions are validated by comparing their solutions to the solutions obtained from direct numerical integration. They are also validated by comparison to the solutions obtained from the variational method which we proposed previously. In all the investigated cases, the three methods agree very well. The agreement with the variational method also lends more support to this method and to the variational principle which the method is based upon.
Solitary waves and their stability in colloidal media: semi-analytical solutions
Marchant, T R
2012-01-01
Spatial solitary waves in colloidal suspensions of spherical dielectric nanoparticles are considered. The interaction of the nanoparticles is modelled as a hard-sphere gas, with the Carnahan-Starling formula used for the gas compressibility. Semi-analytical solutions, for both one and two spatial dimensions, are derived using an averaged Lagrangian and suitable trial functions for the solitary waves. Power versus propagation constant curves and neutral stability curves are obtained for both cases, which illustrate that multiple solution branches occur for both the one and two dimensional geometries. For the one-dimensional case it is found that three solution branches (with a bistable regime) occur, while for the two-dimensional case two solution branches (with a single stable branch) occur in the limit of low background packing fractions. For high background packing fractions the power versus propagation constant curves are monotonic and the solitary waves stable for all parameter values. Comparisons are mad...
Unified Analytical Solution for Radial Flow to a Well in a Confined Aquifer
Mishra, Phoolendra Kumar
2011-01-01
Drawdowns generated by extracting water from a large diameter (e.g. water supply) well are affected by wellbore storage. We present an analytical solution in Laplace transformed space for drawdown in a uniform anisotropic aquifer caused by withdrawing water at a constant rate from a partially penetrating well with storage. The solution is back transformed into the time domain numerically. When the pumping well is fully penetrating our solution reduces to that of Papadopulos and Cooper [1967]; Hantush [1964] when the pumping well has no wellbore storage; Theis [1935] when both conditions are fulfilled and Yang et.al. [2006] when the pumping well is partially penetrating, has finite radius but lacks storage. We use our solution to explore graphically the effects of partial penetration, wellbore storage and anisotropy on time evolutions of drawdown in the pumping well and in observation wells.
Directory of Open Access Journals (Sweden)
Eskandari Jam Jafar
2014-12-01
Full Text Available In this paper, by using a semi-analytical solution based on multi-layered approach, the authors present the solutions of temperature, displacements, and transient thermal stresses in functionally graded circular hollow cylinders subjected to transient thermal boundary conditions. The cylinder has finite length and is subjected to axisymmetric thermal loads. It is assumed that the functionally graded circular hollow cylinder is composed of N fictitious layers and the properties of each layer are assumed to be homogeneous and isotropic. Time variations of the temperature, displacements, and stresses are obtained by employing series solving method for ordinary differential equation, Laplace transform techniques and a numerical Laplace inversion.
Semi analytical solution of second order fuzzy Riccati equation by homotopy perturbation method
Jameel, A. F.; Ismail, Ahmad Izani Md
2014-07-01
In this work, the Homotopy Perturbation Method (HPM) is formulated to find a semi-analytical solution of the Fuzzy Initial Value Problem (FIVP) involving nonlinear second order Riccati equation. This method is based upon homotopy perturbation theory. This method allows for the solution of the differential equation to be calculated in the form of an infinite series in which the components can be easily calculated. The effectiveness of the algorithm is demonstrated by solving nonlinear second order fuzzy Riccati equation. The results indicate that the method is very effective and simple to apply.
Analytical solution for a class of linear quadratic open-loop Nash game with multiple players
Institute of Scientific and Technical Information of China (English)
Xiaohong NIAN; Zhisheng DUAN; Wenyan TANG
2006-01-01
In this paper, the Nash equilibria for differential games with multiple players is studied. A method for solving the Riccati-type matrix differential equations for open-loop Nash strategy in linear quadratic game with multiple players is presented and analytical solution is given for a type of differential games in which the system matrixcan be diagonalizable. As the special cases, the Nash equilibria for some type of differential games with particular structure is studied also, and some results in previous literatures are extended. Finally, a numerical example is given to illustrate the effectiveness of the solution procedure.
Indian Academy of Sciences (India)
Ali S Wadi; Mourad F Dimian; Fayez N Ibrahim
2014-08-01
We present simple analytical solutions for the unsteady advection–dispersion equations describing the pollutant concentration (, ) in one dimension. The solutions are obtained by using Laplace transformation technique. In this study we divided the river into two regions ≤ 0 and ≥0 and the origin at = 0. The variation of (, ) with the time from = 0 up to → ∞ (the steady state case) is taken into account in our study. The special case for which the dispersion coefficient = 0 is studied in detail. The parameters controlling the pollutant concentration along the river are determined.
Analytical solution to the Riemann problem of 1D elastodynamics with general constitutive laws
Berjamin, H; Chiavassa, G; Favrie, N
2016-01-01
Under the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 x 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed.
A new analytic solution for 2nd-order Fermi acceleration
Mertsch, Philipp
2011-01-01
A new analytic solution for 2nd-order Fermi acceleration is presented. In particular, we consider time-dependent rates for stochastic acceleration, diffusive and convective escape as well as adiabatic losses. The power law index q of the turbulence spectrum is unconstrained and can therefore account for Kolmogorov (q = 5/3) and Kraichnan (q = 3/2) turbulence, Bohm diffusion (q = 1) as well as the hard-sphere approximation (q = 2). This considerably improves beyond solutions known to date and will prove a useful tool for more realistic modelling of 2nd-order Fermi acceleration in a variety of astrophysical environments.
Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement
Alliès, Laurent; Nadi, M
2008-01-01
This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.
Analytic Solution for Tachyon Condensation in Berkovits' Open Superstring Field Theory
Erler, Theodore
2013-01-01
We present an analytic solution for tachyon condensation on a non-BPS D-brane in Berkovits' open superstring field theory. The solution is presented as a product of $2\\times 2$ matrices in two distinct $GL_2$ subgroups of the open string star algebra. All string fields needed for for computation of the nonpolynomial action can be derived in closed form, and the action produces the expected non-BPS D-brane tension in accordance with Sen's conjecture. We also comment on how D-brane charges may be encoded in the topology of the tachyon vacuum gauge orbit.
An analytical solution to contaminant transport through composite liners with geomembrane defects
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
To investigate the performance of landfill composite liner system,a one-dimensional model was developed for solute transport through composite liners containing geomembrane defects.An analytical solution to the model was obtained by the method of Laplace transformation.The results obtained by the presented solution agree well with those obtained by the numerical method.Results show that leachate head and construction quality of geomembrane(GM) have significant influences on the performance of the composite liners for heavy metal ions.The breakthrough time of lead decreases from 50 a to 19 a when the leachate head increases from 0.3 m to 10 m.It is also indicated that the contaminant mass flux of volatile organic compounds(VOCs) induced by leakage can not be neglected in case of poor construction quality of the landfill barrier system.It is shown that diffusion coefficient and partition coefficient of GM have great influences on solute transport through composite liners for VOCs.The breakthrough time of heavy metal ions will be greatly overestimated if the effects of diffusion and adsorption of clay and geosynthetic clay liner(GCL) are neglected.The composite liner consisting of a geomembrane and a GCL provides a poor barrier for VOCs.The presented analytical solution is relatively simple to apply and can be used for preliminary design of composite liners,evaluating experimental results,and verifying more complex numerical models.
Xie, Dexuan; Volkmer, Hans W; Ying, Jinyong
2016-04-01
The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.
Analytical solution for the vertical profile of daily production in the ocean
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Morović, Mira
2016-05-01
Photosynthesis parameters are routinely estimated from in vitro measurements of primary production under constant light reaching each incubation bottle, by fitting a photosynthesis-irradiance function to the measurements. Here we take one such function and integrate it in time for variable light input, similar to natural conditions, to obtain the analytical solution for the vertical profile of daily phytoplankton production in the field. This solution is then fitted to in situ measurements of primary production profiles in the same manner as a photosynthesis-irradiance function is fitted to in vitro measurements under controlled and constant light conditions to retrieve the photosynthesis-irradiance parameters. The method is tested on the Hawaii Ocean Time-series data set. The solution explained 97.88% of the variance in measured normalized production at individual depths. The recovered parameters were then used to model the normalized daily water-column production. The model explained 99.21% of variance in normalized watercolumn production of the entire data set. The seasonal cycle of the photosynthesis parameters recovered with the analytical solution was further studied for the Hawaii Ocean Time-series. With respect to the photosynthesis parameter determination, the solution bridges the gap between classical photosynthesis-irradiance measurements under controlled light conditions and in situ measurements which are made under natural, variable light conditions. It presents a new tool for the estimation of photosynthesis parameters from in situ measurements of primary production.
Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong
2016-04-01
The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.
Directory of Open Access Journals (Sweden)
Constantin Bota
2014-01-01
Full Text Available The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method. The applications presented emphasize the high accuracy of the method by means of a comparison with previous results.
Analytical solutions to a compressible boundary layer problem with heat transfer
Institute of Scientific and Technical Information of China (English)
Liancun Zheng; Xinxin Zhang; Jicheng He
2004-01-01
The problem of momentum and heat transfer in a compressible boundary layer behind a thin expansion wave was solved by the application of the similarity transformation and the shooting technique. Utilizing the analytical expression of a two-point boundary value problem for momentum transfer, the energy boundary layer solution was represented as a function of the dimensionless velocity, and as the parameters of the Prandtl number, the velocity ratio, and the temperature ratio.
A multigroup radiation diffusion test problem: Comparison of code results with analytic solution
Energy Technology Data Exchange (ETDEWEB)
Shestakov, A I; Harte, J A; Bolstad, J H; Offner, S R
2006-12-21
We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.
Analytical solution of precessional switching in nanomagnets driven by hard-axis field pulses
Energy Technology Data Exchange (ETDEWEB)
D' Aquino, M., E-mail: daquino@uniparthenope.it [Engineering Department, University of Naples “Parthenope”, 80143 Naples (Italy); Perna, S.; Serpico, C. [DIETI, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD, 20742 (United States); Quercia, A. [DIETI, University of Naples Federico II, 80125 Naples (Italy)
2016-04-01
The precessional switching process of a magnetic nanoparticle subject to external field pulses applied along the hard-axis is considered. The critical field pulse amplitude necessary to realize the switching is determined. Then, the analytical solution of magnetization switching dynamics is derived in the lossless limit by using elliptic functions. Moreover, expressions for the field pulse duration tolerances which guarantee successful switching are also obtained. The theoretical predictions are verified by macrospin numerical simulations of ultra-fast magnetization switching.
Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits
Sochi, Taha
2015-01-01
In this paper, analytical expressions correlating the volumetric flow rate to the pressure drop are derived for the flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin slits. The derivation is based on the application of Weissenberg-Rabinowitsch-Mooney-Schofield method to obtain flow solutions for generalized Newtonian fluids through pipes and our adaptation of this method to the flow through slits. The derived expressions are validated by comparing th...
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
Alharthi, M. R.; Marchant, T. R.; Nelson, M. I.
2016-06-01
Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction-diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations.
An explicit closed-form analytical solution for European options under the CGMY model
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This "globalness" of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
Directory of Open Access Journals (Sweden)
Santosh Soni
2011-12-01
Full Text Available OnTARGET and MAP are examples of analytics-based solutions that were designed from the outset to address specific business challenges in the broad area of sales force productivity. Although they address different underlying issues, these solutions implement a common approach that is generally applicable to a broad class of operational challenges. Both solutions rely on rigorously defined data models that integrate all relevant data into a common database. Choices of the data to be included in the data model are driven both by end-user requirements as well as the need for relevant inputs to analytical models. Both business problems have a natural mapping to applications of predictive modeling: predicting the probability to purchase in the case of OnTARGET, and estimating the realistic revenue opportunity in the case of MAP. Delivering the underlying data and the analytic insights directly to frontline decision makers (sales representatives for OnTARGET and sales executives for MAP is crucial to driving business impact, and a significant effort has been invested in developing efficient web-based tools with the necessary supporting infrastructure. In this paper we discuss several aspects and analyze them.
Directory of Open Access Journals (Sweden)
Santosh Soni
2011-09-01
Full Text Available OnTARGET and MAP are examples of analytics-based solutions that were designed from the outset to address specific business challenges in the broad area of sales force productivity. Although they address different underlying issues, these solutions implement a common approach that is generally applicable to a broad class of operational challenges. Both solutions rely on rigorously defined data models that integrate all relevant data into a common database. Choices of the data to be included in the data model are driven both by end-user requirements as well as the need for relevant inputs to analytical models. Both business problems have a natural mapping to applications of predictive modeling: predicting the probability to purchase in the case of OnTARGET, and estimating the realistic revenue opportunity in the case of MAP. Delivering the underlying data and the analytic insights directly to frontline decision makers (sales representatives for OnTARGET and sales executives for MAP is crucial to driving business impact, and a significant effort has been invested in developing efficient web-based tools with the necessary supporting infrastructure. In this paper we discuss several aspects and analyze them.
Big data analytics as a service infrastructure: challenges, desired properties and solutions
Martín-Márquez, Manuel
2015-12-01
CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.
Starn, J. J.
2013-12-01
Particle tracking often is used to generate particle-age distributions that are used as impulse-response functions in convolution. A typical application is to produce groundwater solute breakthrough curves (BTC) at endpoint receptors such as pumping wells or streams. The commonly used semi-analytical particle-tracking algorithm based on the assumption of linear velocity gradients between opposing cell faces is computationally very fast when used in combination with finite-difference models. However, large gradients near pumping wells in regional-scale groundwater-flow models often are not well represented because of cell-size limitations. This leads to inaccurate velocity fields, especially at weak sinks. Accurate analytical solutions for velocity near a pumping well are available, and various boundary conditions can be imposed using image-well theory. Python can be used to embed these solutions into existing semi-analytical particle-tracking codes, thereby maintaining the integrity and quality-assurance of the existing code. Python (and associated scientific computational packages NumPy, SciPy, and Matplotlib) is an effective tool because of its wide ranging capability. Python text processing allows complex and database-like manipulation of model input and output files, including binary and HDF5 files. High-level functions in the language include ODE solvers to solve first-order particle-location ODEs, Gaussian kernel density estimation to compute smooth particle-age distributions, and convolution. The highly vectorized nature of NumPy arrays and functions minimizes the need for computationally expensive loops. A modular Python code base has been developed to compute BTCs using embedded analytical solutions at pumping wells based on an existing well-documented finite-difference groundwater-flow simulation code (MODFLOW) and a semi-analytical particle-tracking code (MODPATH). The Python code base is tested by comparing BTCs with highly discretized synthetic steady
Hayek, Mohamed; Kosakowski, Georg; Jakob, Andreas; Churakov, Sergey V.
2012-03-01
One of the challenging problems in mathematical geosciences is the determination of analytical solutions of nonlinear partial differential equations describing transport processes in porous media. We are interested in diffusive transport coupled with precipitation-dissolution reactions. Several numerical computer codes that simulate such systems have been developed. Analytical solutions, if they exist, represent an important tool for verification of numerical solutions. We present a methodology for deriving such analytical solutions that are exact and explicit in space and time variables. They describe transport of several aqueous species coupled to precipitation and dissolution of a single mineral in one, two, and three dimensions. As an application, we consider explicit analytical solutions for systems containing one or two solute species that describe the evolution of solutes and solid concentrations as well as porosity. We use one of the proposed analytical solutions to test numerical solutions obtained from two conceptually different reactive transport codes. Both numerical implementations could be verified with the help of the analytical solutions and show good agreement in terms of spatial and temporal evolution of concentrations and porosities.
