WorldWideScience

Sample records for analytical hot cells

  1. Analytical chemistry in a new analytical hot cell facility

    International Nuclear Information System (INIS)

    The Remote Analytical Laboratory is a new facility at the Idaho Chemical Processing Plant designed to handle samples from the processing of spent nuclear fuel. It consists of a cold laboratory for analyzing process make-up samples, a warm laboratory for analyzing low-level (<100 mR/h) radioactive samples, and a hot cell for analyzing high-level radioactive samples. The hot cell is built in an L shape and contains six work stations, each equipped with a viewing window and two master/slave manipulators. The cell interfaces with a waste handling cell and maintenance area on one end and a glove box complex that interfaces with the warm laboratory on the other end. This paper discusses the remote analytical techniques and equipment developed for use in this facility

  2. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. To place the facility in compliance with current regulations, all penetrations within the facility were sealed, the ventilation system was redesigned, upgraded and replaced, the master-slave manipulators were replaced, the hot cell windows were removed, refurbished, and reinstalled, all hot cell utilities were replaced, a lead-shielded glovebox housing an Inductive Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  3. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  4. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 7, Safety operation procedure for hot cell

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.

  5. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  6. Hot cell verification facility update

    International Nuclear Information System (INIS)

    The Hot Cell Verification Facility (HCVF) is operated by the Westinghouse Hanford Co. in the 300 Area of Hanford. The HCVF provides a prototype hot cell mock-up for use in checking equipment and operations for functional and remote operation. The facility can also be used for hands-on training of operating personnel prior to actual hot operation of the equipment. A broad spectrum of testing and development functions is performed in HCVF, including: equipment operability testing, maintainability and compatibility testing, system integration, and remote maintenance capability testing. An updated description of the HCVF is presented in this paper

  7. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1. Construction of concrete hot cells; 1.1 Fundamentals; 1.2 Cell sizes; 1.3 Cell categories; 1.4 Work place/operating place and cell ergonomics; 1.5 Cell instrumentation. 2. Shielding; 2.1 louerete walls; 2.2 Big access holes. 3. Standard equipment; 3.1 Manipulators; 3.2 Radiation protection windows; 3.3 Safety boxes; 3.4 Equipment transfer airlocks; 3.5 Duets; 3.6 Working tables; 3.7 Illumination; 3.8 Ventilation system.

  8. Volume reduction of hot cell plastic wastes

    International Nuclear Information System (INIS)

    The remote analytical laboratory (RAL) provides chemical analysis service for the Idaho Chemical Processing Plant, a facility that processes government-owned spent reactor fuel. Many of the samples analyzed in the RAL are radioactive and must be handled in a shielded, remotely operated hot cell. The design of the hot cell includes provision for removal of contaminated wastes generated by cell operation. Solid wastes are transferred out of the cell and into a sealed 60-ell polyethylene container. No commercially available or literature-described waste compactors were found that were suitable as a retrofit installation in the RAL hot cell. Efforts to develop a suitable compactor resulted in development of a 15- x 15-cm grid of heated Nichrome wires, 2.54 cm on center, used to cut the waste into small pieces. It is estimated that a projected operating rates, a saving of at least one waste container per week will be achieved with any combination of the volume-reduction techniques described. This represents a savings of $400 in the cost of the container alone. An ordinary steel drum used as a secondary container is an additional $60. If a remotely retrievable drum is required, the cost is $500. Significant savings will be achieved in the expense of transporting the waste container to the waste storage area and the considerable cost of preparing the storage space and future permanent disposal. All of the systems described can be easily repaired or replaced remotely

  9. Design elements of hot cell facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. K.; Lee, K. S.; Baek, S. Y.; Ahn, Y. S.; Choo, Y. S

    1997-06-01

    Hot cell facility is necessary for the post-irradiation examinations of nuclear fuels and materials. Therefore many hot cell facilities have been constructed and operating to support the research and development on the nuclear technology. In this report, the design elements of the hot cell facility is reviewed and discussed. (author). 3 tabs., 12 figs

  10. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  11. Hot electron plasmon-protected solar cell.

    Science.gov (United States)

    Kong, J; Rose, A H; Yang, C; Wu, X; Merlo, J M; Burns, M J; Naughton, M J; Kempa, K

    2015-09-21

    A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron-plasmon scattering is much more efficient than electron-phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells. PMID:26406739

  12. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  13. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  14. Moving hot cell for LMFBR type reactor

    International Nuclear Information System (INIS)

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.)

  15. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  16. An analytical model of pipelined circuit switching in hypercubes in the presence of hot spot traffic

    OpenAIRE

    Safaei, F.; Khonsari, A.; Fathy, M.; Ould-Khaoua, M.

    2005-01-01

    Several recent studies have revealed that PCS can provide superior performance characteristics over wormhole switching under uniform traffic. Analytical model of PCS for common networks (e.g., hypercube) under uniform traffic pattern have recently been reported in the literature. In this paper we propose an analytical model of PCS in the hypercube network augmented with virtual channel in the presence of hot spot traffic. The model has a good agreement with simulation experiments.

