WorldWideScience

Sample records for analytical laboratory rtal

  1. Road Transportable Analytical Laboratory (RTAL) system

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M. [Engineering Computer Optecnomics, Inc., Annapolis, MD (United States)

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  2. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations.

  3. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    International Nuclear Information System (INIS)

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations

  4. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  5. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    The problem of groundwater contamination at a large number of industrial facilities is well known. Many US Army and Department of Energy (DOE) facilities share this problem of potentially contaminated water as a result of past disposal practices associated with military and energy source development activities. A wide range of contaminants are found at certain installations encompassing industrial pollutants and military-unique materials. The US Army Biomedical Research and Development Laboratory has been conducting research for a number of years on developing better means to determine the hazards associated with exposure to these types of complex mixtures. The methods involve the use of aquatic organisms together with in vitro mutagenicity assays and analytical chemistry in an integrated biological assessment of a specific site. Integrated Biological Assessment is an important development in the Army's continuing efforts to locate, clean and monitor sites contaminated as a result of military operations. This method provides meaningful hazard data regarding whether a test medium contains low levels of industrial or military-unique contaminants. This is an important advance in determining which sites are clean and which require remediation. It provides continuing monitoring of the effectiveness of remediation operations. Engineering Computer Opteconomics (ECO), Inc. was tasked, in a collaborative Army and DOE effort, to develop a transportable Integrated Biological Assessment Laboratory Complex. This multimodular Complex is designed to be taken into remote areas to provide the necessary long-term on-site research for determining hazards from low levels of contamination in the environment. Each module of the Complex is designed to be self-sufficient, to provide a safe environment for the operators, and a controlled environment for the test organisms and related critical chemical and biological analyses

  6. Road Transportable Analytical Laboratory (RTAL) system: Volume II, Appendices A and B. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; De Avila, J.C.; Keith, V.F.

    1996-08-01

    The Road Transportable Analytical Laboratory (RTAL) provides a portable analytical system for the analysis of soils, ground water, and surface water for the detection of hazardous materials, metals, organics, and radioactive material. This report presents the data results for an aqueous sample VOA report and an aqueous sample SVOA report.

  7. Road Transportable Analytical Laboratory (RTAL) system. Quarterly technical report, December 1992--February 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-22

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  8. Road Transportable Analytical Laboratory system

    International Nuclear Information System (INIS)

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE's internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex

  9. Analytical Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...

  10. Analytical laboratory quality audits

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  11. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  12. Remote Electro-Analytical Laboratory

    Directory of Open Access Journals (Sweden)

    Ratnanjali Gandhi

    2011-02-01

    Full Text Available Remote Laboratories are web based distance learning laboratories that have immense potential to disseminate technology in the area of practical science. These laboratories can be accessed through Internet. In the present paper, we will be discussing our experiences in setting up a remote analytical laboratory at our center. Further, we will discuss remote experiments in the area of electro-analytical chemistry & colorimetry and their role in strengthening the system of science education.

  13. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  14. SALE: Safeguards Analytical Laboratory Evaluation computer code

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem.

  15. Analytical laboratory and mobile sampling platform

    Energy Technology Data Exchange (ETDEWEB)

    Stetzenbach, K.; Smiecinski, A.

    1996-04-30

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells.

  16. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    Directory of Open Access Journals (Sweden)

    Brian H Shirts

    2015-01-01

    Full Text Available The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed.

  17. Guide to Savannah River Laboratory Analytical Services Group

    International Nuclear Information System (INIS)

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary

  18. Guide to Savannah River Laboratory Analytical Services Group

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  19. 77 FR 16551 - Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related...

    Science.gov (United States)

    2012-03-21

    ... HUMAN SERVICES Food and Drug Administration Standards for Private Laboratory Analytical Packages and... Administration (FDA) is announcing two meetings entitled ``Standards for Private Laboratory Analytical Packages... Laboratory Managers.'' The topic to be discussed is the quality standards expected in all analytical...

  20. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  1. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  2. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  3. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  4. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  5. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  6. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  7. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  8. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  9. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  10. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    OpenAIRE

    Brian H Shirts; Jackson, Brian R.; Baird, Geoffrey S.; Baron, Jason M.; Bryan Clements; Ricky Grisson; Ronald George Hauser; Taylor, Julie R.; Enrique Terrazas; Brad Brimhall

    2015-01-01

    The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laborator...

  11. Pre-analytical phase in clinical chemistry laboratory

    Directory of Open Access Journals (Sweden)

    Neogi SS

    2016-07-01

    Full Text Available The laboratory testing process is divided into the pre-analytical, analytical and post-analytical phases. For obtaining reliable test results, the prevention and detection of errors at all steps is required. While analytical standards have been developed by recognized quality control criteria, there is a scarcity in the development of standards for the preanalytical phase. This phase is most prone to errors as the steps involved are directly dependent on humans and are out of direct control of the laboratory. Such errors in preanalytical stage often only become apparent in the analytical or post-analytical phase. The development of a pre-analytical quality manual is essential in achieving total quality control. Correct practices and strategies of error prevention can reduce preanalytical errors. This review focuses on prevention of pre-analytical errors that occur while collecting a specimen of blood, urine and cerebrospinal fluid. Most of these can be easily prevented with understanding and education of the personnel involved in and responsible for executing this crucial pre-analytical phase.

  12. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  13. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  14. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  15. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  16. The European Network of Analytical and Experimental Laboratories for Geosciences

    Science.gov (United States)

    Freda, Carmela; Funiciello, Francesca; Meredith, Phil; Sagnotti, Leonardo; Scarlato, Piergiorgio; Troll, Valentin R.; Willingshofer, Ernst

    2013-04-01

    Integrating Earth Sciences infrastructures in Europe is the mission of the European Plate Observing System (EPOS).The integration of European analytical, experimental, and analogue laboratories plays a key role in this context and is the task of the EPOS Working Group 6 (WG6). Despite the presence in Europe of high performance infrastructures dedicated to geosciences, there is still limited collaboration in sharing facilities and best practices. The EPOS WG6 aims to overcome this limitation by pushing towards national and trans-national coordination, efficient use of current laboratory infrastructures, and future aggregation of facilities not yet included. This will be attained through the creation of common access and interoperability policies to foster and simplify personnel mobility. The EPOS ambition is to orchestrate European laboratory infrastructures with diverse, complementary tasks and competences into a single, but geographically distributed, infrastructure for rock physics, palaeomagnetism, analytical and experimental petrology and volcanology, and tectonic modeling. The WG6 is presently organizing its thematic core services within the EPOS distributed research infrastructure with the goal of joining the other EPOS communities (geologists, seismologists, volcanologists, etc...) and stakeholders (engineers, risk managers and other geosciences investigators) to: 1) develop tools and services to enhance visitor programs that will mutually benefit visitors and hosts (transnational access); 2) improve support and training activities to make facilities equally accessible to students, young researchers, and experienced users (training and dissemination); 3) collaborate in sharing technological and scientific know-how (transfer of knowledge); 4) optimize interoperability of distributed instrumentation by standardizing data collection, archive, and quality control standards (data preservation and interoperability); 5) implement a unified e-Infrastructure for data

  17. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Science.gov (United States)

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  18. The State of Analytical Instruments in Some Environmental Pollution Control Laboratories in Nigeria

    Directory of Open Access Journals (Sweden)

    Dr. (Mrs. Bertha Abdu Danja

    2016-09-01

    Full Text Available The state of the environmental laboratories involved in monitoring environmental pollution control in Nigeria has been studied in this research. The research was undertaken by visiting four analytical laboratories involved in environmental pollution control in Nigeria. The analytical laboratories visited are those of Nigerian National Petroleum Corporation (NNPC Kaduna, Ashaka cement factory, regional laboratory of the Federal Ministry of Water Resources Gombe, and the National Reference laboratory Lagos. In these laboratories results were collected in the laboratories, interviews were carried out and analytical instruments available were documented. It was discovered that, in these laboratories many standard analytical instruments needed for quality environmental pollution control and monitoring are lacking. Comparison of analytical instruments found in these laboratories with those found in literature revealed that many needed analytical instruments are missing. It is the position of this work that the gap between the environmental analytical instruments found in literature and that found in the research laboratories is very large and calls for concern.

  19. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    International Nuclear Information System (INIS)

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned

  20. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, K.A.; Gray, C.E. (comp.)

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  1. Contributions of Analytical Chemistry to the Clinical Laboratory.

    Science.gov (United States)

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  2. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    Science.gov (United States)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  3. Optimization of analytical laboratory work using computer networking and databasing

    International Nuclear Information System (INIS)

    The Health Physics Analysis Laboratory (HPAL) performs around 600,000 analyses for radioactive nuclides each year at Los Alamos National Laboratory (LANL). Analysis matrices vary from nasal swipes, air filters, work area swipes, liquids, to the bottoms of shoes and cat litter. HPAL uses 8 liquid scintillation counters, 8 gas proportional counters, and 9 high purity germanium detectors in 5 laboratories to perform these analyses. HPAL has developed a computer network between the labs and software to produce analysis results. The software and hardware package includes barcode sample tracking, log-in, chain of custody, analysis calculations, analysis result printing, and utility programs. All data are written to a database, mirrored on a central server, and eventually written to CD-ROM to provide for online historical results. This system has greatly reduced the work required to provide for analysis results as well as improving the quality of the work performed

  4. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    Science.gov (United States)

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  5. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  6. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author)

  7. Merging Old and New: An Instrumentation-Based Introductory Analytical Laboratory

    Science.gov (United States)

    Jensen, Mark B.

    2015-01-01

    An instrumentation-based laboratory curriculum combining traditional unknown analyses with student-designed projects has been developed for an introductory analytical chemistry course. In the first half of the course, students develop laboratory skills and instrumental proficiency by rotating through six different instruments performing…

  8. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-08-31

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers.

  9. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers

  10. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    Science.gov (United States)

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  11. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    Science.gov (United States)

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  12. Role of maintenance of analytical instruments in the proceedings of quality control laboratory

    International Nuclear Information System (INIS)

    Control Laboratory being a centralized analytical facility of Nuclear Fuel Complex (NFC) is engaged in chemical qualification of all nuclear materials processed/produced at NFC. The primary responsibility of control laboratory is to provide timely analytical results of raw materials, intermediates and final products to all the production plants of NFC for downstream processing. Annual analytical load of nearly five lakhs of estimations are being carried out at laboratory. For this purpose a gamut of analytical facilities ranging from classical methods like gravimetry, volumetry etc. to fully automated state-of-art analytical instruments like ICP-AES, Gas Analysers, Flame and Graphite Furnace-AAS, Direct Reading Emission Spectrometer (DRES), RF GD-OES, TIMS, WD-XRFS, ED-XRFS, Laser based PSD Analyser, Laser Fluorimeter, UV-Vis Spectrophotometer, Gamma Ray Spectrometer, Ion-Chromatography, Gas Chromatography are used to acquire analytical data to see the suitability of products for their intended use. Depending on the applications, analysts validate their procedures, calibrate their instruments, and perform additional instrument checks, such as system suitability tests and analysis of in-process quality control check samples. With the increasing sophistication and automation of analytical instruments, an increasing demand has been placed on maintenance engineers to qualify these instruments for the purpose

  13. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  14. Analytical performance specifications based on how clinicians use laboratory tests. Experiences from a post-analytical external quality assessment programme.

    Science.gov (United States)

    Thue, Geir; Sandberg, Sverre

    2015-05-01

    Analytical performance specifications can be based on three different models: the effect of analytical performance on clinical outcome, based on components of biological variation of the measurand or based on state-of-the-art. Models 1 and 3 may to some degree be combined by using case histories presented to a large number of clinicians. The Norwegian Quality Improvement of Primary Care Laboratories (Noklus) has integrated vignettes in its external quality assessment programme since 1991, focusing on typical clinical situations in primary care. Haemoglobin, erythrocyte sedimentation rate (ESR), HbA1c, glucose, u-albumin, creatinine/estimated glomerular filtration rate (eGFR), and Internationl Normalised Ratio (INR) have been evaluated focusing on critical differences in test results, i.e., a change from a previous result that will generate an "action" such as a change in treatment or follow-up of the patient. These critical differences, stated by physicians, can translate into reference change values (RCVs) and assumed analytical performance can be calculated. In general, assessments of RCVs and therefore performance specifications vary both within and between groups of doctors, but with no or minor differences regarding specialisation, age or sex of the general practitioner. In some instances state-of-the-art analytical performance could not meet clinical demands using 95% confidence, whereas clinical demands were met using 80% confidence in nearly all instances. RCVs from vignettes should probably not be used on their own as a basis for setting analytical performance specifications, since clinicians seem "uninformed" regarding important principles. They could rather be used as a background for focus groups of "informed" physicians in discussions of performance specifications tailored to "typical" clinical situations.

  15. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  16. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  17. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  18. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    Science.gov (United States)

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  19. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  20. Useful measures and models for analytical quality management in medical laboratories.

    Science.gov (United States)

    Westgard, James O

    2016-02-01

    The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories.

  1. Principles of Single-Laboratory Validation of Analytical Methods for Testing the Chemical Composition of Pesticides

    International Nuclear Information System (INIS)

    Underlying theoretical and practical approaches towards pesticide formulation analysis are discussed, i.e. general principles, performance characteristics, applicability of validation data, verification of method performance, and adaptation of validated methods by other laboratories. The principles of single laboratory validation of analytical methods for testing the chemical composition of pesticides are outlined. Also the theoretical background is described for performing pesticide formulation analysis as outlined in ISO, CIPAC/AOAC and IUPAC guidelines, including methodological characteristics such as specificity, selectivity, linearity, accuracy, trueness, precision and bias. Appendices I–III hereof give practical and elaborated examples on how to use the Horwitz approach and formulae for estimating the target standard deviation towards acceptable analytical repeatability. The estimation of trueness and the establishment of typical within-laboratory reproducibility are treated in greater detail by means of worked-out examples. (author)

  2. Analytical quality control concept in the Euratom On-Site laboratories

    International Nuclear Information System (INIS)

    Safeguarding the large reprocessing plants poses undoubtedly a challenge to the Safeguards Authorities. The size of the plants and the high material throughput require a significant effort in verification activities. In order to achieve the required high level of detection probability, the safeguards inspectors need to take a high number of samples which have to be subjected to independent analysis. Evidently, the results of these analyses need to be highly reliable, reporting times have to be short and costs have to be kept at a reasonably low level. Based on the latter two aspects, the Euratom Safeguards Office (ESO) decided in the early 1990's to conceive, develop, install and operate safeguards analytical laboratories at the site of the two large European reprocessing plants at Sellafield (UK) and La Hague (France). The analytical concept of these 'On-Site Laboratories' was developed jointly between ESO and the Institute for Transuranium Elements (ITU). Already at this conceptual stage, the aspects related to analytical quality control were discussed and incorporated in the analytical strategy. The present paper summarises the analytical challenges, describes some operational aspects and explains the analytical concept, highlighting the measures and tools that are implemented for assuring a high degree of reliability of measurements results. The quality control concept implemented in the on-site laboratories forms an integral part of the laboratories' measurement strategy. The concept is arranged in five independent levels and assures a comprehensive check of all measurement results produced in the on-site laboratories. The fact that the quality control is integrated in the laboratory information management system imposes a stringent control on each individual measurement and on each technique. The existing system ensures that the standards set in the International Target Values are met. The analysts consider the quality control as a tool to improve the overall

  3. Development of analytical methodologies to assess recalcitrant pesticide bioremediation in biobeds at laboratory scale.

    Science.gov (United States)

    Rivero, Anisleidy; Niell, Silvina; Cerdeiras, M Pía; Heinzen, Horacio; Cesio, María Verónica

    2016-06-01

    To assess recalcitrant pesticide bioremediation it is necessary to gradually increase the complexity of the biological system used in order to design an effective biobed assembly. Each step towards this effective biobed design needs a suitable, validated analytical methodology that allows a correct evaluation of the dissipation and bioconvertion. Low recovery yielding methods could give a false idea of a successful biodegradation process. To address this situation, different methods were developed and validated for the simultaneous determination of endosulfan, its main three metabolites, and chlorpyrifos in increasingly complex matrices where the bioconvertor basidiomycete Abortiporus biennis could grow. The matrices were culture media, bran, and finally a laboratory biomix composed of bran, peat and soil. The methodology for the analysis of the first evaluated matrix has already been reported. The methodologies developed for the other two systems are presented in this work. The targeted analytes were extracted from fungi growing over bran in semisolid media YNB (Yeast Nitrogen Based) with acetonitrile using shaker assisted extraction, The salting-out step was performed with MgSO4 and NaCl, and the extracts analyzed by GC-ECD. The best methodology was fully validated for all the evaluated analytes at 1 and 25mgkg(-1) yielding recoveries between 72% and 109% and RSDs pesticides, the next step faced was the development and validation of an analytical procedure to evaluate the analytes in a laboratory scale biobed composed of 50% of bran, 25% of peat and 25% of soil together with fungal micelium. From the different procedures assayed, only ultrasound assisted extraction with ethyl acetate allowed recoveries between 80% and 110% with RSDs <18%. Linearity, recovery, precision, matrix effect and LODs/LOQs of each method were studied for all the analytes: endosulfan isomers (α & β) and its metabolites (endosulfan sulfate, ether and diol) as well as for chlorpyrifos. In

  4. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  5. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  6. Comparison between laboratory measurements, simulations, and analytical predictions of the transverse wall impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B

    2009-01-01

    The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  7. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium (238Pu, 240Pu, and 241Pu) in the metal vapor and separate them electrostatically from the desirable isotope 239Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety

  8. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-01-01

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium ([sup 238]Pu, [sup 240]Pu, and [sup 241]Pu) in the metal vapor and separate them electrostatically from the desirable isotope [sup 239]Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety.

  9. ELAN - expert system supported information and management system for analytical laboratories. ELAN - Expertengestuetztes Informationssystem fuer die Laboranalytik

    Energy Technology Data Exchange (ETDEWEB)

    Orth, H.; Zilly, G.

    1990-05-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.).

  10. Development of analytical methodologies to assess recalcitrant pesticide bioremediation in biobeds at laboratory scale.

    Science.gov (United States)

    Rivero, Anisleidy; Niell, Silvina; Cerdeiras, M Pía; Heinzen, Horacio; Cesio, María Verónica

    2016-06-01

    To assess recalcitrant pesticide bioremediation it is necessary to gradually increase the complexity of the biological system used in order to design an effective biobed assembly. Each step towards this effective biobed design needs a suitable, validated analytical methodology that allows a correct evaluation of the dissipation and bioconvertion. Low recovery yielding methods could give a false idea of a successful biodegradation process. To address this situation, different methods were developed and validated for the simultaneous determination of endosulfan, its main three metabolites, and chlorpyrifos in increasingly complex matrices where the bioconvertor basidiomycete Abortiporus biennis could grow. The matrices were culture media, bran, and finally a laboratory biomix composed of bran, peat and soil. The methodology for the analysis of the first evaluated matrix has already been reported. The methodologies developed for the other two systems are presented in this work. The targeted analytes were extracted from fungi growing over bran in semisolid media YNB (Yeast Nitrogen Based) with acetonitrile using shaker assisted extraction, The salting-out step was performed with MgSO4 and NaCl, and the extracts analyzed by GC-ECD. The best methodology was fully validated for all the evaluated analytes at 1 and 25mgkg(-1) yielding recoveries between 72% and 109% and RSDs methodology proved that A. biennis is able to dissipate 94% of endosulfan and 87% of chlorpyrifos after 90 days. Having assessed that A. biennis growing over bran can metabolize the studied pesticides, the next step faced was the development and validation of an analytical procedure to evaluate the analytes in a laboratory scale biobed composed of 50% of bran, 25% of peat and 25% of soil together with fungal micelium. From the different procedures assayed, only ultrasound assisted extraction with ethyl acetate allowed recoveries between 80% and 110% with RSDs <18%. Linearity, recovery, precision, matrix

  11. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  12. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    Science.gov (United States)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  13. Analytical quality assurance in laboratories using tracers for biological and environmental studies

    International Nuclear Information System (INIS)

    This work describe the way we are organizing a quality assurance system to apply in the analytical measurements of the relation 14N/15N in biological and soil material. The relation 14/15 is measured with a optic emission spectrometer (NOI6PC), which distinguish the differences in wave length of electromagnetic radiation emitted by N-28, N-29 and N-30. The major problem is the 'cross contamination' of samples with different enrichments. The elements that are been considered to reach satisfactory analytical results are: 1) A proper working area; 2) The samples must be homogeneous and the samples must represent the whole sampled system; 3) The use of reference materials. In each digestion, a known reference sample must be added; 4) Adequate equipment operation; 5) Standard operating procedures; 6) Control charts, laboratory and equipment books. All operations using the equipment is registered in a book; 7) Training of the operators. (author)

  14. Analytical quality control concept in the Euratom on-site laboratories

    International Nuclear Information System (INIS)

    Full text: Two on-site laboratories have been developed, installed, commissioned and put into routine operation by the Euratom safeguards office (ESO), jointly with the Institute for Transuranium Elements (ITU). These laboratories are operated by ITU staff and provide verification measurement results on samples taken by Euratom inspectors. The analysts work in weekly changing shift teams, manage the laboratories and operate the various analytical techniques. Operating such a laboratory at a remote location, without a senior scientist immediately available in case of problems, The existing boundary conditions challenge the robustness of the entire laboratory, i.e. comprising staff and instrumentation. In order to continuously ensure a high degree of reliability of the measurement results, a stringent quality control system was implemented. The quality control concept for the two on-site laboratories was developed at a very early stage and implemented in the pre-OSL training facility at ITU. This enabled to thoroughly test and develop further the concept. At the same time the analysts get acquainted with the quality control procedures in place and they are instilled with the principles. The quality control concept makes use of a fully computerized data management and data acquisition system. All measurement devices, including balances, density meters, mass spectrometers, passive neutron counter, hybrid K-edge instrument, gamma spectrometers and alpha spectrometers are networked and data exchange is performed on electronic basis. A specifically developed laboratory information management system collects individual measurement data, calculates intermediate and final result and shares the information with a quality control module. In order to ensure the reliability of the results, which are reported to the ESO inspectorate, five levels of quality control were implemented. The present paper describes in detail the different levels of quality control, which check the

  15. Dry sample storage system for an analytical laboratory supporting plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-07-25

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples.