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-10-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
Hilpert, Markus
2010-04-01
We derive new analytical solutions for liquid infiltration into a gas-filled capillary tube, whose inlet is connected to a liquid reservoir held at a constant pressure. We generalize the Lucas-Washburn theory to account for a model for dynamic contact angle that assumes the nonequilibrium Young force to depend linearly on the velocity of the gas-liquid interface. Like Lucas and Washburn, we neglect inertial forces. Using the Lambert function, we derive explicit analytical solutions for the interface position, velocity, and acceleration as a function of time. Consistent with previous work, which used more general models for dynamic contact angle, we can distinguish between five infiltration scenarios: horizontal infiltration, upward infiltration (capillary rise), as well as steady-state, accelerating, and decelerating downward infiltration. We determine the mutually exclusive conditions for the different infiltration scenarios to occur in terms of the nondimensional parameters that define the problem. Moreover, we develop 2D and 3D diagrams that show which parameter combination results in which infiltration scenario. Our analytical solutions are also valid in the limit where the dynamic contact angle becomes constant. For a constant contact angle, accelerating downward infiltration occurs only if the initial interface is not located at the tube inlet but further down the tube. For the special case in which the contact angle is constant, the liquid pressure at the tube inlet is equal to the gas pressure, and the interface is initially located at the tube inlet, our solution for upward infiltration is identical to a solution previously reported in the literature.
Capacity of the circular plate condenser: analytical solutions for large gaps between the plates
Rao, T. V.
2005-11-01
A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to {\\cal O}(\\tau^{-(2N+1)}) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to {\\cal O}(\\tau^{-9}) . Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N = 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the {\\cal O}(\\tau^{-9}) approximation predicts the capacity extremely well for any τ >= 2 and an {\\cal O}(\\tau^{-3}) approximation gives, for all practical purposes, results of adequate accuracy for τ >= 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to {\\cal O}(\\tau^{-6}) for τ >= 2.
An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures
Amadei, B.; Savage, W.Z.
2001-01-01
We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.
Danish, Mohammad; Kumar, Shashi; Kumar, Surendra
2012-03-01
Exact analytical solutions for the velocity profiles and flow rates have been obtained in explicit forms for the Poiseuille and Couette-Poiseuille flow of a third grade fluid between two parallel plates. These exact solutions match well with their numerical counter parts and are better than the recently developed approximate analytical solutions. Besides, effects of various parameters on the velocity profile and flow rate have been studied.
Hilpert, Markus
2010-11-01
In a preceding paper, we derived analytical solutions for the displacement of a gas by a liquid in horizontal and inclined capillary tubes where the tube inlet is connected to a liquid reservoir of constant pressure. We considered quite general models for the dynamic contact angle and were able to derive implicit equations for the velocity of the gas-liquid interface. These solutions allowed us to identify five different flow scenarios for liquid withdrawal that differed in the direction of flow and the sign of the acceleration of the gas-liquid interface. In this paper, we consider the special case where the dynamic contact angle is determined by a nonequilibrium Young force that depends linearly on the capillary number. Thus we can derive explicit and the more traditional implicit analytical solutions for both the position and the velocity of the gas-liquid interface. We also construct diagrams that allow us to predict which of the five flow scenarios will occur depending on the nondimensional parameters that define the problem. The diagrams can be combined with diagrams previously obtained for infiltration and the entire parameter space subdivided into regions that are associated with either liquid withdrawal, liquid infiltration, or metastable and stable equilibrium states. Our solutions are also valid within the limit where the contact angle is constant.
Dai, Hui-Hui
2011-01-01
A polymer network can imbibe water, forming an aggregate called hydrogel, and undergo large and inhomogeneous deformation with external mechanical constraint. Due to the large deformation, nonlinearity plays a crucial role, which also causes the mathematical difficulty for obtaining analytical solutions. Based on an existing model for equilibrium states of a swollen hydrogel with a core-shell structure, this paper seeks analytical solutions of the deformations by perturbation methods for three cases, i.e. free-swelling, nearly free-swelling and general inhomogeneous swelling. Particularly for the general inhomogeneous swelling, we introduce an extended method of matched asymptotics to construct the analytical solution of the governing nonlinear second-order variable-coefficient differential equation. The analytical solution captures the boundary layer behavior of the deformation. Also, analytical formulas for the radial and hoop stretches and stresses are obtained at the two boundary surfaces of the shell, ma...
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...... of the numerical Method of Auxiliary Sources for a range of scattering configurations....... with their singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy...
Analytical solution of the problem of the rise of a Taylor bubble
Zudin, Yuri B.
2013-05-01
In the classical works of Prandtl and Taylor devoted to the analysis of the problem of the rise of a Taylor bubble in a round tube, a solution of the Laplace equation is used, which contains divergent infinite series. The present paper outlines a method for the correct analysis of the mentioned problem. Using the method of superposition of "elementary flows," a solution was obtained for flow of an ideal fluid over a body of revolution in a pipe. Satisfying the free surface condition in the vicinity of the stagnation point and using the limiting transition with respect to the main parameter lead to the relation for the rise velocity of a Taylor bubble expressed in terms of the Froude number. In order to validate the method of superposition, it was applied to the problem of the rise of a plane Taylor bubble in a flat gap, which also has an exact analytical solution obtained with the help of the complex variable theory.
Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity
Hart-Smith, L. J.
1973-01-01
Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes
Solved problems in classical mechanics analytical and numerical solutions with comments
de Lange, O L
2010-01-01
Apart from an introductory chapter giving a brief summary of Newtonian and Lagrangian mechanics, this book consists entirely of questions and solutions on topics in classical mechanics that will be encountered in undergraduate and graduate courses. These include one-, two-, and three- dimensional motion; linear and nonlinear oscillations; energy, potentials, momentum, and angular momentum; spherically symmetric potentials; multi-particle systems; rigid bodies; translation androtation of the reference frame; the relativity principle and some of its consequences. The solutions are followed by a set of comments intended to stimulate inductive reasoning and provide additional information of interest. Both analytical and numerical (computer) techniques are used to obtain andanalyze solutions. The computer calculations use Mathematica (version 7), and the relevant code is given in the text. It includes use of the interactive Manipulate function which enables one to observe simulated motion on a computer screen, and...
Allen, Jeffrey S
2003-05-15
An analytical solution to the capillary equation of Young and Laplace is derived that allows determination of the static contact angle based on the volume of a sessile drop and the wetted area of the substrate. This solution does not require numerical integration to determine the drop profile and accounts for surface deformation due to gravitational effects. Calculation of the static contact angle by this method is remarkably simple and accurate when the contact angle is less than 30 degrees. A natural scaling arises in the solution, which provides indication of when a drop is small enough so as to neglect gravitational influences on the surface shape which, for small contact angles, is generally less than 1 microl. The technique described has the simplicity of the spherical cap approximation but remains accurate for any size of sessile drop.
Real analytic solutions for marginal deformations in open superstring field theory
Okawa, Yuji
2007-09-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction.
Real analytic solutions for marginal deformations in open superstring field theory
Okawa, Yuji
2007-01-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction.
Hilpert, Markus
2009-09-01
In a recent paper, we generalized Washburn's analytical solution for capillary flow in a horizontally oriented tube by accounting for a dynamic contact angle. In this paper, we derive solutions for flow in inclined tubes that account for gravity. We again consider two general models for dynamic contact angle: the uncompensated Young force on the contact line depends on the capillary number in the form of (1) a power law with exponent beta, or (2) a polynomial. A dimensional analysis shows that, aside from the parameters for the model for the uncompensated Young force, the problem is defined through four nondimensional parameters: (1) the advancing equilibrium contact angle, (2) the initial contact angle, (3) a Bond number, and (4) nondimensional liquid pressure at the tube inlet relative to the constant gas pressure. For both contact angle models, we derive analytical solutions for the travel time of the gas-liquid interface as a function of interface velocity. The interface position as a function of travel time can be obtained through numerical integration. For the power law and beta=1 (an approximation of Cox's model for dynamic contact angle), we obtain an analytical solution for travel time as a function of interface position, as Washburn did for constant contact angle. Four different flow scenarios may occur: the interface moves (1) upward and approaches the height of capillary rise, (2) downward with the steady-state velocity, (3) downward while approaching the steady-state velocity from an initially higher velocity, or (4) downward while approaching the steady-state velocity from an initially smaller velocity.
Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals
Wang, X.; Pan, E.
2008-05-01
We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6mm. A general solution is derived in terms of two functions \\varphi_1, \\varphi_2, which satisfy wave equations, and another harmonic function \\varphi_3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.
Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals
Indian Academy of Sciences (India)
X Wang; E Pan
2008-05-01
We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6. A general solution is derived in terms of two functions 1, 2, which satisfy wave equations, and another harmonic function 3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.
Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.
Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G
2011-08-28
The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).
Analytic solutions for colloid transport with time- and depth-dependent retention in porous media
Leij, Feike J.; Bradford, Scott A.; Sciortino, Antonella
2016-12-01
Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for aqueous and solid phase colloid concentrations in a porous medium where colloids were subject to advective transport and reversible time and/or depth-dependent retention. Time-dependent blocking and ripening retention were described using a Langmuir-type equation with a rate coefficient that respectively decreased and increased linearly with the retained concentration. Depth-dependent retention was described using a rate coefficient that is a power-law function of distance. The stream tube modeling concept was employed to extend these analytic solutions to transport scenarios with two different partitioning processes (i.e., two types of retention sites). The sensitivity of concentrations was illustrated for the various time- and/or depth-dependent retention model parameters. The developed analytical models were subsequently used to describe breakthrough curves and, in some cases, retention profiles from several published column studies that employed nanoparticle or pathogenic microorganisms. Simulations results provided valuable insights on causes for many observed complexities associated with colloid transport and retention, including: increasing or decreasing effluent concentrations with continued colloid application, delayed breakthrough, low concentration tailing, and retention profiles that are hyper-exponential, exponential, linear, or non-monotonic with distance.
Schulreich, Michael Mathias
2011-01-01
Aims: Bow shock waves are a common feature of groups and clusters of galaxies since they are generated as a result of supersonic motion of galaxies through the intergalactic medium. The goal of this work is to present an analytical solution technique for such astrophysical hypersonic blunt body problems. Methods: A method, developed by Schneider (1968, JFM, 31, 397) in the context of aeronautics, allows calculation of the galaxy's shape as long as the shape of the bow shock wave is known (so-called inverse method). In contrast to other analytical models, the solution is valid in the whole flow region (from the stagnation point up to the bow shock wings) and in particular takes into account velocity gradients along the streamlines. We compare our analytical results with two-dimensional hydrodynamical simulations carried out with an extended version of the VH-1 hydrocode which is based on the piecewise parabolic method with a Lagrangian remap. Results: It is shown that the applied method accurately predicts the...
Similarity solutions of vertical plane wall plume based on finite analytic method
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; ZENG Yu-hong
2007-01-01
The turbulent flow of vertical plane wall plume with concentration variation was studied with the finite analytical method. The k-epsilon model with the effect of buoyancy on turbulent kinetic energy and its dissipation rate was adopted. There were similarity solutions in the uniform environment for the system of equations including the equation of continuity, the equation of momentum along the flow direction and concentration, and equations of k, epsilon. The finite analytic method was applied to obtain the similarity solution. The calculated data of velocity, relative density difference, the kinetic energy of turbulence and its dissipation rate distribution for vertical plane plumes are in good agreement with the experimental data at the turbulent Schmidt number equal to 1.0. The variations of their maximum value along the direction of main flow were also given. It shows that the present model is good, i.e., the effect of buoyancy on turbulent kinetic energy and its dissipation rate should be taken into account, and the finite analytic method is effective.
Analytical solution of Boussinesq equations as a model of wave generation
Wiryanto, L. H.; Mungkasi, S.
2016-02-01
When a uniform stream on an open channel is disturbed by existing of a bump at the bottom of the channel, the surface boundary forms waves growing splitting and propagating. The model of the wave generation can be a forced Korteweg de Vries (fKdV) equation or Boussinesq-type equations. In case the governing equations are approximated from steady problem, the fKdV equation is obtained. The model gives two solutions representing solitary-like wave, with different amplitude. However, phyically there is only one profile generated from that process. Which solution is occured, we confirm from unsteady model. The Boussinesq equations are proposed to determine the stabil solution of the fKdV equation. From the linear and steady model, its solution is developed to determine the analytical solution of the unsteady equations, so that it can explain the physical phenomena, i.e. the process of the wave generation, wave splitting and wave propagation. The solution can also determine the amplitude and wave speed of the waves.
Navier-Stokes-Fourier analytic solutions for non-isothermal Couette slip gas flow
Directory of Open Access Journals (Sweden)
Milićev Snežana S.
2016-01-01
Full Text Available The explicit and reliable analytical solutions for steady plane compressible non-isothermal Couette gas flow are presented. These solutions for velocity and temperature are developed by macroscopic approach from Navier-Stokes-Fourier system of continuum equations and the velocity slip and the temperature jump first order boundary conditions. Variability of the viscosity and thermal conductivity with temperature is involved in the model. The known result for the gas flow with constant and equal temperatures of the walls (isothermal walls is verified and a new solution for the case of different temperature of the walls is obtained. Evan though the solution for isothermal walls correspond to the gas flow of the Knudsen number Kn≤0.1, i.e. to the slip and continuum flow, it is shown that the gas velocity and related shear stress are also valid for the whole range of the Knudsen number. The deviation from numerical results for the same system is less than 1%. The reliability of the solution is confirmed by comparing with results of other authors which are obtained numerically by microscopic approach. The advantage of the presented solution compared to previous is in a very simple applicability along with high accuracy. [Projekat Ministarstva nauke Republike Srbije, br. 35046 i 174014
Analytical solutions for reactive transport under an infiltration-redistribution cycle.
Severino, Gerardo; Indelman, Peter
2004-05-01
Transport of reactive solute in unsaturated soils under an infiltration-redistribution cycle is investigated. The study is based on the model of vertical flow and transport in the unsaturated zone proposed by Indelman et al. [J. Contam. Hydrol. 32 (1998) 77], and generalizes it by accounting for linear nonequilibrium kinetics. An exact analytical solution is derived for an irreversible desorption reaction. The transport of solute obeying linear kinetics is modeled by assuming equilibrium during the redistribution stage. The model which accounts for nonequilibrium during the infiltration and assumes equilibrium at the redistribution stage is termed partial equilibrium infiltration-redistribution model (PEIRM). It allows to derive approximate closed form solutions for transport in one-dimensional homogeneous soils. These solutions are further applied to computing the field-scale concentration by adopting the Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979) 461] column model. The effect of soil heterogeneity on the solute spread is investigated by modeling the hydraulic saturated conductivity as a random function of horizontal coordinates. The quality of the PEIRM is illustrated by calculating the critical values of the Damköhler number which provide the achievable accuracy in estimating the solute mass in the mobile phase. The distinguishing feature of transport during the infiltration-redistribution cycle as compared to that of infiltration only is the finite depth of solute penetration. For irreversible desorption, the maximum solute penetration W/theta(r) is determined by the amount of applied water W and the residual water content theta(r). For sorption-desorption kinetics, the maximum depth of penetration z(r)(e, infinity ) also depends on the ratio between the rate of application and the column-saturated conductivity. It is shown that z(r)(e, infinity ) is bounded between the depths W/(theta(r)+K(d)) and W/theta(r) corresponding to the maximum solute
Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary
Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing
2016-04-01
An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.
Analytic self-similar solutions of the Oberbeck-Boussinesq equations
Barna, I. F.; Mátyás, L.
2015-09-01
In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtoniain Navier-Stokes --- with Boussinesq approximation --- and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field has a strongly damped oscillating behavior which is an interesting feature.
Analytic self-similar solutions of the Oberbeck-Boussinesq equations
Barna, I F
2015-01-01
In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtoniain Navier-Stokes --- with Boussinesq approximation --- and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field has a strongly damped oscillating behavior which is an interesting feature.
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Latyshev, A V
2012-01-01
Analytical solution of second Stokes problem of behaviour of rarefied gas with Cercignani boundary accomodation conditions The second Stokes problem about behaviour of rarefied gas filling half-space is analytically solved. A plane, limiting half-space, makes harmonious fluctuations in the plane. The kinetic BGK-equation (Bhatnagar, Gross, Krook) is used. The boundary accomodation conditions of Cercignani of reflexion gaseous molecules from a wall are considered. Distribution function of the gaseous molecules is constructed. The velocity of gas in half-space is found, also its value direct at a wall is found. The force resistance operating from gas on border is found. Besides, the capacity of dissipation of the energy falling to unit of area of the fluctuating plate limiting gas is obtained.
Kia, T.; Longuski, J. M.