  17. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    A concise description of the current status of the decommissioning of the hot cell capacity at Risoe National Laboratory is given in this 6th periodic report covering January 1st to June 30th, 1993. All registered and safeguarded fissile material has been removed and the task of cutting and packing scrap material and experimental equipment from the concrete cell line has been completed. Concrete cells 5 and 6 have been finally cleaned and the master slave manipulators removed from them. The major part of the contamination on the shutters and shutter houses were on their horizontal planes and the main contaminant was 137Cs. Here the surfaces were cleaned by wiping with wet cloths. The method is described. Tables illustrating the resulting contamination levels are included, the density is now low on the shutters. The method of final inn-cell cleaning is explained, and here again tables represent the resulting contamination levels. The work on ''hot spot'' removal and remote cleaning by vacuuming continues on the remaining cells. A collective dose of ca. 16.3 man-mSv was ascribed to 18 persons in the first half of 1993, arising mainly from in-cell work and waste handling. To sum up, the main results from this period are successful removal of last waste from the cells, remote cleaning of cells 2 and 3, final condition for all shutters and shutter housings and final condition for cells 5 and 6. Tables illustrate measured dose rates in detail. (AB)

  18. Hot cells preparation of testing materials

    International Nuclear Information System (INIS)

    It is important in nuclear waste repository development that testing be done with materials containing a radionuclide spectrum representative of actual wastes. To meet the need for such materials, the Materials Characterization Center (MCC) has prepared simulated high-level waste (HLW) glasses with radionuclides representative of about 10-, 300- and 100-year-old waste. A quantity of well characterized spent fuel also has been acquired for the same purpose. Glasses containing 10- and 300-year-old wastes, and the spent fuel specimens, must be fabricated in a hot cell. Hot cell conditions (high radiation field, remote operation, and difficulty of repairs) require that procedures and equipment normally used in materials preparation out-of-cell be modified for hot cell applications. This paper discusses the fabrication of two glasses, and the preparation of test specimens of these glasses and spent fuel. One of the glasses is a 76-68 composition, which is fully loaded with actual commercial reactor fission product waste. The other glass contains simulated Barnwell Nuclear Fuel Plant waste, doped with different combinations of fission products and actinides. The spent fuel is a 10-year-old PWR material. Special techniques have been used to achieve high quality, well characterized testing materials, including specimens in the form of segments, wafers, cylinders, and powders of these materials

  19. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  20. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  1. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    The main activities described in the 4th periodic report on the decommissioning of the hot cell facility at Risoe National Laboratory are the start of the transfer of the last fissile material, the removal of a large amount of highly contaminated material, the reclassification of a minor ''red'' contaminated area to ''blue'', and a minor ''blue'' contaminated area to a clean area, and a survey of the contamination and radiation levels on the shutters and the shutter housings. The main contaminant was Cs137, and the highest level of contamination was found on top of the shutters. The contamination levels appeared to be rather scattered. Work was begun on collecting information on the condition of the concrete cell line. Tables illustrate the contamination on shutters and shutter housings, and β/γ maximum dose rates on the inner surface of the shutter housings. A diagram illustrates the location of smear tests on the shutter arrangement, and ''three-dimensional'' graphs illustrate the suppressed maximum values of the shutter contamination. A plan of the hot cell facility at floor level is also given. A collective dose of 6 man-mSv was ascribed to 10 persons in the first half of 1992, arising mainly from work on the shielded storage facility and handling of wastes. (AB)

  2. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  3. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  4. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60Co, 137Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  5. Verification survey of buildings 200 hot cells

    International Nuclear Information System (INIS)

    At the start of this D ampersand D project, the decontamination goals were set at (1) reducing the stack emissions to 10% of the 1991 emissions; (2) reducing the exposure rate in each cell to < 1 mR/h; and (3) reducing the removable contamination to none detectable. Since the contamination can be fixed with paint, the other two goals were given priority. The estimate of the 1995 emissions from K-3 was 20% of the 1991 emissions estimate. However, the 1996 estimates are ∼9% of the 1991 emissions estimate. Since in 1991 the K-3 emissions were only 1/2% of the emissions from M-1, even the 20% reduction has little effect on the project reduction. The total emissions have been reduce to ∼2 1/4% of the 1991 emissions from the 5 hot cells that were decontaminated. The emissions and exposure rates are presented in Table I below. Cells A-1 and M-1 exceed the exposure rate criteria. For the other cells, the general exposure rate in the middle of the cell meets the criteria. However, near the prefilters, the exposure rates increase. Cell M-1 has extensive floor contamination that penetrated to a 6 inch depth. At 30 cm above the floor, the exposure rate through the lead blanket is 50 mR/h. A more detailed list of acceptance criteria were specified before the final verification survey. Table ii compares the maximum survey results on the wall or floor surface of each cell to these criteria. Cells M-1 and A-1 frequently fail to meet these criteria

  6. Radiation protection measures for hot cell sanitation

    International Nuclear Information System (INIS)

    The cell 5 of the Hot Cell Facility of the Kernforschungszentrum Karlsruhe GmbH (KfK) was to be restored and reequipped after 12 years of operation. The decontamination work was first done remotely controlled and afterwards by 38 persons entering the cell, which took about 2 months. The radiation protection methods and personal dosimetry systems are described. At the beginning of the work the γ-dose rate amounted up to 900 mSv/h. After completion of the remotely controlled decontamination work the γ-dose rate decreased to 1.5 mSv/h. At that time the (α+β-contamination was 105 Bq/cm2. Till the end of the work the removable activity dropped to 102 - 103 Bq/cm2 for β-radiation, to 0.3 - 30 Bq/cm2 for α-radiation and the local dose rate to about 0.03 mSv/h. During the work the accumulated collective doses were listed for breast, hand, head, gonads and foot. In the figure the development with the time of the doses for breast and hand is shown. During restoration work of the cell the accumulated collective whole-body dose amounted to 30 mSv. (orig.)