  16. Dry sample storage system for an analytical laboratory supporting plutonium processing

    International Nuclear Information System (INIS)

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples

  17. Metrology and the CIPM-MRA and its relevance for analytical laboratories

    International Nuclear Information System (INIS)

    Measurement standards and certified reference materials (CRMs) provide stated references upon which analytical laboratories can anchor their measurement results. The traceability of measurement results to internationally accepted stated references, together with their stated measurement uncertainties, as required by ISO/IEC 17025, provides the basis for their comparability and global acceptance. For measurement results to be comparable in space and time, the standards upon which these measurements are based should be of long-term stability. The International system of units (SI) represents an internationally recognized system based on standards of long-term stability, and by the use of traceable measurements provides an international infrastructure for realizing comparable measurements. The analytical laboratory requires that values assigned to measurement standards or CRMs for the same measurements are comparable, of known quality and internationally accepted. The Mutual Recognition Arrangement of the International Committee of Weights and Measures (CIPM-MRA) was established in 1999 to provide a transparent system which would meet these requirements. The CIPM-MRA provides a framework for the mutual recognition of national measurement standards, and of calibration and measurement certificates issued by National Metrology Institutes. Laboratories participating in the CIPM-MRA must have their measurement services underpinned by a quality system (essentially ISO/IEC 17025) and their Calibration and Measurement Capabilities (CMCs) are peer reviewed taking into account the laboratory's performance in international (key) comparisons. Internationally reviewed and accepted CMCs and the results of international comparisons are published in the BIPM key comparison database (www.bipm.org) that has free and open access. The performance of each laboratory that has participated in an international comparison can be inspected. The Consultative Committee for Amount of Substance

  18. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J.L. [IAEA, SAL, Vienna (Austria); Raab, W. [IAEA, SAL, Vienna (Austria); Donohue, D. [IAEA, SAL, Vienna (Austria); Jansta, V. [IAEA, SAL, Vienna (Austria); Kierzek, J. [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  19. A clean laboratory for ultratrace analysis: the ultratrace analytical facility (UTAF)

    International Nuclear Information System (INIS)

    Thare has been an increasing demand for the quantification of various elements at extremely low concentrations in a variety of samples such as high purity materials, environmental and biological samples. The need for a controlled environment to obtain reliable and reproducible data necessitates the use of strategies and practices to minimize contamination during the analytical procedure. This report describes the protocol observed in our clean laboratory to eliminate contamination and ensure low laboratory blanks and some of the methodologies developed to carry out the analysis. The analysis is carried out by Graphite Furnace Atomic Absorption Spectrometry and electrochemical techniques such as Anodic/ Cathodic / Adsorptive Stripping Voltammetry. Characterisation of 5N (total impurities 10 ppm) arsenic is routinely carried out. Al in serum of patients suffering from end stage renal failure are also analyzed. Pine leaves, spinach, carrot puree and milk powder have been characterized for Al and Hg content and bovine serum has been characterized for Cu, Zn, Na, K in samples as part of intercomparison exercises. (author)

  20. Use of artificial intelligence in analytical systems for the clinical laboratory.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  1. Internet-based reporting system for the US Department of Energy extended network of analytical laboratories

    International Nuclear Information System (INIS)

    The official implementation of environmental sampling under Programme 93+2 as a means to enhance nuclear safeguards for the International Atomic Energy Agency (IAEA) has led the U.S. Department of Energy (DOE) Extended Network of Analytical Laboratories (ENWAL) to reevaluate the effectiveness and efficiency of its support program in this area. One area of particular concern deals with the methods used for information transfer between the various DOE laboratories, the DOE coordination center in Oak Ridge, and IAEA headquarters in Vienna. This reevaluation has also been extended to included the type and structure of the database used to manage environmental sampling data generated within the DOE ENWAL. Efforts are currently underway to migrate to the same database used by the IAEA to manage environmental sampling data, and to develop a new database structure that allows easier use by the IAEA. The most important part of this upgrade program is the move to the internet to allow secure worldwide, dynamic access by all authorized users of the DOE system. As currently envisioned, a secure web browser and appropriate access privileges are all that will required to use the DOE data reporting and communication system. All transactions involving IAEA environmental samples, such as analysis requests, shipping notification, status information, and data reporting will be conducted over the internet under dynamic conditions. (author)

  2. Heavy metal levels in analytical laboratories waste: a study for the implementation of a programme for the control and disposal of waste from microbiology and chemical analysis laboratories

    OpenAIRE

    Agyei, George

    2012-01-01

    Dissertação de mest., Qualidade em Análises, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012 Analytical Laboratories daily routine analyses leads to the generation of solid and liquid waste. Quality assurance and quality control procedures are employed in most of these laboratories to ensure that accurate results are obtained and the waste generated out of these analyses are properly stored for collection by waste treatment companies. The cost associated with waste t...

  3. Evaluation of Real-Time PCR Laboratory-Developed Tests Using Analyte-Specific Reagents for Cytomegalovirus Quantification▿

    OpenAIRE

    Caliendo, Angela M.; Ingersoll, Jessica; Fox-Canale, Andrea M.; Pargman, Sabine; Bythwood, Tameka; Hayden, Mary K.; Bremer, James W.; Lurain, Nell S.

    2007-01-01

    Viral load testing for cytomegalovirus (CMV) has become the standard for the diagnosis of infection and monitoring of therapy at many transplant centers. However, no viral load test has been approved by the FDA. Therefore, many laboratories rely on laboratory-developed assays. This study evaluated the performance characteristics of two real-time PCR tests developed using the artus CMV analyte-specific reagents (ASRs). One version is distributed by Abbott Molecular and the other by QIAGEN. For...

  4. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.

  5. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  6. 40 CFR Appendix G to Subpart A of... - UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical...

    Science.gov (United States)

    2010-07-01

    ... Applied to Exemption for Essential Laboratory and Analytical Uses G Appendix G to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. G Appendix G to Subpart A of Part.... The provisions of Appendix G, paragraphs (1), (2), (3), and (4), regarding purity, mixing,...

  7. Comparison between Laboratory Measurements, Simulations and Analytical Predictions of the Resistive Wall Transverse Beam Impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Métral, E; Salvant, B

    2008-01-01

    The prediction of the resistive wall transverse beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instability. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to crosscheck the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of i) sample graphite plates, ii) stand-alone LHC collimator jaws and iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  8. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    Science.gov (United States)

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  9. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  10. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  11. Assessment of Analytic Morphograph CF-1 manufactured by Kent Laboratory Services Ltd

    International Nuclear Information System (INIS)

    An addendum is presented covering the assessment of an Analytic Morphograph CF-1 which incorporates the design modifications which arose out of the initial assessment in the main DHSS report. The assessment, made at Booth Hall Children's Hospital, evaluated modifications including X-ray field size adjustment, improved patient supports, operator's protective screen, film screens and grid and film marking. (U.K.)

  12. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  13. Assessment of Analytic Morphograph CF-1 manufactured by Kent Laboratory Services Ltd

    International Nuclear Information System (INIS)

    DHSS assessment reports, prepared by St Lawrence Hospital, Chepstow and the Hospital for Sick Children, Great Ormond Street are presented for the Analytic Morphograph CF-1. This machine converts the central principle of morphanalysis - the Fixed Relations Theory - into clinical practice by producing radiographs and photographs of the human head which are universally related in three dimensions. Both technical and clinical aspects of the equipment's performance are examined. (U.K.)

  14. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  15. A study of the Perkin-Elmer laboratory robotic system for analytical sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Delmastro, J.R.

    1988-09-01

    The purpose of this study was to evaluate the abilities of a Perkin-Elmer (PE) robotic system in performing complex analytical sample preparation procedures. Until this time, reports have been written describing the physical capabilities of the robotic arm marketed by PE and the use of this arm in a pick-and-place application at the Idaho Chemical Processing Plant (ICPP). Since the robotic arm is only capable of handling and transporting objects, the ability of the PE system is dependent upon the performance capabilities of the auxiliary devices marketed with the arm. 2 refs., 2 figs., 1 tab.

  16. Analytical performance specifications: relating laboratory performance to quality required for intended clinical use.

    Science.gov (United States)

    Dalenberg, Daniel A; Schryver, Patricia G; Klee, George G

    2013-03-01

    This article proposes analytic performance goals for five quality indicators: precision, trueness, linearity, detection limits, and consistency across instruments and time. We defined our goals using methods linked to clinical practice data. Goals for desirable precision and trueness are based on biological variation. Linearity goals are related to total error recommendations. Detection limit goals are derived from 0.1 percentile of patient values. Goals for consistency are derived from the variability of distributions of patient test values. Data were collected and evaluated for each of these quality indicators for 46 chemistry tests measured on the Roche cobas 8000 analyzer.

  17. Validation of uranium determination by ICP-SMS from QC samples from the IAEA Safeguards Analytical Laboratory

    International Nuclear Information System (INIS)

    The IAEA Safeguards Analytical Laboratory (SAL) recently installed a high-resolution inductively coupled plasma sector-field mass spectrometer (ICP-SMS) for determination of uranium concentration down to environmental levels, with the goal of enhancing the efficiency of the analysis of quality control samples at the IAEA Clean Laboratory for Safeguards. The most challenging samples from the Clean Laboratory are room blanks, which commonly have uranium contents of 0.1 to 5 pg. The location of the instrument in the nuclear area of SAL poses challenges regarding the realistic lower working detection and quantification limits of uranium. A systematic experimental study was implemented to validate the performance of the ICP-SMS under routine operational conditions. The results demonstrate that reliable, precise determinations of uranium can be made at concentrations of ≥200 ppq with a standard uncertainty down to ∼1%, assuming proper precautions against contamination are taken and the unknown sample is well bounded by fresh calibration curves. At this performance level, the ICP-SMS at SAL is capable of reliably detecting and measuring uranium for the purposes of the Clean Laboratory. (author)

  18. Clinical evaluation of analytical variations in serum creatinine measurements: why laboratories should abandon Jaffe techniques

    Directory of Open Access Journals (Sweden)

    Drion Iefke

    2012-10-01

    Full Text Available Abstract Background Non-equivalence in serum creatinine (SCr measurements across Dutch laboratories and the consequences hereof on chronic kidney disease (CKD staging were examined. Methods National data from the Dutch annual external quality organization of 2009 were used. 144 participating laboratories examined 11 pairs of commutable, value-assigned SCr specimens in the range 52–262 μmol/L, using Jaffe or enzymatic techniques. Regression equations were created for each participating laboratory (by regressing values as measured by participating laboratories on the target values of the samples sent by the external quality organization; area under the curves were examined and used to rank laboratories. The 10th and 90th percentile regression equation were selected for each technique separately. To evaluate the impact of the variability in SCr measurements and its eventual clinical consequences in a real patient population, we used a cohort of 82424 patients aged 19–106 years. The SCr measurements of these 82424 patients were introduced in the 10th and 90th percentile regression equations. The newly calculated SCr values were used to calculate an estimated glomerular filtration rate (eGFR using the 4-variable Isotope Dilution Mass Spectrometry traceable Modification of Diet in Renal Disease formula. Differences in CKD staging were examined, comparing the stratification outcomes for Jaffe and enzymatic SCr techniques. Results Jaffe techniques overestimated SCr: 21%, 12%, 10% for SCr target values 52, 73 and 94 μmol/L, respectively. For enzymatic assay these values were 0%, -1%, -2%, respectively. eGFR using the MDRD formula and SCr measured by Jaffe techniques, staged patients in a lower CKD category. Downgrading to a lower CKD stage occurred in 1-42%, 2-37% and 12–78.9% of patients for the 10th and 90th percentile laboratories respectively in CKD categories 45–60, 60–90 and >90 ml/min/1.73 m2. Using enzymatic techniques, downgrading

  19. Towards a green analytical laboratory: microextraction techniques as a useful tool for the monitoring of polluted soils

    Science.gov (United States)

    Lopez-Garcia, Ignacio; Viñas, Pilar; Campillo, Natalia; Hernandez Cordoba, Manuel; Perez Sirvent, Carmen

    2016-04-01

    Microextraction techniques are a valuable tool at the analytical laboratory since they allow sensitive measurements of pollutants to be carried out by means of easily available instrumentation. There is a large number of such procedures involving miniaturized liquid-liquid or liquid-solid extractions with the common denominator of using very low amounts (only a few microliters) or even none of organic solvents. Since minimal amounts of reagents are involved, and the generation of residues is consequently minimized, the approach falls within the concept of Green Analytical Chemistry. This general methodology is useful both for inorganic and organic pollutants. Thus, low amounts of metallic ions can be measured without the need of using ICP-MS since this instrument can be replaced by a simple AAS spectrometer which is commonly present in any laboratory and involves low acquisition and maintenance costs. When dealing with organic pollutants, the microextracts obtained can be introduced into liquid or gas chromatographs equipped with common detectors and there is no need for the most sophisticated and expensive mass spectrometers. This communication reports an overview of the advantages of such a methodology, and gives examples for the determination of some particular contaminants in soil and water samples The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) for financial support

  20. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  1. Emotions beyond the laboratory: theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment.

    Science.gov (United States)

    Wilhelm, Frank H; Grossman, Paul

    2010-07-01

    Questionnaire and interview assessment can provide reliable data on attitudes and self-perceptions on emotion, and experimental laboratory assessment can examine functional relations between stimuli and reactions under controlled conditions. On the other hand, ambulatory assessment is less constrained and provides naturalistic data on emotion in daily life, with the potential to (1) assure external validity of laboratory findings, (2) provide normative data on prevalence, quality and intensity of real-life emotion and associated processes, (3) characterize previously unidentified emotional phenomena, and (4) model real-life stimuli for representative laboratory research design. Technological innovations now allow for detailed ambulatory study of emotion across domains of subjective experience, overt behavior and physiology. However, methodological challenges abound that may compromise attempts to characterize biobehavioral aspects of emotion in the real world. For example, emotional effects can be masked by social engagement, mental and physical workloads, as well as by food intake and circadian and quasi-random variation in metabolic activity. The complexity of data streams and multitude of factors that influence them require a high degree of context specification for meaningful data interpretation. We consider possible solutions to typical and often overlooked issues related to ambulatory emotion research, including aspects of study design decisions, recording devices and channels, electronic diary implementation, and data analysis. PMID:20132861

  2. X-ray Fluorescence in Member States: Spain. Activities at the Laboratory of X ray Analytical Applications (LARX)

    International Nuclear Information System (INIS)

    the phytoremediation of an abandoned Pb/Zn mining area located at the North East of Spain. 3. Compositional Characterization of Ancient Coins by Means of XRF Instrumentation. During the last years, amongst other activities, the Laboratory of X ray Analytical Applications (LARX) has been involved in the analytical applications of XRF spectrometry in the field of Cultural Heritage objects. In the last two years, within the framework of a joined project between LARX and the Catalonian Numismatic Department (GNC) at the National Museum of Fine Arts of Catalonia (MNAC, Barcelona) were undertaken

  3. Sample preparation with microwave. Experiences in the environmental- and industrial analytics laboratory of Voest Alpine (P1)

    International Nuclear Information System (INIS)

    Full text: Since around one and a half year two microwave sample preparation units tested and used in the environmental- and industrial analytics laboratory of Voest Alpine. On basis of the experiences the technique offered good results for the specific applications in a steel company. In comparison with the traditional sample preparation of iron oxides for ICP-OES determination through an open vessel wet-chemical acid pulping sample preparation with closed vessel microwave digestion got a large quantity of advantages. The problem with simultaneously sample preparation and determination of silica and other compounds in ultra-pure iron oxides could be solved. We obtained an excellent recovery and reproducibility with microwave pulping. In the range of environmental analytics the possibilities of microwave sample preparation to prepare typical dusts, landfill wastes, process and waste water of a steel company was analyzed. The microwave sample preparation showed good reproducibility to the conventional techniques, e.g. pulping and Soxleth-extraction. Someone of them are already replaced by the new method. Here also the microwave technique possess a large potential for more uses. (author)

  4. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. B.; Peeler, D. K.

    2012-11-26

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  5. ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2014-10-28

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

  6. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    Science.gov (United States)

    Wright, John C.

    1996-09-01

    It is recognized that a need exists to move from the passive learning styles that have characterized chemistry courses to an active style in which students participate and assume responsibility for their learning (1 - 5). In addition, it is argued that course reform should be linked to authentic student achievement, so that students can actively experience the feelings of practicing professionals (6). Course experiments where such changes have been introduced have proven successful but the number of examples of such changes is limited in the higher level courses or courses with large enrollments (7 - 11). In this paper, a one-semester introductory analytical chemistry course is described that accomplishes this goal by the use of open-ended laboratories, cooperative learning, and spreadsheet programs. The course uses many of the ideas described by Walters (7). It is offered at the upperclass level to nonmajors and at the freshman level to students with solid chemistry backgrounds from high school. Typically there are 90 students, who are divided into 5 sections. A teaching assistant is assigned to each section. The course has two 4-hour laboratories and two or three lectures each week (depending on whether it is the upperclass or freshman course). The heart of the course changes is the use of open-ended laboratory experiments in the last half of the course. A sample group project is to have the students develop a mixture of acid-base indicators that can serve as a spectroscopic pH meter. These projects are enhanced by dividing the students into teams of four who take charge of all aspects of accomplishing the projects' goals. Since there are many skills required to make these projects work, the first half of the course is spent developing the individual conceptual, computational, laboratory, problem solving, and group skills so students are prepared for the last half. These changes have markedly improved the student attitudes towards each other and towards learning

  7. Automation of the γ-ray spectroscopy counting system at the Dow Chemical Company Analytical Sciences Laboratory

    Science.gov (United States)

    Romick, J. D.; Rigot, W. L.; Morabito, P. L.; Quinn, T. J.; Kocher, C. W.; Duke, D. J.

    1994-12-01

    The neutron activation analysis group within the Analytical Sciences Laboratory analyzes 3000-5000 samples annually for a wide variety of analytes. Due to the high sample load, it is imperative that the gamma spectroscopy counting system be automated to maximize the efficiency of the system while ensuring the accuracy of the analyses. Using a Zymark robotic system, Compumotor drives, and DEC-based Canberra/Nuclear Data software we have automated sample changing, detector positioning, and data acquisition. Automation of these functions has resulted in a more consistent counting geometry, minimized crosstalk between samples, and accurate repositioning of the detectors for standardless quantitative analysis. The Zymark robotic system currently controls two detector systems, but is designed to control up to three independent detector systems. Canberra/Nuclear Data software, operating on a Microvax 3100, issues commands to the Zymark controller to change samples when spectral acquisition is complete. Once a new sample is in place, the robot sends a signal to the Microvax to begin data acquisition. Up to 40 samples, with sizes between 1 and 20 ml, can be accommodated using customized sample racks and sample holders. The location of the sample racks relative to the detectors has eliminated noticeable crosstalk between samples in the racks and samples being counted. The two HPGe detectors for each detector system sit on motorized platforms controlled by programmable Compumotor drives. Programmed function keys move the detectors in or out at fixed increments to optimize sample/detector geometry. The high resolution of the stepper motors enables accurate repositioning of detectors so that previously acquired standard spectra can be compared with samples activated and counted under identical conditions but at different times.

  8. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    Science.gov (United States)

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  9. Analysis of Environmental Contamination resulting from Catastrophic Incidents: Part two: Building Laboratory Capability by Selecting and Developing Analytical Methodologies

    Science.gov (United States)

    Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...

  10. Desempenho analítico de laboratórios prestadores de serviço na determinação de metais em águas Analytical performance of contractor laboratories in the determination of metals in water

    Directory of Open Access Journals (Sweden)

    Wilson F. Jardim

    2009-01-01

    Full Text Available Analytical laboratories are expected to produce reliable results. Decision makers are guided in their actions (financial, legal and environmental using analytical data provided by numerous laboratories. This work aimed to evaluate the analytical performance of Brazilian laboratories on producing trustworthy results. Nineteen laboratories, accredited and non-accredited ones, were contracted to analyze a USGS (United States Geological Survey certified water sample for 17 chemical elements (mostly metals without knowing the origin of the sample. Considering all the results produced, only 35% of them were valid. Three laboratories present satisfactory performances, whereas the majority showed a very poor overall performance. The outcomes of this work show the need for a more effective analytical quality program to Brazilian laboratories.

  11. A reference interval study for common biochemical analytes in Eastern Turkey: a comparison of a reference population with laboratory data mining

    Science.gov (United States)

    Bakan, Ebubekir; Polat, Harun; Ozarda, Yesim; Ozturk, Nurinnisa; Baygutalp, Nurcan Kilic; Umudum, Fatma Zuhal; Bakan, Nuri

    2016-01-01

    Introduction The aim of this study was to define the reference intervals (RIs) in a Turkish population living in Northeast Turkey (Erzurum) for 34 analytes using direct and indirect methods. In the present study, the regional RIs obtained were compared with other RI studies, primarily the nationwide study performed in Turkey. Materials and methods For the direct method, 435 blood samples were collected from a healthy group of females (N = 218) and males (N = 217) aged between 18 and 65 years. The sera were analysed in Ataturk University hospital laboratory using Roche reagents and analysers for 34 analytes. The data from 1,366,948 records were used to calculate the indirect RIs using a modified Bhattacharya method. Results Significant gender-related differences were observed for 17 analytes. There were also some apparent differences between RIs derived from indirect and direct methods particularly in some analytes (e.g. gamma-glutamyltransferase, creatine kinase, LDL-cholesterol and iron). The RIs derived with the direct method for some, but not all, of the analytes were generally comparable with the RIs reported in the nationwide study and other previous studies in Turkey.There were large differences between RIs derived by the direct method and the expected values shown in the kit insert (e.g. aspartate aminotransferase, total-cholesterol, HDL-cholesterol, and vitamin B12). Conclusions These data provide region-specific RIs for 34 analytes determined by the direct and indirect methods. The observed differences in RIs between previous studies could be related to nutritional status and environmental factors. PMID:27346966

  12. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  13. Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages. An Analytical Chemistry Laboratory Experiment for Food Science-Oriented Students

    Science.gov (United States)

    Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A.

    2000-10-01

    The glucose oxidase-horseradish peroxidase coupled reaction using phenol and 4-aminoantipyrine is used for the kinetic determination of glucose in drinks and beverages. This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages. The method is optimized for student use in the temperature range of 18-28 °C and can be used in low-budget laboratories equipped with an inexpensive visible photometer. The mixed enzyme-chromogen solution that is used is stable for two months. Precision ranged from 5.1 to 12% RSD for analyses conducted during a period of two months by 48 students.

  14. GLYCOHEMOGLOBIN - COMPARISON OF 12 ANALYTICAL METHODS, APPLIED TO LYOPHILIZED HEMOLYSATES BY 101 LABORATORIES IN AN EXTERNAL QUALITY ASSURANCE PROGRAM

    NARCIS (Netherlands)

    WEYKAMP, CW; PENDERS, TJ; MUSKIET, FAJ; VANDERSLIK, W

    1993-01-01

    Stable lyophilized ethylenediaminetetra-acetic acid (EDTA)-blood haemolysates were applied in an external quality assurance programme (SKZL, The Netherlands) for glycohaemoglobin assays in 101 laboratories using 12 methods. The mean intralaboratory day-to-day coefficient of variation (CV), calculate

  15. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  16. Analytical protocols for sampling extended areas: Comparing simulated field analysis to laboratory analysis for metal characterization of soils

    International Nuclear Information System (INIS)

    This paper describes a methodology for sampling large areas taking into account QA and QC protocols, in order to ensure representative samples. The proposed methodology covers a general approach to planning field investigations that could be useful for any type of environmental study. Procedures for sampling planning, a sampling protocols checklist, sampling devices and elements, transportation and blank sample requirements are presented. The final objective is to design a sampling strategy that will eventually allow the use of portable EDXRF instruments for in situ use in soil analysis. This methodology will be applied for a soil characterization study in the zone of Campana, Argentina, in order to identify possible contamination taking into account the industrial activity in this area. Sample concentrations were evaluated in the laboratory using an EDXRF spectrometer with radioisotope excitation. (author)

  17. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  18. Analytical scanning and transmission electron microscopy of laboratory impacts on Stardust aluminum foils: interpreting impact crater morphology and the composition of impact residues

    CERN Document Server

    Kearsley, A T; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Bradley, J P; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-01-01

    The known encounter velocity (6.1kms-1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 fall within a range that allows simulation in laboratory light gas gun experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape and density range of mineral, glass, polymer and metal grains, have been fired to impact perpendicularly upon samples of Stardust Al1100 foil, tightly wrapped onto aluminium alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre-existing major and trace element composition of the foil, geometrical issues for en...