1984-01-01
Analytic error bounds are presented for the solutions of approximate models for self-excited near-symmetric rigid bodies. The error bounds are developed for analytic solutions to Euler's equations of motion. The results are applied to obtain a simplified analytic solution for Eulerian rates and angles. The results of a sample application of the range and error bound expressions for the case of the Galileo spacecraft experiencing transverse torques demonstrate the use of the bounds in analyses of rigid body spin change maneuvers.
Bars, Itzhak; Steinhardt, Paul J; Turok, Neil
2012-01-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null energy condition. There is a special subset of geodesically complete non-generic solutions which perform zero-size bounces without ever entering the antigravit...
Fock space, symbolic algebra, and analytical solutions for small stochastic systems
Santos, Fernando A. N.; Gadêlha, Hermes; Gaffney, Eamonn A.
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Institute of Scientific and Technical Information of China (English)
Wei-An Yao; Xiao-Fei Hu; Feng Xiao
2011-01-01
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.
Exact Analytical Solutions in Three-Body Problems and Model of Neutrino Generator
Directory of Open Access Journals (Sweden)
Takibayev N.Zh.
2010-04-01
Full Text Available Exact analytic solutions are obtained in three-body problem for the scattering of light particle on the subsystem of two ﬁxed centers in the case when pair potentials have a separable form. Solutions show an appearance of new resonance states and dependence of resonance energy and width on distance between two ﬁxed centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two heavy nuclei ﬁxed in nodes of crystalline lattice. It is shown that some resonance states have widths close to zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions between states. One of these transitions between three-body resonance states could be connected with process of electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading to the cooling of star without nuclear reactions is discussed.
Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas
Institute of Scientific and Technical Information of China (English)
L. P. Singh; S. D. Ram; D. B. Singh
2011-01-01
An analytical approach is used to construct the exact solution of the blast wave problem with generalized geometries in a non-ideal medium. It is assumed that the density ahead of the shock front varies according to a power of distance from the source of the blast wave. Also, an analytical expression for the total energy in a non-ideal medium is derived.%An analytical approach is used to construct the exact solution of the blast wave problem with generalized geometries in a non-ideal medium.It is assumed that the density ahead of the shock front varies according to a power of distance from the source of the blast wave.Also,an analytical expression for the total energy in a non-ideal medium is derived.Blast waves are common occurrences in the Earth's atmosphere.They result from a sudden release of a relatively large amount of energy.Typical examples are lightening and chemical or nuclear explosions.Assume that we have an explosion,following which there may exist a very small region filled with hot matter at high pressure in a duration,which starts to expand outwards with its front headed by a strong shock.The process generally takes place in a very short time after which a forward-moving shock wave develops,which continuously assimilates the ambient air into the blast wave.Although some of the explosive material may still remain near the center,the amount of the air absorbed increases with time,and the later behavior of the blast wave may well be represented by the model of the shock wave at the front and a purely gasdynamic treatment for the motion of the air inside,which may be assumed to have ideal and non-viscous adiabatic heat exponent.
Zharkova, V. V.; Dobranskis, R. R.
2016-06-01
In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.
Smyth, Katherine; Bathurst, Stephen; Sammoura, Firas; Kim, Sang-Gook
2013-08-01
In this work, the deflection equation of a piezoelectrically-driven micromachined ultrasonic transducer (PMUT) is analytically determined using a Green's function approach. With the Green's function solution technique, the deflection of a circular plate with an arbitrary circular/ring electrode geometry is explicitly solved for axisymmetric vibration modes. For a PMUT with one center electrode covering ≈60% of the plate radius, the Green's function solution compares well with existing piece-wise and energy-based solutions with errors of less than 1%. The Green's function solution is also simpler than them requiring no numerical integration, and applies to any number of axisymmetric electrode geometries. Experimentally measured static deflection data collected from a fabricated piezoelectric micro ultrasonic transducer (PMUT) is further used to validate the Green's function model analysis. The center deflection and deflection profile data agree well with the Green's function solution over a range of applied bias voltages (5 to 21 V) with the average error between the experimental and Green's function data less than 9%.
Benchmarking the invariant embedding method against analytical solutions in model transport problems
Directory of Open Access Journals (Sweden)
Wahlberg Malin
2006-01-01
Full Text Available The purpose of this paper is to demonstrate the use of the invariant embedding method in a few model transport problems for which it is also possible to obtain an analytical solution. The use of the method is demonstrated in three different areas. The first is the calculation of the energy spectrum of sputtered particles from a scattering medium without absorption, where the multiplication (particle cascade is generated by recoil production. Both constant and energy dependent cross-sections with a power law dependence were treated. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and in a half-space are interrelated through embedding-like integral equations, by the solution of which the flux reflected from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases, the invariant embedding method proved to be robust, fast, and monotonically converging to the exact solutions.
Colantoni, A; Boubaker, K
2014-01-30
In this paper Enhanced Variational Iteration Method, EVIM is proposed, along with the BPES, for solving Bratu equation which appears in the particular elecotrospun nanofibers fabrication process framework. Elecotrospun organic nanofibers, with diameters less than 1/4 microns have been used in non-wovens and filtration industries for a broad range of filtration applications in the last decade. Electro-spinning process has been associated to Bratu equation through thermo-electro-hydrodynamics balance equations. Analytical solutions have been proposed, discussed and compared.
Analytical solution of the Klein Gordon equation for a quadratic exponential-type potential
Ezzatpour, Somayyeh; Akbarieh, Amin Rezaei
2016-07-01
In this research study, analytical solutions of the Klein Gordon equation by considering the potential as a quadratic exponential will be presented. However, the potential is assumed to be within the framework of an approximation for the centrifugal potential in any state. The Nikiforov-Uvarov method is used to calculate the wave function, as well as corresponding exact energy equation, in bound states. We finally concluded that the quadratic exponential-type potential under which the results were deduced, led to outcomes that were comparable to the results obtained from the well-known potentials in some special cases.
Analytical Solutions of Time Periodic Electroosmotic Flow in a Semicircular Microchannel
Directory of Open Access Journals (Sweden)
Shaowei Wang
2015-01-01
Full Text Available The time periodic electroosmotic flow of Newtonian fluids through a semicircular microchannel is studied under the Debye–Hückel approximation. Analytical series of solutions are found, and they consist of a time-dependent oscillating part and a time-dependent generating or transient part. Some new physical phenomena are found. The electroosmotic flow driven by an alternating electric field is not periodic in time, but quasi-periodic. There is a phase shift between voltage and flow, which is only dependent on the frequency of external electric field.
Analytic solution for fluxons in a long Josephson junction with surface losses
DEFF Research Database (Denmark)
Sakai, S.; Pedersen, Niels Falsig
1986-01-01
Analytic solutions for a fluxon in a long Josephson junction in the presence of surface losses (β term) as well as shunt losses (α term) are obtained by assuming a triangular current-phase relation. This theoretical result provides exact information on fluxon properties (e.g., the line shape, vel......, velocity, etc.), independent of the magnitude of α and β. We find that if β is smaller than a critical value, the fluxon behavior is similar to that of the β=0 case, but if β is larger, quite different behavior is observed, particularly in the high-velocity region....
Institute of Scientific and Technical Information of China (English)
周登; 张澄
2002-01-01
The principle of the minimum energy dissipation rate is applied to toroidal plasmas with a coaxial direct current helicity injection. The relaxed states are analysed based on the analytical solutions of the resulting Euler-Lagrangian equations. Three typical states are found. The relaxed states are close to the Taylor state if the ratio of current density to magnetic field on the boundary is small enough. The states will deviate from the Taylor state when the ratio increases, but when it approaches a critical value the central part of relaxed plasmas may approach a force free state, and above the critical value both current and magnetic field may reverse in the central part.
SWASHES: a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies
Delestre, Olivier; Pierre-Antoine, Ksinant; Darboux, Frédéric; Christian, Laguerre; Vo, Thi Ngoc Tuoi; James, Francois; Cordier, Stephane
2013-01-01
A significant number of analytic solutions to the Shallow Water equations is discribed in a unified formalism. They encompass a wide variety of flow conditions (supercritical, subcritical, shock, etc.), in 1 or 2 space dimensions, with or without rain and soil friction, for transitory flow or steady state. An original feature is that the corresponding source codes are made available to the community (http://www.univ-orleans.fr/mapmo/soft/SWASHES), so that users of Shallow Water based models can easily find an adaptable benchmark library to validate numerical methods.
The Analytical Solution of the Schr\\"odinger Particle in Multiparameter Potential
Taş, Ahmet
2016-01-01
In this study, we present analytical solutions of the Schr\\"odinger equation with the Multiparameter potential containing the different types of physical potential via the asymptotic iteration method (AIM) by applying a Pekeris-type approximation to the centrifugal potential. For any n and l (states) quantum numbers, we get the bound state energy eigenvalues numerically and the corresponding eigenfunctions.Furthermore, we compare our results with the ones obtained in previous works and it is seen that our numerical results are in good agreement with the literature.
Motion of the charged test particles in Kerr-Newman-Taub-NUT spacetime and analytical solutions
Cebeci, Hakan; Özdemir, Nülifer; Şentorun, Seçil
2016-05-01
In this work, we study the motion of charged test particles in Kerr-Newman-Taub-NUT spacetime. We analyze the angular and the radial parts of the orbit equations and examine the possible orbit types. We also investigate the spherical orbits and their stabilities. Furthermore, we obtain the analytical solutions of the equations of motion and express them in terms of Jacobian and Weierstrass elliptic functions. Finally, we discuss the observables of the bound motion and calculate the perihelion shift and Lense-Thirring effect for the bound orbits.
Motion of the charged test particles in Kerr-Newman-Taub-NUT spacetime and analytical solutions
Cebeci, Hakan; Şentorun, Seçil
2015-01-01
In this work, we study the motion of charged test particles in Kerr-Newman-Taub-NUT spacetime. We analyze the angular and the radial parts of the orbit equations and examine the possible orbit types. We also investigate the spherical orbits and their stabilities. Furthermore, we obtain the analytical solutions of the equations of motion and express them in terms of Jacobian and Weierstrass elliptic functions. Finally, we discuss the observables of the bound motion and calculate the perihelion shift and Lense-Thirring effect for three dimensional bound orbits.
Soroushfar, Saheb; Saffari, Reza; Sahami, Ehsan
2016-07-01
In this paper, we consider the timelike and null geodesics around the static (GMGHS, magnetically charged GMGHS, electrically charged GMGHS) and the rotating (Kerr-Sen dilaton-axion) dilaton black holes. The geodesic equations are solved in terms of Weierstrass elliptic functions. To classify the trajectories around the black holes, we use the analytical solution and effective potential techniques and then characterize the different types of the resulting orbits in terms of the conserved energy and angular momentum. Also, using the obtained results we study astrophysical applications.
Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.
Institute of Scientific and Technical Information of China (English)
HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
Kazempour, Sobhan; Soroushfar, Saheb
2016-01-01
In this paper we add a compact dimension to Schwarzschild-(anti-) de sitter and Kerr-(anti-) de sitter spacetimes, which describes (rotating) black string-(anti-) de sitter spacetime. We study the geodesic motion of test particles and light rays in this spacetime. We present the analytical solutions of the geodesic equations in terms of Weierstrass elliptic and Kleinian sigma hyperelliptical functions. We also discuss the possible orbits and classify them according to particle's energy and angular momentum. Moreover, the obtained results, are compared to Schwarzschild-(anti-) de sitter and Kerr-(anti-) de sitter spacetimes.
Original analytic solution of a half-bridge modelled as a statically indeterminate system
Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra; Barhalescu, Mihaela
2016-12-01
The paper presents an original computer based analytical model of a half-bridge belonging to a circular settling tank. The primary unknown is computed using the force method, the coefficients of the canonical equation being calculated using either the discretization of the bending moment diagram in trapezoids, or using the relations specific to the polygons. A second algorithm based on the method of initial parameters is also presented. Analyzing the new solution we came to the conclusion that most of the computer code developed for other model may be reused. The results are useful to evaluate the behavior of the structure and to compare with the results of the finite element models.
Analytic, piecewise solution to the Lane-Emden equation for stars with complex density profiles
Miller, Jeff; Bogdanovic, Tamara
2017-01-01
The polytropic models of stars are used for a variety of applications in computational astrophysics. These are typically obtained by numerically solving the Lane-Emden equation for a star in hydrostatic equilibrium under assumption that the pressure and density within the star obey the polytropic equation of state. We present an efficient analytic, piecewise differentiable solution to the Lane-Emden equation which allows “stitching” of different polytropes to represent complex pressure and density profiles. This approach can be used to model stars with distinct properties in their cores and envelopes, such as the evolved red giant and horizontal branch stars.
An Explicit,Totally Analytic Solution of Laminar Viscous FLow over a Semi—Infinite Flat Plate
Institute of Scientific and Technical Information of China (English)
Shi－JunLIAO
1998-01-01
In this paper,a new kind of analytic technique for nonlinear problems,namely the Homotopy Analysis Method,is applied to give an explicit,totally analytic solution of the Blasius' flow.i.e.,the two dimensional (2D) laminar viscous flow over a semi-infinite flat plate.This analytic solution is valid in the whole region having physical meanings.To our knowledge,it is the first time in history that such a kind of explicit,totally analytic solution is given.This fact well verifies the great potential and validity of the Honmotopy Analysis Method as a kind of powerful analytic tool for nonlinear problems in science and engineering.
A New Rational Algebraic Approach to Find Exact Analytical Solutions to a (2+1)-Dimensional System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions.The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions,and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
A nonlinear model arising in the buckling analysis and its new analytic approximate solution
Energy Technology Data Exchange (ETDEWEB)
Khan, Yasir [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Mathematics; Al-Hayani, Waleed [Univ. Carlos III de Madrid, Leganes (Spain). Dept. de Matematicas; Mosul Univ. (Iraq). Dept. of Mathematics
2013-05-15
An analytical nonlinear buckling model where the rod is assumed to be an inextensible column and prismatic is studied. The dimensionless parameters reduce the constitutive equation to a nonlinear ordinary differential equation which is solved using the Adomian decomposition method (ADM) through Green's function technique. The nonlinear terms can be easily handled by the use of Adomian polynomials. The ADM technique allows us to obtain an approximate solution in a series form. Results are presented graphically to study the efficiency and accuracy of the method. To the author's knowledge, the current paper represents a new approach to the solution of the buckling of the rod problem. The fact that ADM solves nonlinear problems without using perturbations and small parameters can be judged as a lucid benefit of this technique over the other methods. (orig.)
Institute of Scientific and Technical Information of China (English)
Wang Teng; Wang Kuihua; Xie Kanghe
2001-01-01
The vibration problem of a pile of arbitrary segments with variable modulus under exciting force is established, in which the influence of the soil under pile toe and the surroundings is taken into account. With Laplace transforms, the transmit functions for velocity and displacement of pile are derived. Furthermore, in terms of the convolution theorem and inversed Laplace transform, an analytical solution for the time domain response of a pile subjected to a semi-sine impulse is developed,which is the theoretical basis of the sonic method in pile integrity testing. Based on the solution, the vibration properties of pile with sharp or continuous modulus are studied. The validity of this approach is verified through fidd dynamic tests on some engineering piles. It shows that the theoretical prediction and the response of the pile are in good agreement.
Directory of Open Access Journals (Sweden)
Md. Alal Hosen
2015-01-01
Full Text Available In the present paper, a complicated strongly nonlinear oscillator with cubic and harmonic restoring force, has been analysed and solved completely by harmonic balance method (HBM. Investigating analytically such kinds of oscillator is very difficult task and cumbersome. In this study, the offered technique gives desired results and to avoid numerical complexity. An excellent agreement was found between approximate and numerical solutions, which prove that HBM is very efficient and produces high accuracy results. It is remarkably important that, second-order approximate results are almost same with exact solutions. The advantage of this method is its simple procedure and applicable for many other oscillatory problems arising in science and engineering.
Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution.