  7. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  8. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  9. Introduction of hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    The purpose of the paper is to present the hot cell facility which is being constructed as part of the project SUSEN at the Rez research center (Czech Republic). The Sustainable Energy Project (SUSEN) is implemented as a regional Research/Development center in Priority Axis 2 and its objective is to act as a relevant research partner for cooperation with other European research centers. The project is fully funded by the European Union. Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (micro-hardness and nano-hardness probes, scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. The transportation system for samples and materials is based on a mobile cask with an airtight connection and vertical access. The installation is designed to work with an activity level up to 300 TBq and to receive materials from decommissioned power reactors as well as highly irradiated materials for fusion applications

  10. Clearance measurements on a hot cell building

    International Nuclear Information System (INIS)

    A former hot-cell facility of Siemens AG, in which dose rates in excess of 99 Sv were still prevailing in 1999, was decontaminated and subjected, except for the basement, to radiological clearance measurements. The authorities released the building for demolition in November 2004. Demolition of the upper stories of the building was started immediately afterwards using conventional techniques. For decontamination, the actual cells themselves - rooms with one-meter-thick concrete walls - had been dismantled using diamond saws and the resulting concrete blocks sent off-site for further processing. Contamination was removed from the remaining ceilings, walls and floors by knocking off the plaster and milling away the screed. Material samples were taken to confirm that decontamination had been successful. It was only then that the actual clearance measurements began. The individual rooms were grouped together into logically arranged ''clearance steps'' to simplify documentation. Most of the measurements were performed by in-situ gamma spectroscopy, with and without collimation. In addition, numerous material specimens were removed, direct surface measurements performed using contamination monitors, and wipe tests carried out. Records were made of all measurements and sorted according to clearance steps before being submitted to the competent authorities as an application for release from regulatory control. After the authorities had taken their own verification measurements they issued their approval for release. (orig.)

  11. Engineering hot-cell windows for radiation protection

    International Nuclear Information System (INIS)

    Radiation protection considerations in the design and construction of hot-cell windows are discussed. The importance of evaluating the potential gamma spectra and neutron source terms is stressed. 11 references

  12. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  13. Development and experimental validation of an analytical model to predict the demoulding force in hot embossing

    International Nuclear Information System (INIS)

    During the demoulding stage of the hot embossing process, the force required to separate a polymer part from the mould should be minimized to avoid the generation of structural defects for the produced micro structures. However, the demoulding force is dependent on a number of process factors, which include the material properties, the demoulding temperature, the polymer pressure history and the design of the mould structures. In particular, these factors affect the chemical, physical and mechanical interactions between a polymer and the replication master during demoulding. The focus of the reported research is on the development and validation of an analytical model that takes into account the adhesion, friction and deformation phenomena to predict the required demoulding force in hot embossing under different processing conditions. The results indicate that the model predictions agree well with the experimental data obtained and confirm that the design of the mould affects the resulting demoulding force. In addition, the applied embossing load was observed to have a significant effect on demoulding. More specifically, the increase in pressure within the polymer raises the adhesion force while it also reduces the friction force due to the decrease in the thermal stress. (paper)

  14. Design Report for ACP Hot Cell Rear Door

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W

    2005-12-15

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  15. Overview of hot cell facilities in South Africa

    International Nuclear Information System (INIS)

    Hot facilities were developed at the South African Nuclear Energy Corporation (Necsa) as part of its former PWR fuel development and reactor surveillance programme. Specific technical results are highlighted. At present the hot cells are employed in medical and industrial isotope production. The current leading role being taken in PBMR development in South Africa necessitates planning for a new national hot cell facility tailored to the needs of High Temperature Reactor development programmes. Although terminated before full implementation, the PWR post-irradiation examination programme at Necsa managed to provide a good overall picture of locally produced PWR fuel behaviour through the judicious application of NDE and DE techniques. Confidence in the results obtained is high due to thorough preparatory literature studies and the quality processes implemented. In all, very few surprises came to the fore, rather points of interest for further investigation. Highly productive use could be made of the hot cell facilities developed for PIE by converting it to a radioisotope production facility. Now, at the dawn of the nuclear energy renaissance, the expertise base in hot cell facility construction and operation at Necsa will facilitate the development of Hot Cell Facilities for a new generation of reactors. (authors)

  16. Hot Cells Post-Irradiation Examination at JRC-ITU

    International Nuclear Information System (INIS)