  19. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    Science.gov (United States)

    Briggs, Martin; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, Jr., John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  20. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  1. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  2. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  3. Waste management and technologies analytical database project for Los Alamos National Laboratory/Department of Energy. Final report, June 7, 1993--June 15, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-17

    The Waste Management and Technologies Analytical Database System (WMTADS) supported by the Department of Energy`s (DOE) Office of Environmental Management (EM), Office of Technology Development (EM-50), was developed and based at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, to collect, identify, organize, track, update, and maintain information related to existing/available/developing and planned technologies to characterize, treat, and handle mixed, hazardous and radioactive waste for storage and disposal in support of EM strategies and goals and to focus area projects. WMTADS was developed as a centralized source of on-line information regarding technologies for environmental management processes that can be accessed by a computer, modem, phone line, and communications software through a Local Area Network (LAN), and server connectivity on the Internet, the world`s largest computer network, and with file transfer protocol (FTP) can also be used to globally transfer files from the server to the user`s computer through Internet and World Wide Web (WWW) using Mosaic.

  4. 统计质量保证技术在分析测试实验室内部质量控制中的应用%Application of SQA Techniques to Analytical and Testing Laboratories for Internal Quality Control

    Institute of Scientific and Technical Information of China (English)

    王斗文; 万秉忠

    2001-01-01

    对通过统计质量保证( SQA)技术进行分析测试实验室内部质量控制( IQC)的方法作了初探。研究结果表明,SQA技术的应用能保证实验室始终处于统计受控状态,确保测试数据的有效性,有利于分析测试实验室质量保证活动的开展。%In this paper,a method of internal quality control for analytical and testing laboratories by statistical quality assurance(SQA) techniques is discussed.Application of SQA techniques can be continuously ensure that analytical and testing data of the laboratories are in statistical _ control state,thus guaranteeing the data quality and indicating areas of potential improvement for the laboratories.

  5. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 6. Nuclear Analytical Applications in a Semiconductor Materials Characterization Laboratory

    International Nuclear Information System (INIS)

    A typical semiconductor materials characterization laboratory is heavily loaded with surface analytical tools such as SEM, TEM, TXRF, secondary ion mass spectrometry (SIMS), AFM, and XPS. However, there are analytical needs that cannot be addressed by the aforementioned methods and often require a bulk analysis technique such as ICP/MS. Nuclear analytical methods can play a very important complementary role and provide advantages over nonnuclear techniques because of higher sensitivity, simplicity of sample preparation, and highly quantitative answers. An overwhelming majority of the semiconductor industry uses silicon as the base material for the integrated circuit (IC) manufacturing, and silicon, incidentally, has very favorable nuclear parameters. Silicon, for example, does not have a high neutron capture cross section; thus, matrix activity induced during a neutron irradiation is not very high, and more importantly, the half-life of the major radioisotope 31Si is only 2.6 h. This short half-life provides a good opportunity to study induced radioactivities of other impurities such as iron, zinc, and nickel. So, neutron activation analysis (NAA) can achieve a very high sensitivity with most transition metals and other important impurities such as copper, gold, and tungsten. NAA is very complementary to other methods of analysis in providing trace-level metals analysis of both silicon wafer and non-wafer samples such as quartz parts used in the diffusion furnaces. Data from NAA of quartz materials used in the diffusion furnaces will be described. In addition, the NAA techniques such as prompt gamma activation analysis are especially useful for the analysis of bulk hydrogen. Another nuclear method, nuclear reaction analysis (NRA), has also been widely used for this purpose. With NRA, a depth profile similar to the ones obtained by SIMS can be achieved. An important nuclear analysis in the semiconductor industry is the depth profiling of boron by neutron depth

  6. Food and Environmental Protection Laboratory, Seibersdorf: Discrimination of honey of different floral origins by a combination of various chemical parameters; Stable Isotopes Applied to Authenticating Honey; The use of analyte protectants in pesticide residue analytical work

    International Nuclear Information System (INIS)

    valued for its non-peroxide antimicrobial activity (NPA).The NPA is thought to be due to high levels of methyl glyoxal (MGO) and it is the manuka honey with high levels of MGO that fail the C4 sugar adulteration test. Work by FEPL indicates that this is partly due to the beekeeping practice of feeding sugar to bees during the winter. However, that does not explain the late season failures, or that the extent of failure increases as manuka honey ages. The MGO levels in manuka increase with age and it has been shown that high MGO is correlated with high apparent C4 sugar content. Current research in this field in FEPL is focused on modifying the AOAC method to overcome these false positives in the C4 sugar adulteration. A method has been developed for the removal of MGO prior to the purification of the protein that is measured as internal standard. It is hoped that the removal of the MGO will eliminate the interference in the isotope test. Tests are now underway to establish the optimum conditions for the removal of MGO and to show that the additional procedure does not affect the isotopic composition of the purified protein. Once those tasks are completed the work will move to the validation stage and involve other laboratories to test the procedure. The FEPL is currently carrying out a study on method validation for the detection of several pesticides in potato samples. The extraction and clean-up method used is known as the Quick, Easy, Cheap, Effective Rugged and Safe (QuEchERS) for pesticide residue determination, and uses a gas chromatograph coupled to a mass selective detector (GC-MSD) for analyte separation and detection. According to the SANCO document (SANCO/12571/2013), matrix effects should be assessed at the initial method validation stage. Therefore as part of the calibration strategies for our method both matrix-matched and solvent calibrators were prepared

  7. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  8. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    Science.gov (United States)

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  10. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  11. Analytic Materials

    CERN Document Server

    Milton, Graeme W

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  12. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  13. 7 CFR 98.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to.... Army Individual Protection Directorate's Military Specifications, approved analytical test...

  14. Quantification and human health risk assessment of by-products of photo catalytic oxidation of ethylbenzene, xylene and toluene in indoor air of analytical laboratories.

    Science.gov (United States)

    Dhada, Indramani; Sharma, Mukesh; Nagar, Pavan Kumar

    2016-10-01

    The by-products of TiO2-based photocatalytic oxidation (PCO) of ethylbenze, p,m-xylene, o-xylene and toluene (EXT) in vapour phase and those adsorbed on the catalyst surface (solid phase) were identified and quantified on GC/GC-MS. A factor was developed in terms of μg of by-product produced per mg of EXT removed per sq-meter surface area of catalyst for estimating the mass of by-products produced. The by-products quantified were: acetone, hexane, cyclohexane, benzene, crotonaldehyde, toulene, 1,4-benzoquinone, benzaldehyde, phenol, benzylalcohol, cresol, hydroquinone and benzoic acid. The by-products accounted for 2.3-4.2% of the total mass of EXT treated. For treating concentrations of 220μg/m(3) (ethylbenzene), 260μg/m(3) (p,m-xylene), 260μg/m(3) (o-xylene) and 320μg/m(3) (toluene), at a flow rate of 7L/min for 12h in a laboratory of volume 195m(3), the estimated cancer risks of by-products to the occupants were 1.51×10(-6), 1.06×10(-6), 4.69×10(-7), and 1.58×10(-9) respectively. The overall hazard index (HI) of the by-products for EXT was of the order 10(-4); which is much less than desired level of 1.0. The estimated risks were within the acceptable level. This study has also suggested the photocatalytic degradation pathways for EX which are through formation of toluene. PMID:27208611

  15. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  16. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  17. Analytical Searching.

    Science.gov (United States)

    Pappas, Marjorie L.

    1995-01-01

    Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…

  18. 7 CFR 94.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.4 Section 94.4 Agriculture... POULTRY AND EGG PRODUCTS Mandatory Analyses of Egg Products § 94.4 Analytical methods. The majority of analytical methods used by the USDA laboratories to perform mandatory analyses for egg products are listed...

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  20. Dark Field Microscopy for Analytical Laboratory Courses

    Science.gov (United States)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  1. Expert Systems for the Analytical Laboratory.

    Science.gov (United States)

    de Monchy, Allan R.; And Others

    1988-01-01

    Discusses two computer problem solving programs: rule-based expert systems and decision analysis expert systems. Explores the application of expert systems to automated chemical analyses. Presents six factors to consider before using expert systems. (MVL)

  2. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOC and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program

  3. Analytical Services

    International Nuclear Information System (INIS)

    In 2015, the Soil and Water Management & Crop Nutrition (SWMCNL) Laboratory analysed 2700 samples for stable isotopes and 180 samples for fallout radionuclides. These soil and plant samples were mainly from ongoing activities at the SWMCNL focusing on the design of affordable isotope and nuclear techniques to develop climate-smart agricultural practices

  4. Distribution of knowledge in analytical chemistry

    International Nuclear Information System (INIS)

    The CEA contributes to the development of knowledge in analytical chemistry by research work in its laboratories, at the same time using the acquired information for the daily execution of many determinations. In its own interests the CEA must therefore pass on this known-how to those who carry out analyses on its behalf: the analytical laboratories and the analysts themselves. At the analytical laboratory level the Committee for the Establishment of analytical methods (CETAMA) offers a permanent liaison service. Where analysts are concerned. Close relations with educational or professional training establishment enable CEA personnel to attend causes and instruction periods as students or to collaborate as instructors. The work of the CETAMA and the educational and professional training activities to which the CEA contributes in the field of analytical chemistry are outlined

  5. Analytical and Radiochemistry for Nuclear Forensics

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  6. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  7. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  8. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European....... These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry...... of accuracy published in research literature. The possible deviations are suspected to originate from long-term variations of detection systems of instrumental analysis, and the impact on these findings on future measurements of analytical chemistry is discussed....

  9. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics Laboratory The Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose...

  10. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  11. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    Science.gov (United States)

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  12. 42 CFR 493.1289 - Standard: Analytic systems quality assessment.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Analytic systems quality assessment. 493... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing Analytic Systems § 493.1289 Standard: Analytic systems quality assessment. (a)...

  13. Hanford analytical services quality assurance requirements documents

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  14. Analytical quality control in studies of environmental exposure to mercury

    International Nuclear Information System (INIS)

    This present working paper describes activities of the J. Stefan Institute laboratory, which was selected as a reference laboratory for the purpose of quality assurance programme of the CRP. The topics discussed include analyses of human hair samples received from other laboratories, recommendations on analytical methods for total and methyl mercury analyses, suggestions for additional intercalibration exercises, and improvements of existing analytical capabilities. Additionally, some preliminary results of a proposed supplementary programme are also presented. 14 refs, 3 figs, 5 tabs

  15. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  16. Analytical measurements for safeguarding large reprocessing facilities

    International Nuclear Information System (INIS)

    Verification analysis of samples taken at large reprocessing plants can be performed off site after shipment of the samples to a specialized laboratory of, more advantageously in terms of cost and timeliness, on site. The latter may be achieved either by using permanently installed equipment which is operated by an inspector or in fully equipped on-site laboratory. Analytical techniques suitable for determining uranium and plutonium isotopic compositions as well as the respective element concentrations, are applied. Experience with a number of these techniques has shown that effective analytical support in safeguarding large reprocessing plants can be provided to the safeguards authorities

  17. Croatian Analytical Terminology

    OpenAIRE

    Kastelan-Macan; M.

    2008-01-01

    Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals...

  18. Principais parâmetros biológicos avaliados em erros na fase pré-analítica de laboratórios clínicos: revisão sistemática Main biological parameters evaluated in pre-analytical phase errors at clinical laboratories: a systematic review

    Directory of Open Access Journals (Sweden)

    Vivaldo Gomes da Costa

    2012-06-01

    comprises three phases: pre-analytical, analytical and post-analytical. Most errors occur in the pre-analytical phase. Thus, their determination and corresponding assessment maximize QAP efficiency. In this study, by means of a systematic review, which comprised 14 articles, we describe the main biological variations found in the pre-analytical phase at clinical laboratories. The biological parameters described in the review included glucose, cholesterol, triglycerides, enzymes and hormones. As far as venipuncture is concerned, a common error was the prolonged use of tourniquet. The main error causes were the following: storage time, tourniquet time, phlebotomy techniques, insufficient information to patients, incorrect blood/anticoagulant ratio, inadequate tubes, contaminated samples, medication and interlaboratory alterations. Our results corroborated other studies, although we did not find other investigations that specifically evaluated changes in the pre-analytical phase due to the use of medication. The most assessed biological parameters coincided with clinical tests. Accordingly, both the implementation of an efficient QAP and the development of professional awareness may prevent laboratory inaccuracies.

  19. Bids requested for Genesis Mission analytical facilities

    OpenAIRE

    Burnett, Donald S.

    2000-01-01

    The Genesis Discovery mission, to be launched in January 2001, will expose ultrapure materials to the solar wind for about 2 years and then return this sample to Earth for isotopic and chemical analysis in terrestrial laboratories. Sample return missions use the best available instrumentation to achieve mission science goals. To complete the Genesis science objectives, advanced instrumentation that surpasses present laboratory sample analysis capabilities is required. Advanced Analytical ...

  20. The International Atomic Energy Agency's Laboratories at Seibersdorf and in Vienna

    International Nuclear Information System (INIS)

    The report briefly describes the main research activities performed during 1988 at the IAEA Laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory as well as the training activities

  1. Modern analytical chemistry in the contemporary world

    Science.gov (United States)

    Šíma, Jan

    2016-02-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  2. Analytic Networks in Music Task Definition.

    Science.gov (United States)

    Piper, Richard M.

    For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…

  3. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    The EuCheMS Division of Analytical Chemistry (DAC) maintains a website with informations on groups of analytical chemistry at European universities (www.dac-euchems. org). Everyone may contribute to the database and contributors are responsible for an annual update of the information. The service...... is offered free of charge. The report on activities of DAC during 2008 was published in journals of analytical chemistry where Manfred Grasserbauer contributed with his personal view on analytical chemistry in the assessment of climate changes and sustainable application of the natural resources to human...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  4. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  5. Analytical Chemistry in Russia.

    Science.gov (United States)

    Zolotov, Yuri

    2016-09-01

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  6. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  7. Quality system implementation for nuclear analytical techniques

    International Nuclear Information System (INIS)

    The international effort (UNIDO, ILAC, BIPM, etc.) to establish a functional infrastructure for metrology and accreditation in many developing countries needs to be complemented by assistance to implement high quality practices and high quality output by service providers and producers in the respective countries. Knowledge of how to approach QA systems that justify a formal accreditation is available in only a few countries and the dissemination of know how and development of skills is needed bottom up from the working level of laboratories and institutes. Awareness building, convincing of management, introduction of good management practices, technical expertise and good documentation will lead to the creation of a quality culture that assures a sustainability and inherent development of quality practices as a prerequisite of economic success. Quality assurance and quality control can be used as a valuable management tool and is a prerequisite for international trade and information exchange. This publication tries to assist quality managers, Laboratory Managers and staff involved in setting up a QA/QC system in a nuclear analytical laboratory to take appropriate action to start and complete the necessary steps for a successful quality system for ultimate national accreditation. This guidebook contributes to a better understanding of the basic ideas behind ISO/IEC 17025, the international standard for 'General requirements for the competence of testing and calibration laboratories'. It provides basic information and detailed explanation about the establishment of the QC system in analytical and nuclear analytical laboratories. It is a proper training material for training of trainers and makes managers with QC management and implementation familiar. This training material aims to facilitate the implementation of internationally accepted quality principles and to promote attempts by Member States' laboratories to obtain accreditation for nuclear analytical

  8. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  9. National laboratories

    International Nuclear Information System (INIS)

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.)

  10. Laboratory Tests

    Science.gov (United States)

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  11. Reduction of INTEC Analytical Radioactive Liquid Wastes

    International Nuclear Information System (INIS)

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste

  12. Reduction of INTEC Analytical Radioactive Liquid Wastes

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  13. Reduction of INTEC Analytical Radioactive Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  14. Some Heterodox Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Guillermo E. Rosado Haddock

    2013-04-01

    Full Text Available Analytic philosophy has been the most influential philosophical movement in 20th century philosophy. It has surely contributed like no other movement to the elucidation and demarcation of philosophical problems. Nonetheless, the empiricist and sometimes even nominalist convictions of orthodox analytic philosophers have served them to inadequately render even philosophers they consider their own and to propound very questionable conceptions.

  15. The Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2007-01-01

    The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....

  16. Teaching the Analytical Life

    Science.gov (United States)

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  17. Monitoring and improving the quality of the extra-analytical phase is the challenge for laboratory medicine%监测和改善分析阶段外的质量是检验医学面临的挑战

    Institute of Scientific and Technical Information of China (English)

    童清; 周睿

    2015-01-01

    国际医学实验室认可准则明确要求要监测检验全程(TTP)的质量.目前分析阶段的误差得到了有效控制;而分析前、后阶段的误差成为影响质量的主要因素.因而,监测与改善分析阶段外的质量将是我们面临的任务.监测TTP的质量,将促使临床实验室从过去局限于实验室中各阶段的管理而扩展到实验室外各环节的管理.同时,也促使我国室间质评组织机构开展分析阶段外的质量保证计划.国际临床化学和检验医学联合会已制定了临床实验室质量指标的模式.美国病理学家学会的质量探查和质量追踪计划为分析阶段外的质量监测提供了一个理想的方法.卫生部临床检验中心也依据国内外相关指南文件,并结合我国的基本国情制定了临床实验室质量控制指标体系,为分析阶段外质量保证计划的开展提供了依据.%International Standard for Medical Laboratories Accreditation demanded monitoring the quality of the total testing process (TFP).Recently, the errors in the analysis phase had been effectively controlled, while the errors in pre-and post-analytical phases still remained comparably high, and became the major factors influencing the TTP quality.Thus, monitoring and improving the quality of the extraanalytical phases became the major challenge.Monitoring the TTP quality required the laboratory staff to extend the quality management to the influential elements outside the laboratory.In addition, it also prompted the organizers of external quality assessment (EQA) in China to provide a quality assurance program for extra-analytical phases.The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) had developed a model of quality indicators.The Q-Probes and Q-Tracks programs of the College of American Pathologists provided a good practice of monitoring and improving quality for the extraanalytical phases.Based on the related international guidelines

  18. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    Energy Technology Data Exchange (ETDEWEB)

    Omenn, Gilbert; States, David J.; Adamski, Marcin; Blackwell, Thomas W.; Menon, Rajasree; Hermjakob, Henning; Apweiler, Rolf; Haab, Brian B.; Simpson, Richard; Eddes, James; Kapp, Eugene; Moritz, Rod; Chan, Daniel W.; Rai, Alex J.; Admon, Arie; Aebersold, Ruedi; Eng, Jimmy K.; Hancock, William S.; Hefta, Stanley A.; Meyer, Helmut; Paik, Young-Ki; Yoo, Jong-Shin; Ping, Peipei; Pounds, Joel G.; Adkins, Joshua N.; Qian, Xiaohong; Wang, Rong; Wasinger, Valerie; Wu, Chi Yue; Zhao, Xiaohang; Zeng, Rong; Archakov, Alexander; Tsugita, Akira; Beer, Ilan; Pandey, Akhilesh; Pisano, Michael; Andrews, Philip; Tammen, Harald; Speicher, David W.; Hanash, Samir M.

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan

  19. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  20. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column has once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year, we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges...... for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...... a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry, in particular, since our discipline by tradition has many close links to industry. We have already noticed decreased industrial commitment with respect...

  1. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  2. Google analytics integrations

    CERN Document Server

    Waisberg, Daniel

    2015-01-01

    A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens

  3. EPA's GLP compliance review of chemistry laboratories.

    Science.gov (United States)

    Hill, D F

    1993-01-01

    The Good Laboratory Practice (GLP) Standards regulations do not provide specific requirements for the operation of a specimen analysis laboratory, such as a testing facility that performs pesticide residue analysis in support of a tolerance study. Thus, some judgment must be applied by a regulated analytical laboratory to assure compliance with GLP Standards regulations that were designed primarily for testing facilities that apply test substances to test systems. This presentation will provide some insight as to EPA's compliance approach, as well as identifying problem areas encountered in past inspections of analytical laboratories. PMID:8156226

  4. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  5. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  6. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  7. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  8. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  9. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  10. Trends in analytical CRM

    OpenAIRE

    Havelková, Martina

    2014-01-01

    This thesis describes major trends in the field of analytical CRM. The goal is to identify those trends and compare them with current situation on the CRM market. The thesis is devided among several parts. In the opening part is described Customer Relationship Management and architecture of CRM system. The next part discribes analytical CRM and its standard ways of using. The main part of the thesis is identification of trends. Idetificated trends are characterized and compared with situation...

  11. Learning analytics in education

    OpenAIRE

    Štrukelj, Tajda

    2015-01-01

    Learning analytics is a young field in computer supported learning, which could have a great impact on education in the future. It is a set of analytical tools which measure, collect, analyze and report about students' data for the purpose of understanding and optimizing students' learning and environments in which this learning occurs. Today, more and more learning related activities are placed on the web. Teachers are creating virtual learning environments (VLE), in which a great set of...

  12. Realtime Web Analytics

    OpenAIRE

    Cardoso, João

    2011-01-01

    Tracking what is happening on a website in realtime is invaluable. The objective of this thesis was to start and launch the first version of Snowfinch, an open source realtime web analytics application. The thesis report contains up-to-date fundamentals of web analytics; reasoning behind the most important and difficult technical decisions in the project; product development methodologies; and an overview of the resulting application. Understanding visitors is the key to a site’s succ...

  13. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  14. Encyclopedia of analytical surfaces

    CERN Document Server

    Krivoshapko, S N

    2015-01-01

    This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions  and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.

  15. Intelligent Visual Analytics Queries

    OpenAIRE

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Morent, Dominik; Schneidewind, Jörn

    2007-01-01

    Visualizations of large multi-dimensional data sets, occurring in scientific and commercial applications, often reveal interesting local patterns. Analysts want to identify the causes and impacts of these interesting areas, and they also want to search for similar patterns occurring elsewhere in the data set. In this paper we introduce the Intelligent Visual Analytics Query (IVQuery) concept that combines visual interaction with automated analytical methods to support analysts in discovering ...

  16. Hanford analytical sample projections FY 1996 - FY 2001. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1997-07-02

    This document summarizes the biannual Hanford sample projections for fiscal year 1997-2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Wastes Remediation Systems, Solid Wastes, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition to this revision, details on Laboratory scale technology (development), Sample management, and Data management activities were requested. This information will be used by the Hanford Analytical Services program and the Sample Management Working Group to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  17. Quality assurance for analitical dairy laboratories

    Directory of Open Access Journals (Sweden)

    Šimun Zamberlin

    2005-04-01

    Full Text Available Quality evaluation of analytical laboratories must be estimated through accuracy, precision and traceability of measurement results. In European countries, acceptable analytical results are those which come from accredited laboratories (EN ISO/IEC 17025:2000. This paper presents examples of traceability, measurement uncertainty, inner quality control and control through the interlaboratory proficiency testing of results for milk fat. Also it demonstrates proficiency testing organization of results for fat, protein, lactose and somatic cells in milk.

  18. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  19. Learning Laboratory.

    Science.gov (United States)

    Hay, Lyn; Callison, Daniel

    2000-01-01

    Considers the school library media center as an information learning laboratory. Topics include information literacy; Kuhlthau's Information Search Process model; inquiry theory and approach; discovery learning; process skills of laboratory science; the information scientist; attitudes of media specialists, teachers, and students; displays and Web…

  20. Analytic theory of the gyrotron

    International Nuclear Information System (INIS)

    An analytic theory is derived for a gyrotron operating in the linear gain regime. The gyrotron is a coherent source of microwave and millimeter wave radiation based on an electron beam emitting at cyclotron resonance Ω in a strong, uniform magnetic field. Relativistic equations of motion and first order perturbation theory are used. Results are obtained in both laboratory and normalized variables. An expression for cavity threshold gain is derived in the linear regime. An analytic expression for the electron phase angle in momentum space shows that the effect of the RF field is to form bunches that are equal to the unperturbed transit phase plus a correction term which varies as the sine of the input phase angle. The expression for the phase angle is plotted and bunching effects in and out of phase (0 and -π) with respect to the RF field are evident for detunings leading to gain and absorption, respectively. For exact resonance, field frequency ω = Ω, a bunch also forms at a phase of -π/2. This beam yields the same energy exchange with the RF field as an unbunched, (nonrelativistic) beam. 6 refs., 10 figs

  1. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  2. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  3. Doing social media analytics

    Directory of Open Access Journals (Sweden)

    Phillip Brooker

    2016-07-01

    Full Text Available In the few years since the advent of ‘Big Data’ research, social media analytics has begun to accumulate studies drawing on social media as a resource and tool for research work. Yet, there has been relatively little attention paid to the development of methodologies for handling this kind of data. The few works that exist in this area often reflect upon the implications of ‘grand’ social science methodological concepts for new social media research (i.e. they focus on general issues such as sampling, data validity, ethics, etc.. By contrast, we advance an abductively oriented methodological suite designed to explore the construction of phenomena played out through social media. To do this, we use a software tool – Chorus – to illustrate a visual analytic approach to data. Informed by visual analytic principles, we posit a two-by-two methodological model of social media analytics, combining two data collection strategies with two analytic modes. We go on to demonstrate each of these four approaches ‘in action’, to help clarify how and why they might be used to address various research questions.