McCullagh, Peter; Lake, Peter T; McCullagh, Martin
2016-09-13
An analytic method to assign optimal coarse-grained charges based on electrostatic potential matching is presented. This solution is the infinite size and density limit of grid-integration charge-fitting and is computationally more efficient by several orders of magnitude. The solution is also minimized with respect to coarse-grained positions which proves to be an extremely important step in reproducing the all-atom electrostatic potential. The joint optimal-charge optimal-position coarse-graining procedure is applied to a number of aggregating proteins using single-site per amino acid resolution. These models provide a good estimate of both the vacuum and Debye-Hückel screened all-atom electrostatic potentials in the vicinity and in the far-field of the protein. Additionally, these coarse-grained models are shown to approximate the all-atom dimerization electrostatic potential energy of 10 aggregating proteins with good accuracy.
Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating
Abbas, Ibrahim A.; Marin, Marin
2017-03-01
In this article, we consider the problem of a two-dimensional thermoelastic half-space in the context of generalized thermoelastic theory with one relaxation time. The surface of the half-space is taken to be traction free and thermally insulated. The solution of the considered physical quantity can be broken down in terms of normal modes. The nonhomogeneous basic equations have been written in the form of a vector-matrix differential equation, which is then solved by an eigenvalue approach. The exact analytical solution is adopted for the temperature, the components of displacement and stresses. The results obtained are presented graphically for the effect of laser pulse to display the phenomena physical meaning. The graphical results indicate that the thermal relaxation time has a great effect on the temperature, the components of displacement and the components of stress.
Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-01-15
A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.
Malkov, M A
2016-01-01
An analytic solution for a Fokker-Planck equation that describes propagation of energetic particles through a scattering medium is obtained. The solution is found in terms of an infinite series of mixed moments of particle distribution. The spatial dispersion of a particle cloud released at t=0 evolves through three phases, ballistic (t>Tc), where Tc is the collision time.The ballistic phase is characterized by a decelerating expansion of the initial point source in form of "box" distribution with broadening walls. The next, transdiffusive phase is marked by the box walls broadened to its size and a noticeable slow down of expansion. Finally, the evolution enters the conventional diffusion phase.
Analytical quality-by-design approach for sample treatment of BSA-containing solutions
Institute of Scientific and Technical Information of China (English)
Lien Taevernier; Evelien Wynendaele; Matthias D’Hondt; Bart De Spiegeleer
2015-01-01
The sample preparation of samples containing bovine serum albumin (BSA), e.g., as used in transdermal Franz diffusion cell (FDC) solutions, was evaluated using an analytical quality-by-design (QbD) approach. Traditional precipitation of BSA by adding an equal volume of organic solvent, often successfully used with conventional HPLC-PDA, was found insufficiently robust when novel fused-core HPLC and/or UPLC-MS methods were used. In this study, three factors (acetonitrile (%), formic acid (%) and boiling time (min)) were included in the experimental design to determine an optimal and more suitable sample treatment of BSA-containing FDC solutions. Using a QbD and Derringer desirability (D) approach, combining BSA loss, dilution factor and variability, we constructed an optimal working space with the edge of failure defined as Do0.9. The design space is modelled and is confirmed to have an ACN range of 8373%and FA content of 170.25%.
Zhao, Yu-Long; Zhang, Lie-Hui; Chen, Jun; Li, Long-Xin; Zhou, Yuan
2014-08-01
A novel mathematical model for single-phase fluid flow from unconsolidated formations to a horizontal well with the consideration of stress-sensitive permeability is presented. The model assumes the formation permeability is an exponential function of the pore pressure. Using a perturbation technique, the model is solved for either constant pressure or constant flux or infinite lateral boundary conditions with closed top and bottom boundaries. Through Laplace transformation, finite Fourier transformation and numerical inversion methods, the solutions are obtained and the pressure response curves are analyzed. The agreement between the analytical solutions in this paper and the numerical results from commercial software (Saphir) is excellent, which manifests the accuracy of the results derived in this paper.
An Analytical Solution Applied to Heat and Mass Transfer in a Vibrated Fluidised Bed Dryer
Energy Technology Data Exchange (ETDEWEB)
Picado, Apolinar
2011-07-01
A mathematical model for the drying of particulate solids in a continuous vibrated fluidised bed dryer was developed and applied to the drying of grain wetted with a single liquid and porous particles containing multicomponent liquid mixtures. Simple equipment and material models were applied to describe the process. In the plug-flow equipment model, a thin layer of particles moving forward and well mixed in the direction of the gas flow was regarded; thus, only the longitudinal changes of particle moisture content and composition as well as temperature along the dryer were considered. Concerning the material model, mass and heat transfer in a single isolated particle was studied. For grain wetted with a single liquid, mass and heat transfer within the particles was described by effective transfer coefficients. Assuming a constant effective mass transport coefficient and effective thermal conductivity of the wet particles, analytical solutions of the mass and energy balances were obtained. The variation of both transport coefficients along the dryer was taken into account by a stepwise application of the analytical solution in space intervals with non-uniform inlet conditions and averaged coefficients from previous locations in the dryer. Calculation results were verified by comparison with experimental data from the literature. There was fairly good agreement between experimental data and simulation but the results depend strongly on the correlation used to calculate heat and mass transfer coefficients. For the case of particles containing a multicomponent liquid mixture dried in the vibrated fluidised bed dryer, interactive diffusion and heat conduction were considered the main mechanisms for mass and heat transfer within the particles. Assuming a constant matrix of effective multicomponent diffusion coefficients and thermal conductivity of the wet particles, analytical solutions of the diffusion and conduction equations were obtained. The equations for mass
Tso, C. P.; Chan, B. K.; Hashim, M. A.
1991-04-01
Analytical solutions are presented to the near-neutral atmospheric surface energy balance with the new approach of including the participation of heat storage in the building substrate. Analytical solutions are also presented for the first time for the case without heat storage effect. By a linearization process, the governing equations are simplified to a set of time-dependent, linear, first-order equations from which explicit solutions are readily obtainable. The results compare well with those obtained by numerical solutions upon the set without linearization when applied to the tropical city of Kuala Lumpur, Malaysia.
Directory of Open Access Journals (Sweden)
J.-S. Chen
2011-04-01
Full Text Available This study presents a generalized analytical solution for one-dimensional solute transport in finite spatial domain subject to arbitrary time-dependent inlet boundary condition. The governing equation includes terms accounting for advection, hydrodynamic dispersion, linear equilibrium sorption and first order decay processes. The generalized analytical solution is derived by using the Laplace transform with respect to time and the generalized integral transform technique with respect to the spatial coordinate. Several special cases are presented and compared to illustrate the robustness of the derived generalized analytical solution. Result shows an excellent agreement. The analytical solutions of the special cases derived in this study have practical applications. Moreover, the derived generalized solution which consists an integral representation is evaluated by the numerical integration to extend its usage. The developed generalized solution offers a convenient tool for further development of analytical solution of specified time-dependent inlet boundary conditions or numerical evaluation of the concentration field for arbitrary time-dependent inlet boundary problem.
Analytical Solution for Three-Dimensional Capture Zone of a Slanted Well
Zhou, Yu-Hui; Chen, Chia-Shyun
2016-04-01
It is rather impractical to install vertical wells inside a building for the sake of dealing with groundwater contamination under the building. Slant wells, however, provide an alternative because they can be drilled with a θ angle (with respect to the horizontal surface) from the edge of the building foundation to the target aquifer. Herein, a steady-state, analytical solution is developed for the three-dimensional (3D) capture zone created by a slant well pumping under the influence of a uniform regional flow field of a constant hydraulic gradient, i. The aquifer is assumed to be confined, homogeneous with a vertical anisotropy ratio, κ(Kx /Kz ≤ 1). The 3D capture zone is the largest when the slant well is in the same direction of +i, and the smallest when the slant well is in the direction at a right angle to +i; other conditions remain the same. Decreasingκ compresses the 3D capture zone in the vertical direction while elongates its horizontal extent. The stagnation point moves upward and closer to the slant well screen when i increases. Application of the linear superposition principle to this 3D analytical solution can yield information for various conditions that involve multiple slant wells with different orientation and θ angles, providing a useful understanding of how to employ slant wells to withdraw contaminated groundwater that cannot be done using the conventional vertical wells.
Sharma, Pankaj; Parashar, Sandeep Kumar
2016-05-01
The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.
Energy Technology Data Exchange (ETDEWEB)
Silva, Milena W. Da; Vilhena, Marco T. de; Bodmann, Bardo E., E-mail: milena.wollmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardobodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Leite, Sergio B., E-mail: bogado@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RS (Brazil)
2013-07-01
In this work, we report on an analytical representation for the solution of the neutron point kinetics equation, free of stiffness and assuming that the reactivity is a continuous or sectionally continuous function of time. To this end, we cast the point kinetics equation in a first order linear differential equation. Next, we split the corresponding matrix into a diagonal matrix plus a matrix that contains the remaining terms. Expanding the neutron density and the delayed neutron precursors concentrations in a truncated series, allows one to construct a recursive system, in form of a first order matrix differential equation with source. The initialization of the recursion procedure is of diagonal form and has no source, but satisfies the initial conditions. The remaining equations are subject to null initial conditions and include the time dependent diagonal elements together with the off diagonal elements as a source term. The solution is obtained in analytical representation which may be evaluated for any time value, because it is free of stiffness. We present numerical simulations and comparisons against results from the literature, for a constant, a step, a ramp, a quadratic and sine shaped reactivity function. (author)
Analytical solutions of heat transfer for laminar flow in rectangular channels
Directory of Open Access Journals (Sweden)
Rybiński Witold
2014-12-01
Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
Application of the homotopy method for analytical solution of non-Newtonian channel flows
Energy Technology Data Exchange (ETDEWEB)
Roohi, Ehsan [Department of Aerospace Engineering, Sharif University of Technology, PO Box 11365-8639, Azadi Avenue, Tehran (Iran, Islamic Republic of); Kharazmi, Shahab [Department of Mechanical Engineering, Sharif University of Technology, PO Box 11365-8639, Azadi Avenue, Tehran (Iran, Islamic Republic of); Farjami, Yaghoub [Department of Computer Engineering, University of Qom, Qom (Iran, Islamic Republic of)], E-mail: roohi@sharif.edu
2009-06-15
This paper presents the homotopy series solution of the Navier-Stokes and energy equations for non-Newtonian flows. Three different problems, Couette flow, Poiseuille flow and Couette-Poiseuille flow have been investigated. For all three cases, the nonlinear momentum and energy equations have been solved using the homotopy method and analytical approximations for the velocity and the temperature distribution have been obtained. The current results agree well with those obtained by the homotopy perturbation method derived by Siddiqui et al (2008 Chaos Solitons Fractals 36 182-92). In addition to providing analytical solutions, this paper draws attention to interesting physical phenomena observed in non-Newtonian channel flows. For example, it is observed that the velocity profile of non-Newtonian Couette flow is indistinctive from the velocity profile of the Newtonian one. Additionally, we observe flow separation in non-Newtonian Couette-Poiseuille flow even though the pressure gradient is negative (favorable). We provide physical reasoning for these unique phenomena.
Analytical solution for beam with time-dependent boundary conditions versus response spectrum
Energy Technology Data Exchange (ETDEWEB)
Gou, P.F.; Panahi, K.K. [GE Nuclear Energy, San Jose, CA (United States)
2001-07-01
This paper studies the responses of a uniform simple beam for which the supports are subjected to time-dependent conditions. Analytical solution in terms of series was presented for two cases: (1) Two supports of a simple beam are subjected to a harmonic motion, and (2) One of the two supports is stationary while the other is subjected to a harmonic motion. The results of the analytical solution were investigated and compared with the results of conventional response spectrum method using the beam finite element model. One of the applications of the results presented in this paper can be used to assess the adequacy and accuracy of the engineering approaches such as response spectra methods. It has been found that, when the excitation frequency equals the fundamental frequency of the beam, the results from response spectrum method are in good agreement with the exact calculation. The effects of initial conditions on the responses are also examined. It seems that the non-zero initial velocity has pronounced effects on the displacement time histories but it has no effect on the maximum accelerations. (author)
Hrabe, J.; Lewis, D. P.
2004-03-01
A fairly general theoretical model for pulsed arterial spin labeling perfusion methods has been available for some time but analytical solutions were derived for only a small number of arterial blood input functions. These mostly assumed a sudden and simultaneous arrival of the tagged blood into the imaged region. More general cases had to be handled numerically. We present analytical solutions for two more realistic arterial input functions. They both allow the arrival times of the molecules of tagged arterial blood to be statistically distributed. We consider cases of (1) a uniform distribution on a finite time interval and (2) a normal distribution characterized by its mean and standard deviation. These models are physiologically meaningful because the statistical nature of the arrival times reflects the distribution of velocities and path lengths that the blood water molecules undertake from the tagging region to the imaged region. The model parameters can be estimated from the measured dependency of the perfusion signal on the tag inversion time.
Analytical solution to the circularity problem in the discounted cash flow valuation framework
Directory of Open Access Journals (Sweden)
Felipe Mejía-Peláez
2011-12-01
Full Text Available In this paper we propose an analytical solution to the circularity problem between value and cost of capital. Our solution is derived starting from a central principle of finance that relates value today to value, cash flow, and the discount rate for next period. We present a general formulation without circularity for the equity value (E, cost of levered equity (Ke, levered firm value (V, and the weighted average cost of capital (WACC. We furthermore compare the results obtained from these formulas with the results of the application of the Adjusted Present Value approach (no circularity and the iterative solution of circularity based upon the iteration feature of a spreadsheet, concluding that all methods yield exactly the same answer. The advantage of this solution is that it avoids problems such as using manual methods (i.e., the popular “Rolling WACC” ignoring the circularity issue, setting a target leverage (usually constant with the inconsistencies that result from it, the wrong use of book values, or attributing the discrepancies in values to rounding errors.
Analytic solutions for Wheeler-Feynman interaction: Two bodies in straight-line motion
Stephas, Paul
1992-02-01
Analytic solutions are obtained for two point particles with any total energy that have charges of like sign and whose motions are confined to one dimension. These solutions are obtained by explicitly deriving the conserved quantities associated with Wheeler-Feynman interactions into forms that do not contain integrals but, rather, contain ``partial contributions'' to the momenta and potentials of particle two. The resulting conserved energy, momentum, and Lorentz momentum equations are separated in time to yield one set of equations with variables t1 and t2- (retarded) and another set with variables t1 and t1+ (advanced). These are solved to obtain auxiliary solutions x1r(t1) and x1a(t1), which are then combined for the case m1 = m2 to give the actual world lines x1(t1) and x2(t2). Comparison is made with a previous computer-generated exact solution for the same interaction and energy; good qualitative agreement is found, although some quantitative differences persist.
Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation
Directory of Open Access Journals (Sweden)
Abdon Atangana
2014-01-01
Full Text Available The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole. This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is assumed. Proposition for uncertainties in groundwater studies was given.
Analytical solution and meaning of feasible regions in two-component three-way arrays.
Omidikia, Nematollah; Abdollahi, Hamid; Kompany-Zareh, Mohsen; Rajkó, Róbert
2016-10-01
Although many efforts have been directed to the development of approximation methods for determining the extent of feasible regions in two- and three-way data sets; analytical determination (i.e. using only finite-step direct calculation(s) instead of the less exact numerical ones) of feasible regions in three-way arrays has remained unexplored. In this contribution, an analytical solution of trilinear decomposition is introduced which can be considered as a new direct method for the resolution of three-way two-component systems. The proposed analytical calculation method is applied to the full rank three-way data array and arrays with rank overlap (a type of rank deficiency) loadings in a mode. Close inspections of the analytically calculated feasible regions of rank deficient cases help us to make clearer the information gathered from multi-way problems frequently emerged in physics, chemistry, biology, agricultural, environmental and clinical sciences, etc. These examinations can also help to answer, e.g., the following practical question: "Is two-component three-way data with proportional loading in a mode actually a three-way data array?" By the aid of the additional information resulted from the investigated feasible regions of two-component three-way data arrays with proportional profile in a mode, reasons for the inadequacy of the seemingly trilinear data treatment methods published in the literature (e.g., U-PLS/RBL-LD that was used for extraction of quantitative and qualitative information reported by Olivieri et al. (Anal. Chem. 82 (2010) 4510-4519)) could be completely understood.