    This contribution provides some highlights on the main post-irradiation examination capabilities and on recent and ongoing effort aimed at developing advanced tools for the study of relevant properties of irradiated nuclear fuels at ITU. The scope of application covers conventional, evolutionary and advanced fuel concepts for today's commercial reactors and for future generations of nuclear power plant. It is a big technical challenge for a hot cell facility to be able to cover effectively a broad variety of fuel concepts, characterized by different compositions, physico-chemical properties, geometries and configurations. In addition to basic techniques for non-destructive and destructive examination of nuclear fuel rods (covering both fuel and cladding) and other configurations, ''in-depth'' investigation tools are applied for the measurement and analysis of specific physical, thermomechanical and micro-analytical properties of irradiated fuel. In many cases additional information can be gained by combining different techniques. As an example, the quantitative information obtained using electron probe microanalysis (EPMA), e.g. on the chemical behaviour of fission products in the fuel matrix, is effectively complemented by the capabilities of the secondary ion mass spectrometry (SIMS), e.g. for detection of low yield fission products, or for the analysis of the fission gas contained in bubbles and pores, independent of their size. Some indications concerning the main lines of development for upgrading the scientific equipment and the infrastructure will be provided. (author)

  17. Hot-cell for dismantling of nuclear gauges

    CERN Document Server

    Reis, L C A

    2000-01-01

    This work objectives the design of a hot-cell that will be used for dismantling of nuclear gauges. In the hot-cell, nuclear gauges received as radioactive waste at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN will be dismantled, in order to decrease the volume of radioactive waste to be stored at the Center. Sources originally conditioned as special form radioactive material will be tested and in case do not present leakage, the respective gauges will be disposable for reusing by radioisotope users. The remaining sources will be taken off the original shielding and conditioned in special packages adequate for storage and disposal. All steps of work, the hot-cell design and methodology for conditioning are also described.

  18. EDF requirements for hot cells examinations on irradiated fuel

    International Nuclear Information System (INIS)

    The objectives of increasing French Nuclear Power Plants (NPP) availability while lengthening the fuel irradiation cycle and reaching higher burnups lead EDF to carry out on site and hot cell examinations. The data issued from such fuel behaviour monitoring programmes will be used to ascertain that the design criteria are met. Data are also needed for modelling, development and validation. The paper deals quickly with the logistics linked to the selection and transport of fuel rods from NPP to hot cell laboratory. Hot cell PIEs remain a valuable method to obtain data in such fields as PCI (Pellet-Cladding Interaction), internal pressure, FGR (Fission Gas Release), oxide thickness, metallurgical aspects. The paper introduces burnup determination methods, inner pressure evaluation, preparation of samples for further irradiation such as power ramps for PCI and RIA (Reactivity Initiated Accident) testing. The nuclear microprobe of Perre Suee laboratory is also presented. (author)

  19. Homogeneity survey of advanced spent fuel conditioning process hot cell

    International Nuclear Information System (INIS)

    The hot cell facility (ACPF) for research activities related to the advanced spent fuel conditioning process (ACP) is being constructed. The hot cell construction work will be finished in May, 2005. Hot cell is designed to permit safe handling of radioactive materials up to 1,385 TBq and to keep gamma and neutron dose-rate lower than the recommended ones. The dose-rate limit values following the Korean nuclear laws are 0.01 mSv/h at operation area and 0.15 mSv/h at maintenance area. The ACPF is a concrete structure with two rooms, and made its exterior walls of heavy concrete with density of 3.45 g/cm3 and the wall thickness is more than 90 cm

  20. Fundamental limitations of hot-carrier solar cells

    Science.gov (United States)

    Kirk, A. P.; Fischetti, M. V.

    2012-10-01

    Sunlight-generated hot-carrier transport in strongly absorbing direct band-gap GaAs—among the most optimal of semiconductors for high-efficiency solar cells—is simulated with an accurate full-band structure self-consistent Monte Carlo method, including short- and long-range Coulomb interaction, impact ionization, and optical and acoustic phonon scattering. We consider an ultrapure 100-nm-thick intrinsic GaAs absorber layer designed with quasiballistic carrier transport that achieves complete photon absorption down to the band edge by application of careful light trapping and that has a generous hot-carrier retention time of 10 ps prior to the onset of carrier relaxation. We find that hot-carrier solar cells can be severely limited in performance due to the substantially reduced current density caused by insufficient extraction of the widely distributed hot electrons (holes) through the requisite energy selective contacts.

  1. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  2. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    International Nuclear Information System (INIS)

    Analytical and Process Chemistry (A ampersand PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A ampersand PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A ampersand PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A ampersand PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in

  3. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  4. A CNC milling machine in NRG's Hot Cell Laboratories

    International Nuclear Information System (INIS)

    Preparations are in progress to install a new milling machine in the NRG's hot cells facility in the course of this year. The milling machine is CNC controlled and adapted for use in a hot cell environment. Special arrangements are made to comply for this purpose. Since a number of components are not fully resistant to radiation, the machine is wheeled allowing it to be removed from the hot cell if not needed. Some technical specifications from the various manufacturers will be discussed which finally lead to the selected supplier. Primary, this only concerns the flexibility of the total equipment to adapt for remote control and not the general technical aspects of the equipment. The machine will be used mainly to manufacture mechanical testing samples form irradiated materials, obtained from both welding experiments and other irradiated components. Special auxiliary tools are made for this purpose to facilitate the machining of the samples. Next the convenience to program the system for machining mechanical testing samples to meet the specified requirements is also important. Before installing the equipment in the hot cell a try out is performed to evaluate the system. (Author)