  4. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons.

  5. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. PMID:26592608

  6. Aspects of recent developments in analytical chemometrics

    Institute of Scientific and Technical Information of China (English)

    LIANG; Yizeng; WU; Hailong; SHEN; Guoli; JIANG; Jianhui; LIANG; Sheng

    2006-01-01

    Some aspects of recent developments in analytical chemometrics are discussed, in particular the developments viewed from the angle of the research efforts undertaken in authors' laboratories. The topics concerned include resolution of high-order chemical data, morphological theory and methodology for chemical signal processing, multivariate calibration and chemical pattern recognition for solving complex chemical problems, and resolution of two-way chemical data from hyphenated chromatographic instruments.

  7. Twisted analytic torsion

    Institute of Scientific and Technical Information of China (English)

    MATHAI; Varghese

    2010-01-01

    We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Mller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.

  8. Analytic QCD Binding Potentials

    CERN Document Server

    Fried, H M; Grandou, T; Sheu, Y -M

    2011-01-01

    This paper applies the analytic forms of a recent non-perturbative, manifestly gauge- and Lorentz-invariant description (of the exchange of all possible virtual gluons between quarks ($Q$) and/or anti-quarks ($\\bar{Q}$) in a quenched, eikonal approximation) to extract analytic forms for the binding potentials generating a model $Q$-$\\bar{Q}$ "pion", and a model $QQQ$ "nucleon". Other, more complicated $Q$, $\\bar{Q}$ contributions to such color-singlet states may also be identified analytically. An elementary minimization technique, relevant to the ground states of such bound systems, is adopted to approximate the solutions to a more proper, but far more complicated Schroedinger/Dirac equation; the existence of possible contributions to the pion and nucleon masses due to spin, angular momentum, and "deformation" degrees of freedom is noted but not pursued. Neglecting electromagnetic and weak interactions, this analysis illustrates how the one new parameter making its appearance in this exact, realistic formali...

  9. Flurry Analytics pelikehityksen apuna

    OpenAIRE

    Kuusisto, Rami

    2015-01-01

    Flurry Analytics on Yahoo Mobile Developer Suiten osa, joka keskittyy analytiikkaan. Opinnäytetyössä kerrotaan Flurry Analytics SDK:n implementoimisesta sovellukseen, Flurry Analyticsin tarjoaman web-portaalin käytöstä, sekä siitä, miten näitä ominaisuuksia käytettiin toteutettaessa pelin Cabals: Legends analytiikkatoteutusta. Työssä tarkastellaan myös miten jo kehitettyä analytiikkatoteutusta voitaisiin käyttää pohjana vielä pidemmälle viedylle analytiikkatoteutukselle ja kuinka pystyttäisii...

  10. An analytic thomism?

    Directory of Open Access Journals (Sweden)

    Daniel Alejandro Pérez Chamorro.

    2012-12-01

    Full Text Available For 50 years the philosophers of the Anglo-Saxon analytic tradition (E. Anscombre, P. Geach, A. Kenny, P. Foot have tried to follow the Thomas Aquinas School which they use as a source to surpass the Cartesian Epistemology and to develop the virtue ethics. Recently, J. Haldane has inaugurated a program of “analytical thomism” which main result until the present has been his “theory of identity mind/world”. Nevertheless, none of Thomás’ admirers has still found the means of assimilating his metaphysics of being.

  11. Strictly convergent analytic structures

    OpenAIRE

    Cluckers, Raf; Lipshitz, Leonard

    2013-01-01

    We give conclusive answers to some questions about definability in analytic languages that arose shortly after the work by Denef and van den Dries, [DD], on $p$-adic subanalytic sets, and we continue the study of non-archimedean fields with analytic structure of [LR3], [CLR1] and [CL1]. We show that the language $L_K$ consisting of the language of valued fields together with all strictly convergent power series over a complete, rank one valued field $K$ can be expanded, in a definitial way, t...

  12. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  13. Social network data analytics

    CERN Document Server

    Aggarwal, Charu C

    2011-01-01

    Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr

  14. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... or conditions. What are lab tests? Laboratory tests are medical procedures that involve testing samples of blood, urine, or other tissues or ...

  15. Analytical Chemistry Laboratory progress report for FY 1992

    International Nuclear Information System (INIS)

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc

  16. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  17. Design of a multipurpose laboratory scale analytical combustor

    International Nuclear Information System (INIS)

    The current method of digestion in order to determine the content of heavy metals and other elements in Municipal Solid Waste (MSW) is either too long or dangerous due to the usage of concentrated acids. As such, a Multi Purpose Portable Lab Scale Combustor was developed. It could also be used as a test rig under the various combustion conditions i.e. excess air combustion, gasification and pyrolysis. Another future of this rig, is to trap and analyse the combustion gasses produced from the different types of combustion processes. The rig can also be used to monitor weight loss against time during a combustion process. (Author)

  18. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 6, Physical testing

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  19. Analytic number theory

    CERN Document Server

    Matsumoto, Kohji

    2002-01-01

    The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory

  20. Social Data Analytics Tool

    DEFF Research Database (Denmark)

    Hussain, Abid; Vatrapu, Ravi

    2014-01-01

    This paper presents the design, development and demonstrative case studies of the Social Data Analytics Tool, SODATO. Adopting Action Design Framework [1], the objective of SODATO [2] is to collect, store, analyze, and report big social data emanating from the social media engagement of and social...

  1. Analytics for Customer Engagement

    NARCIS (Netherlands)

    Bijmolt, Tammo H. A.; Leeflang, Peter S. H.; Block, Frank; Eisenbeiss, Maik; Hardie, Bruce G. S.; Lemmens, Aurelie; Saffert, Peter

    2010-01-01

    In this article, we discuss the state of the art of models for customer engagement and the problems that are inherent to calibrating and implementing these models. The authors first provide an overview of the data available for customer analytics and discuss recent developments. Next, the authors di

  2. Ada & the Analytical Engine.

    Science.gov (United States)

    Freeman, Elisabeth

    1996-01-01

    Presents a brief history of Ada Byron King, Countess of Lovelace, focusing on her primary role in the development of the Analytical Engine--the world's first computer. Describes the Ada Project (TAP), a centralized World Wide Web site that serves as a clearinghouse for information related to women in computing, and provides a Web address for…

  3. Multispectral analytical image fusion

    International Nuclear Information System (INIS)

    With new and advanced analytical imaging methods emerging, the limits of physical analysis capabilities and furthermore of data acquisition quantities are constantly pushed, claiming high demands to the field of scientific data processing and visualisation. Physical analysis methods like Secondary Ion Mass Spectrometry (SIMS) or Auger Electron Spectroscopy (AES) and others are capable of delivering high-resolution multispectral two-dimensional and three-dimensional image data; usually this multispectral data is available in form of n separate image files with each showing one element or other singular aspect of the sample. There is high need for digital image processing methods enabling the analytical scientist, confronted with such amounts of data routinely, to get rapid insight into the composition of the sample examined, to filter the relevant data and to integrate the information of numerous separate multispectral images to get the complete picture. Sophisticated image processing methods like classification and fusion provide possible solution approaches to this challenge. Classification is a treatment by multivariate statistical means in order to extract analytical information. Image fusion on the other hand denotes a process where images obtained from various sensors or at different moments of time are combined together to provide a more complete picture of a scene or object under investigation. Both techniques are important for the task of information extraction and integration and often one technique depends on the other. Therefore overall aim of this thesis is to evaluate the possibilities of both techniques regarding the task of analytical image processing and to find solutions for the integration and condensation of multispectral analytical image data in order to facilitate the interpretation of the enormous amounts of data routinely acquired by modern physical analysis instruments. (author)

  4. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories. PMID:12806918

  5. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  6. The analytic renormalization group

    Science.gov (United States)

    Ferrari, Frank

    2016-08-01

    Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2 πk / β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct "Analytic Renormalization Group" linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk | algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

  7. An Analytical Delay Model

    Institute of Scientific and Technical Information of China (English)

    MIN Yinghua; LI Zhongcheng

    1999-01-01

    Delay consideration has been a majorissue in design and test of high performance digital circuits. Theassumption of input signal change occurring only when all internal nodesare stable restricts the increase of clock frequency. It is no longertrue for wave pipelining circuits. However, previous logical delaymodels are based on the assumption. In addition, the stable time of arobust delay test generally depends on the longest sensitizable pathdelay. Thus, a new delay model is desirable. This paper explores thenecessity first. Then, Boolean process to analytically describe thelogical and timing behavior of a digital circuit is reviewed. Theconcept of sensitization is redefined precisely in this paper. Based onthe new concept of sensitization, an analytical delay model isintroduced. As a result, many untestable delay faults under thelogical delay model can be tested if the output waveforms can be sampledat more time points. The longest sensitizable path length is computedfor circuit design and delay test.

  8. Encrypting Analytical Web Applications

    OpenAIRE

    Fuhry, Benny; Tighzert, Walter; Kerschbaum. Florian

    2016-01-01

    The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients’ data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing ...

  9. Analytical and physical electrochemistry

    CERN Document Server

    Girault, Hubert H

    2004-01-01

    The study of electrochemistry is pertinent to a wide variety of fields, including bioenergetics, environmental sciences, and engineering sciences. In addition, electrochemistry plays a fundamental role in specific applications as diverse as the conversion and storage of energy and the sequencing of DNA.Intended both as a basic course for undergraduate students and as a reference work for graduates and researchers, Analytical and Physical Electrochemistry covers two fundamental aspects of electrochemistry: electrochemistry in solution and interfacial electrochemistry. By bringing these two subj

  10. Competing on analytics.

    Science.gov (United States)

    Davenport, Thomas H

    2006-01-01

    We all know the power of the killer app. It's not just a support tool; it's a strategic weapon. Companies questing for killer apps generally focus all their firepower on the one area that promises to create the greatest competitive advantage. But a new breed of organization has upped the stakes: Amazon, Harrah's, Capital One, and the Boston Red Sox have all dominated their fields by deploying industrial-strength analytics across a wide variety of activities. At a time when firms in many industries offer similar products and use comparable technologies, business processes are among the few remaining points of differentiation--and analytics competitors wring every last drop of value from those processes. Employees hired for their expertise with numbers or trained to recognize their importance are armed with the best evidence and the best quantitative tools. As a result, they make the best decisions. In companies that compete on analytics, senior executives make it clear--from the top down--that analytics is central to strategy. Such organizations launch multiple initiatives involving complex data and statistical analysis, and quantitative activity is managed atthe enterprise (not departmental) level. In this article, professor Thomas H. Davenport lays out the characteristics and practices of these statistical masters and describes some of the very substantial changes other companies must undergo in order to compete on quantitative turf. As one would expect, the transformation requires a significant investment in technology, the accumulation of massive stores of data, and the formulation of company-wide strategies for managing the data. But, at least as important, it also requires executives' vocal, unswerving commitment and willingness to change the way employees think, work, and are treated. PMID:16447373

  11. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  12. Analytic stacks and hyperbolicity

    OpenAIRE

    Borghesi, Simone; Tomassini, Giuseppe

    2012-01-01

    The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts ...

  13. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    Science.gov (United States)

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life.

  14. Hanford analytical sample projections FY 1998--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  15. Business analytics a practitioner's guide

    CERN Document Server

    Saxena, Rahul

    2013-01-01

    This book provides a guide to businesses on how to use analytics to help drive from ideas to execution. Analytics used in this way provides "full lifecycle support" for business and helps during all stages of management decision-making and execution.The framework presented in the book enables the effective interplay of business, analytics, and information technology (business intelligence) both to leverage analytics for competitive advantage and to embed the use of business analytics into the business culture. It lays out an approach for analytics, describes the processes used, and provides gu

  16. Quality assurance management plan (QAPP) special analytical support (SAS)

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  17. Analytical reasoning task reveals limits of social learning in networks

    OpenAIRE

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-01-01

    Social learning—by observing and copying others—is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fa...

  18. Quality assurance management plan (QAPP) special analytical support (SAS)

    International Nuclear Information System (INIS)

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data

  19. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  20. ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS

    NARCIS (Netherlands)

    Curtain, Ruth; Rodman, Leiba

    2010-01-01

    For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so

  1. Lunar laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Duke, M.B.

    1986-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  2. Virtual Laboratories

    CERN Document Server

    Hut, P

    2006-01-01

    At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simul...

  3. Laboratory investigations

    International Nuclear Information System (INIS)

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  4. Culham Laboratory

    International Nuclear Information System (INIS)

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  5. Risk Management in the Clinical Laboratory

    Science.gov (United States)

    Njoroge, Sarah W

    2014-01-01

    Clinical laboratory tests play an integral role in medical decision-making and as such must be reliable and accurate. Unfortunately, no laboratory tests or devices are foolproof and errors can occur at pre-analytical, analytical and post-analytical phases of testing. Evaluating possible conditions that could lead to errors and outlining the necessary steps to detect and prevent errors before they cause patient harm is therefore an important part of laboratory testing. This can be achieved through the practice of risk management. EP23-A is a new guideline from the CLSI that introduces risk management principles to the clinical laboratory. This guideline borrows concepts from the manufacturing industry and encourages laboratories to develop risk management plans that address the specific risks inherent to each lab. Once the risks have been identified, the laboratory must implement control processes and continuously monitor and modify them to make certain that risk is maintained at a clinically acceptable level. This review summarizes the principles of risk management in the clinical laboratory and describes various quality control activities employed by the laboratory to achieve the goal of reporting valid, accurate and reliable test results. PMID:24982831

  6. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  7. Elements of analytical dynamics

    CERN Document Server

    Kurth, Rudolph; Stark, M

    1976-01-01

    Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will

  8. Analytical elements of mechanics

    CERN Document Server

    Kane, Thomas R

    2013-01-01

    Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A

  9. Advanced analytical techniques

    International Nuclear Information System (INIS)

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  10. Analytic of China Cyberattack

    Directory of Open Access Journals (Sweden)

    Robert Lai

    2012-07-01

    Full Text Available China cyberattack has become aggressive, disruptive, stealthy, and sophisticated. Apparently, China’s advantage is more on the cognitive domain than technical domain since information systems security is art and science—in some case, it is more art than science. Knowledge is the best weapon for cyber warfare since one of the Sun Tze’s Art of War principles is “know your enemy”. Therefore, an analytic of China cyberattack must scrutinize the national interest, goals and philosophies, culture, worldview, and behavioral phenomena of China.

  11. Analytic of China Cyberattack

    Directory of Open Access Journals (Sweden)

    Robert Lai and Syed (Shawon Rahman

    2012-06-01

    Full Text Available China cyberattack has become aggressive, disruptive, stealthy, and sophisticated. Apparently, China’s advantage is more on the cognitive domain than technical domain since information systems security is art and science—in some case, it is more art than science. Knowledge is the best weapon for cyber warfare since one of the Sun Tze’s Art of War principles is “know your enemy”. Therefore, an analytic of China cyberattack must scrutinize the national interest, goals and philosophies, culture, worldview, and behavioral phenomena of China.

  12. The laboratory activities of the IAEA Laboratories, Vienna. Annual report 1979

    International Nuclear Information System (INIS)

    The report gives a fairly comprehensive view of the activities and results of the IAEA Laboratories in Seibersdorf, during the year 1979. These activities are presented under the following main categories: Metrology of the radiations; Dosimetry; Chemistry; Safeguards analytical laboratory; Isotope hydrology; Medical applications; Agriculture: soils; Entomology; Plant breeding; Electronics

  13. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laboratories

    Directory of Open Access Journals (Sweden)

    Ulleberg Thomas

    2011-04-01

    Full Text Available Abstract Background There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasma creatinine among 10 veterinary laboratories, and to compare results from each laboratory with the upper limit of its reference interval. Methods Samples were collected from 10 healthy dogs, 10 dogs with expected intermediate plasma creatinine concentrations, and 10 dogs with azotemia. Overlap was observed for the first two groups. The 30 samples were divided into 3 batches and shipped in random order by postal delivery for plasma creatinine determination. Statistical testing was performed in accordance with ISO standard methodology. Results Inter- and intra-laboratory variation was clinically acceptable as plasma creatinine values for most samples were usually of the same magnitude. A few extreme outliers caused three laboratories to fail statistical testing for consistency. Laboratory sample means above or below the overall sample mean, did not unequivocally reflect high or low reference intervals in that laboratory. Conclusions In spite of close analytical results, further standardization among laboratories is warranted. The discrepant reference intervals seem to largely reflect different populations used in establishing the reference intervals, rather than analytical variation due to different laboratory methods.

  14. Affine transformations and analytic capacities

    OpenAIRE

    Dowling, Thomas; O'Farrell, Anthony G.

    1995-01-01

    Analytic capacities are set functions defined on the plane which may be used in the study of removable singularities, boundary smoothness and approximation of analytic functions belonging to some function space. The symmetric concrete Banach spaces form a class of function spaces that include most spaces usually studied. The Beurling transform is a certain singular integral operator that has proved useful in analytic function theory. It is shown that the analytic capacity associated to ...

  15. Directory of Analytical Methods, Department 1820

    Energy Technology Data Exchange (ETDEWEB)

    Whan, R.E. (ed.)

    1986-01-01

    The Materials Characterization Department performs chemical, physical, and thermophysical analyses in support of programs throughout the Laboratories. The department has a wide variety of techniques and instruments staffed by experienced personnel available for these analyses, and we strive to maintain near state-of-the-art technology by continued updates. We have prepared this Directory of Analytical Methods in order to acquaint you with our capabilities and to help you identify personnel who can assist with your analytical needs. The descriptions of the various capabilities are requester-oriented and have been limited in length and detail. Emphasis has been placed on applications and limitations with notations of estimated analysis time and alternative or related techniques. A short, simplified discussion of underlying principles is also presented along with references if more detail is desired. The contents of this document have been organized in the order: bulky analysis, microanalysis, surface analysis, optical and thermal property measurements.

  16. Fundamentals of analytical chemistry, 5th edition

    International Nuclear Information System (INIS)

    Fundamentals of Analytical Chemistry is divided into three roughly equal parts. The first 14 chapters cover classical methods of analysis, including titrimetry and gravimetry as well as solution equilibria and statistical analysis. The next 11 chapters address electroanalytical, optical, and chromatographic methods of analysis. The remainder of the text is devoted to discussions of sample manipulation and pretreatment, good laboratory practices, and detailed directions for performing examples of 17 different types of classical and instrumental analyses. Like its predecessors, this fifth edition provides comprehensive coverage of classical analytical methods and the major instrumental ones in a literary style that is clear, straightforward, and readable. New terms are carefully defined as they are introduced, and each term is italicized for emphasis and for ease of relocation by the student who may forget its meaning. The chapters on analyses of real-world samples, on avoiding interferences, and on techniques for sample preparation should prove especially useful for the practicing chemist

  17. Quantifying uncertainty in nuclear analytical measurements

    International Nuclear Information System (INIS)

    The lack of international consensus on the expression of uncertainty in measurements was recognised by the late 1970s and led, after the issuance of a series of rather generic recommendations, to the publication of a general publication, known as GUM, the Guide to the Expression of Uncertainty in Measurement. This publication, issued in 1993, was based on co-operation over several years by the Bureau International des Poids et Mesures, the International Electrotechnical Commission, the International Federation of Clinical Chemistry, the International Organization for Standardization (ISO), the International Union of Pure and Applied Chemistry, the International Union of Pure and Applied Physics and the Organisation internationale de metrologie legale. The purpose was to promote full information on how uncertainty statements are arrived at and to provide a basis for harmonized reporting and the international comparison of measurement results. The need to provide more specific guidance to different measurement disciplines was soon recognized and the field of analytical chemistry was addressed by EURACHEM in 1995 in the first edition of a guidance report on Quantifying Uncertainty in Analytical Measurements, produced by a group of experts from the field. That publication translated the general concepts of the GUM into specific applications for analytical laboratories and illustrated the principles with a series of selected examples as a didactic tool. Based on feedback from the actual practice, the EURACHEM publication was extensively reviewed in 1997-1999 under the auspices of the Co-operation on International Traceability in Analytical Chemistry (CITAC), and a second edition was published in 2000. Still, except for a single example on the measurement of radioactivity in GUM, the field of nuclear and radiochemical measurements was not covered. The explicit requirement of ISO standard 17025:1999, General Requirements for the Competence of Testing and Calibration

  18. Directory of Analytical Methods, Department 1820

    International Nuclear Information System (INIS)

    The Materials Characterization Department performs chemical, physical, and thermophysical analyses in support of programs throughout the Laboratories. The department has a wide variety of techniques and instruments staffed by experienced personnel available for these analyses, and we strive to maintain near state-of-the-art technology by continued updates. We have prepared this Directory of Analytical Methods in order to acquaint you with our capabilities and to help you identify personnel who can assist with your analytical needs. The descriptions of the various capabilities are requester-oriented and have been limited in length and detail. Emphasis has been placed on applications and limitations with notations of estimated analysis time and alternative or related techniques. A short, simplified discussion of underlying principles is also presented along with references if more detail is desired. The contents of this document have been organized in the order: bulky analysis, microanalysis, surface analysis, optical and thermal property measurements

  19. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  20. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  1. The laboratory activities of the IAEA laboratories, Vienna. Annual report - 1978

    International Nuclear Information System (INIS)

    The report presents in ten sections the work done during 1978 by the laboratory of the International Atomic Energy Agency located in Seibersdorf in the province of Lower Austria. The ten sections are: 1) metrology, 2) dosimetry, 3) chemistry, 4) safeguards analytical laboratory, 5) isotope hydrology, 6) medical applications, 7) agriculture - soils, 8) entomology, 9) plant breeding, 10) electronics and workshop. Lists of publications of the staff of the laboratory are appended

  2. Analytics for Metabolic Engineering.

    Science.gov (United States)

    Petzold, Christopher J; Chan, Leanne Jade G; Nhan, Melissa; Adams, Paul D

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.

  3. Analytic device including nanostructures

    KAUST Repository

    Di, Fabrizio, E.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  4. ANALYTICAL CHARACTERIZATION OF PRECIPITATIONS

    Directory of Open Access Journals (Sweden)

    Danut Tiberiu Epure

    2011-02-01

    Full Text Available The properties of precipitation are mainly determined by solid, liquid and gaseous substances that exist in suspended or dissolved form. These substances come from many complex interactions between the atmosphere – hydrosphere – lithosphere – biota. The analytical characterization of precipitation has been based on the analysis of several chemical parameters: pH, conductivity, chloride, fluoride and ammonium ions, total hardness, alkalinity, H2S and sulphides, COD (Mn, nitrites, phosphorous, metallic ions (total iron, copper and chromium. In this purpose were collected rainwater, ice and snow from different areas (cities Năvodari, Constanţa, Buzău and Mihail Kogălniceanu during November 2007 till February 2008. This study shows that chemical characteristics of the analyzed water samples vary from one region to another depending on the mineralogical composition of zones crossed, the contact time, temperature, weather conditions, the sampling period (day or night and the nature of sample (rain, snow, ice.