An analytical solution for a partially wetting puddle and the location of the static contact angle.
Elena Diaz, M; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D
2010-08-01
A model is formulated for a static puddle on a horizontal substrate taking account of capillarity, gravity and disjoining pressure arising from molecular interactions. There are three regions of interest--the molecular, transition and capillary regions with characteristic film thickness, hm, ht and hc. An analytical solution is presented for the shape of the vapour-liquid interface outside the molecular region where interfacial tension can be assumed constant. This solution is used to shed new light on the static contact angle and, specifically, it is shown that. (i) There is no point in the vapour-liquid interface where the angle of inclination, theta, is identically equal to the static contact angle, theta(o), but the angle at the point of null curvature is the closest with the difference of O(epsilon2) where epsilon2 = ht/hc is a small parameter. (ii) The liquid film is to O(epsilon) a wedge of angle theta(o) extending from a few nanometers to a few micrometers of the contact line. A second analytical solution for the shape of interface within the molecular region reveals that cos theta has a logarithmic variation with film thickness, cos theta=cos theta-ln[1-h2(m)/2h2]. The case, hm = 0, is of special significance since it refers to a unique configuration in which the effect of molecular interactions vanishes, disjoining pressure is everywhere zero and the vapour-liquid interface is now described exactly by the Young-Laplace equation and includes a wedge of angle, theta(o), extending down to the solid substrate.
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Sharif, Ahmed
1997-12-31
The reservoir up-scaling problem has been receiving increased attention in recent years. Over the past decade or so, there has been increasing interest in development of computationally efficient methods to determine effective properties or permeability. Those properties were traditionally computed from detailed numerical solutions of the actual reservoir realization. This is an indirect approach requiring substantial computer resources particularly in 3D problems in which the number of grid-blocks often become impractically large. A contrasting strategy is the direct approach in which the effective properties are computed directly from the statistical description of the medium without the aid of an actual reservoir realization. This method will be particularly important for multiphase problems. Among the direct methods, a particularly promising one which motivated this study, is the self-consistent approximation for determining the electric conductivity of heterogeneous media and multiphase materials. In reservoir engineering context, the self-consistent approximation has been recently applied to determine effective permeabilities. This approximation needs analytical solutions for the fluctuation of pressure created in an otherwise homogeneous matrix of infinite dimensions by the submersion of inclusions. The existing solutions are based on models which have limitations on the orientation of permeability tensors and perhaps largely in the geometry of the inclusions. Mathematical models have been developed which strongly generalize the existing inclusion models serving as a basis for the self-consistent approximation. 21 refs., 9 figs., 2 tabs.
On analytic solutions of wave equations in regular coordinate systems on Schwarzschild background
Philipp, Dennis
2015-01-01
The propagation of (massless) scalar, electromagnetic and gravitational waves on fixed Schwarzschild background spacetime is described by the general time-dependent Regge-Wheeler equation. We transform this wave equation to usual Schwarzschild, Eddington-Finkelstein, Painleve-Gullstrand and Kruskal-Szekeres coordinates. In the first three cases, but not in the last one, it is possible to separate a harmonic time-dependence. Then the resulting radial equations belong to the class of confluent Heun equations, i.e., we can identify one irregular and two regular singularities. Using the generalized Riemann scheme we collect properties of all the singular points and construct analytic (local) solutions in terms of the standard confluent Heun function HeunC, Frobenius and asymptotic Thome series. We study the Eddington-Finkelstein case in detail and obtain a solution that is regular at the black hole horizon. This solution satisfies causal boundary conditions, i.e., it describes purely ingoing radiation at $r=2M$. ...
An analytical solution of the Fokker-Planck equation in the phase-locked loop transient analysis
Zhang, Weijian
1987-01-01
A probabilistic approach is used to obtain an analytical solution to the Fokker-Planck equation used in the transient analysis of the phase-locked loop phase error process of the first-order phase-locked loop. The solution procedure, which is based on the Girsanov transformation, is described.
Hayek, Mohamed; Kosakowski, Georg; Churakov, Sergey
2011-07-01
We present exact analytical solutions for a one-dimensional diffusion problem coupled with the precipitation-dissolution reaction ? and feedback of porosity change. The solutions are obtained in the form of traveling waves and describe spatial and temporal evolutions of solute concentration, porosity, and mineral distribution for a set of initial and boundary conditions. The form of the solutions limits the choice of admissible boundary conditions, which might be difficult to adapt in natural systems, and thus, the solutions are of limited use for such a system. The main application of the derived solutions is therefore the benchmarking of numerical reactive transport codes for systems with strong porosity change. To test the performance of numerical codes, numerical solutions obtained by using a global implicit finite volume technique are compared to the analytical solutions. Good agreement is obtained between the analytical solutions and the numerical solutions when a sufficient spatial discretization resolves the spatial concentration gradients at any time. In the limit of fast kinetics (local equilibrium), steep concentration fronts cannot be resolved in a numerical discretization schema.
Analytical solution for stress and deformation of the mining floor based on integral transform
Institute of Scientific and Technical Information of China (English)
Feng Qiang; Jiang Binsong
2015-01-01
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an exca-vation stress field. Based on this feature, we firstly established a mechanics analytical model of the min-ing floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation, obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an exam-ple show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor;and that the maximum and min-imum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3D to simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the
Analytical solutions for thermal forcing vortices in boundary layer and its applications
Institute of Scientific and Technical Information of China (English)
LIU Xiao-ran; LI Guo-ping
2007-01-01
Using the Boussinesq approximation, the vortex in the boundary layer is assumed to be axisymmetrical and thermal-wind balanced system forced by diabatic heating and friction, and is solved as an initial-value problem of linearized vortex equation set in cylindrical coordinates. The impacts of thermal forcing on the flow field structure of vortex are analyzed. It is found that thermal forcing has significant impacts on the flow field structure, and the material representative forms of these impacts are closely related to the radial distribution of heating. The discussion for the analytical solutions for the vortex in the boundary layer can explain some main structures of the vortex over the Tibetan Plateau.
A finite volume method for cylindrical heat conduction problems based on local analytical solution
Li, Wang
2012-10-01
A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.
An analytical solution for stability-performance dilemma of hydronic radiators
DEFF Research Database (Denmark)
Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik
2013-01-01
Thermostatic radiator valves (TRV) have proved their significant contribution in energy savings for several years. However, at low heat demand conditions, an unstable oscillatory behavior is usually observed and well known for these devices. This closed-loop instability is due to the nonlinear...... dynamics of the radiator which result in a large time constant and a large gain for the radiator at small flow rates. In order to improve stability of radiators under the low demand circumstance, one way is to replace the fixed-parameter controller of TRV with an adaptive controller. This paper presents...... a gain scheduling controller based on a proposed linear parameter varying model of radiator dynamics. The model is parameterized based on the operating flow rate, room temperature and radiator specifications. Parameters of the model are derived based on the proposed analytic solution that describes...
Semi-analytic Solution of Steady Temperature Fields During Thin Plate Welding
Institute of Scientific and Technical Information of China (English)
DAI Yao; TAN Wei; SUN Qi; SUN Chang-qing
2006-01-01
Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numerical example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.
Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential
Aslanzadeh, M.; Rajabi, A. A.
2016-03-01
We have investigated in this paper the few-body bound systems in a simple semi-relativistic scheme. For this aim, we introduced a spin independent relativistic description for a few-identical body system by presenting the analytical solution of few-particle Klein-Gordon equation. Performing calculations in D-dimensional configuration on the basis of the hypercentral approach, we reduced the few-body Klein-Gordon equation to a Schrödinger-like form. This equation is solved by using the Nikiforov-Uvarov method, through which the energy equations and eigenfunctions for a few-body bound system are obtained. We used the spin- and isospin-independent generalized Yukawa potential in our calculations, and the dependence of the few-body binding energies on the potential parameters has been investigated.
Analytical Solution for Predicting In-plane Elastic Shear Properties of 2D Orthogonal PWF Composites
Institute of Scientific and Technical Information of China (English)
CHENG Xu; XIONG Junjiang; BAI Jiangbo
2012-01-01
This paper proposes a new analytical solution to predict the shear modulus of a two-dimensional (2D) plain weave fabric (PWF) composite accounting for the interaction of orthogonal interlacing strands with coupled shear deformation modes including not only relative bending but also torsion,etc.The two orthogonal yams in a micromechanical unit cell are idealized as curved beams with a path depicted by using sinusoidal shape functions.The intemal forces and macroscopic deformations carried by the yarn families,together with macroscopic shear modulus of PWFs are derived by means of a strain energy approach founded on micromechanics.Three sets of experimental data pertinent to three kinds of 2D orthogonal PWF composites have been implemented to validate the new model.The calculations from the new model are also compared with those by using two models in the earlier literature.It is shown that the experimental results correlate well with predictions from the new model.
Analytical solution of conjugate turbulent forced convection boundary layer flow over plates
Directory of Open Access Journals (Sweden)
Joneydi Shariatzadeh Omid
2016-01-01
Full Text Available A conjugate (coupled forced convection heat transfer from a heated conducting plate under turbulent boundary layer flow is considered. A heated plate of finite thickness is cooled under turbulent forced convection boundary layer flow. Because the conduction and convection boundary layer flow is coupled (conjugated in the problem, a semi-analytical solution based on Differential Transform Method (DTM is presented for solving the non-linear integro-differential equation occurring in the problem. The main conclusion is that in the conjugate heat transfer case the temperature distribution of the plate is flatter than the one in the non-conjugate case. This feature is more pronounced under turbulent flow when compared with the laminar flow.
A comparison between numerical and semi-analytical solutions to the point-dynamics equations
Energy Technology Data Exchange (ETDEWEB)
Silva, Jeronimo J.A.; Alvim, Antonio C.M, E-mail: shaolin.jr@gmail.com, E-mail: alvim@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto Alberto Luiz Coimbra; Vilhena, Marco T.M.B.; Bodmann, Bardo E.J., E-mail: vilhena@pq.cnpq.br, E-mail: bardo.bodmann@ufrgs.brb [Univeridade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graducao em Engenharia Mecanica
2013-07-01
This work presents a comparison between purely numerical methods and a semi-analytical model that uses the Adomian polynomial expansion to solve the point dynamics set of equations. The aforementioned set of equations describe the magnitude of the neutron density in a fixed point of a nuclear reactor, as well as the neutron precursors density and the temperature of the temperature results in a nonlinear equation to the neutron behavior. Furthermore, these equations show the stiffness properties, due to the large difference in the time scales of each group of precursors. The decomposition method, in association with the Adomian polynomials results in a powerful toll to solve non-linear equations, and with the right choice of the time step, the obtained solution can be proven to be stable. (author)
Some analytical solutions for flows of Casson fluid with slip boundary conditions
Directory of Open Access Journals (Sweden)
K. Ramesh
2015-09-01
Full Text Available In the present paper, we have studied three fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible Casson fluid between parallel plates using slip boundary conditions. The equations governing the flow of Casson fluid are non-linear in nature. Analytical solutions of the non-linear governing equations with non-linear boundary conditions are obtained for each case. The effect of the various parameters on the velocity and volume flow rate for each problem is studied and the results are presented through graphs. It is observed that, the presence of Casson number decreases the velocity and volume flow rate of the fluid. Increasing of slip parameter increases the velocity and volume flow rate in both Poiseuille and generalized Couette flows.
Analytical Solution for Model-Based Dynamic Power Factor Measurement in AC Resistance Spot Welding
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of welding transformer circuit model, a new measuring method was proposed. This method measures the peak angle of the welding current, and then calculates the dynamic power factor in each half-wave.An artificial neural network is trained and used to generate simulation data for the analytical solution, i.e. a highorder binary polynomial, which can be easily adopted to calculate the power factor online. The tailored sensing and computing system ensures that the method possesses a real-time computational capacity and satisfying accuracy. A DSP-based resistance spot welding monitoring system was developed to perform ANN computation. The experimental results suggest that this measuring method is feasible.
UNSTEADY BOUNDARY LAYER FLOW ALONG A STRETCHING CYLINDER AN ANALYTICAL SOLUTION
Directory of Open Access Journals (Sweden)
M. Y. Akl
2014-01-01
Full Text Available The axisymetric laminar boundary layer unsteady flow along a continuously stretching cylinder immersed in a viscous and incompressible fluid is studied. The governing partial boundary layer equations in cylindrical form are first transformed into ordinary differential equations these equations are solved analytically using the optimal modified Homotopy Asymptotic method in order to get a closed form solution for the dimensionless functions f and è. The main object of this study is to investigate the effect of an unsteady motion of a stretching cylinder on the flow and heat transfer characteristics such as surface skin friction and surface heat flux. These characteristics have a direct effect on the quality of the final product of the fiber manufacturing and extrusion processes. Considerable effects were found for the dynamic parameter (γ, the curvature parameter (ρ and the prandtl number (pr on the velocity and the heat transfer.
Analytic Solution for Estimating the Tracking Capability of the RLS Algorithm for Smart Antenna
Institute of Scientific and Technical Information of China (English)
GU Qijun; JIAO Bingli
2001-01-01
Although smart antenna will be intro-duced in the third generation mobile communicationfor its great improvements on the capacity, it is not asimple task to commercialize this technique to prac-tical fields, mainly because the overall procedure re-quires an enormous amount of computation. For mostadaptive processors, the calculation burden can be at-tributed to the calculation complexity required by thealgorithm at each iteration and the iteration rate re-quired by adaptivity of system in time-varying chan-nels. The presented paper presents an analytic solu-tion for estimating the tracking capability of the Re-cursive Least Square (RLS). This approach is formedby the simulation results.
Comment on "On the analytical solution of the optical Bloch equations"
Noh, Heung-Ryoul; Jhe, Wonho
2012-02-01
In a recent paper [P.J. Colmenares and J.L. Paz, Opt. Commun. 284 (2011) 5171], analytical solutions of the optical Bloch equations are presented. This paper follows the same procedures as presented in the paper by the authors [H.R. Noh and W. Jhe, Opt. Commun. 283 (2010) 2353] but concludes that their results are substantially different from the results of the authors. We find that the discrepancy results from the wrong initial conditions employed by those authors for one of the Bloch vector components ( w), whose initial value must be 1 not 0. We also find that if proper initial conditions are used, there are no discrepancies between the two results.
Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap
Li, M.; Zhang, X. M.; Wang, Z. G.; Cui, X. D.; Yan, X. W.; Jiang, X. Y.; Zheng, J. G.; Wang, W.; Li, Mingzhong
2017-01-01
Serious pulse temporal overlap in amplifiers would result in the decrease of energy extraction efficiency and the increase of pulse-shape distortion (PSD). Precisely predicting pulse temporal overlap is of significance to an effective amplifier design. In this work, the analytical expressions with complete pulse overlap are derived and a numerical method is proposed to solve the case with partial temporal overlap for a double-pass Nd:YAG amplifier. Our studies, in which pulse temporal overlap is taken into account, can precisely predict the output energy and temporal shape, compared to the results from Hirano and other experiments. In addition, our numerical routes could provide the applicable range of analytical solutions to conventional Frantz-Nodvik equations in the case of pulse overlap, further extending the applicability and reducing computational costs. For given conditions, energy reduction and PSD are mainly determined by the overlap degree. For step-shaped pulse, we demonstrate that avoiding overlap in the peak pulse and allowing overlap in the foot pulse have small impacts on the energy extraction and PSD, which extends the range of duration of the pulse for a designed amplifier. Our investigations might provide an efficient way to carefully design a pulsed amplifier with controllable temporal overlap.
Directory of Open Access Journals (Sweden)
Chun-Fu Chen
2014-03-01
Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.
Analytical theories of transport in concentrated electrolyte solutions from the MSA.