  5. Construction Report of Hot Cell Facility for Demonstration of Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    The advanced spent fuel conditioning process(ACP) was proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. The hot cell facilities for demonstration of ACP(ACPF) was consisted of α-γ type heavy concrete hot cell, the auxiliary equipment for hot cell operation, and process equipment. A existing β-γ type hot cell, located in IMEF, was refurbished to minimize construction expenditures for utilization as ACPF. The detail design of hot cell facilities and process was completed, and the safety analysis was performed to substantiate secure of conservative safety. And also, the construction of ACPF and installation of process equipment were completed, and government license for hot cell operation was acquired. In this report, the construction outline and the detail information of hot cell facilities and process equipment s are summarized to utilize for operation and maintenance of hot cell facility and process

  6. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  7. Mobile intervention enclosure allowing the access to an installation inside a hot cell

    International Nuclear Information System (INIS)

    For operations in a hot cell, like cleaning, repairs, part removal, etc. a movable leakproof enclosure is placed on the top of the hot cell facing an opening closed by a door, they are put into communication and the enclosure is provided with a pole, a tool holder, a manipulator, lightning and visualization systems for intervention inside the hot cell

  8. Evaluation of Tritium Behavior in the Epoxy Painted Concrete Wall of ITER Hot Cell

    International Nuclear Information System (INIS)

    Tritium behavior released in the ITER hot cell has been investigated numerically using a combined analytical methods of a tritium transport analysis in the multi-layer wall (concrete and epoxy paint) with the one dimensional diffusion model and a tritium concentration analysis in the hot cell with the complete mixing model by the ventilation. As the results, it is revealed that tritium concentration decay and permeation issues are not serious problem in a viewpoint of safety, since it is expected that tritium concentration in the hot cell decrease rapidly within several days just after removing the tritium release source, and tritium permeation through the epoxy painted concrete wall will be negligible as long as the averaged realistic diffusion coefficient is ensured in the concrete wall. It is also revealed that the epoxy paint on the concrete wall prevents the tritium inventory increase in the concrete wall greatly (two orders of magnitudes), but still, the inventory in the wall is estimated to reach about 0.1 PBq for 20 years operation

  9. Preliminary Feasibility Study on the Construction of Steel Hot Cell Facility for Precise Manipulated Examinations

    International Nuclear Information System (INIS)

    Hot laboratory is essential facility to research and develop in the nuclear industries to examine radioactive materials. The post irradiation examinations for irradiated fuels and materials should be mainly conducted in the hot cell facility to protect radiations to operators. Hot cells are divided into a concrete hot cell and a steel hot cell according to the wall materials. Usually a concrete hot cell is applied to test for high level radioactive materials like as a fuel assembly, rods, and large structure specimens, and a steel hot cell for comparatively lower level activity materials in fuel fragments, and small structural materials. A steel hot cell has many benefits in a specimen manipulation, construction and maintenance costs. In recent the test for the irradiated materials is more frequently required a small and precise manipulating examination for higher degree tests of research and developments. Unfortunately hot laboratory facilities in domestics have mainly constituted of concrete hot cells, and not ready for techniques in steel hot cells. In this paper the construction feasibility of steel hot cell facility is preliminary reviewed in the points of the status of domestic facilities, the test demand prospect and detailed plans

  10. Analytical Model of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

    Science.gov (United States)

    Han, Boram; Choi, Woo Young

    The fringe field effects of nano-electromechanical (NEM) nonvolatile memory cells have been investigated analytically for the accurate evaluation of NEM memory cells. As the beam width is scaled down, fringe field effect becomes more severe. It has been observed that pull-in, release and hysteresis voltage decrease more than our prediction. Also, the fringe field on cell characteristics has been discussed.

  11. Design Report of Hot Cell Facilities for Demonstration of Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    The advanced spent fuel conditioning process(ACP) was proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. The hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α-γ type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β-γ type will be refurbished to minimize construction expenditures of hot cell facility. The detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. This results were utilized for refurbishment of IMEF future hot cell and installation of process equipments, and manufacturing and procurement of hot cell auxiliary equipments. The safety analysis report were submitted to KINS through MOST for license acquisition, the government issued license for construction and operation. And, the hot test for demonstration of the ACP is performing in this hot cell facilities. In this report, the detail design and safety analysis data are summarized to utilize for operation of hot cell facility and process

  12. DEMO hot cell and ex-vessel remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Justin, E-mail: justin.thomas@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Loving, Antony [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bachmann, Christian; Harman, Jon [EFDA, PPP and T, Boltzmannstraße 2, 85748 Garching (Germany)