  5. Normality in analytical psychology.

    Science.gov (United States)

    Myers, Steve

    2013-12-01

    Although C.G. Jung's interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault's criticism, had Foucault chosen to review Jung's work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault's own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung's disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.

  6. ANALYTICS OF BIG DATA

    Directory of Open Access Journals (Sweden)

    Prof. Shubhada Talegaon

    2015-10-01

    Full Text Available Big Data analytics has started to impact all types of organizations, as it carries the potential power to extract embedded knowledge from big amounts of data and react according to it in real time. The current technology enables us to efficiently store and query large datasets, the focus is now on techniques that make use of the complete data set, instead of sampling. This has tremendous implications in areas like machine learning, pattern recognition and classification, sentiment analysis, social networking analysis to name a few. Therefore, there are a number of requirements for moving beyond standard data mining technique. Purpose of this paper is to understand various techniques to analysis data.

  7. Big Data Analytics

    Indian Academy of Sciences (India)

    2016-08-01

    The volume and variety of data being generated using computersis doubling every two years. It is estimated that in 2015,8 Zettabytes (Zetta=1021) were generated which consistedmostly of unstructured data such as emails, blogs, Twitter,Facebook posts, images, and videos. This is called big data. Itis possible to analyse such huge data collections with clustersof thousands of inexpensive computers to discover patterns inthe data that have many applications. But analysing massiveamounts of data available in the Internet has the potential ofimpinging on our privacy. Inappropriate analysis of big datacan lead to misleading conclusions. In this article, we explainwhat is big data, how it is analysed, and give some case studiesillustrating the potentials and pitfalls of big data analytics.

  8. Analytical challenges in characterization of high purity materials

    Indian Academy of Sciences (India)

    K L Ramakumar

    2005-07-01

    Available analytical literature reveals that it is possible to identify a lot of procedures to carry out any determination using a plethora of analytical techniques. The fundamental analytical requirements for realizing the desired and acceptable information from a chemical analysis are representative nature of the sample, precision, accuracy, selectivity and sensitivity. These decide, to a larger extent, the selection of the most appropriate methodology in order to obtain chemical information from a system. A number of analytical methodologies are being used in the author’s laboratory for carrying out trace elemental analysis as a part of chemical quality control. Quite a good number of analytical challenges with specific reference to the characterization of high purity materials of relevance to nuclear technology were addressed and methodologies were developed for trace elemental analysis of both metallic and non-metallic constituents. A brief review of these analytical challenges and the analytical methodologies developed and also the future needs of analytical chemist are presented in this paper.

  9. Nuclear analytical methods for platinum group elements

    International Nuclear Information System (INIS)

    Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases

  10. Normality in Analytical Psychology

    Directory of Open Access Journals (Sweden)

    Steve Myers

    2013-11-01

    Full Text Available Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.

  11. Analytics for metabolic engineering

    Directory of Open Access Journals (Sweden)

    Christopher J Petzold

    2015-09-01

    Full Text Available Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants while deep omics analysis provide a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.

  12. Analytics for Metabolic Engineering

    Science.gov (United States)

    Petzold, Christopher J.; Chan, Leanne Jade G.; Nhan, Melissa; Adams, Paul D.

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research. PMID:26442249

  13. Rorty, Pragmatism, and Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Cheryl Misak

    2013-07-01

    Full Text Available One of Richard Rorty's legacies is to have put a Jamesian version of pragmatism on the contemporary philosophical map. Part of his argument has been that pragmatism and analytic philosophy are set against each other, with pragmatism almost having been killed off by the reigning analytic philosophy. The argument of this paper is that there is a better and more interesting reading of both the history of pragmatism and the history of analytic philosophy.

  14. Methodological practicalities in analytical generalization

    DEFF Research Database (Denmark)

    Halkier, Bente

    2011-01-01

    In this article, I argue that the existing literature on qualitative methodologies tend to discuss analytical generalization at a relatively abstract and general theoretical level. It is, however, not particularly straightforward to “translate” such abstract epistemological principles into more...... operative methodological strategies for producing analytical generalizations in research practices. Thus, the aim of the article is to contribute to the discussions among qualitatively working researchers about generalizing by way of exemplifying some of the methodological practicalities in analytical...

  15. Analytics for managers with Excel

    CERN Document Server

    Bell, Peter C

    2013-01-01

    Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization.The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic revie

  16. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  17. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratories The Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  18. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  19. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  20. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  1. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    Science.gov (United States)

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  2. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  3. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  4. Comparison of nuclear analytical methods with competitive methods

    International Nuclear Information System (INIS)

    The use of nuclear analytical techniques, especially neutron activation analysis, already have a 50 year old history. Today several sensitive and accurate, non-nuclear trace element analytical techniques are available and new methods are continuously developed. The IAEA is supporting the development of nuclear analytical laboratories in its Member States. In order to be able to advise the developing countries which methods to use in different applications, it is important to know the present status and development trends of nuclear analytical methods, what are their benefits, drawbacks and recommended fields of application, compared with other, non-nuclear techniques. In order to get an answer to these questions the IAEA convened this Advisory Group Meeting. This volume is the outcome of the presentations and discussions of the meeting. A separate abstract was prepared for each of the 21 papers. Refs, figs, tabs

  5. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed. PMID:26076112

  6. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  7. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  8. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  9. Understanding Education Involving Geovisual Analytics

    Science.gov (United States)

    Stenliden, Linnea

    2013-01-01

    Handling the vast amounts of data and information available in contemporary society is a challenge. Geovisual Analytics provides technology designed to increase the effectiveness of information interpretation and analytical task solving. To date, little attention has been paid to the role such tools can play in education and to the extent to which…

  10. Subsidence modelling with analytic elements.

    NARCIS (Netherlands)

    Fokker, P.A.; Orlic, B.

    2000-01-01

    The method of Analytic Elements has been extended to enable elasticity calculations, to evaluate subsidence at the surface as resulting from extraction of oil or gas. Validation has been achieved by comparison with more limited analytical methods and with a comprehensive finite-element simulator. Th

  11. Chemiluminescence microarrays in analytical chemistry: a critical review.

    Science.gov (United States)

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  12. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    Science.gov (United States)

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  13. Implementation and Benefits of LIMS (Laboratory Information Management System to Laboratories – A Review

    Directory of Open Access Journals (Sweden)

    Ayush Karol

    2016-01-01

    Full Text Available Laboratory automation is termed as a utilization of technology to streamline process workflow and substitute manual error and interventions of equipment and process. Laboratory information management system is a basic tool to manage sample and test for analytical QC, R & D laboratories and quality assurance providing integrated solution to workflow. Main aim of this paper is to introduce the implementational benefits of LIMS to quality control laboratories by sorting and organizing test information from sample inception till report dispatch. Common features of LIMS for quality control and quality assurance are set-up and configuration, sample management, vendor monitoring, ERP integration, document management link.

  14. Accountability through Regulation in Ontario's Medical Laboratory Sector

    Science.gov (United States)

    Gamble, Brenda; Bourne, Lavern; Deber, Raisa B.

    2014-01-01

    Although the use of performance indicators for the analytical (and highly measurable) phase of the medical laboratory process has had a long and successful history, it is now recognized that the value of a laboratory test is embedded in a system of care. This case study, using both documents and interview data, examines the approaches to accountability in the Ontario Medical Laboratory Sector, noting both the challenges and benefits. This sector relies heavily on the regulation instrument, including a requirement that all medical laboratories licensed by the provincial government must follow the guidelines set out by the Quality Management Program – Laboratory Services. We found the greatest challenges exist in the pre-analytical phase (where a large portion of total laboratory errors occur), particularly the interface between the laboratory and other providers. PMID:25305390

  15. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Science.gov (United States)

    2010-01-01

    ... office as listed in 7 CFR 93.14(a). ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fees for analytical testing of oilseeds. 93.15 Section....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  16. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  17. Normality of Composite Analytic Functions and Sharing an Analytic Function

    OpenAIRE

    Xiao Bing; Yuan Wenjun; Wu Qifeng

    2010-01-01

    A result of Hinchliffe (2003) is extended to transcendental entire function, and an alternative proof is given in this paper. Our main result is as follows: let be an analytic function, a family of analytic functions in a domain , and a transcendental entire function. If and share IM for each pair , and one of the following conditions holds: (1) has at least two distinct zeros for any ; (2) is nonconstant, and there exists such that has only one distinct zero , and su...

  18. Analytical performance specifications for EQA schemes - need for harmonisation.

    Science.gov (United States)

    Dallas Jones, Graham Ross

    2015-05-01

    External Quality Assurance (EQA) is a vital tool in laboratory medicine to assess individual laboratory analytical performance and also the differences between the results from different laboratories. This information is also useful for professional bodies and manufacturers as part of post-market surveillance. The process involves the measurement of one or more samples by many laboratories and then assessment of the results. Individual results are generally assessed by how far they lie from a target, which may be established using reference methods or a median of some or all of the submitted results. The distance of a result from the target is compared with analytical performance specifications in order to assess the analytical quality. One of the uses of the Stockholm hierarchy of performance goals is to set the performance specifications for analysis of EQA results. Fifteen years after the Stockholm consensus meeting, EQA analytical performance specifications appear to still vary widely between EQA providers. This can be due to a range of factors, including the rationale for setting the criteria, the expected response to a failure to meet the specified performance, the clinical meaning behind meeting the specifications, and the possible need for further analytical improvements. There are also differences in the models chosen to set the criteria, usually either state of the art or biological variation, and then differences in how these are applied. While harmonisation of EQA performance specifications may be some time off, all EQA providers should define the nature of their specifications and the basis for their selection and make this information available to customers. PMID:25883203

  19. Analytical performance specifications for EQA schemes - need for harmonisation.

    Science.gov (United States)

    Dallas Jones, Graham Ross

    2015-05-01

    External Quality Assurance (EQA) is a vital tool in laboratory medicine to assess individual laboratory analytical performance and also the differences between the results from different laboratories. This information is also useful for professional bodies and manufacturers as part of post-market surveillance. The process involves the measurement of one or more samples by many laboratories and then assessment of the results. Individual results are generally assessed by how far they lie from a target, which may be established using reference methods or a median of some or all of the submitted results. The distance of a result from the target is compared with analytical performance specifications in order to assess the analytical quality. One of the uses of the Stockholm hierarchy of performance goals is to set the performance specifications for analysis of EQA results. Fifteen years after the Stockholm consensus meeting, EQA analytical performance specifications appear to still vary widely between EQA providers. This can be due to a range of factors, including the rationale for setting the criteria, the expected response to a failure to meet the specified performance, the clinical meaning behind meeting the specifications, and the possible need for further analytical improvements. There are also differences in the models chosen to set the criteria, usually either state of the art or biological variation, and then differences in how these are applied. While harmonisation of EQA performance specifications may be some time off, all EQA providers should define the nature of their specifications and the basis for their selection and make this information available to customers.

  20. Quality and safety aspects in histopathology laboratory.

    Science.gov (United States)

    Adyanthaya, Soniya; Jose, Maji

    2013-09-01

    Histopathology is an art of analyzing and interpreting the shapes, sizes and architectural patterns of cells and tissues within a given specific clinical background and a science by which the image is placed in the context of knowledge of pathobiology, to arrive at an accurate diagnosis. To function effectively and safely, all the procedures and activities of histopathology laboratory should be evaluated and monitored accurately. In histopathology laboratory, the concept of quality control is applicable to pre-analytical, analytical and post-analytical activities. Ensuring safety of working personnel as well as environment is also highly important. Safety issues that may come up in a histopathology lab are primarily those related to potentially hazardous chemicals, biohazardous materials, accidents linked to the equipment and instrumentation employed and general risks from electrical and fire hazards. This article discusses quality management system which can ensure quality performance in histopathology laboratory. The hazards in pathology laboratories and practical safety measures aimed at controlling the dangers are also discussed with the objective of promoting safety consciousness and the practice of laboratory safety.

  1. Banach spaces of analytic functions

    CERN Document Server

    Hoffman, Kenneth

    2007-01-01

    A classic of pure mathematics, this advanced graduate-level text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc.The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the f

  2. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  3. Quality in pathology laboratory practice.

    Science.gov (United States)

    Weinstein, S

    1995-06-01

    Quality refers not only to analytical quality control, a traditional area of laboratory excellence, but to the entire science of quality management. As measures of quality, structural indicators refer to staffing and physical facilities, process indicators to the institutions operations and, perhaps most importantly, outcome indicators address the ultimate patient care uses that pathology information is put to. Comparison of performance to peer laboratories, external quality control, is a practical, if limited, yardstick of performance. Customer satisfaction and turn-around-time of tests are receiving more recent attention as quality measures. Blood banking, because of its inherently complex cycle from donor phlebotomy to product infusion, requires special considerations with regard to quality management. Reporting of anatomical pathology, where the only gold standard is a consensus of experts, also does not lend itself to classical numerical quality assessment. PMID:7670717

  4. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. PMID:23845474

  5. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  6. Novel work-based learning courses in analytical sciences

    OpenAIRE

    Williams, Ruth; Velasco, Maria

    2010-01-01

    The Open University (OU) is well known for the delivery of world class distance education. From 2010, the OU offers a new Foundation Degree in Analytical Sciences, developed to enhance the skills base of the workforce in analytical laboratories. It allows students to earn and learn simultaneously without taking time off. Students are sponsored by their employer and supported by an OU tutor throughout the four years of part-time study. 25 per cent of the degree comprises two work-based learni...

  7. Module Architecture for in Situ Space Laboratories

    Science.gov (United States)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  8. Toxicologic evaluation of analytes from Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.

  9. Toxicologic evaluation of analytes from Tank 241-C-103

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team's objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found

  10. Hertelendi Laboratory of Environmental Studies

    International Nuclear Information System (INIS)

    1. Introduction. The Hertelendi Laboratory for Environmental Studies (HEKAL) belongs to the Section of Environmental and Earth Sciences. It is a multidisciplinary laboratory dedicated to environmental research, to the development of nuclear analytical methods and to systems technology. During its existence of more than 15 years it has gained some reputation as a prime laboratory of analytical techniques, working with both radio- and stable isotopes. It has considerable expertise in isotope concentration measurements, radiocarbon dating, tritium measurements, in monitoring radioactivity around nuclear facilities and in modelling the movement of radionuclides in the environment. Many of its projects are within the scope of interest of the Paks Nuclear Power Plant. Our research activity is mainly concerned with the so-called environmental isotopes. This term denotes isotopes, both stable and radioactive, that are present in the natural environment either as a result of natural processes or of human activities. In environmental research isotopes are generally applied either as tracers or as age indicators. An ideal tracer is defined as a substance that behaves in the system studied exactly as the material to be traced as far as the examined parameters are concerned, but has at least one property that distinguishes it from the traced material. The mass number of an isotope is such an ideal indicator. In 2007 the laboratory assumed the name of Dr. Ede Hertelendi to honour the memory of the reputed environmental physicist who founded the group and headed it for many years. The current core of the laboratory staff is made up of his pupils and coworkers. This team was like a family to him. The group owes it to his fatherly figure that it did not fall apart after his death, but advanced with intense work and tenacity during the last decade. One of his first pupils, Mihaly Veres returned to the laboratory as a private entrepreneur and investor in 2005, and in the framework of

  11. Cautions Concerning Electronic Analytical Balances.

    Science.gov (United States)

    Johnson, Bruce B.; Wells, John D.

    1986-01-01

    Cautions chemists to be wary of ferromagnetic samples (especially magnetized samples), stray electromagnetic radiation, dusty environments, and changing weather conditions. These and other conditions may alter readings obtained from electronic analytical balances. (JN)

  12. Median of patient results as a tool for assessment of analytical stability

    DEFF Research Database (Denmark)

    Jørgensen, Lars Mønster; Hansen, Steen Ingemann; Petersen, Per Hyltoft;

    2015-01-01

    BACKGROUND: In spite of the well-established external quality assessment and proficiency testing surveys of analytical quality performance in laboratory medicine, a simple tool to monitor the long-term analytical stability as a supplement to the internal control procedures is often needed. METHOD......: Patient data from daily internal control schemes was used for monthly appraisal of the analytical stability. This was accomplished by using the monthly medians of patient results to disclose deviations from analytical stability, and by comparing divergences with the quality specifications for allowable...... analytical bias based on biological variation. RESULTS: Seventy five percent of the twenty analytes achieved on two COBASs INTEGRA 800 instruments performed in accordance with the optimum and with the desirable specifications for bias. DISCUSSION: Patient results applied in analytical quality performance...

  13. Formative assessment and learning analytics

    OpenAIRE

    Tempelaar, D.T.; Heck, A.; Cuypers, H; Kooij, van der, M.; Vrie, van de, E.

    2013-01-01

    Learning analytics seeks to enhance the learning process through systematic measurements of learning related data, and informing learners and teachers of the results of these measurements, so as to support the control of the learning process. Learning analytics has various sources of information, two main types being intentional and learner activity related metadata [1]. This contribution aims to provide a practical application of Shum and Crick's theoretical framework [1] of a learning analy...

  14. Big Data Analytics in Healthcare

    OpenAIRE

    Ashwin Belle; Raghuram Thiagarajan; S. M. Reza Soroushmehr; Fatemeh Navidi; Daniel A Beard; Kayvan Najarian

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is sti...

  15. Analytic torsion and symplectic volume

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    This article studies the abelian analytic torsion on a closed, oriented, quasi-regular Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification effectively computes...... the analytic torsion explicitly in terms of Seifert data for a given quasi-regular Sasakian structure on a three-manifold....

  16. Organizational Models for Big Data and Analytics

    Directory of Open Access Journals (Sweden)

    Robert L. Grossman

    2014-04-01

    Full Text Available In this article, we introduce a framework for determining how analytics capability should be distributed within an organization. Our framework stresses the importance of building a critical mass of analytics staff, centralizing or decentralizing the analytics staff to support business processes, and establishing an analytics governance structure to ensure that analytics processes are supported by the organization as a whole.

  17. Analytical chemistry of oil well treating chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Maddin, C.M.; Loop, V.R.

    1973-01-01

    Chemical reactions in an oil reservoir are often an unknown and can only be simulated in the laboratory. One aid in correlating downhole reactions with lab tests is analysis of returned treating fluids from the reservoir. Analytical chemistry provides powerful tools for monitoring oil-well treating chemicals. Visible absorption spectro-photometry provides methods for cationic, anionic, and nonionic surfactants as well as for acrylate- and phosphorus-based scale inhibitors. It is useful for measuring sequestrant concentrations from their reactions with metal ions, alcohols by chromate reduction, arsenic-based acidizing inhibitors, nitrogen-based downhole inhibitors, polyacrylamide- and carbohydrate-based fracturing and diverting chemicals. Ultraviolet spectrophotometry is well suited to the measurement of cement-setting retarder concentrations and organic acidizing inhibitors. Gas-liquid chromatography measures nonreactive solvent concentrations and acetylenic alcohols used in acidizing inhibitors. (21 refs.)

  18. Analytical modeling of the steady radiative shock

    Science.gov (United States)

    Boireau, L.; Bouquet, S.; Michaut, C.; Clique, C.

    2006-06-01

    In a paper dated 2000 [1], a fully analytical theory of the radiative shock has been presented. This early model had been used to design [2] radiative shock experiments at the Laboratory for the Use of Intense Lasers (LULI) [3 5]. It became obvious from numerical simulations [6, 7] that this model had to be improved in order to accurately recover experiments. In this communication, we present a new theory in which the ionization rates in the unshocked (bar{Z_1}) and shocked (bar{Z_2} neq bar{Z_1}) material, respectively, are included. Associated changes in excitation energy are also taken into account. We study the influence of these effects on the compression and temperature in the shocked medium.

  19. Nuclear analytical techniques in environmental studies.

    Science.gov (United States)

    Jervis, R E

    1994-01-01

    Nuclear analytical techniques are particularly suitable for measuring trace components in a wide variety of environmental samples, and for that reason, the techniques have made a significant contribution to environmental research. Presently, at a time when biosphere contamination and threats of global change in the atmosphere are of widespread concern, there exist an impressive array of specialized instrumental methods available to life scientists engaged in environmental studies; however, the nuclear techniques will probably continue to play a useful role in the future, notwithstanding the decreasing availability of necessary facilities, such as research reactors and accelerators. Reasons for the particular suitability of radionanalytical techniques are reviewed and illustrated by examples of recent applications to solid wastes, biomonitoring, and urban aerosol source identification in this laboratory.

  20. Tensions in the Biology Laboratory: What Are They?

    Science.gov (United States)

    Tan, Aik-Ling

    2008-01-01

    The purpose of this paper is to identify tensions in teacher-student interaction in a high school biology laboratory. Using micro-analytic analysis of classroom talk, the interaction between the students and a teacher working in the biology laboratory session on "Reproduction in Plants" is studied. The two tensions highlighted here are tension…

  1. The activities of the IAEA Laboratories, Vienna. Annual report 1982

    International Nuclear Information System (INIS)

    A brief account is given on the main activities of the IAEA Laboratory in Seibersdorf during 1982. The following areas are specified: Plant breeding; Soil science; Entomology; Agrochemicals; Human nutrition; Radiation dosimetry; Electronics; Chemistry; Isotope hydrology; Safeguards Analytical Laboratory (SAL); Health physics

  2. Winchester Engineering Analytical Center (WEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — rogram Capabilities WEAC performs analyses in support of the Medical Device Program Area and radionuclide chemical as well as microbiological analyses for the Food...

  3. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  4. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  5. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed. PMID:20084925

  6. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  7. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  8. Comparison and Analysis of the Reference Intervals of 9 Serum Routine Chemical Analytes between the Current Application of Clinical Laboratories and the Latest Health Industrial Standards Draft for Approval%国内临床化学9项常规项目参考区间与即将发布的卫生行业标准的比较和分析

    Institute of Scientific and Technical Information of China (English)

    钟堃; 王薇; 何法霖; 王治国

    2015-01-01

    目的:对全国医院检验科常规化学检验项目的参考区间进行调查,并与即将发布的卫生行业标准进行比较。方法采用基于 Web 方式的室间质量评价(EQA)软件系统,收集2012年度参加全国常规化学参考区间调查的实验室所上报的数据,使用专业统计软件对数据进行统计分析。结果共385家实验室回报了调查结果。在即将发布的卫生行业标准所涉及的检验项目中,绝大多数项目不分组或未给出分组时所使用的参考区间与行业标准相比较都存在显著统计学差异[t=-55.435~17.070,P <0.05,占86.1%(31/36)]。只有较少的实验室对参考区间进行了分组(约20%),部分实验室的分组规则与行业标准有一定的差异,与行业标准分组相同的实验室所给出的参考区间与行业标准相比也多存在极显著统计学差异[t=-39.365~13.155,P <0.01,占62.5%(10/16)]。结论即将发布参考区间与实际工作中所应用的参考区间差异较大,推广已经建立的具有权威性的临床常用生化检验项目参考区间很有必要在实际工作中使用行业标准所给出的参考区间前应进行参考区间的评估和验证。%Objective To investigate the current application status of reference intervals in routine chemistry and compare with the current health industry standards draft for approval.Methods By using web-based external quality assessment (EQA)software system,collected the submitted data from the laboratories which attended national reference intervals inves-tigation,used professional statistical software to analyze the data.Results 385 laboratories had submitted the investigation results.The vast majority of the analytes of attended laboratories had significant statistical differences in comparison with the health industry standards draft for approval in no grouping and not filled groups[t = - 55.435 ~ 17.070,P < 0.05, 86

  9. Managing laboratory automation in a changing pharmaceutical industry

    OpenAIRE

    Rutherford, Michael L.