Dufrêche, J-F; Bernard, O; Durand-Vidal, S; Turq, P
2005-05-26
Ion transport coefficients in electrolyte solutions (e.g., diffusion coefficients or electric conductivity) have been a subject of extensive studies for a long time. Whereas in the pioneering works of Debye, Hückel, and Onsager the ions were entirely characterized by their charge, recent theories allow specific effects of the ions (such as the ion size dependence or the pair association) to be obtained, both from simulation and from analytical theories. Such an approach, based on a combination of dynamic theories (Smoluchowski equation and mode-coupling theory) and of the mean spherical approximation (MSA) for the equilibrium pair correlation, is presented here. The various predicted equilibrium (osmotic pressure and activity coefficients) and transport coefficients (mutual diffusion, electric conductivity, self-diffusion, and transport numbers) are in good agreement with the experimental values up to high concentrations (1-2 mol L(-1)). Simple analytical expressions are obtained, and for practical use, the formula are given explicitly. We discuss the validity of such an approach which is nothing but a coarse-graining procedure.
Hydrodynamics of Highly Viscous Flow past a Compound Particle: Analytical Solution
Directory of Open Access Journals (Sweden)
Longhua Zhao
2016-11-01
Full Text Available To investigate the translation of a compound particle in a highly viscous, incompressible fluid, we carry out an analytic study on flow past a fixed spherical compound particle. The spherical object is considered to have a rigid kernel covered with a fluid coating. The fluid within the coating has a different viscosity from that of the surrounding fluid and is immiscible with the surrounding fluid. The inertia effect is negligible for flows both inside the coating and outside the object. Thus, flows are in the Stokes regime. Taking advantage of the symmetry properties, we reduce the problem in two dimensions and derive the explicit formulae of the stream function in the polar coordinates. The no-slip boundary condition for the rigid kernel and the no interfacial mass transfer and force equilibrium conditions at fluid interfaces are considered. Two extreme cases: the uniform flow past a sphere and the uniform flow past a fluid drop, are reviewed. Then, for the fluid coating the spherical object, we derive the stream functions and investigate the flow field by the contour plots of stream functions. Contours of stream functions show circulation within the fluid coating. Additionally, we compare the drag and the terminal velocity of the object with a rigid sphere or a fluid droplet. Moreover, the extended results regarding the analytical solution for a compound particle with a rigid kernel and multiple layers of fluid coating are reported.
One-Dimensional Unsteady Analytical Solution of Salinity Intrusion in Estuaries
Institute of Scientific and Technical Information of China (English)
SONG Zhi-yao; HUANG Xuan-jun; ZHANG Hong-gui; CHEN Xi-qing; KONG Jun
2008-01-01
Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simplest unsteady analytical solution of salinity intrusion is deduced and the estimation formula of diffusion coefficient is obtained in this paper. The unsteady solution indicates that salinity process in estuaries results from the interaction of runoff and tidal current, and its amplitude is in direct proportion to the product of the velocity of runoff water and the amplitude of tidal flow velocity and in inverse proportion to the diffusion coefficient and the tidal angular frequency, and its phase lag tidal flow with π/2 which reveals the basic features of the maximum salinity appearing after flood slack and the minimum salinity appearing before ebb slack under the effect of runoff (the advance or lag time is relative to the magnitude of runoff and tidal flow). According to the measured flow velocity and salinity data, the salinity diffusion coefficient could be estimated. Finally, with the field data of observing sites on the deepwater navigation channel of the Yangtze Estuary, the diffusion coefficient is calculated and a comparative analysis of simulated and measured of salinity process is made. The results show that the solution can comprehensively reflects the basic characteristics and processes of salinity intrusion under the interaction of runoff and tidal flow in estuaries. The solution is not only suitable for theoretical research, but also convenient for estimating reasonable physical parameters and giving the initial condition in the salinity intrusion numerical simulation.
Institute of Scientific and Technical Information of China (English)
GOU Chenhua; CAI Ruixian; ZHANG Na
2005-01-01
Based on the method of separation variables with addition developed in recent years, new methods of separation variables are proposed, and two algebraically explicit analytical solutions to the general partial differential equation set of non-Fourier and non-Fick heat and mass transfer in porous media drying are derived. The physical meaning of these solutions is simple and clear, and they are valuable for computational heat and mass transfer as benchmark solutions.
Ying, Zu-guang; Luo, Yin-miao; Zhu, Wei-qiu; Ni, Yi-qing; Ko, Jan-ming
2012-04-01
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.
Institute of Scientific and Technical Information of China (English)
Bin Wan; Terry A. Ring; Kumar M. Dhanasekharan; Jayanta Sanyal
2005-01-01
Fluent version 6.2 computational fluid dynamics environment has been enhanced with a population balance capability that operates in conjunction with its multiphase calculations to predict the particle size distribution within the flow field. The population balance is solved by the quadrature method of moments (QMOM). Fluent's prediction capabilities are tested by using a 2-dimensional analogy of a constantly stirred tank reactor with a fluid flow compartment that mixes the fluid quickly and efficiently using wall movement and has a feed stream and a product stream. The results of these Fluent simulations using QMOM population balance solver are compared to steady state analytical solutions for the population balance in a stirred tank where 1) growth, 2) aggregation, and 3) breakage, take place separately and 4)combined nucleation and growth and 5) combined nucleation, growth and aggregation take place. The results of these comparisons show that the moments of the population balance are accurately predicted for nucleation, growth, aggregation and breakage when the flow field is turbulent. With laminar flow the mixing is not ideal and as a result the steady state well mixed solutions are not accurately simulated.
Analytical Solutions for Rumor Spreading Dynamical Model in a Social Network
Fallahpour, R.; Chakouvari, S.; Askari, H.
2015-03-01
In this paper, Laplace Adomian decomposition method is utilized for evaluating of spreading model of rumor. Firstly, a succinct review is constructed on the subject of using analytical methods such as Adomian decomposion method, Variational iteration method and Homotopy Analysis method for epidemic models and biomathematics. In continue a spreading model of rumor with consideration of forgetting mechanism is assumed and subsequently LADM is exerted for solving of it. By means of the aforementioned method, a general solution is achieved for this problem which can be readily employed for assessing of rumor model without exerting any computer program. In addition, obtained consequences for this problem are discussed for different cases and parameters. Furthermore, it is shown the method is so straightforward and fruitful for analyzing equations which have complicated terms same as rumor model. By employing numerical methods, it is revealed LADM is so powerful and accurate for eliciting solutions of this model. Eventually, it is concluded that this method is so appropriate for this problem and it can provide researchers a very powerful vehicle for scrutinizing rumor models in diverse kinds of social networks such as Facebook, YouTube, Flickr, LinkedIn and Tuitor.
Hortos, William S.
2009-05-01
The work is based on the interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. A multivariate point process (MVPP) model of discrete random events in WSNs establishes stochastic characteristics of optimal cross-layer protocols. In previous work by the author, discreteevent, cross-layer interactions in the MANET protocol are modeled in very general analytical terms with a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Characterization of the "best" cross-layer designs for the MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Assumptions on WSN characteristics simplify the dynamic programming conditions to yield mathematically tractable descriptions for the optimal routing protocols. Modeling limitations on the determination of closed-form solutions versus iterative explicit solutions for ad hoc WSN controls are presented.
Institute of Scientific and Technical Information of China (English)
Fang-fang LI; Jing LIU; Kai YUE
2009-01-01
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temper-ature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2017-02-01
It is expected that the Juno spacecraft will provide an accurate spectrum of the Jovian zonal gravitational coefficients that would be affected by both the deep zonal flow, if it exists, and the basic rotational distortion. We derive the first analytical solution, under the spheroidal-shape approximation, for the density anomaly induced by an internal zonal flow in rapidly rotating Jupiter-like planets. We compare the density anomaly of the analytical solution to that obtained from a fully numerical solution based on a three-dimensional finite element method; the two show excellent agreement. We apply the analytical solution to a rapidly rotating Jupiter-like planet and show that there exists a close relationship between the spatial structure of the zonal flow and the spectrum of zonal gravitational coefficients. We check the accuracy of the spheroidal-shape approximation by computing both the spheroidal and non-spheroidal solutions with exactly the same physical parameters. We also discuss implications of the new analytical solution for interpreting the future high-precision gravitational measurements of the Juno spacecraft.
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.
Ferrando, A.; García-March, M. A.
2016-06-01
We present a novel procedure for solving the Schrödinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagation embedded in a Gaussian beam. We use scattering modes, which are solutions to the paraxial wave equation that can be combined straightforwardly to express the initial condition and therefore allow the problem to be solved. To construct the scattering modes one needs to obtain a particular set of polynomials, which play an analogous role to Laguerre polynomials for Laguerre-Gaussian modes. We demonstrate here the recurrence relations needed to determine these polynomials. To stress the utility and strength of the method we solve first the problem of an initial Gaussian beam with two positive singularities and a negative one embedded in it. We show that the solution permits one to obtain analytical expressions. These can used to obtain mathematical expressions for meaningful quantities, such as the distance at which the positive and negative singularities merge, closing the loop of a vortex line. Furthermore, we present an example of the calculation of an specific discrete-Gauss state, which is the solution of the diffraction of a Laguerre-Gauss state showing definite angular momentum (that is, a highly charged vortex) by a thin diffractive element showing certain discrete symmetry. We show that this problem is therefore solved in a much simpler way than by using the previous procedure based on the integral Fresnel diffraction method.
Guo, Y.; Xia, C.; Keppens, R.; Valori, G.
2016-09-01
We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov-Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax-Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.
Gaididei, Yu B.; Berkemer, R.; Caputo, J. G.; Christiansen, P. L.; Kawamoto, A.; Shiga, T.; Sørensen, M. P.; Starke, J.
2009-07-01
A follow-the-leader model of traffic flow on a closed loop is considered in the framework of the extended optimal velocity (OV) model where the driver reacts to both the following and the preceding car. Periodic wave train solutions that describe the formation of traffic congestion patterns are found analytically. Their velocity and amplitude are determined from a perturbation approach based on collective coordinates with the discrete modified Korteweg-de Vries equation as the zero order equation. This contains the standard OV model as a special case. The analytical results are in excellent agreement with numerical solutions.
Energy Technology Data Exchange (ETDEWEB)
Gaididei, Yu B [Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14 B, 01413, Kiev (Ukraine); Berkemer, R; Soerensen, M P; Starke, J [Department of Mathematics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Caputo, J G [Laboratoire de Mathematiques, INSA de Rouen, B.P. 8, 76131 Mont-Saint-Aignan cedex (France); Christiansen, P L [Department of Informatics and Mathematical Modeling and Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Kawamoto, A; Shiga, T [Toyota Central R and D Labs, Inc., Nagakute Aichi, 480-1192 (Japan)], E-mail: galinag@mail.univ.kiev.ua, E-mail: r.berkemer@mat.dtu.dk, E-mail: caputo@insa-rouen.fr, E-mail: plc@imm.dtu.dk, E-mail: m.p.soerensen@mat.dtu.dk, E-mail: j.starke@mat.dtu.dk
2009-07-15
A follow-the-leader model of traffic flow on a closed loop is considered in the framework of the extended optimal velocity (OV) model where the driver reacts to both the following and the preceding car. Periodic wave train solutions that describe the formation of traffic congestion patterns are found analytically. Their velocity and amplitude are determined from a perturbation approach based on collective coordinates with the discrete modified Korteweg-de Vries equation as the zero order equation. This contains the standard OV model as a special case. The analytical results are in excellent agreement with numerical solutions.
Guan, C; Xie, H J; Wang, Y Z; Chen, Y M; Jiang, Y S; Tang, X W
2014-01-01
An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems.
Indian Academy of Sciences (India)
Atul Kumar; Dilip Kumar Jaiswal; Naveen Kumar
2009-10-01
Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal ﬁnite initially solute free domain,for two dispersion problems.In the ﬁrst one,temporally dependent solute dispersion along uniform ﬂow in homogeneous domain is studied.In the second problem the velocity is considered spatially dependent due to the inhomogeneity of the domain and the dispersion is considered proportional to the square of the velocity. The velocity is linearly interpolated to represent small increase in it along the ﬁnite domain.This analytical solution is compared with the numerical solution in case the dispersion is proportional to the same linearly interpolated velocity.The input condition is considered continuous of uniform and of increasing nature both.The analytical solutions are obtained by using Laplace transformation technique.In that process new independent space and time variables have been introduced. The effects of the dependency of dispersion with time and the inhomogeneity of the domain on the solute transport are studied separately with the help of graphs.
The analytic solution for the power series expansion of Heun function
Energy Technology Data Exchange (ETDEWEB)
Choun, Yoon Seok, E-mail: ychoun@gmail.com
2013-11-15
The Heun function generalizes all well-known special functions such as Spheroidal Wave, Lame, Mathieu, and hypergeometric {sub 2}F{sub 1}, {sub 1}F{sub 1} and {sub 0}F{sub 1} functions. Heun functions are applicable to diverse areas such as theory of black holes, lattice systems in statistical mechanics, solution of the Schrödinger equation of quantum mechanics, and addition of three quantum spins. In this paper I will apply three term recurrence formula (Y.S. Choun, (arXiv:1303.0806), 2013) to the power series expansion in closed forms of Heun function (infinite series and polynomial) including all higher terms of A{sub n}’s. Section 3 contains my analysis on applying the power series expansions of Heun function to a recent paper (R.S. Maier, Math. Comp. 33 (2007) 811–843). Due to space restriction final equations for the 192 Heun functions are not included in the paper, but feel free to contact me for the final solutions. Section 4 contains two additional examples using the power series expansions of Heun function. This paper is 3rd out of 10 in series “Special functions and three term recurrence formula (3TRF)”. See Section 5 for all the papers in the series. The previous paper in series deals with three term recurrence formula (3TRF). The next paper in the series describes the integral forms of Heun function and its asymptotic behaviors analytically. -- Highlights: •Power series expansion for infinite series of Heun function using 3 term rec. form. •Power series for polynomial which makes B{sub n} term terminated of Heun function. •Applicable to areas such as the Teukolsky equation in Kerr–Newman–de Sitter geometries.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Institute of Scientific and Technical Information of China (English)
WEI Guang-Mei; GAO Yi-Tian; XU Tao; MENG Xiang-Hua; ZHANG Chun-Yi
2008-01-01
A variable-coefficient Kadomtsev-Petviashvili equation is investigated.The Painlevé analysis leads to its explicit Painlevé-integrable conditions.An auto-B(a)cklund transformation and the bilinear form are presented via the truncated Painlevé expansion and symbolic computation.Several families of new analytic solutions axe presented,including the soliton-like and periodic solutions.
Serra, Catarina; Simões, Nuno; Tadeu, António
2015-05-01
This paper compares experimental and heat transfer modeling results for thermography applications in building elements. Over the years most building envelope inspections using infrared thermography (IRT) have been focused on qualitative analysis using mostly passive thermography techniques. However, increased need for the monitorization and assessment of the energy performance and thermal behavior of buildings, along with ongoing structural safety concerns, has raised interest in quantitative studies and active IRT applications in buildings. Numerous other fields have benefited from developments in defect detection studies and from countless non-destructive testing applications. Pulse phase thermography, in which phase images are studied (instead of temperature images) using a long heating pulse have been proposed to be the most effective for Civil Engineering applications. However, the particular characteristics of building elements and materials, along with the complex nature of heat transfer phenomena, demand specific experimental procedures and processing techniques. In this paper, analytical solutions to simulate heat transfer in the frequency domain in multi-layered media are used to compute thermal wave phase results. These are compared to experimental IRT phase analysis results of experiments performed on test specimens simulating building elements with embedded defects. Crucial test parameters such as test duration and defect characteristics are changed and their influence is studied. In this way, this paper contributes to the understanding of building envelope thermal patterns using active IRT in defect detection studies and to the definition of test parameters.
An analytical solution of the gyrokinetic equation for the calculation of neoclassical effects
Casolari, Andrea
2016-01-01
The purpose of this document is to find an analytical solution for the gyrokinetic equation under specific, simplificative hypotheses. The case I am considering is that of a collisional plasma in the presence of a chain of magnetic islands. The presence of the magnetic islands causes the onset of perturbative fields, in particular an electrostatic field, with a gradient length-scale comparable with the island's width. When the island's width w becomes comparable with the ion Larmor radius rho_i , the drift-kinetic equation is inadequate to treat the transport and the calculation of the neoclassical effects. Nevertheless, I'm going to solve the equation with the methods described by S. P. Hirshman and D. J. Sigmar in the review paper "Neoclassical transport of impurities in tokamak plasmas", which was developed to solve the drift-kinetic equation in different regimes of collisionality. I'm going to remind first the drift-kinetic theory, which was largely used to study classical and neoclassical transport in ma...