    2013-10-15

    Highlights: ► Overview of current DEMO maintenance concepts. ► Comparison of current dextrous remote handling technologies and their rebalance to DEMO. ► Presentation of some ideas to improve the productivity and reliability of the DEMO ex-vessel transport system. ► A description of the size and type facilities that might be required in the DEMO hot cell. ► Identification of some areas that need to be developed further to meet the requirements of DEMO. -- Abstract: In Europe the work on the specification and design of a demonstration power plant (DEMO) is being carried out by EFDA in the power plant physics and technology (PPP and T) programme. DEMO will take fusion from experimental research into showing the potential for commercial power generation. During the fusion reaction, components in the tokamak become highly activated. The estimated dose rate levels after shutdown (zero decay time) due to 60 dpa accumulation in steel (blanket) and 30 dpa (divertor) are 13.1–17.4 kGy/h (blanket); 8.8–11.6 kGy/h (divertor) [1], much higher than those to be encountered at ITER. Upon removal from the tokamak, components would be transported to the hot cell facility with attention to minimizing the spread of activated dust and tritium contamination. It is proposed to use a sealed cask of ∼20 tonnes, running on air castors with 50% lifting capability redundancy. Due to the number and complexity of the routes taken by this transporter it would have to be an un-tethered semi-autonomous system. This poses some technical challenges, including providing sufficient battery capacity, reliable guidance and a fail safe un-tethered control system. The mass of the components being moved is assumed here to range from a few tonnes to in excess of one hundred tonnes. Before the removed in-vessel components can be processed in the hot cell, they would require a period of cooling, approximately 2.5 years, to allow dose rate and decay heating to reduce. This reduces the decay

  13. A Physics-based Analytical Model for Perovskite Solar Cells

    OpenAIRE

    Sun, Xingshu; Asadpour, Reza; Nie, Wanyi; Mohite, Aditya D.; Alam, Muhammad A.

    2015-01-01

    Perovskites are promising next-generation absorber materials for low-cost and high-efficiency solar cells. Although perovskite cells are configured similar to the classical solar cells, their operation is unique and requires development of a new physical model for characterization, optimization of the cells, and prediction of the panel performance. In this paper, we develop such a physics-based analytical model to describe the operation of different types of perovskite solar cells, explicitly...

  14. Analytical strategies for studying stem cell metabolism

    OpenAIRE

    Arnold, James M.; Choi, William T.; Sreekumar, Arun; Maletić-Savatić, Mirjana

    2015-01-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of ...

  15. Hot cell studies of light water reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Experiments were run using all-glass equipment with irradiated fuel in a hot cell, in order to study possible problems in LWR fuel reprocessing (radioactivity distribution during dissolution, stability of extraction raffinate, waste partitioning). Behavior of 129I, tritium, and 14C in the off-gas was studied, as were the radioisotopes in the dissolver solution; results are compared with ORIGEN calculations. Actinide mass analyses were also made and compared with ORIGEN. Residues and cladding problems were studied. Solvent extraction is next considered, and the beneficial effect of radiation on the Pu and Ru extraction is pointed out. Synthetic waste evaporations were carried out and the composition of the solid analyzed

  16. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  17. Dose and Risk Calculations for Decontamination of a Hot Cell Dose and Risk Calculations for Decontamination of a Hot Cell

    International Nuclear Information System (INIS)

    Transporting and processing of radioisotopes and irradiated targets inside hot cells generate a significant contamination. The majority of contamination comes from dispersion of radioactive materials during processing the samples after irradiation. Processing includes opening, extracting the irradiated samples, and preparing the samples in a shield prior to transportation. A model of dispersion of radioactive products inside the cell is postulated. Before decontaminating the cell, the expected dose received by the worker must be evaluated. A RESRAD-BUILD code is used in this study to calculate the dose and the corresponding risk. The calculated dose received during the decontamination process is more than the permissible dose and many proposals are presented in the study to decrease the level of received doses

  18. Computer control of ET-RR-1 hot cell manipulators

    International Nuclear Information System (INIS)

    The hot cell designed for remote handling of radioactive materials are, in effect, integral systems of safety devices for attaining adequate radiological protection for the operating personnel. Their operation involve potential hazards that are sometimes of great magnitude. The effect of an incident or accident could thus be fatal. some of these incident are due to the collision of the manipulator slave side with the radioactive objectives. Therefore in order to minimize the probability of such type of incidents, the movement of the manipulators is suggested (in the present investigation) to be kept under computer control. A model have been developed to control the movement of the hot cell manipulators in the slave side for Egypt first research reactor ET-RR-1, specially in the hidden sectors. The model is based on the use of a microprocessor and some accessories fixed to the manipulators slave side in a special manner such that it prevents the manipulator from colliding with radioactive objects. This is achieved by a signal transmitted to a specially designed brake which controls the movement of the upper arm of the manipulator master side. The hardware design of the model as well as the software are presented in details

  19. Standard guide for general design considerations for hot cell equipment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 Intent: 1.1.1 The intent of this guide is to provide general design and operating considerations for the safe and dependable operation of remotely operated hot cell equipment. Hot cell equipment is hardware used to handle, process, or analyze nuclear or radioactive material in a shielded room. The equipment is placed behind radiation shield walls and cannot be directly accessed by the operators or by maintenance personnel because of the radiation exposure hazards. Therefore, the equipment is operated remotely, either with or without the aid of viewing. 1.1.2 This guide may apply to equipment in other radioactive remotely operated facilities such as suited entry repair areas, canyons or caves, but does not apply to equipment used in commercial power reactors. 1.1.3 This guide does not apply to equipment used in gloveboxes. 1.2 Applicability: 1.2.1 This guide is intended for persons who are tasked with the planning, design, procurement, fabrication, installation, or testing of equipment used in rem...