    1995-01-01

    The health care reform movement in the USA and increased requirements by regulatory agencies continue to have a major impact on the pharmaceutical industry and the laboratory. Laboratory management is expected to improve effciency by providing more analytical results at a lower cost, increasing customer service, reducing cycle time, while ensuring accurate results and more effective use of their staff. To achieve these expectations, many laboratories are using robotics and automated work stat...

  10. RDF Analytics: Lenses over Semantic Graphs

    OpenAIRE

    Colazzo, Dario; Goasdoué, François; Manolescu, Ioana; Roatis, Alexandra

    2014-01-01

    The development of Semantic Web (RDF) brings new requirements for data analytics tools and methods, going beyond querying to semantics-rich analytics through warehouse-style tools. In this work, we fully redesign, from the bottom up, core data analytics concepts and tools in the context of RDF data, leading to the first complete formal framework for warehouse-style RDF analytics. Notably, we define i) analytical schemas tailored to heterogeneous, semantics-rich RDF graph, ii) analytical queri...

  11. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  12. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  13. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  14. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  15. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  16. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  17. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  18. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  19. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  20. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  1. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  2. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  3. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  4. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  5. Engineered Natural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — With its pressure vessels that simulate the pressures and temperatures found deep underground, NETL’s Engineered Natural Systems Laboratory in Pittsburgh, PA, gives...

  6. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  7. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems. DESCRIPTION: The Vehicle Development Laboratory is...

  8. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  9. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  10. Synergistic relationships between Analytical Chemistry and written standards

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, Miguel, E-mail: qa1vacam@uco.es; Lucena, Rafael

    2013-07-25

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  11. Synergistic relationships between Analytical Chemistry and written standards

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived

  12. Climate Analytics as a Service

    Science.gov (United States)

    Schnase, John L.; Duffy, Daniel Q.; McInerney, Mark A.; Webster, W. Phillip; Lee, Tsengdar J.

    2014-01-01

    Climate science is a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-performance computing and data-proximal analytics with scalable data management, cloud computing virtualization, the notion of adaptive analytics, and a domain-harmonized API to improve the accessibility and usability of large collections of climate data. MERRA Analytic Services (MERRA/AS) provides an example of CAaaS. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of key climate variables. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, CAaaS is providing the agility required to meet our customers' increasing and changing data management and data analysis needs.

  13. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  14. Multisite Analytical Evaluation of the Abbott ARCHITECT Cyclosporine Assay.

    OpenAIRE

    Wallemacq, Pierre; Maine, Gregory,; Berg, Keith; Rosiere, Thomas; Marquet, Pierre; Aimo, Giuseppe; Mengozzi, Giulio; Young, Juliana; Wonigert, Kurt; Krestchmer, Robert; Wermuth, Bendicht; Schmid, Rainer,

    2010-01-01

    International audience The objective of this study was to evaluate the analytical performance of the Abbott ARCHITECT Cyclosporine (CsA) immunoassay in 7 clinical laboratories in comparison to liquid chromatography/tandem mass spectrometry (LC/MS/MS), Abbott TDx, Cobas Integra 800, and the Dade Dimension Xpand immunoassay. The ARCHITECT assay uses a whole blood specimen, a pretreatment step with organic reagents to precipitate proteins and extract the drug, followed by a 2-step automated i...

  15. Hanford environmental analytical methods: Methods as of March 1990

    International Nuclear Information System (INIS)

    This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually

  16. Closing the brain-to-brain loop in laboratory testing.

    Science.gov (United States)

    Plebani, Mario; Lippi, Giuseppe

    2011-07-01

    Abstract The delivery of laboratory services has been described 40 years ago and defined with the foremost concept of "brain-to-brain turnaround time loop". This concept consists of several processes, including the final step which is the action undertaken on the patient based on laboratory information. Unfortunately, the need for systematic feedback to improve the value of laboratory services has been poorly understood and, even more risky, poorly applied in daily laboratory practice. Currently, major problems arise from the unavailability of consensually accepted quality specifications for the extra-analytical phase of laboratory testing. This, in turn, does not allow clinical laboratories to calculate a budget for the "patient-related total error". The definition and use of the term "total error" refers only to the analytical phase, and should be better defined as "total analytical error" to avoid any confusion and misinterpretation. According to the hierarchical approach to classify strategies to set analytical quality specifications, the "assessment of the effect of analytical performance on specific clinical decision-making" is comprehensively at the top and therefore should be applied as much as possible to address analytical efforts towards effective goals. In addition, an increasing number of laboratories worldwide are adopting risk management strategies such as FMEA, FRACAS, LEAN and Six Sigma since these techniques allow the identification of the most critical steps in the total testing process, and to reduce the patient-related risk of error. As a matter of fact, an increasing number of laboratory professionals recognize the importance of understanding and monitoring any step in the total testing process, including the appropriateness of the test request as well as the appropriate interpretation and utilization of test results. PMID:21663564

  17. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  18. Spatial Game Analytics and Visualization

    DEFF Research Database (Denmark)

    Drachen, Anders; Schubert, Matthias

    2013-01-01

    The recently emerged field of game analytics and the development and adaptation of business intelligence techniques to support game design and development has given data-driven techniques a direct role in game development. Given that all digital games contain some sort of spatial operation...... for a continuing development. This paper presents a review of current work on spatial and spatio-temporal game analytics across industry and research, describing and defining the key terminology, outlining current techniques and their application. We summarize the current problems and challenges in the field......, and present four key areas of spatial and spatio-temporal analytics: Spatial Outlier Detection, Spatial Clustering, Spatial Predictive Models, Spatial Pattern and Rule Mining. All key areas are well-established outside the context of games and hold the potential to reshape the research roadmap in game...

  19. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    with the complexity of data processing and data analytics. The system offers an information integration pipeline to ingest smart meter data; scalable data processing and analytic platform for pre-processing and mining big smart meter data sets; and a web-based portal for visualizing data analytics results. The system......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  20. Big Data Analytics in Healthcare.

    Science.gov (United States)

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  1. Big Data Analytics in Healthcare

    Directory of Open Access Journals (Sweden)

    Ashwin Belle

    2015-01-01

    Full Text Available The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  2. Big Data Analytics in Healthcare.

    Science.gov (United States)

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  3. Quality in the molecular microbiology laboratory.

    Science.gov (United States)

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  4. Quality in the molecular microbiology laboratory.

    Science.gov (United States)

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  5. Nuclear analytical chemistry for the IAEA action team in Iraq

    International Nuclear Information System (INIS)

    At the end of the 1991 Gulf War the U.N. Security Council Resolution called upon IAEA, assisted by the U.N. Special Commission, to carry out inspections of all Iraqi nuclear installations. The IAEA Action Team succeeded in implementing, on very short notice, a comprehensive system of inspection activities, including sampling and analysis at the Agency's Laboratories and other laboratories in Member States. The Agency's Laboratories developed and implemented an analytical strategy with the aim to rapidly and accurately obtain the information necessary for verifying the Iraqi declarations. The analyses ranged from screening for α and β/γ-emitters to accurate determinations of the amounts and isotopic composition of the radionuclides and associated trace elements and compounds. The arsenal of methods included ultra-sensitive radiometric methods, mass spectrometry, neutron activation, X-ray fluorescence and inductively coupled plasma emission spectrometry. Selected results include the detection of uranium chloride compounds, special composition steels, and quantitative accounting of uranium and plutonium production. The selectivity, sensitivity and reliability of the applied analytical techniques in conjunction with validated sampling procedures are essential components of an analytical measurements system that can provide credible results. (author). 5 refs., 5 tabs

  6. Exact analytical solutions for ADAFs

    CERN Document Server

    Habibi, Asiyeh; Shadmehri, Mohsen

    2016-01-01

    We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is $T_{r\\varphi}$. Furthermore we assume that the value of viscosity coefficient $\\alpha$ varies with $\\theta$. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.

  7. A Primer on Spreadsheet Analytics

    CERN Document Server

    Grossman, Thomas A

    2008-01-01

    This paper provides guidance to an analyst who wants to extract insight from a spreadsheet model. It discusses the terminology of spreadsheet analytics, how to prepare a spreadsheet model for analysis, and a hierarchy of analytical techniques. These techniques include sensitivity analysis, tornado charts,and backsolving (or goal-seeking). This paper presents native-Excel approaches for automating these techniques, and discusses add-ins that are even more efficient. Spreadsheet optimization and spreadsheet Monte Carlo simulation are briefly discussed. The paper concludes by calling for empirical research, and describing desired features spreadsheet sensitivity analysis and spreadsheet optimization add-ins.

  8. International symposium on quality assurance for analytical methods in isotope hydrology. Book of extended synopses

    International Nuclear Information System (INIS)

    A large variety of isotopic techniques is available and commonly used in water resources investigations as well as in a wide range of other scientific fields. These techniques include the stable isotope analysis of light elements (H, C, N, O, S), activity measurements of radioactive isotopes at environmental level (3H, 14C, 3H/3He, 85Kr) as well as measurements of CFCs, SF6 and other chemical and isotopic tracers. They provide valuable tools for the assessment of scientific questions and the solution of practical problems. During the last decade, new analytical tools have significantly fostered the application of isotopic techniques in many new fields and caused a steep increase in the number of laboratories applying these methods. International trends in improved analytical quality and requirements for laboratory certification and accreditation have pushed issues of quality control and quality assurance to a high level of importance for the operation of isotope laboratories worldwide. The objectives of the symposium are to promote a wide exchange of information on key issues for high quality isotopic measurements. The main focus is on the analytical techniques and on all means to ensure high quality standards for isotopic measurements. Recent advances in analytical quality assurance and laboratory quality systems will be presented and discussed together with state-of-the-art techniques. The scope of the conference is to demonstrate the use of best laboratory practices in the following fields: calibration of measurements and traceability; interlaboratory comparisons; best laboratory practices for daily analyses of samples; quality control and statistical evaluation of results; calculation of uncertainty budgets; new analytical techniques; improvements in precision and accuracy of analytical methods; laboratory information management, databases and sample handling; laboratory quality systems and international guides. The 42 papers are indexed individually

  9. Transformative geomorphic research using laboratory experimentation

    Science.gov (United States)

    Bennett, Sean J.; Ashmore, Peter; Neuman, Cheryl McKenna

    2015-09-01

    Laboratory experiments in geomorphology is the theme of the 46th annual Binghamton Geomorphology Symposium (BGS). While geomorphic research historically has been dominated by field-based endeavors, laboratory experimentation has emerged as an important methodological approach to study these phenomena, employed primarily to address issues related to scale and the analytical treatment of the geomorphic processes. Geomorphic laboratory experiments can result in transformative research. Several examples drawn from the fluvial and aeolian research communities are offered as testament to this statement, and these select transformative endeavors often share very similar attributes. The 46th BGS will focus on eight broad themes within laboratory experimentation, and a diverse group of scientists has been assembled to speak authoritatively on these topics, featuring several high-profile projects worldwide. This special issue of the journal Geomorphology represents a collection of the papers written in support of this symposium.

  10. How to assess the quality of your analytical method?

    Science.gov (United States)

    Topic, Elizabeta; Nikolac, Nora; Panteghini, Mauro; Theodorsson, Elvar; Salvagno, Gian Luca; Miler, Marijana; Simundic, Ana-Maria; Infusino, Ilenia; Nordin, Gunnar; Westgard, Sten

    2015-10-01

    Laboratory medicine is amongst the fastest growing fields in medicine, crucial in diagnosis, support of prevention and in the monitoring of disease for individual patients and for the evaluation of treatment for populations of patients. Therefore, high quality and safety in laboratory testing has a prominent role in high-quality healthcare. Applied knowledge and competencies of professionals in laboratory medicine increases the clinical value of laboratory results by decreasing laboratory errors, increasing appropriate utilization of tests, and increasing cost effectiveness. This collective paper provides insights into how to validate the laboratory assays and assess the quality of methods. It is a synopsis of the lectures at the 15th European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Continuing Postgraduate Course in Clinical Chemistry and Laboratory Medicine entitled "How to assess the quality of your method?" (Zagreb, Croatia, 24-25 October 2015). The leading topics to be discussed include who, what and when to do in validation/verification of methods, verification of imprecision and bias, verification of reference intervals, verification of qualitative test procedures, verification of blood collection systems, comparability of results among methods and analytical systems, limit of detection, limit of quantification and limit of decision, how to assess the measurement uncertainty, the optimal use of Internal Quality Control and External Quality Assessment data, Six Sigma metrics, performance specifications, as well as biological variation. This article, which continues the annual tradition of collective papers from the EFLM continuing postgraduate courses in clinical chemistry and laboratory medicine, aims to provide further contributions by discussing the quality of laboratory methods and measurements and, at the same time, to offer continuing professional development to the attendees.

  11. Analytical SAR-GMTI principles

    Science.gov (United States)

    Soumekh, Mehrdad; Majumder, Uttam K.; Barnes, Christopher; Sobota, David; Minardi, Michael

    2016-05-01

    This paper provides analytical principles to relate the signature of a moving target to parameters in a SAR system. Our objective is to establish analytical tools that could predict the shift and smearing of a moving target in a subaperture SAR image. Hence, a user could identify the system parameters such as the coherent processing interval for a subaperture that is suitable to localize the signature of a moving target for detection, tracking and geolocating the moving target. The paper begins by outlining two well-known SAR data collection methods to detect moving targets. One uses a scanning beam in the azimuth domain with a relatively high PRF to separate the moving targets and the stationary background (clutter); this is also known as Doppler Beam Sharpening. The other scheme uses two receivers along the track to null the clutter and, thus, provide GMTI. We also present results on implementing our SAR-GMTI analytical principles for the anticipated shift and smearing of a moving target in a simulated code. The code would provide a tool for the user to change the SAR system and moving target parameters, and predict the properties of a moving target signature in a subaperture SAR image for a scene that is composed of both stationary and moving targets. Hence, the SAR simulation and imaging code could be used to demonstrate the validity and accuracy of the above analytical principles to predict the properties of a moving target signature in a subaperture SAR image.

  12. The Yoccoz Combinatorial Analytic Invariant

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Roesch, Pascale

    2008-01-01

    In this paper we develop a combinatorial analytic encoding of the Mandelbrot set M. The encoding is implicit in Yoccoz' proof of local connectivity of M at any Yoccoz parameter, i.e. any at most finitely renormalizable parameter for which all periodic orbits are repelling. Using this encoding we...

  13. Analytical Approximations to Galaxy Clustering

    OpenAIRE

    Mo, H. J.

    1997-01-01

    We discuss some recent progress in constructing analytic approximations to the galaxy clustering. We show that successful models can be constructed for the clustering of both dark matter and dark matter haloes. Our understanding of galaxy clustering and galaxy biasing can be greatly enhanced by these models.

  14. ANALYTICAL REPRESENTATION OF INDUSTRIAL PROCESSES

    Directory of Open Access Journals (Sweden)

    T. I. Chepeleva

    2009-01-01

    Full Text Available Investigation of mathematical models and problems of optimum industrial process has been carried out with the help of operational calculus theory, impulse function theory, set theory, time-tables, combinatory optimization. Analytical expressions describing discontinuous industrial process have been obtained and their geometrical interpretation is also given in the paper.

  15. Exploratory Analysis in Learning Analytics

    Science.gov (United States)

    Gibson, David; de Freitas, Sara

    2016-01-01

    This article summarizes the methods, observations, challenges and implications for exploratory analysis drawn from two learning analytics research projects. The cases include an analysis of a games-based virtual performance assessment and an analysis of data from 52,000 students over a 5-year period at a large Australian university. The complex…

  16. Faculty Workload: An Analytical Approach

    Science.gov (United States)

    Dennison, George M.

    2012-01-01

    Recent discussions of practices in higher education have tended toward muck-raking and self-styled exposure of cynical self-indulgence by faculty and administrators at the expense of students and their families, as usually occurs during periods of economic duress, rather than toward analytical studies designed to foster understanding This article…

  17. Analytical Sociology: A Bungean Appreciation

    Science.gov (United States)

    Wan, Poe Yu-ze

    2012-01-01

    Analytical sociology, an intellectual project that has garnered considerable attention across a variety of disciplines in recent years, aims to explain complex social processes by dissecting them, accentuating their most important constituent parts, and constructing appropriate models to understand the emergence of what is observed. To achieve…

  18. Analytical Utility of Campylobacter Methodologies

    Science.gov (United States)

    The National Advisory Committee on Microbiological Criteria for Foods (NACMCF, or the Committee) was asked to address the analytical utility of Campylobacter methodologies in preparation for an upcoming United States Food Safety and Inspection Service (FSIS) baseline study to enumerate Campylobacter...

  19. Bridging intuitive and analytical thinking

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Leron, Uri; Arcavi, Abraham

    2014-01-01

    of thinking, much of it under the umbrella of the so-called Dual-Process Theory, where the intuitive and analytical modes has been called System 1 and System 2, respectively. (Gilovich et al, 2002; Kahnemann, 2002; Kahneman, 2011, Evans & Frankish, 2009.) Much of the relevant research in psychology...

  20. Biochemical Technology Program progress report for the period January 1--June 30, 1976. [Centrifugal analyzers and advanced analytical systems for blood and body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mrochek, J.E.; Burtis, C.A.; Scott, C.D. (comps.)

    1976-09-01

    This document, which covers the period January 1-June 30, 1976, describes progress in the following areas: (1) advanced analytical techniques for the clinical laboratory, (2) fast clinical analyzers, (3) development of a miniaturized analytical clinical laboratory system, (4) centrifugal fast analyzers for animal toxicological studies, and (5) chemical profile of body fluids.

  1. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  2. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-01

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  3. Analytical reasoning task reveals limits of social learning in networks

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-01-01

    Social learning—by observing and copying others—is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an ‘unreflective copying bias’, which limits their social learning to the output, rather than the process, of their peers’ reasoning—even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning. PMID:24501275

  4. Second International Workshop on Teaching Analytics

    DEFF Research Database (Denmark)

    Vatrapu, Ravi; Reimann, Peter; Halb, Wolfgang;

    2013-01-01

    Teaching Analytics is conceived as a subfield of learning analytics that focuses on the design, development, evaluation, and education of visual analytics methods and tools for teachers in primary, secondary, and tertiary educational settings. The Second International Workshop on Teaching Analytics...

  5. 40 CFR 1065.750 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  6. Graphing techniques for materials laboratory using Excel

    Science.gov (United States)

    Kundu, Nikhil K.

    1994-01-01

    Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.

  7. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  8. Analytical results for the 107-N and 1310-N basin sedimentdisposition sample characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.L.

    1997-06-02

    Turnaround time for this project was 60 days, as required in Reference 2. The analyses were to be performed using SW-846 procedures whenever possible to meet analytical requirements as a Resource Conservation Recovery Act (RCRA) protocol project. Except for the preparation and analyses of polychlorinated biphenyl hydrocarbons (PCB) and Nickel-63, which the program deleted as a required analyte for 222-S Laboratory, all preparative and analytical work was performed at the 222-S Laboratory. Quanterra Environmental Services of Earth City, Missouri, performed the PCB analyses. During work on this project, two events occurred nearly simultaneously, which negatively impacted the 60 day deliverable schedule: an analytical hold due to waste handling issues at the 222-S Laboratory, and the discovery of PCBs at concentrations of regulatory significance in the 105-N Basin samples. Due to findings of regulatory non-compliance by the Washington State, Department of Ecology, the 222-S Laboratory placed a temporary administrative hold on its analytical work until all waste handling, designation and segregation issues were resolved. During the hold of approximately three weeks, all analytical and waste.handling procedures were rewritten to comply with the legal regulations, and all staff were retrained in the designation, segregation and disposal of RCRA liquid and solid wastes.

  9. Hanford analytical services quality assurance requirements documents. Volume 1: Administrative Requirements

    International Nuclear Information System (INIS)

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  10. FEASIBILITY OF INVESTMENT IN BUSINESS ANALYTICS

    Directory of Open Access Journals (Sweden)

    Mladen Varga

    2007-12-01

    Full Text Available Trends in data processing for decision support show that business users need business analytics, i.e. analytical applications which incorporate a variety of business oriented data analysis techniques and task-specific knowledge. The paper discusses the feasibility of investment in two models of implementing business analytics: custom development and packed analytical applications. The consequences of both models are shown on two models of business analytics implementation in Croatia.

  11. Biomass Compositional Analysis Laboratory (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  12. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  13. Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants

    International Nuclear Information System (INIS)

    The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail

  14. Semi-analytical MBS Pricing

    DEFF Research Database (Denmark)

    Rom-Poulsen, Niels

    2007-01-01

    interest rate model. However, if the pool size is specified in a way that makes the expectations solvable using transform methods, semi-analytic pricing formulas are achieved. The affine and quadratic pricing frameworks are combined to get flexible and sophisticated prepayment functions. We show...... that the model has no problem of generating negative convexity as the spot rate falls, and still be close to a similar non-callable bond when the spot rate rises.......This paper presents a multi-factor valuation model for fixed-rate callable mortgage backed securities (MBS). The model yields semi-analytic solutions for the value of MBS in the sense that the MBS value is found by solving a system of ordinary differential equations. Instead of modelling...

  15. Visual Analytics for MOOC Data.

    Science.gov (United States)

    Qu, Huamin; Chen, Qing

    2015-01-01

    With the rise of massive open online courses (MOOCs), tens of millions of learners can now enroll in more than 1,000 courses via MOOC platforms such as Coursera and edX. As a result, a huge amount of data has been collected. Compared with traditional education records, the data from MOOCs has much finer granularity and also contains new pieces of information. It is the first time in history that such comprehensive data related to learning behavior has become available for analysis. What roles can visual analytics play in this MOOC movement? The authors survey the current practice and argue that MOOCs provide an opportunity for visualization researchers and that visual analytics systems for MOOCs can benefit a range of end users such as course instructors, education researchers, students, university administrators, and MOOC providers. PMID:26594957

  16. Video Analytics for Business Intelligence

    CERN Document Server

    Porikli, Fatih; Xiang, Tao; Gong, Shaogang

    2012-01-01

    Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the sho...

  17. Discourse-centric learning analytics

    OpenAIRE

    de Liddo, A.; Buckingham Shum, S.; Quinto, I; Bachler, M; Cannavacciuolo, L.

    2011-01-01

    Drawing on sociocultural discourse analysis and argumentation theory, we motivate a focus on learners' discourse as a promising site for identifying patterns of activity which correspond to meaningful learning and knowledge construction. However, software platforms must gain access to qualitative information about the rhetorical dimensions to discourse contributions to enable such analytics. This is difficult to extract from naturally occurring text, but the emergence of more-structured annot...

  18. Towards portable learning analytics dashboards

    OpenAIRE

    Vozniuk A.; Govaerts S.; Gillet D.

    2013-01-01

    This paper proposes a novel approach to build and deploy learning analytics dashboards in multiple learning environments. Existing learning dashboards are barely portable: once deployed on a learning platform, it requires considerable effort to deploy the dashboard elsewhere. We suggest constructing dashboards from lightweight web applications, namely widgets. Our approach allows to port dashboards with no additional cost between learning environments that implement open specifications (OpenS...

  19. Social Media Analytics Reporting Toolkit

    OpenAIRE

    Cui, Yuchen; Chae, Junghoon; Ebert, David

    2014-01-01

    With the fast growth of social media services, vast amount of user-generated content with time-space stamps are produced everyday. Considerable amount of these data are publicly available online, some of which collectively convey information that are of interest to data analysts. Social media data are dynamic and unstructured by nature, which makes it very hard for analysts to efficiently and effectively retrieve useful information. Social Media Analytics Reporting Toolkit (SMART), a system d...