Analytical solution for the lubrication force between two spheres in a bi-viscous fluid
Vázquez-Quesada, A.; Ellero, M.
2016-07-01
An analytical solution for the calculation of the normal lubrication force acting between two moving spheres embedded in a shear-thinning fluid represented by a bi-viscous model is provided. The resulting force between the suspended spheres exhibits a consistent transition between the Newtonian constant-viscosity limits and it reduces to the well-known standard Newtonian lubrication theory for viscosity-ratio approaching one. Effects of several physical parameters of the theory are analyzed under relevant physical conditions, i.e., for a prototypical case of two non-colloidal spheres immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity model. Topological results for high/low-viscosity regions in the gap between spheres are also analyzed in detail showing a rich phenomenology. The presented model enables the extension of lubrication dynamics for suspensions interacting with non-Newtonian matrices and provides a clean theoretical framework for new numerical computations of flow of dense complex particulate systems.
Dodin, Amro; Brumer, Paul
2015-01-01
We present closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter $\\zeta=\\frac{1}{2}(\\gamma_1+\\gamma_2)/\\Delta_p$, where $\\gamma_i$ are the radiative decay rates of the excited levels $i=1,2$, and $\\Delta_p=\\sqrt{\\Delta^2 + (1-p^2)\\gamma_1\\gamma_2}$ depends on the excited-state level splitting $\\Delta>0$ and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit ($\\zeta\\gg1$), approach a long-lived quasi-steady state in the overdamped limit ($\\zeta\\ll 1$), and display an intermediate behavior at critical damping ($\\zeta= 1$). The sudden incoherent turn-on generat...
Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.
2016-11-01
The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.
Beguerisse-Díaz, Mariano; Desikan, Radhika; Barahona, Mauricio
2016-08-01
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.
An analytic solution to LO coupled DGLAP evolution equations: a new pQCD tool
Block, Martin M; Ha, Phuoc; McKay, Douglas W
2010-01-01
We have analytically solved the LO pQCD singlet DGLAP equations using Laplace transform techniques. Newly-developed highly accurate numerical inverse Laplace transform algorithms allow us to write fully decoupled solutions for the singlet structure function F_s(x,Q^2)and G(x,Q^2) as F_s(x,Q^2)={\\cal F}_s(F_{s0}(x), G_0(x)) and G(x,Q^2)={\\cal G}(F_{s0}(x), G_0(x)). Here {\\cal F}_s and \\cal G are known functions of the initial boundary conditions F_{s0}(x) = F_s(x,Q_0^2) and G_{0}(x) = G(x,Q_0^2), i.e., the chosen starting functions at the virtuality Q_0^2. For both G and F_s, we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy, a computational fractional precision of O(10^{-9}). Armed with this powerful new tool in the pQCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F_s distributions, starting from their initial values at Q_0^2=1 GeV^2 and 1.69 GeV^2, respectively, using their ...
Institute of Scientific and Technical Information of China (English)
李飞; 张冬冬; 赵启林; 邓安仲
2015-01-01
A novel hybrid FRP-aluminum space truss was employed in a two-rut modular bridge superstructure, which is composed of standard structural units. The main objective of this work was to obtain a simple analytical solution that can conveniently predict the deflection of the proposed hybrid space truss bridge. The analytical formulae are expected to possess a straightforward format and simple calculation process. A simple description of the proposed bridge was introduced. The design formulae of the deflection were derived based on a simplified analytical plane truss model, which possessed hinge nodes and was subsequently simplified as two solid web beams during the theoretical derivation process. To validate the analytical model and formulae, numerical and experimental works were conducted and compared with the theoretical solutions. The results indicate that the analytical formulae provide higher deflection magnitudes with a difference of <1.5% compared with the experiments performed and <4.5% compared with the FE model used; the simplified plane truss is thus shown to be an effective analytical model for the derivation of deflection design formulae, which can conveniently calculate the deflection of the hybrid space truss bridge with satisfactory accuracy.
Hu, Huayu
2015-01-01
Nonperturbative calculation of QED processes participated by a strong electromagnetic field, especially provided by strong laser facilities at present and in the near future, generally resorts to the Furry picture with the usage of analytical solutions of the particle dynamical equation, such as the Klein-Gordon equation and Dirac equation. However only for limited field configurations such as a plane-wave field could the equations be solved analytically. Studies have shown significant interests in QED processes in a strong field composed of two counter-propagating laser waves, but the exact solutions in such a field is out of reach. In this paper, inspired by the observation of the structure of the solutions in a plane-wave field, we develop a new method and obtain the analytical solution for the Klein-Gordon equation and equivalently the action function of the solution for the Dirac equation in this field, under a largest dynamical parameter condition that there exists an inertial frame in which the particl...
Time-domain analytic Solutions of two-wire transmission line excited by a plane-wave field
Institute of Scientific and Technical Information of China (English)
Ni Gu-Yan; Yan Li; Yuan Nai-Chang
2008-01-01
This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain.By the frequency-domain Baum-Liu-Tesche(BLT)equation,the time-domain analytic solutions are obtained and expressed in an infinite geometric series.Moreover,it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval.In other word.the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval.The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform,and the agreement is excellent.
Institute of Scientific and Technical Information of China (English)
XING Yong-Zhong
2009-01-01
The analytical solution of a multidimensional Langevin equation at the overdamping limit is obtained and the probability of particles passing over a two-dimensional saddle point is discussed. These results may break a path for studying further the fusion in superheavy elements synthesis.
Neng, N R; Silva, A R M; Nogueira, J M F
2010-11-19
A novel enrichment technique, adsorptive μ-extraction (AμE), is proposed for trace analysis of polar solutes in aqueous media. The preparation, stability tests and development of the analytical devices using two geometrical configurations, i.e. bar adsorptive μ-extraction (BAμE) and multi-spheres adsorptive μ-extraction (MSAμE) is fully discussed. From the several sorbent materials tested, activated carbons and polystyrene divinylbenzene phases demonstrated the best stability, robustness and to be the most suitable for analytical purposes. The application of both BAμE and MSAμE devices proved remarkable performance for the determination of trace levels of polar solutes and metabolites (e.g. pesticides, disinfection by-products, drugs of abuse and pharmaceuticals) in water matrices and biological fluids. By comparing AμE techniques with stir bar sorptive extraction based on polydimethylsiloxane phase, great effectiveness is attained overcoming the limitations of the latter enrichment approach regarding the more polar solutes. Furthermore, convenient sensitivity and selectivity is reached through AμE techniques, since the great advantage of this new analytical technology is the possibility to choose the most suitable sorbent to each particular type of application. The enrichment techniques proposed are cost-effective, easy to prepare and work-up, demonstrating robustness and to be a remarkable analytical tool for trace analysis of priority solutes in areas of recognized importance such as environment, forensic and other related life sciences.
Analytic Solution of the Three-Variable Dynamical Equations of Oscillation Phenomena in B-Z Reaction
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The dynamical behaviour of the inorganic bromate oscillator catalyzed by manganese ions in the B-Z reaction is discussed, a three-variable nonlinear dynamical equations of the oscillation phenomena have been obtained, and an analytic solution and numerical results of the equations are given.
Energy Technology Data Exchange (ETDEWEB)
Lipscombe, T C [Johns Hopkins University, 2715 North Charles Street, Baltimore, MD 21218 (United States)], E-mail: tcl@press.jhu.edu
2010-03-15
We solve exactly the Poiseuille and Couette flows of a non-Newtonian fluid discussed by Roohi et al (2009 Phys. Scr. 79 065009) and thereby show that the approximate analytical solutions provided by the homotopy method must be used with caution.
Sakamoto, Noboru; Schaft, Arjan J. van der
2007-01-01
In this paper, an analytical approximation approach for the stabilizing solution of the Hamilton-Jacobi equation using stable manifold theory is proposed. The proposed method gives approximated flows on the stable manifold of the associated Hamiltonian system and provides approximations of the stabl
Snellings, RJM; Hulsbergen, W; Prendergast, EP; van den Brink, A; de Haas, AP; Habets, JJLM; Kamermans, R; Koopmans, M; Kuijer, PG; de Laat, CTAM; Ostendorf, RW; Peghaire, A; Rossewij, M
1999-01-01
Particle identification in intermediate heavy-ion collisions, using a modern 4 pi detector which contains several active layers, relies on a parametrisation or numerical integration of the energy loss in thick layers of detector material for different ions. Here an analytical solution applicable ove
Indian Academy of Sciences (India)
Abhishek Sanskrityayn; Naveen Kumar
2016-12-01
Some analytical solutions of one-dimensional advection–diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green’s function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant’s mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.
2015-09-01
flared base is expected to provide a closer emulation of trunk geometries encountered in nature. Only the 3-dB error lines for the analytical solution...On the Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band by DaHan Liao...Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band by DaHan Liao Sensors and Electron Devices
Energy Technology Data Exchange (ETDEWEB)
Chen, Jun, E-mail: chenjun.sun@gmail.com; Liu, Yun-xian, E-mail: liuyx@cjlu.edu.cn
2014-09-05
We construct explicit multisoliton complex solutions for multicomponent Bose–Einstein condensate systems with time- and spatial-coordinate-dependent atomic potentials and interactions. The exact solutions are used to analyze the important solitary matter wave properties such as the profiles of temporal and spatial multimode beams as well as focusing effects. Results demonstrate that soliton complexes can be controlled nonlinearly during the interaction by modulating the external potentials and nonlinearities. - Highlights: • An algebraic approach is proposed for the dynamics of multicomponent BECs. • External potentials and nonlinearities are time and space-dependent. • Analytical solutions are constructed. • Multisoliton complexes are predicted.
Bulusu, Jayashree; Sinha, A. K.; Vichare, Geeta
2016-06-01
An analytic solution has been formulated to study the role of ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere. The effect of ionospheric conductivity is addressed in two limits, viz, (a) when conductance of Alfvén wave is much different from ionospheric Pedersen conductance and (b) when conductance of Alfvén wave is close to the ionospheric Pedersen conductance. In the former case, the damping is not significant and standing wave structures are formed. However, in the latter case, the damping is significant leading to mode translation. Conventionally, "rigid-end" and "free-end" cases refer to eigenstructures for infinitely large and vanishingly small limit of ionospheric conductivity, respectively. The present work shows that when the Pedersen conductance overshoots (undershoots) the Alfvén wave conductance, a free-end (rigid-end) mode gets transformed to rigid-end (free-end) mode with an increase (decrease) in harmonic number. This transformation takes place within a small interval of ionospheric Pedersen conductance around Alfvén wave conductance, beyond which the effect of conductivity on eigenstructures of field line oscillations is small. This regime of conductivity limit (the difference between upper and lower limits of the interval) decreases with increase in harmonic number. Present paper evaluates the damping effect for density index other than the standard density index m = 6, using perturbation technique. It is found that for a small departure from m = 6, both mode frequency and damping rate become a function of Pedersen conductivity.
Directory of Open Access Journals (Sweden)
Moradi Amir
2013-01-01
Full Text Available In this article, the simultaneous convection-radiation heat transfer of a moving fin of variable thermal conductivity is studied. The differential transformation method (DTM is applied for an analytic solution for heat transfer in fin with two different profiles. Fin profiles are rectangular and exponential. The accuracy of analytic solution is validated by comparing it with the numerical solution that is obtained by fourth-order Runge-Kutta method. The analytical and numerical results are shown for different values of the embedding parameters. DTM results show that series converge rapidly with high accuracy. The results indicate that the fin tip temperature increases when ambient temperature increases. Conversely, the fin tip temperature decreases with an increase in the Peclet number, convection-conduction and radiation-conduction parameters. It is shown that the fin tip temperature of the exponential profile is higher than the rectangular one. The results indicate that the numerical data and analytical method are in a good agreement with each other.
Directory of Open Access Journals (Sweden)
Kulish Vladimir V.
2004-01-01
Full Text Available This paper presents an integral solution of the generalized one-dimensional equation of energy transport with the convective term.The solution of the problem has been achieved by the use of a novel technique that involves generalized derivatives (in particular, derivatives of noninteger orders. Confluent hypergeometric functions, known as Whittaker's functions, appear in the course of the solution procedure upon applying the Laplace transform to the original transport equation.The analytical solution of the problem is written in the integral form and provides a relationship between the local values of the transported property (e.g., temperature, mass, momentum, etc. and its flux.The solution is valid everywhere within the domain, including the domain boundary.
Jiang, Shidong; Xu, Minzhong
2005-01-01
The analytical solutions for the general-four-wave-mixing hyperpolarizabilities $\\chi^{(3)}(-(w_1+w_2+w_3);w_1,w_2,w_3)$ on infinite chains under both Su-Shrieffer-Heeger and Takayama-Lin-Liu-Maki models of trans-polyacetylene are obtained through the scheme of dipole-dipole correlation. Analytical expressions of DC Kerr effect $\\chi^{(3)}(-w;0,0,w)$, DC-induced second harmonic generation $\\chi^{(3)}(-2w;0,w,w)$, optical Kerr effect $\\chi^{(3)}(-w;w,-w,w)$ and DC-electric-field-induced optica...
Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method
Manafian, Jalil; Aghdaei, Mehdi Fazli
2016-04-01
In this paper, the improved tan(Φ(ξ)/2)-expansion method is proposed to find the exact soliton solutions of the coupled Schrödinger-Boussinesq (SB) system. The exact particular solutions are of five types: hyperbolic function solution (exact soliton wave solution), trigonometric function solution (exact periodic wave solution), rational exponential solution (exact singular kink-type wave solution), logarithmic solution and rational solution (exact singular cupson wave solution). We obtained the further solutions comparing with other methods. The results demonstrate that the new tan(Φ(ξ)/2)-expansion method is more efficient than the Ansatz method applied by Bilige et al. (2013). Recently this method was developed for searching the exact travelling-wave solutions of nonlinear partial differential equations. Abundant exact travelling-wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play an important role in Laser and plasma. It is shown that this method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving the nonlinear problems.
Zhao, Yuqing; Zhang, You-Kuan; Liang, Xiuyu
2016-08-01
A semi-analytical solution was presented for groundwater flow due to pumping in a leaky sloping fault-zone aquifer surrounded by permeable matrices. The flow in the aquifer was descried by a three-dimensional flow equation, and the flow in the upper and lower matrix blocks are described by a one-dimensional flow equation. A first-order free-water surface equation at the outcrop of the fault-zone aquifer was used to describe the water table condition. The Laplace domain solution was derived using Laplace transform and finite Fourier transform techniques and the semi-analytical solutions in the real time domain were evaluated using the numerical inverse Laplace transform method. The solution was in excellent agreement with Theis solution combined with superposition principle as well as the solution of Huang et al. (2014). It was found that the drawdown increases as the sloping angle of the aquifer increases in early time and the impact of the angle is insignificant after pumping for a long time. The free-water surface boundary as additional source recharges the fault aquifer and significantly affect the drawdown at later time. The surrounding permeable matrices have a strong influence on drawdown but this influence can be neglected when the ratio of the specific storage and the ratio of the hydraulic conductivity of the matrices to those of the fault aquifer are less than 0.001.
This SOP describes the method used for preparing surrogate recovery standard and internal standard solutions for the analysis of polar target analytes. It also describes the method for preparing calibration standard solutions for polar analytes used for gas chromatography/mass sp...
Big data analytics as a service infrastructure: challenges, desired properties and solutions
Martín-Márquez, Manuel
2015-01-01
CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments, (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community, (3) deliver real-time, batch data analytics and information discovery capabilities, and (4) provide transpare...
Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics
Kakhktsyan, V. M.; Khachatryan, A. Kh.
2013-07-01
A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.
Alvarez, Gustavo; Kniehl, Bernd A; Kondrashuk, Igor; Parra-Ferrada, Ivan
2016-01-01
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be ${\\cal N} =4$ supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken $x$. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We ...