  20. Surveillance and radiological protection in the Hot Cell laboratory

    International Nuclear Information System (INIS)

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  1. An analytical approach for solid oxide cell electrode geometric design

    Science.gov (United States)

    Nelson, George J.

    2015-12-01

    An analytical model for gas distributions in porous solid oxide cell electrodes is applied to develop dimensionless metrics that describe electrode performance. These metrics include two forms of a dimensionless reactant depletion current density and a geometry sensitive Damköhler number used to assess electrode catalytic effectiveness. The first dimensionless depletion current density defines when reducing electrode thickness no longer benefits mass transfer performance for a given cell geometry. The second dimensionless depletion current density provides a gage of deviation from the limiting current behavior predicted using button-cell experimental and modeling approaches. The Damköhler number and related catalytic effectiveness quantify two-dimensional transport effects under non-depleted operating conditions, providing a means of generalizing insights from reactant depletion behavior for typical cell operating conditions. A finite element solution for gas transport based on the dusty-gas model is used as a benchmark for the analytical model and dimensionless metrics. Estimates of concentration polarization based on analytical and numerical models compare well to published experimental data. Analytical performance predictions provide clear demonstration of the influence of two-dimensional electrode geometry on solid oxide cell performance. These results agree with finite element predictions and suggest that reduction of electrode thickness does not exclusively benefit cell performance.

  2. Analytical Analysis of the Effect of the Radiation Pressure on Planetary Exospheres: Application to Earth, Mars, Titan and Hot Jupiters

    Science.gov (United States)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I. S.; Mazelle, C. X.

    2014-12-01

    Because of rare collisions, the motion of light species (H, H2) in the planetary exospheres is essentially determined by the external forces: the gravitation from the planet and the radiation pressure, ... Currently, the only analytical model used to model exospheric neutral density profiles is the well-known Chamberlain model which takes into account only the gravity. In this work and in the same way as Chamberlain, we solve rigorously and analytically, based on the Hamiltonian mechanics and Liouville theorem, the additional effect of the radiation pressure in particular for hydrogen (the model works for any species sensitive to the radiation pressure) on the structure of the exosphere and on the density profiles of ballistic particles. This approach was initially developed by Bishop and Chamberlain (1989) only in the Sun-planet direction. We extend it here to the whole exosphere with a 2D model. Also, we determine analytically the escape flux on the dayside at SZA=0, which can be compared with the Jeans' escape flux. We thus show that the radiation pressure induces : strong density asymmetries at high altitudes in the planetary exospheres, leading to the phenomenon of geotail at Earth for example the natural existence of an external limit (or exopause) for the exosphere, whose location is analytically determined an increase of the exospheric densities compared with Chamberlain profiles without radiation pressure (e.g. up to +150% at 5 Martian radius) a significant increase of the thermal escape flux (up to 30/35% for Earth/Mars today), until a «blow-off » regime with a constant escape flux for an extreme radiation pressure. The influence of the radiation pressure on the escape flux may thus bring conditions on the size of primary atmospheres, because of a strong radiation pressure in the Sun's young years. Finally, we show that this model may be applied to exoplanets, in particular to the hot Jupiters that are also subject to additional effects: centrifugal

  3. Remote System Technologies for Deactivating Hanford Hot Cells

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  4. The Present Status of Hot Cell Designs at NECSA

    International Nuclear Information System (INIS)

    The radioisotope production group of the South African Nuclear Energy Corporation has manufactured a range of radioisotopes since 1967. A 20 MW nuclear reactor is used for radioisotope production. It has modern hot cells and an efficient waste handling facility. There are two sections dealing with radioisotope and radiopharmaceutical production and quality control. The Radiochemical Section produces radioactive bulk products such as 99Mo, 32P, 35S and 131I, whereas another section manufactures final products such as 131I diagnostic and therapeutic capsules, 192Ir radiography sources, 137Cs and 60Co sealed sources, 85Kr glass tubes for smoke detectors. The 99Mo-99Tc generators produced from 99Mo and the complimentary kits are largely used as radiopharmaceuticals for nuclear medicine. (author)

  5. Work strain in decontamination of hot cells, 2

    International Nuclear Information System (INIS)

    In decontamination of hot cells, the workers should wear suitable protective clothing to protect them from internal exposure and skin contamination. But such protective clothing causes some work strain, especially heat-stress. As a simple method to evaluate quantitative work strain, we used sweat rates of the wearers. In the previous paper, sweat rates for workers with two types of protective clothing were reported. In the present paper, sweat rates under severer working conditions are measured for three types: (1) pressure ventilated blouse; (2) full-face mask and polyethylene coverall; (3) full-face mask and vinyl anorak. The measured values for 65 subjects widely scatter from 0.2 to 2.5 l/h for all the protective clothing. Based on these values, the effects of protective clothing and working conditions (ambient temperature and humidity) on work strain are discussed. (author)