  20. Analytical methods under emergency conditions

    International Nuclear Information System (INIS)

    This lecture discusses methods for the radiochemical determination of internal contamination of the body under emergency conditions, here defined as a situation in which results on internal radioactive contamination are needed quickly. The purpose of speed is to determine the necessity for medical treatment to increase the natural elimination rate. Analytical methods discussed include whole-body counting, organ counting, wound monitoring, and excreta analysis. 12 references

  1. Discrete dynamics versus analytic dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent of such a...... this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  2. Laser ablation in analytical chemistry.

    Science.gov (United States)

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  3. Spin coherence time analytical estimations

    CERN Document Server

    Orlov, Yuri

    2015-01-01

    Section I presents a variety of analytical estimations related to spin coherence time (SCT) in a purely electric frozen-spin ring. The main result is that, in the case of m > 0 and vertical oscillations only, the kinetic energy equilibrium shift equals zero, that is, SCT does not depend on these oscillations. Section II contains additional information on this case concerning terminology, electric field definition and vertical oscillations.

  4. Advances in multiple analyte profiling.

    Science.gov (United States)

    Salas, Virginia M; Edwards, Bruce S; Sklar, Larry A

    2008-01-01

    The advent of multiparameter technology has been driven by the need to understand the complexity in biological systems. It has spawned two main branches, one in the arena of high-content measurements, primarily in microscopy and flow cytometry where it has become commonplace to analyze multiple fluorescence signatures arising from multiple excitation sources and multiple emission wavelengths. Microscopy is augmented by topographical content that identifies the source location of the signature. The other branch involves multiplex technology. Here, the intent is to measure multiple analytes simultaneously. A key feature of multiplexing is an address system for the individual analytes. In planar arrays the address system is spatial, in which affinity reactions occur at defined locations. In suspension arrays, the address is encoded as a fluorescent signature in the particle assigned to a specific reaction or analyte. Several hybrid systems have also been developed for multiplexing. In the commercial regime, the most widespread applications of multiplexing are currently in the areas of genome and biomarker analysis. Planar chips with fixed arrays are now available to probe the entire genome at the level of message expression and large segments of the genome at the level of single nucleotide polymorphism (SNP). In contrast, suspension arrays provide the potential for probing segments of the genome in a customized way, using capture tags that locate specific oligonucleotide sequences to specific array elements. PMID:18429493

  5. Analytic studies in nuclear astrophysics

    Science.gov (United States)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  6. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  7. Analyte detection using an active assay

    Science.gov (United States)

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  8. The activities of the IAEA laboratories Vienna. Annual report - 1980

    International Nuclear Information System (INIS)

    The report outlines the activities of the laboratory of the International Atomic Energy Agency at Seibersdorf in the province of Lower Austria. The report covers the following sections of the laboratory: chemistry, medical applications, dosimetry, soil science, entomology, plant breeding, electronics and measurement laboratory, isotope hydrology and the safeguards analytical laboratory. The extension to the main laboratory buildings - a new wing for medical applications and dosimetry - was fitted out and fully integrated into the laboratory by the end of the year. In July 1980 the high-level cobalt-60 dosimetry equipment (a teletherapy unit) was transferred from the old IAEA headquarters building in the centre of Vienna and installed in a specially designed annex to the new wing. A successful 8 week training course was given in the agriculture laboratory and arrangements were made for several of the course members to stay on as research fellows for several months after the course had ended

  9. Aplikasi Analytical Hierarchy Process Pada Pemilihan Metode Analisis Zat Organik Dalam Air

    Directory of Open Access Journals (Sweden)

    Dino Rimantho

    2016-07-01

    Full Text Available Water is one of the food products analyzed in water chemistry and environmental laboratories. One of the parameters analyzed are organic substances. The number of samples that were not comparable with the analytical skills can cause delays in test results. Analytical Hierarchy Process applied to evaluate the analytical methods used. Alternative methods tested include titrimetric method, spectrophotometry, and total organic carbon (TOC. Respondents consisted of deputy technical manager, laboratory coordinator, and two senior analysts. Alternative results obtained are methods of TOC. Proposed improvements alternative analytical method based on the results obtained, the method of the TOC with a 10-15 minute analysis time and use of CRM to the validity of the analysis results.

  10. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  11. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  12. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to...

  13. Laboratory Demographics Lookup Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — This website provides demographic information about laboratories, including CLIA number, facility name and address, where the laboratory testing is performed, the...

  14. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  15. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  16. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  17. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  18. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  19. Moriah Wind System Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Moriah Wind System Laboratory provides in-service support for the more than 50 U.S. Navy, U.S. Coast Guard and Military Sealift Command ships on which...

  20. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  1. FLEXIBLE FOOD PACKAGING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment to fabricate and test prototype packages of many types and sizes (e.g., bags, pouches, trays, cartons, etc.). This equipment can...

  2. Mechanical Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Mechanical Testing Laboratory in Albany, OR, helps researchers investigate materials that can withstand the heat and pressure commonly found in fossil energy...

  3. High Bay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a specially constructed facility with elevated (37 feet) ceilings and an overhead catwalk, and which is dedicated to research efforts in reducing...

  4. Space Systems Laboratory (SSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Systems Laboratory (SSL) is part of the Aerospace Engineering Department and A. James Clark School of Engineering at the University of Maryland in College...

  5. Informatics and the clinical laboratory.

    Science.gov (United States)

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  6. Breed-specific variation of hematologic and biochemical analytes in healthy adult Bernese Mountain dogs

    DEFF Research Database (Denmark)

    Nielsen, Lise; Kjelgaard-Hansen, Mads; Jensen, Asger Lundorff;

    2010-01-01

    Background: Hematology and serum biochemistry reference intervals in dogs may be affected by internal factors, such as breed and age, and external factors, such as the environment, diet, and lifestyle. In humans, it is well established that geographic origin and age may have an impact on reference...... intervals and, therefore, more specific reference intervals are sought for subpopulations. Objective: The objective of this study was to validate and transfer standard laboratory reference intervals for healthy Bernese Mountain dogs and to create new intervals for analytes where the established laboratory....... In particular, the new reference range for ALP was wide compared with the established laboratory reference interval. No clinical causes were found for differences in the results of these analytes. Conclusion: We found significant differences in 7 hematologic and serum biochemical analytes for which a breed-specific...

  7. Meeting report on third regional workshop on quality assurance and quality control of nuclear analytical techniques

    International Nuclear Information System (INIS)

    Over the last 20 years, the Agency, through its Technical Co-operation Programme, has helped to establish many nuclear analytical laboratories in nuclear institutions and universities of Member States. The project RER/2/004 has been approved in 1999 for a period of two years aiming at the implementation of a comprehensive QA/QC protocol in laboratories of Member States following the ISO guide 17025. The project involved 13 laboratories from 12 countries. This report presents the project setup, intended outputs and outcomes, achievements and conclusions. It also contains reports from participating laboratories. Each of the reports has been provided with an abstract and indexed separately

  8. Experiences with Remote Laboratories

    OpenAIRE

    Andrew Nafalski; Ozdemir Gol; Zorica Nedic; Jan Machotka; José M. M. Ferreira; Ingvar Gustavsson

    2010-01-01

    The paper reports on experiences of academics and students involved in using remote engineering laboratories both when students work individually or collaboratively with others on the experiments. Positives and negatives are highlighted and are contrasted with expectations of what the remote laboratories can bring into pedagogical environments. Recommendations and conclusions follow on how to better use the remote laboratories in teaching.

  9. Laboratory Activities in Israel

    Science.gov (United States)

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  10. Good Laboratory Practice

    Science.gov (United States)

    Hadjicostas, Evsevios

    The principles of Good Laboratory Practice (GLP) in conjunction with the principles of Total Quality Management (see chapter 6) ensure the quality and reliability of the laboratory results, which in turn help to ensure the protection of the environment and human health and safety. A step further is the accreditation of laboratories to ISO 17025 (see chapter 2) to perform specified activities.

  11. Seis sigma no laboratório clínico: impacto na gestão de performance analítica dos processos técnicos Six sigma in clinical laboratory: impact in analytical performance management of technical process

    Directory of Open Access Journals (Sweden)

    Fernando de Almeida Berlitz

    2005-10-01

    Full Text Available INTRODUÇÃO: A visão Seis Sigma da qualidade constitui uma nova ferramenta para o laboratório clínico, objetivando conjugar qualidade de desempenho de processos à gestão de custos. OBJETIVOS: Verificar a viabilidade e o impacto da utilização de conceitos Seis Sigma na gestão de processos técnicos em laboratório clínico. MATERIAIS E MÉTODOS: Foi realizado um estudo comparativo para 14 parâmetros básicos de bioquímica em dois sistemas automatizados, Bayer ADVIA 1650 e Ortho-Clinical Diagnostics VITROS 950, comparando-os em termos de performance analítica com a utilização de métrica sigma, calculada frente a diferentes especificações de desempenho. Resultados: Para ambos os equipamentos avaliados, as maiores métricas foram obtidas para triglicérides (TG e ácido úrico, nas especificações do Clinical Laboratory Improvement Amendments (CLIA e baseadas em variação biológica. As menores métricas foram obtidas para as transaminases (AST e ALT no ADVIA 1650 e para cloretos no VITROS 950. Esses resultados estão em função direta da magnitude das especificações utilizadas no cálculo da métrica sigma. DISCUSSÃO: Os resultados mostraram tendência a melhores índices de performance nos testes realizados no equipamento VITROS 950 em relação aos do ADVIA 1650. A definição do limite de especificação a ser utilizado para cálculo da métrica sigma se mostrou essencial para a adequada avaliação de desempenho analítico dos testes laboratoriais. CONCLUSÕES: A utilização da métrica sigma como índice de performance dos processos técnicos no laboratório clínico proporciona a padronização de um sistema de controle de qualidade custo-efetivo, alinhando qualidade e metas de custo, com foco na satisfação dos clientes e na saúde financeira da organização.BACKGROUND: The Six Sigma approach is a new technique to manage process quality performance in clinical laboratory, aligning quality and cost reduction targets

  12. Nuclear analytical techniques for nanotoxicology studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.Y.; Zhao, Y.L.; Chai, Z.F. [Chinese Academy of Sciences, Beijing (China). Key Lab for Biomedical Effects of Nanomaterials and Nanosafety

    2011-07-01

    With the rapid development of nanotechnology and its applications, a wide variety of nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. The potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. It is important to consider the environmental, health and safety aspects at an early stage of nanomaterial development and application in order to more effectively identify and manage potential human and environmental health impacts from nanomaterial exposure. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology. Nuclear analytical techniques (NATs) can play an important role in such studies due to their intrinsic merits such as high sensitivity, good accuracy, high space resolution, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. In this paper, the applications of NATs in nanotoxicological and nano-ecotoxicological studies are outlined, and some recent results obtained in our laboratory are reported. (orig.)

  13. Nuclear analytical techniques for nanotoxicology studies

    International Nuclear Information System (INIS)

    With the rapid development of nanotechnology and its applications, a wide variety of nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. The potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. It is important to consider the environmental, health and safety aspects at an early stage of nanomaterial development and application in order to more effectively identify and manage potential human and environmental health impacts from nanomaterial exposure. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology. Nuclear analytical techniques (NATs) can play an important role in such studies due to their intrinsic merits such as high sensitivity, good accuracy, high space resolution, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. In this paper, the applications of NATs in nanotoxicological and nano-ecotoxicological studies are outlined, and some recent results obtained in our laboratory are reported. (orig.)

  14. Analytical and experimental investigation of soil reinforcing

    Science.gov (United States)

    Holtz, R. D.; Harr, M. E.

    1983-10-01

    Significant improvements in the capacity and service life of reinforced earth structures require an improved understanding of the fundamental behavior of these systems. Both experimental and analytical investigations were carried out to develop models for the interaction of geotextile-type reinforcement and granular soils. Reinforcement configurations and systems investigated were thought to be applicable to alternate launch and recovery surfaces (ALRS). Model ALRS systems using geotextiles and geogrids as reinforcement were tested in the laboratory in a variety of configurations. These were loaded to failure, quasi-statically, by both plane strain and axisymmetric rigid plates. Load-deformation characteristics as well as the shape of the deflected basin are reported. Significant increases in bearing capacity and modulus of subgrade reaction as a function of depth and number of layers of reinforcement were observed. However, there was a decrease in improvement as the depth to the first layer increased. Edge fixity conditions were found to be relatively unimportant, and the benefit of multiple-reinforcement layers was greater if the depth and spacing were small compared to the diameter of the loaded area. Surprisingly, little difference was observed in the response of the geogrids and geotextiles, probably because sand was used in the experiments. Geometric scaling of bearing capacity, based on the diameters of the loaded areas, was not possible.

  15. Link between laboratory and astrophysical radiative shocks

    CERN Document Server

    Michaut, Claire; Cavet, Cécile; Bouquet, Serge; Koenig, Michel; Vinci, Tommaso; Loupias, Bérénice

    2008-01-01

    This work provides analytical solutions describing the post-shock structure of radiative shocks growing in astrophysics and in laboratory. The equations including a cooling function $\\Lambda \\propto \\rho^{\\epsilon} P^{\\zeta} x^{\\theta}$ are solved for any values of the exponents $\\epsilon$, $\\zeta$ and $\\theta$. This modeling is appropriate to astrophysics as the observed radiative shocks arise in optically thin media. In contrast, in laboratory, radiative shocks performed using high-power lasers present a radiative precursor because the plasma is more or less optically thick. We study the post-shock region in the laboratory case and compare with astrophysical shock structure. In addition, we attempt to use the same equations to describe the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe the PSR using X-ray diagnostics. These new experimental results will allow to validate our astrophysical numerical codes.

  16. Phlebotomy and quality in the African laboratory

    Directory of Open Access Journals (Sweden)

    Henry A. Mbah

    2014-04-01

    Full Text Available Phlebotomy, the act of drawing blood through venepuncture, is one of the most common medical procedures in healthcare, as well as being a basis for diagnosis and treatment. A review of the available research has highlighted the dearth of information on the phlebotomy practice in Africa. Several studies elsewhere have shown that the pre-analytical phase (patient preparation, specimen collection and identification, transportation, preparation for analysis and storage is the most error-prone process in laboratory medicine. The validity of any laboratory test result hinges on specimen quality; thus, as the push for laboratory quality improvement in Africa gathers momentum, the practice of phlebotomy should be subjected to critical appraisal. This article offers several suggestions for the improvement of phlebotomy in Africa.

  17. AN ANALYTICAL SOLUTION FOR CALCULATING THE INITIATION OF SEDIMENT MOTION

    Institute of Scientific and Technical Information of China (English)

    Thomas LUCKNER; Ulrich ZANKE

    2007-01-01

    This paper presents an analytical solution for calculating the initiation of sediment motion and the risk of river bed movement. It thus deals with a fundamental problem in sediment transport, for which no complete analytical solution has yet been found. The analytical solution presented here is based on forces acting on a single grain in state of initiation of sediment motion. The previous procedures for calculating the initiation of sediment motion are complemented by an innovative combination of optical surface measurement technology for determining geometrical parameters and their statistical derivation as well as a novel approach for determining the turbulence effects of velocity fluctuations. This two aspects and the comparison of the solution functions presented here with the well known data and functions of different authors mainly differ the presented solution model for calculating the initiation of sediment motion from previous approaches. The defined values of required geometrical parameters are based on hydraulically laboratory tests with spheres. With this limitations the derivated solution functions permit the calculation of the effective critical transport parameters of a single grain, the calculation of averaged critical parameters for describing the state of initiation of sediment motion on the river bed, the calculation of the probability density of the effective critical velocity as well as the calculation of the risk of river bed movement. The main advantage of the presented model is the closed analytical solution from the equilibrium of forces on a single grain to the solution functions describing the initiation of sediment motion.

  18. Skylab mobile laboratory

    Science.gov (United States)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  19. Personalized laboratory medicine

    DEFF Research Database (Denmark)

    Pazzagli, M.; Malentacchi, F.; Mancini, I.;

    2015-01-01

    diagnostic tools and expertise and commands proper state-of-the-art knowledge about Personalized Medicine and Laboratory Medicine in Europe, the joint Working Group "Personalized Laboratory Medicine" of the EFLM and ESPT societies compiled and conducted the Questionnaire "Is Laboratory Medicine ready...... for the era of Personalized Medicine?". 48 laboratories from 18 European countries participated at this survey. The answers of the participating Laboratory Medicine professionals indicate that they are aware that Personalized Medicine can represent a new and promising health model. Whereas they are aware...... that Laboratory Medicine should play a key role to support the implementation of Personalized Medicine in the clinical settings, the participants of this survey think that the current organization of the Laboratory Medicine needs additional/relevant implementations such as: 1. New technological Facilities...

  20. Using Linked Data in Learning Analytics

    NARCIS (Netherlands)

    d'Aquin, Mathieu; Dietze, Stefan; Drachsler, Hendrik; Herder, Eelco

    2013-01-01

    d'Aquin, M., Dietze, S., Drachsler, H., & Herder, E. (2013, April). Using Linked Data in Learning Analytics. Tutorial given at LAK 2013, the Third Conference on Learning Analytics and Knowledge, Leuven, Belgium.

  1. Analytic three-loop static potential

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-09-01

    We present analytic results for the three-loop static potential of two heavy quarks. The analytic calculation of the missing ingredients is outlined, and results for the singlet and octet potential are provided.

  2. A New Definition of Hypercomplex Analyticity

    OpenAIRE

    De Leo StefanoDip. di Fisica, INFN, Lecce; Rotelli PietroDip. di Fisica, INFN, Lecce

    2014-01-01

    Complex analyticity is generalized to hypercomplex functions, quaternion or octonion, in such a manner that it includes the standard complex definition and does not reduce analytic functions to a trivial class. A brief comparison with other definitions is presented.

  3. Analytic three-loop static potential

    CERN Document Server

    Lee, Roman N; Smirnov, Vladimir A; Steinhauser, Matthias

    2016-01-01

    We present analytic results for the three-loop static potential of two heavy quarks. The analytic calculation of the missing ingredients is outlined and results for the singlet and octet potential are provided.

  4. Group Concept Mapping on Learning Analytics

    NARCIS (Netherlands)

    Stoyanov, Slavi; Drachsler, Hendrik

    2013-01-01

    Stoyanov, S., & Drachsler, H. (2013, 5 July). Group Concept Mapping on Learning Analytics. Presentation given at Learning Analytics Summer School Institute (LASI) to kickoff the national GCM study on LA, Amsterdam, The Netherlands.

  5. Google analytics per a tothom

    OpenAIRE

    Martín Cerdà, David

    2009-01-01

    “Google Analytics per a tothom” són un conjunt d’aplicacions web per als clients de l’empresa eMascaró Crossmedia. Aquests podran analitzar i portar un estricte control de les estadístiques més significatives de les seves pàgines web. El projecte consta de dues grans aplicacions principalment: -Aplicació en Flash per a usuaris principiants. -Aplicació per a telèfons mòbils o PDAs per a empresaris o gent més experimentada.

  6. Programming system for analytic geometry

    International Nuclear Information System (INIS)

    After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry

  7. Analytical chemistry and semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, P.W. (Univ. of Illinois at Urbana-Champaign (USA)); Harris, T.D. (AT T Bell Laboratories, Murray Hill, NJ (USA))

    1990-07-15

    Advances in analytical chemistry are crucial to the continued expansion of electronic and optoelectronic materials in device applications. This report explains the critical role that the defect chemistry of semiconductor material in a device and the difficulty of extracting chemical information about defects. The authors focus on the generic class of chemical analysis problems resulting from the fact that the spatial distribution of chemical composition is the single most important factor in determining the operative properties of electronic and optoelectronic materials. 31 refs., 7 figs., 1 tabs.

  8. Spectrofluorometric analytical applications of cyclodextrins.

    Science.gov (United States)

    Elbashir, Abdalla A; Dsugi, Nuha Fathi Ali; Mohmed, Tamador Omer Mohamoud; Aboul-Enein, Hassan Y

    2014-02-01

    Cyclodextrins (CDs) are a family of cyclic oligosaccharides composed of α-(1,4)-linked glucopyranose subunits. The most important feature of CDs is their ability to form inclusion complexes (host-guest complexes) with a very wide range of solid, liquid and gaseous compounds by a molecular complexation. During the last decade, a considerable number of research papers has been focused on the use of CDs to enhance fluorescence intensity of different analytes and to develop CD-induced spectrofluorimetric method. In this review, the various spectrofluorimetric methods based on host-inclusion complex are presented.

  9. Analytical theory for shape stiffness

    Institute of Scientific and Technical Information of China (English)

    张进之

    2000-01-01

    The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m = k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc = m + q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano’s theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.

  10. Analytical theory for shape stiffness

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m=k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc=m+q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano's theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.

  11. Search Analytics for Your Site

    CERN Document Server

    Rosenfeld, Louis

    2011-01-01

    Any organization that has a searchable web site or intranet is sitting on top of hugely valuable and usually under-exploited data: logs that capture what users are searching for, how often each query was searched, and how many results each query retrieved. Search queries are gold: they are real data that show us exactly what users are searching for in their own words. This book shows you how to use search analytics to carry on a conversation with your customers: listen to and understand their needs, and improve your content, navigation and search performance to meet those needs.

  12. Google BigQuery analytics

    CERN Document Server

    Tigani, Jordan

    2014-01-01

    How to effectively use BigQuery, avoid common mistakes, and execute sophisticated queries against large datasets Google BigQuery Analytics is the perfect guide for business and data analysts who want the latest tips on running complex queries and writing code to communicate with the BigQuery API. The book uses real-world examples to demonstrate current best practices and techniques, and also explains and demonstrates streaming ingestion, transformation via Hadoop in Google Compute engine, AppEngine datastore integration, and using GViz with Tableau to generate charts of query results. In addit

  13. Purdue Rare Isotope Measurement Laboratory

    Science.gov (United States)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  14. Customer Analytics in Iceland: Attitudes and implementation

    OpenAIRE

    Rúrik Karl Björnsson 1987

    2014-01-01

    Analytics are incresingly becoming a hot topic in businesses around the world. More and more companies are implementing analytics to stay ahead of the competition and at the same time increase knowledge of their customer base and market environment. The author was interested in researching how analytics were being implemented in the Icelandic market. Not much is known about how Icelandic companies are using analytics. The author decided to conduct in-depth interviews with twelve companies ...

  15. Learning analytics: drivers, developments and challenges

    OpenAIRE

    Ferguson, Rebecca

    2012-01-01

    Learning analytics is a significant area of technology-enhanced learning that has emerged during the last decade. This review of the field begins with an examination of the technological, educational and political factors that have driven the development of analytics in educational settings. It goes on to chart the emergence of learning analytics, including their origins in the 20th century, the development of data-driven analytics, the rise of learning-focused perspectives and the influence ...

  16. Lead - a preanalytical/analytical variable in clinical chemistry

    Directory of Open Access Journals (Sweden)

    Rašić-Mišić Ivana

    2014-01-01

    Full Text Available Lead is one of the most studied clinically important metals due its high toxicity and a high number of workers exposed to it. The interest toward Pb is elevated by the fact that children are especially susceptible to lead poisoning. Research regarding lead poisoning requires a complex, multi-disciplinary (clinical medical and clinical chemical approach. Monitoring human exposure to lead (intake, i.e. poisoning may be achieved by quantification of Pb in tissues and body fluids. For that reason, a number of accurate and reliable analytical methods for the determination of Pb (analytical/preanalytical variable were developed. An objective of this review paper is to provide key information necessary for proper interpretation of results of lead related clinical/laboratory tests. [Projekat Ministarstva nauke Republike Srbije, br. 172061

  17. Parkinson’s Brain Disease Prediction Using Big Data Analytics

    Directory of Open Access Journals (Sweden)

    N. Shamli

    2016-06-01

    Full Text Available In healthcare industries, the demand for maintaining large amount of patients’ data is steadily growing due to rising population which has resulted in the increase of details about clinical and laboratory tests, imaging, prescription and medication. These data can be called “Big Data”, because of their size, complexity and diversity. Big data analytics aims at improving patient care and identifying preventive measures proactively. To save lives and recommend life style changes for a peaceful and healthier life at low costs. The proposed predictive analytics framework is a combination of Decision Tree, Support Vector Machine and Artificial Neural Network which is used to gain insights from patients. Parkinson’s disease voice dataset from UCI Machine learning repository is used as input. The experimental results show that early detection of disease will facilitate clinical monitoring of elderly people and increase the chances of their life span and improved lifestyle to lead peaceful life.