Gazzillo, Domenico; Giacometti, Achille
2004-03-08
We discuss structural and thermodynamical properties of Baxter's adhesive hard sphere model within a class of closures which includes the Percus-Yevick (PY) one. The common feature of all these closures is to have a direct correlation function vanishing beyond a certain range, each closure being identified by a different approximation within the original square-well region. This allows a common analytical solution of the Ornstein-Zernike integral equation, with the cavity function playing a privileged role. A careful analytical treatment of the equation of state is reported. Numerical comparison with Monte Carlo simulations shows that the PY approximation lies between simpler closures, which may yield less accurate predictions but are easily extensible to multicomponent fluids, and more sophisticate closures which give more precise predictions but can hardly be extended to mixtures. In regimes typical for colloidal and protein solutions, however, it is found that the perturbative closures, even when limited to first order, produce satisfactory results.
Indian Academy of Sciences (India)
O S IYIOLA; F D ZAMAN
2016-10-01
In this paper, we consider the (2+1) nonlinear fractional heat equation with non-local integral terms and investigate two different cases of such non-local integral terms. The first has to do with the time-dependent non-local integral term and the second is the space-dependent non-local integral term. Apart from the nonlinear nature of these formulations, the complexity due to the presence of the non-local integral terms impelled us to use a relatively new analytical technique called q-homotopy analysis method to obtain analytical solutions to both cases in the form of convergent series with easily computable components. Our numerical analysis enables us to show the effects of non-local terms and the fractional-order derivative on the solutions obtained by this method.
Directory of Open Access Journals (Sweden)
Tohru Morita
2016-03-01
Full Text Available In a series of papers, we discussed the solution of Laplace’s differential equation (DE by using fractional calculus, operational calculus in the framework of distribution theory, and Laplace transform. The solutions of Kummer’s DE, which are expressed by the confluent hypergeometric functions, are obtained with the aid of the analytic continuation (AC of Riemann–Liouville fractional derivative (fD and the distribution theory in the space D′R or the AC of Laplace transform. We now obtain the solutions of the hypergeometric DE, which are expressed by the hypergeometric functions, with the aid of the AC of Riemann–Liouville fD, and the distribution theory in the space D′r,R, which is introduced in this paper, or by the term-by-term inverse Laplace transform of AC of Laplace transform of the solution expressed by a series.
Directory of Open Access Journals (Sweden)
L. Buligon
2010-03-01
Full Text Available A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT, which combines series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.
Directory of Open Access Journals (Sweden)
L. Buligon
2009-09-01
Full Text Available A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT, which joints series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.
Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.
2010-03-01
A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which combines series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.
Institute of Scientific and Technical Information of China (English)
LU JunFeng; LU WenQiang
2008-01-01
In a hemodialysis process, the blood that runs through straight channels exchanges substances with the dialysate through a semi-permeable membrane. The waste products, such as urea and creatinine, are therefore removed from the plasma by the membrane. In the analysis of this process, determination of the ultra-filtration profile along the porous membrane surface remains a difficult problem. In this work, an analytical solution to the derivation of such a profile was detailed, and the feasibility of this solution was discussed. The ultra-filtration profile was found to be in a cosine shape.
Fring, Andreas
2016-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schr\\"{o}dinger equations involving explicit time-dependent Hermitian Hamitonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Fring, Andreas; Frith, Thomas
2017-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schrödinger equations involving explicit time-dependent Hermitian Hamiltonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation, together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Directory of Open Access Journals (Sweden)
Orhan DÖNMEZ
2016-12-01
Full Text Available The wave properties in a dusty space plasma consisting of positively and negatively charged dust as well as distributed nonisothermal electrons are investigated by using the exact traveling wave solutions of the Schamel-KdV equation. The analytic solutions are obtained by the different types $(G'/G$-expansion methods and direct integration. The nonlinear dynamics of ion-acoustic waves for the various values of phase speed $V_p$, plasma parameters $\\alpha$, $\\sigma$, and $\\sigma_d$, and the source term $\\mu$ are studied. We have observed different types of waves from the different analytic solutions obtained from the different methods. Consequently, we have found the discontinuity, shock or solitary waves. It is also concluded that these parameters play an important role in the presence of solitary waves inside the plasma. Depending on plasma parameters, the discontinuity wave turns into solitary wave solution for the certain values of the phase speed and plasma parameters. Additionally, exact solutions of the Schamel-KdV equation may also be used to understand the wave types and properties in the different plasma systems.
Institute of Scientific and Technical Information of China (English)
CAI Liang; ZHANG Ping; YANG Tao; PAN Xiao-Yin
2011-01-01
By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.
Energy Technology Data Exchange (ETDEWEB)
St. John, C.M.
1977-04-01
An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.
Institute of Scientific and Technical Information of China (English)
Xin-hui SI; Lian-cun ZHENG; Xin-xin ZHANG; Ying CHAO
2010-01-01
The flow of a micropolar fluid in a semi-porous channel with an expanding or contracting wall is investigated.The governing equations are reduced to ordinary ones by using similar transformations.To get the analytic solution to the problem,the homotopy analysis method(HAM)is employed to obtain the expressions for velocity fields.Graphs are sketched and discussed for various parameters,especially the effect of the expansion ratio on velocity and micro-rotation fields.
Directory of Open Access Journals (Sweden)
José Francisco Gómez-Aguilar
2016-08-01
Full Text Available In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville–Caputo, Caputo–Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order α is equal to 1.
Directory of Open Access Journals (Sweden)
S.V. Bystrov
2016-05-01
Full Text Available Subject of Research.We present research results for the signal uncertainty problem that naturally arises for the developers of servomechanisms, including analytical design of serial compensators, delivering the required quality indexes for servomechanisms. Method. The problem was solved with the use of Besekerskiy engineering approach, formulated in 1958. This gave the possibility to reduce requirements for input signal composition of servomechanisms by using only two of their quantitative characteristics, such as maximum speed and acceleration. Information about input signal maximum speed and acceleration allows entering into consideration the equivalent harmonic input signal with calculated amplitude and frequency. In combination with requirements for maximum tracking error, the amplitude and frequency of the equivalent harmonic effects make it possible to estimate analytically the value of the amplitude characteristics of the system by error and then convert it to amplitude characteristic of open-loop system transfer function. While previously Besekerskiy approach was mainly used in relation to the apparatus of logarithmic characteristics, we use this approach for analytical synthesis of consecutive compensators. Main Results. Proposed technique is used to create analytical representation of "input–output" and "error–output" polynomial dynamic models of the designed system. In turn, the desired model of the designed system in the "error–output" form of analytical representation of transfer functions is the basis for the design of consecutive compensator, that delivers the desired placement of state matrix eigenvalues and, consequently, the necessary set of dynamic indexes for the designed system. The given procedure of consecutive compensator analytical design on the basis of Besekerskiy engineering approach under conditions of signal uncertainty is illustrated by an example. Practical Relevance. The obtained theoretical results are
Analytical and Numerical Solutions of Vapor Flow in a Flat Plate Heat Pipe
Directory of Open Access Journals (Sweden)
Mohsen GOODARZI
2012-03-01
Full Text Available In this paper, the optimal homotopy analysis method (OHAM and differential transform method (DTM were applied to solve the problem of 2D vapor flow in flat plate heat pipes. The governing partial differential equations for this problem were reduced to a non-linear ordinary differential equation, and then non-dimensional velocity profiles and axial pressure distributions along the entire length of the heat pipe were obtained using homotopy analysis, differential transform, and numerical fourth-order Runge-Kutta methods. The reliability of the two analytical methods was examined by comparing the analytical results with numerical ones. A brief discussion about the advantages of the two applied analytical methods relative to each other is presented. Furthermore, the effects of the Reynolds number and the ratio of condenser to evaporator lengths on the flow variables were discussed.Graphical abstract
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Zech, Alraune; Attinger, Sabine
2016-05-01
A new method is presented which allows interpreting steady-state pumping tests in heterogeneous isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in heterogeneous media cannot be described by a single effective or equivalent value of hydraulic transmissivity. An effective description of transmissivity is required, being a function of the radial distance to the well and including the parameters of log-transmissivity: mean, variance, and correlation length. Such a model is provided by the upscaling procedure radial coarse graining, which describes the transition of near-well to far-field transmissivity effectively. Based on this approach, an analytical solution for a steady-state pumping test drawdown is deduced. The so-called effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the drawdown within an individual heterogeneous transmissivity field. The analytical form of the solution allows inversely estimating the parameters of aquifer heterogeneity. For comparison with the effective well flow solution, virtual pumping tests are performed and analysed for both cases, the ensemble mean drawdown and pumping tests at individual transmissivity fields. Interpretation of ensemble mean drawdowns showed proof of the upscaling method. The effective well flow solution reproduces the drawdown for two-dimensional pumping tests in heterogeneous media in contrast to Thiem's solution for homogeneous media. Multiple pumping tests conducted at different locations within an individual transmissivity field are analysed, making use of the effective well flow solution to show that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus, the presented method is a promising tool with which to estimate parameters of aquifer heterogeneity, in particular variance and horizontal correlation length of log-transmissivity fields from steady-state pumping test measurements.
Directory of Open Access Journals (Sweden)
Tiago A. Morgado
2015-06-01
Full Text Available We derive closed analytical formulae for the power emitted by moving charged particles in a uniaxial wire medium by means of an eigenfunction expansion. Our analytical expressions demonstrate that, in the absence of material dispersion, the stopping power of the uniaxial wire medium is proportional to the charge velocity, and that there is no velocity threshold for the Cherenkov emission. It is shown that the eigenfunction expansion formalism can be extended to the case of dispersive lossless media. Furthermore, in the presence of material dispersion, the optimal charge velocity that maximizes the emitted Cherenkov power may be less than the speed of light in a vacuum.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
An analytical solution of Shallow Water system coupled to Exner equation
Berthon, Christophe; Le, Minh H; Delestre, Olivier
2011-01-01
In this paper, an exact smooth solution for the equations modeling the bedload transport of sediment in Shallow Water is presented. This solution is valid for a large family of sedimentation laws which are widely used in erosion modeling such as the Grass model or those of Meyer-Peter & Muller. One of the main interest of this solution is the derivation of numerical benchmarks to valid the approximation methods.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-03-01
Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when
Analytical Solutions to Nonlinear Conservative Oscillator with Fifth-Order Nonlinearity
DEFF Research Database (Denmark)
Sfahania, M. G.; Ganji, S. S.; Barari, Amin;
2010-01-01
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presen...
Exact analytical solution for quantum spins mixing in spin-1 Bose-Einstein condensates
Institute of Scientific and Technical Information of China (English)
Chen Ai-Xi; Qiu Wan-Ying; Wang Zhi-Ping
2008-01-01
This paper solves exactly a set of fully quantized coupled equations describing the quantum dynamics of quantum spins mixing in spin-1 Bose-Einstein condensates by deriving the exact explicit analytical expressions for the evolution of creation and annihilation operators.
Closed analytical solutions of Bohr Hamiltonian with Manning-Rosen potential model
Chabab, M; Oulne, M
2015-01-01
In the present work, we have obtained closed analytical expressions for eigenvalues and eigenfunctions of the Bohr Hamiltonian with the Manning-Rosen potential for {\\gamma}-unstable nuclei as well as exactly separable rotational ones with {\\gamma}=0. Some heavy nuclei with known \\b{eta} and {\\gamma} bandheads have been fitted by using two parameters in the {\
Keshavarz-Motamed, Zahra
2015-11-01
Coarctation of the aorta (COA) is a congenital heart disease corresponding to a narrowing in the aorta. Cardiac catheterization is considered to be the reference standard for definitive evaluation of COA severity, based on the peak-to-peak trans-coarctation pressure gradient (PtoP TCPG) and instantaneous systolic value of trans-COA pressure gradient (TCPG). However, invasive cardiac catheterization may carry high risks given that undergoing multiple follow-up cardiac catheterizations in patients with COA is common. The objective of this study is to present an analytical description of the COA that estimates PtoP TCPG and TCPG without a need for high risk invasive data collection. Coupled Navier-Stokes and elastic deformation equations were solved analytically to estimate TCPG and PtoP TCPG. The results were validated against data measured in vitro (e.g., 90% COA: TCPG: root mean squared error (RMSE) = 3.93 mmHg; PtoP TCPG: RMSE = 7.9 mmHg). Moreover, the estimated PtoP TCPG resulted from the suggested analytical description was validated using clinical data in twenty patients with COA (maximum RMSE: 8.3 mmHg). Very good correlation and concordance were found between TCPG and PtoP TCPG obtained from the analytical formulation and in vitro and in vivo data. The suggested methodology can be considered as an alternative to cardiac catheterization and can help preventing its risks.
An Analytical Solution To A Special Case Of The Weber-Schafheitlin Integral
Mehrem, R
2012-01-01
The Weber-Schafheitlin type integral $\\threej{\\Llo}{\\Llt}{\\Llth}{0}{0}{0}\\,\\int_0^\\infty \\,{j_\\Llo(k_1r)\\,j_\\Llt(k_2r)\\over r^\\Llth}\\,dr$ is evaluated analytically. The result is a finite sum over $k_$, where $k_$) is the smaller (larger) of $k_1$ and $k_2$.
Costa, C. P.; Vilhena, M. T.; Moreira, D. M.; Tirabassi, T.
We present a three-dimensional solution of the steady-state advection-diffusion equation considering a vertically inhomogeneous planetary boundary layer (PBL). We reach this goal applying the generalized integral transform technique (GITT), a hybrid method that had solved a wide class of direct and inverse problems mainly in the area of heat transfer and fluid mechanics. The transformed problem is solved by the advection-diffusion multilayer model (ADMM) method, a semi-analytical solution based on a discretization of the PBL in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. Numerical simulations are presented and the performances of the solution are compared against field experiments data.
Directory of Open Access Journals (Sweden)
Norhasimah Mahiddin
2014-01-01
Full Text Available The modified decomposition method (MDM and homotopy perturbation method (HPM are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.
DEFF Research Database (Denmark)
Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri
2016-01-01
obtaining an integral relationship between total strain and effective stress. By means of the generalized binomial theorem, an expression in terms of infinite series is subsequently derived. The solution is found to simplify considerably existing techniques for material parameters identification based...... on optimization, as all issues associated with classical numerical solution procedures of the constitutive equations are eliminated. In addition, an implicit implementation of the plane stress projected version of Lemaitre's model is discussed, showing that the resulting algebraic system can be reduced...... to a single non-linear equation. The accuracy of the proposed integration scheme is then verified by means of the presented 1D analytical solution. Finally, a closed-form expression for the consistent tangent modulus taking damage evolution into account is given, and its impact on the convergence rate...
Institute of Scientific and Technical Information of China (English)
Krishnendu Bhattacharyya; Tasawar Hayat; Ahmed Alsaedi
2013-01-01
In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing equations are converted to an ordinary differential equation and then solved analytically.The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case.The similarity solution is always unique in the stretching case,and in the shrinking case the solution shows dual nature for certain values of the parameters.For stronger magnetic field,the similarity solution for the shrinking sheet case becomes unique.
Energy Technology Data Exchange (ETDEWEB)
Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics
1996-01-01
The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.
Energy Technology Data Exchange (ETDEWEB)
Magyari, E. [ETH-Zuerich, Institute of Building Technology, Zuerich (Switzerland); Barletta, A. [Universita di Bologna, Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale (DIENCA), Bologna (Italy)
2007-12-15
Laminar forced convection flow of a liquid in the fully developed region of a circular duct with isothermal wall is analyzed. The effects of viscous dissipation as well as of temperature dependent viscosity are taken into account. The coupled momentum and energy equations are solved analytically by means of a power series method. Then, reference is made to the Poiseuille model for the temperature change of viscosity. For a fixed value of the axial pressure gradient along the duct, dual solutions are found for the velocity and temperature fields. Although dual solutions correspond to the same value of the axial pressure gradient, they lead in general to different values of the average fluid velocity, of the average fluid temperature and of the wall heat flux. It is shown that, for a given fluid and for a fixed duct radius, the absolute value of the axial pressure gradient has an upper bound above which no steady laminar solution can exist. (orig.)
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.