  18. Analytic American Option Pricing and Applications

    NARCIS (Netherlands)

    Sbuelz, A.

    2003-01-01

    I use a convenient value breakdown in order to obtain analytic solutions for finitematurity American option prices.Such a barrier-option-based breakdown yields an analytic lower bound for the American option price, which is as price-tight as the Barone-Adesi and Whaley (1987) analytic value proxy fo

  19. 7 CFR 94.303 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.303 Section 94.303 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... POULTRY AND EGG PRODUCTS Processed Poultry Products § 94.303 Analytical methods. The analytical...

  20. 7 CFR 93.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 93.4 Section 93.4 Agriculture... PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain Citrus Products § 93.4 Analytical methods. (a) The majority of analytical methods for citrus products are found in the Official Methods of Analysis of...

  1. 7 CFR 93.13 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 93.13 Section 93.13 Agriculture... PROCESSED FRUITS AND VEGETABLES Peanuts, Tree Nuts, Corn and Other Oilseeds § 93.13 Analytical methods... Analytical Methods Manual, American Spice Trade Association (ASTA), 560 Sylvan Avenue, P.O. Box...

  2. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is sep

  3. Analytic theories of allometric scaling.

    Science.gov (United States)

    Agutter, Paul S; Tuszynski, Jack A

    2011-04-01

    During the 13 years since it was first advanced, the fractal network theory (FNT), an analytic theory of allometric scaling, has been subjected to a wide range of methodological, mathematical and empirical criticisms, not all of which have been answered satisfactorily. FNT presumes a two-variable power-law relationship between metabolic rate and body mass. This assumption has been widely accepted in the past, but a growing body of evidence during the past quarter century has raised questions about its general validity. There is now a need for alternative theories of metabolic scaling that are consistent with empirical observations over a broad range of biological applications. In this article, we briefly review the limitations of FNT, examine the evidence that the two-variable power-law assumption is invalid, and outline alternative perspectives. In particular, we discuss quantum metabolism (QM), an analytic theory based on molecular-cellular processes. QM predicts the large variations in scaling exponent that are found empirically and also predicts the temperature dependence of the proportionality constant, issues that have eluded models such as FNT that are based on macroscopic and network properties of organisms.

  4. Text Analytics to Data Warehousing

    Directory of Open Access Journals (Sweden)

    Kalli Srinivasa Nageswara Prasad

    2010-09-01

    Full Text Available Information hidden or stored in unstructured data can play a critical role in making decisions, understanding and conducting other business functions. Integrating data stored in both structured and unstructured formats can add significant value to an organization. With the extent of development happening in Text Mining and technologies to deal with unstructured and semi structured data like XML and MML(Mining Markup Language to extract and analyze data, textanalytics has evolved to handle unstructured data to helps unlock and predict business results via Business Intelligence and Data Warehousing. Text mining involves dealing with texts in documents and discovering hidden patterns, but Text Analytics enhances InformationRetrieval in form of search and enabling clustering of results and more over Text Analytics is text mining and visualization. In this paper we would discuss on handling unstructured data that are in documents so that they fit into business applications like Data Warehouses for further analysis and it helps in the framework we have used for the solution.

  5. Benzodiazepine metabolism: an analytical perspective.

    Science.gov (United States)

    Mandrioli, Roberto; Mercolini, Laura; Raggi, Maria Augusta

    2008-10-01

    Benzodiazepines are currently among the most frequently prescribed drugs all over the world. They act as anxiolytics, sedatives, hypnotics, amnesics, antiepileptics and muscle relaxants. Despite their common chemical scaffold, these drugs differ in their pharmacokinetic and metabolic properties. In particular, they are biotransformed by different cytochrome P450 isoforms and also by different UDP-glucuronosyltransferase subtypes. The most important studies on the metabolic characteristics of several 1,4-benzodiazepines, carried out from 1998 onwards, are reported and briefly discussed in this review. Moreover, the analytical methods related to these studies are also described and commented upon and their most important characteristics are highlighted. Most methods are based on liquid chromatography, which provides wide applicability and good analytical performance granting high precision, accuracy and feasibility. Mass spectrometry is gaining widespread acceptance, particularly if the matrix is very complex and variable, such as human or animal blood. However, spectrophotometric detection is still used for this purpose and can grant sufficient selectivity and sensitivity when coupled to suitable sample pre-treatment procedures. A monograph is included for each of the following benzodiazepines: alprazolam, bromazepam, brotizolam, clotiazepam, diazepam, etizolam, flunitrazepam, lorazepam, midazolam, oxazepam and triazolam. PMID:18855614

  6. Integrated Array/Metadata Analytics

    Science.gov (United States)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  7. Analytical applications of nuclear techniques

    International Nuclear Information System (INIS)

    The contributions from some of the world's leading nuclear analysts included in this book describe a variety of nuclear techniques and applications, such as those in the fields of environment and health, industrial processes, non-destructive testing, forensic and archaeological investigations and cosmochemistry, and in method validation. The descriptive articles demonstrate the advantages of nuclear techniques in, for example, analysing trace elements in submilligram samples in a single strand of hair or in kilogram samples of municipal waste. Halogenated organic compounds as well as major and trace inorganic constituents are analysed in a variety of solid and liquid matrices. Several different techniques are applied to investigate the authenticity of art objects and the origin of extraterrestrial material. Many applications of nuclear analytical techniques in industrial process control or in the production of high-tech materials are described, highlighting the socioeconomic benefit of these techniques in our daily lives. The book is intended to stimulate students, teachers and non-nuclear scientists to take the 'nuclear' option into consideration when deciding on a new field of study or an alternative analytical technique

  8. Extracting laboratory test information from biomedical text

    Directory of Open Access Journals (Sweden)

    Yanna Shen Kang

    2013-01-01

    Full Text Available Background: No previous study reported the efficacy of current natural language processing (NLP methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens was very limited or when lexical morphology of the entity was distinctive (as in units of measures, yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure.

  9. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  10. Quality Measures in Pre-Analytical Phase of Tissue Processing: Understanding Its Value in Histopathology

    Science.gov (United States)

    Masilamani, Suresh; Sundaram, Sandhya; Duvuru, Prathiba; Swaminathan, Rajendiran

    2016-01-01

    Introduction Quality monitoring in histopathology unit is categorized into three phases, pre-analytical, analytical and post-analytical, to cover various steps in the entire test cycle. Review of literature on quality evaluation studies pertaining to histopathology revealed that earlier reports were mainly focused on analytical aspects with limited studies on assessment of pre-analytical phase. Pre-analytical phase encompasses several processing steps and handling of specimen/sample by multiple individuals, thus allowing enough scope for errors. Due to its critical nature and limited studies in the past to assess quality in pre-analytical phase, it deserves more attention. Aim This study was undertaken to analyse and assess the quality parameters in pre-analytical phase in a histopathology laboratory. Materials and Methods This was a retrospective study done on pre-analytical parameters in histopathology laboratory of a tertiary care centre on 18,626 tissue specimens received in 34 months. Registers and records were checked for efficiency and errors for pre-analytical quality variables: specimen identification, specimen in appropriate fixatives, lost specimens, daily internal quality control performance on staining, performance in inter-laboratory quality assessment program {External quality assurance program (EQAS)} and evaluation of internal non-conformities (NC) for other errors. Results The study revealed incorrect specimen labelling in 0.04%, 0.01% and 0.01% in 2007, 2008 and 2009 respectively. About 0.04%, 0.07% and 0.18% specimens were not sent in fixatives in 2007, 2008 and 2009 respectively. There was no incidence of specimen lost. A total of 113 non-conformities were identified out of which 92.9% belonged to the pre-analytical phase. The predominant NC (any deviation from normal standard which may generate an error and result in compromising with quality standards) identified was wrong labelling of slides. Performance in EQAS for pre-analytical phase was

  11. Geochemical Mapping: With Special Emphasis on Analytical Requirements

    Institute of Scientific and Technical Information of China (English)

    XIE Xuejing; CHENG Hangxin; LIU Dawen

    2008-01-01

    More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 to 1992, the International Geochemical Mapping project (Project 259 of UNESCO's IGCP Program) prepared recommendations designed to standardize geochemical mapping methods. The analytical requirements are an essential component of the overall recommendations. They included the following: 71 elements should be analyzed in future mapping projects; the detection limits of trace and ultratrace elements must be lower than the corresponding crustal abundances; and the Chinese GSD and Canadian STSD standard sample series should be used for the correlation of global data. A proposal was also made to collect 5000 composite samples, at very low sampling densities to cover the whole Earth's land surface. In 1997 an IUGS Working Group on Global Geochemical Baselines was formed to continue the work which began with IGCP 259. From 1997 up to now, new progress has been made especially in China and FOREGS countries under the aegis of this working group, including the study of suitable sampling media, development of a multi-element analytical system, new proficiency test for selection of competent laboratories and role of wide-spaced mapping in mineral exploration. One of the major problems awaiting solution has been the inability of many laboratories to meet the IGCP recommendations to generate high quality geochemical maps. Fortunately several laboratories in China and Europe have demonstrated an ability to meet the requirements and they will be well placed to render technical assistance to other countries.

  12. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  13. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  14. A Survey of Visual Analytic Pipelines

    Institute of Scientific and Technical Information of China (English)

    Xu-Meng Wang; Tian-Ye Zhang; Yu-Xin Ma; Jing Xia; Wei Chen

    2016-01-01

    Visual analytics has been widely studied in the past decade. One key to make visual analytics practical for both research and industrial applications is the appropriate definition and implementation of the visual analytics pipeline which provides effective abstractions for designing and implementing visual analytics systems. In this paper we review the previous work on visual analytics pipelines and individual modules from multiple perspectives: data, visualization, model and knowledge. In each module we discuss various representations and descriptions of pipelines inside the module, and compare the commonalities and the differences among them.

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    International Nuclear Information System (INIS)

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited

  17. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL)

    OpenAIRE

    Todd, Christopher A.; Sanchez, Ana M.; Garcia, Ambrosia; Thomas N Denny; Sarzotti-Kelsoe, Marcella

    2013-01-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting ...

  18. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  19. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  20. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  1. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  2. Laboratory Astrophysics White Paper

    Science.gov (United States)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  3. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  4. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  5. Free Surface Hydrodynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Investigates processes and interactions at the air-sea interface, and compares measurements to numerical simulations and field data. Typical phenomena of...

  6. Biochemical Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This biochemistry lab is set up for protein analysis using Western blot, enzyme linked immunosorbent assays, immunohistochemistry, and bead-based immunoassays. The...

  7. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  8. Prospects in Analytical Atomic Spectrometry

    CERN Document Server

    Bolshakov, A A; Nemets, V M

    2006-01-01

    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular archite...

  9. Analytical model for ramp compression

    Science.gov (United States)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Hu, Yun; Ding, Yongkun

    2016-08-01

    An analytical ramp compression model for condensed matter, which can provide explicit solutions for isentropic compression flow fields, is reported. A ramp compression experiment can be easily designed according to the capability of the loading source using this model. Specifically, important parameters, such as the maximum isentropic region width, material properties, profile of the pressure pulse, and the pressure pulse duration can be reasonably allocated or chosen. To demonstrate and study this model, laser-direct-driven ramp compression experiments and code simulation are performed successively, and the factors influencing the accuracy of the model are studied. The application and simulation show that this model can be used as guidance in the design of a ramp compression experiment. However, it is verified that further optimization work is required for a precise experimental design.

  10. Theoretical physics 2 analytical mechanics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to analytical mechanics, one of the core components of undergraduate physics courses.It follows on naturally from the previous volumes in this series, thus expanding the knowledge in classical mechanics. The book starts with a thorough introduction into Lagrangian mechanics, detailing the d’Alembert principle, Hamilton’s principle and conservation laws. It continues with an in-depth explanation of Hamiltonian mechanics, illustrated by canonical and Legendre transformation, the generalization to quantum mechanics through Poisson brackets and all relevant variational principles. Finally, the Hamilton-Jacobi theory and the transition to wave mechanics are presented in detail. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by ...

  11. Analytical Study Of Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hosam A. Dahaam

    2013-05-01

    Full Text Available Nonlinear finite element analyses is carried out using the ANSYS11 program to predict the ultimate load for two different types of reinforced concrete continuous two-span deep beams. Results of comparing analytical with  experimental data demonstrates the accuracy of the program. The effects of longitudinal reinforcement and web openings are studied and showed that the longitudinal reinforcement at top and middle region has little effect on the ultimate load, and the effect of web opening location has  great effect on the ultimate load especially when the load path passes through the openings centerline. Web opening location also has  great effect on values and distribution of shear and normal stresses especially at opening region.   

  12. Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation.

    Science.gov (United States)

    Shipkova, Maria; López, Olga Millán; Picard, Nicolas; Noceti, Ofelia; Sommerer, Claudia; Christians, Uwe; Wieland, Eberhard

    2016-04-01

    In response to the urgent need for new reliable biomarkers to complement the guidance of the immunosuppressive therapy, a huge number of biomarker candidates to be implemented in clinical practice have been introduced to the transplant community. This includes a diverse range of molecules with very different molecular weights, chemical and physical properties, ex vivo stabilities, in vivo kinetic behaviors, and levels of similarity to other molecules, etc. In addition, a large body of different analytical techniques and assay protocols can be used to measure biomarkers. Sometimes, a complex software-based data evaluation is a prerequisite for appropriate interpretation of the results and for their reporting. Although some analytical procedures are of great value for research purposes, they may be too complex for implementation in a clinical setting. Whereas the proof of "fitness for purpose" is appropriate for validation of biomarker assays used in exploratory drug development studies, a higher level of analytical validation must be achieved and eventually advanced analytical performance might be necessary before diagnostic application in transplantation medicine. A high level of consistency of results between laboratories and between methods (if applicable) should be obtained and maintained to make biomarkers effective instruments in support of therapeutic decisions. This overview focuses on preanalytical and analytical aspects to be considered for the implementation of new biomarkers for adjusting immunosuppression in a clinical setting and highlights critical points to be addressed on the way to make them suitable as diagnostic tools. These include but are not limited to appropriate method validation, standardization, education, automation, and commercialization.

  13. Intercalibration of analytical methods on marine environmental samples

    International Nuclear Information System (INIS)

    The analytical results reported by the 55 laboratories from 29 countries participating in this intercomparison have enabled to certify the concentration of 16 elements (As, Br, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Na, Rb, Se, Sr, Zn) in the mussel homogenate MA-M-2/TM. Information values could be established for 6 additional elements (Ag, Au, Cl, Pb, Sb, Sc). The atomic absorption spectroscopy was predominantly used in this intercomparison (45% of all determinations). It was followed by neutron activation analysis (28%), atomic emission spectroscopy (15%) and X-ray fluorescence (5%). The total number of outliers was moderate: 11.7% of all results. The number of outlying results by participating laboratories varied between 0 and 6

  14. Concepts for the third generation of laboratory systems.

    Science.gov (United States)

    Hoffmann, G E

    1998-12-01

    This paper briefly describes the history of laboratory systems and discusses some of the recent concepts. The third generation of laboratory systems, which appeared around 1990, encompasses most of the pre-analytical, analytical and post-analytical procedural steps of the laboratory workflow, thus eliminating much of the so-called "3 D tasks" (dull, dirty, dangerous). These automation systems enable humans to focus on work of higher value such as result validation or development of tests in emerging areas. The new development started in Japan in 1981 and reached the Western hemisphere around 1995. Currently there are between 800 and 900 installations world-wide that meet the above criteria. The majority of them automate hematology, whereas systems that automate more complex areas such as clinical chemistry, immunochemistry, coagulation and urinalysis, represent only about one third. More than 60% of the world-wide system base has been installed in Japan. Future growth in the West and high market saturation in Japan are likely to decrease this percentage during the next few years. The two key concepts of third generation systems are "consolidation" and "integration". The following definitions are suggested: * Consolidation: Combining different analytical technologies or strategies on one instrument or on one group of connected instruments. * Integration: Linking analytical instruments or groups of instruments with pre- and post-analytical devices. Examples for the technical realization of both concepts and practical aspects of how to apply them in an individual laboratory are given. Components, which are specifically new in the context of laboratory automation, are conveyor belts, stationary and floor-running robots, and software for process control. The most attractive options to be considered when automating a laboratory are primary tube sorting and the use of secondary samples to increase speed and to avoid sample carryover. Other applications include automatic

  15. LC-MS/MS in the Clinical Laboratory – Where to From Here?

    OpenAIRE

    Grebe, Stefan KG; Singh, Ravinder J

    2011-01-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in clinical laboratories during the last 10–15 years. It offers analytical specificity superior to that of immunoassays or conventional high performance/pressure liquid chromatography (HPLC) for low molecular weight analytes and has higher throughput than gas chromatography-mass spectrometry (GC-MS). Drug/Toxicology and Biochemical Genetics/Newborn Screening laboratories were at the vanguard of clinical LC-MS/M...

  16. Evaluation of four gentamicin and tobramycin assay procedures for clinical laboratories.

    OpenAIRE

    Witebsky, F G; Sliva, C A; Selepak, S T; Ruddel, M E; MacLowry, J D; Johnson, E E; Elin, R J

    1983-01-01

    Accuracy, precision, and clinical laboratory utility of the TDX (Abbott Laboratories), Auto-ICS (Beckman Instruments, Inc.), COBAS-Bio (Roche Analytical Instruments, Inc.) with reagent kits (Syva), and EMIT (Syva) for gentamicin and tobramycin serum assay were assessed. TDX, COBAS-Bio, and EMIT analytical systems showed a proportional bias of less than 10% for recovery studies and a coefficient of variation less than 5% for within-run precision. The results of the recovery studies with the Au...

  17. Quality laboratory issues in bleeding disorders.

    Science.gov (United States)

    Adcock, D M; Mammen, J; Nair, S C; de Lima Montalvão, S A

    2016-07-01

    Selected quality issues pertinent to the determination of accurate results in the haemostasis laboratory are discussed. Specifically, the implementation of a successful external quality-assessment scheme is described, including its impact on result accuracy as well as the programme's unique challenges and opportunities. Errors in the preanalytical phase of laboratory testing represent the greatest source for reporting incorrect test results. Some of the most common preanalytical errors are described including those that necessitate sample rejection. Analytical means to identify potential sources of error and analytical means to overcome particular interferences are described. Representing the most important clinical complication in the treatment of patients with haemophilia, quality issues related to determination of the presence of inhibitory antibodies against factor VIII (FVIII) are reviewed. Heat treatment of patient plasma prior to testing, particularly in patients receiving replacement FVIII concentrate or during induction of immune tolerance to achieve more accurate results is recommended, while screening activated partial thromboplastin time-based mixing tests to rule out inhibitor presence is discouraged. The initiatives presented in this review can be implemented in robust and resource restricted settings to improve the quality of laboratory testing in patients with bleeding disorders. PMID:27405682

  18. Laboratory experiments and analytical investigations on the transfer of organic substances from lignite into ground water and residue lakes during flooding of opencast lignite mines. Final report; Laborexperimente und analytische Untersuchungen ueber den Eintrag braunkohlebuertiger organischer Stoffe in Grundwaesser und Restseegewaesser bei der Flutung von Braunkohletagebauen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Herzschuh, R.; Frauendorf, H.; Herrmann, D.; Pietzsch, K.

    2000-05-01

    Lignite samples of diffrent lithotypes and composition from opencast mines of Lusatia and the region near Leipzig were submitted to weathering processes in laboratory scale experiments and the transfer of organic matter from lignite into the hydrosphere has been observed. By means of high-performance liquid chromatography/electrospray mass spectrometry used in combination with data from gas chromatography/mass spectrometry numerous lignite-derived aromatic and heteroaromatic (poly-)carboxylic acids as well as aliphatic dicarboxylic acids could be characterized in the aqueous extracts. Investigations on water samples from lignite mining residue lakes cofirm these results. Furthermore, formation of chlororganic compounds like polychlorinated dibenzo-p-dioxine and furans (PCDD/F) and polychlorinated biphenyls (PCB), benzenes (PCBz) and phenols (PCPh) has been investigated on different lignite samples under natural weathering conditions and thermal treatment. (orig.) [German] Braunkohlen verschiedener Lithotypen und Zusammensetzung aus Tagebauen der Lausitz und der Region um Leipzig wurden in Laborexperimenten Verwitterungsprozessen unterzogen und der Uebergang organischer Materie aus der Braunkohle in die Hydrosphaere beobachtet. Mit Hilfe der HPLC-Elektrospray-MS-Untersuchungen in Kombination mit Daten aus GC-MS-Messungen konnten zahlreiche aus der Braunkohle stammende aromatische und heteroaromatische (Poly-)Carbonsaeuren sowie aliphatische Dicarbonsaeuren in den waessrigen Extrakten charakterisiert werden. Untersuchungen an Wasserproben aus bereits gefluteten Tagebaurestseen bestaetigen diese Ergebnisse. Weiterhin wurde die Bildung chlororganischer Verbindungen, wie polychlorierter Dibenzo-p-dioxine und -furane (PCDD/F) sowie polychlorierter Biphenyle (PCB), Benzole (PCBz) und Phenole (PCPh) an unterschiedlichen Braunkohleproben unter natuerlichen Bedingungen und nach thermsicher Behandlung untersucht. (orig.)

  19. Reducing the occurrence of errors in a laboratory's specimen receiving and processing department

    Science.gov (United States)

    Al Saleem, Nouf; Al-Surimi, Khaled

    2016-01-01

    Frequent, preventable medical errors can have an adverse effect on patient safety and quality as well as leading to wasted resources. In the laboratory, errors can occur at any stage of sample processing; pre-analytical, analytical, and post analytical stages. However evidence shows most of the laboratory errors occur during the pre-analytical stage. The receipt and processing of specimens is one of the main steps in the pre-analytical stage. Errors in this stage could be due to mislabeling, incorrect test entry and entering the wrong location, among other reasons. Most of these errors are preventable. At the Riyadh Regional Laboratory of the Ministry of Health, we found that there was an average of 2.31 errors per 1000 processed samples; these errors had occurred during the pre-analytical stage. These samples were returned back from other laboratory departments, such as Chemistry, Hematology and Microbiology, to the receiving and processing department. We decided to carry out an improvement project where we applied a systematic approach to identify and analyse the root causes of the problem using quality tools such as a process flowchart and a fish-bone diagram. The Model for Improvement was used and several PDSA (Plan, Do, Study, Act) cycles were run to test interventions which aimed to prevent laboratory processing errors and mistakes. The project results showed a 25% reduction in errors during the pre-analytical stage. PMID:27752311

  20. Are They Really Sloppy?: A Comparative Analysis of Student Performance in the Laboratory

    Science.gov (United States)

    Kovács-Hadady, Katalin; Fábián, István

    1996-05-01

    The performance of the students in the analytical laboratory was tested in a potentiometric determination of fluoride ion in anti-caries dental tablets. The analytical results determined by freshman students and experienced personnel were compared. The error in the student's experiments was only about two times bigger than in the reference determinations. The lack of experience mainly affected students in complex tasks.