  6. Management of hot cell waste in Atalante Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Ferlay, Gilles; Eysseric, Catherine

    2005-01-01

    In solution R and D experiments on nuclear fuel from dissolution to liquid extraction lead to produce a large set of wastes. This paper present how these highly contaminated solid and liquid wastes is managed in Hot Cells and in Atalante. Firstly, an inventory of several types of generated wastes is made: 1) Solid wastes. 2) Glass reactors and liquid solution containers. 3) Plastic and Teflon materials for sampling, Highly corrosive solutions. 4) Metallic containers for solid storage like fuels, crucibles. 5) Miscellaneous mixed solid materials. 6) Liquid wastes. 7) Rinsing liquids. 8) Highly corrosive waste containing fluorhydric acid. 9) Analytical solution with sulphate ions. 10) Organic solvent coming from liquid-liquid extraction. A focus will be made on optimised treatment of 1) solid wastes: Mechanically and chemically 2) liquid wastes containing sulphate ions and hydrogen fluoride, 3) organic liquid waste: to remove activity before hydrothermal oxidation. (Author)

  7. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  8. Introduction of radiation protection and dosimetry in new hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    The purpose of the poster is to present radiation protection and dosimetry in the new hot cell facility being constructed as part of the SUSEN project. The hot cell facility is composed of 10 hot cells and 1 semi-hot cell. All shielding is made from steel, the outer wall shielding has thickness of 500 mm, internal wall between hot cells 300 mm with the possibility to extension to 500 mm. The ceiling shielding has a thickness of 400 mm and the floor shielding is 300 mm wide. Shielded windows allow direct view into the hot cells. Their shielding effect is equivalent to 500 mm of steel. The dimension of the window in the control room is 800 mm x 600 mm with a thickness of 900 mm. All important operating data are collected in the central system of hot cells. The system monitors under-pressure level and temperature in each chamber. If necessary it can directly control the ventilation system. Each hot cell is equipped with dose rate probes. The system also measures and evaluates airborne radioactivity in the building

  9. Development of a hot cell for post-irradiation analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  10. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  11. Dose levels in the hot cells area ININ

    International Nuclear Information System (INIS)

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  12. Experience of in-cell visual inspection using CCD camera in hot cell of Reprocessing Plant

    International Nuclear Information System (INIS)

    This paper describes the selection, customization and operating experience of the visual inspection system for the hot cell of a Reprocessing Plant. For process equipment such as fuel chopping machine, dissolver, centrifuge, centrifugal extractors etc., viewing of operations and maintenance using manipulators is required. For this, the service of in-cell camera is essential. The ambience of the hot cell of Compact facility for Reprocessing of Advanced fuels in Lead cell (CORAL) for the reprocessing of fast reactor spent fuel has high gamma radiation and acidic vapors. Black and white Charge Coupled Device (CCD) camera has been used in CORAL incorporating in-house modifications to suit the operating ambient conditions, thereby extending the operating life of the camera. (author)

  13. Detecting Secreted Analytes from Immune Cells: An Overview of Technologies.

    Science.gov (United States)

    Pike, Kelly A; Hui, Caitlyn; Krawczyk, Connie M

    2016-01-01

    The tumor microenvironment is largely shaped by secreted factors and infiltrating immune cells and the nature of this environment can profoundly influence tumor growth and progression. As such, there is an increasing need to identify and quantify secreted factors by tumor cells, tumor-associated cells, and infiltrating immune cells. To meet this need, the dynamic range of immunoassays such as ELISAs and ELISpots have been improved and the scope of reagents commercially available has been expanded. In addition, new bead-based and membrane-based screening arrays have been developed to allow for the simultaneous detection of multiple analytes in one sample. Similarly, the optimization of intracellular staining for flow cytometry now allows for the quantitation of multiple cytokines from either a purified cell population or a complex mixed cell suspension. Herein, we review the rapidly evolving technologies that are currently available to detect secreted analytes. Emphasis is placed on discussing the advantages and disadvantages of these assays and their applications. PMID:27581018

  14. Characterization report for Building 301 Hot Cell Facility

    International Nuclear Information System (INIS)

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950's and 1960's for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970's, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled

  15. Treatment of concrete bars from the dismantling of hot cells

    International Nuclear Information System (INIS)

    The Central Decontamination Operations Department (HDB) of the Karlsruhe Research Center operates facilities for the disposal of radioactive waste. In general, their objective is to decontaminate radioactive residues for unrestricted release in order to minimize the volume of waste products suitable for repository storage. In the case of about 120 concrete bars from the dismantling of hot cells, we reduce the volume of radioactive waste by sawing off the most contaminated parts of the bar. If there are no insertions such as cables or ventilation systems, the rest of the bar is sandblasted and its activity manually measured to ensure compliance with the release criteria. Otherwise, the bar is minced into small pieces by a power shovel. Afterwards, the rubble is filled into drums and its activity is measured by the clearance measurement facility. If the rubble and the sandblasted bars do not exceed the activity limit specified by the release criteria, the material is disposed of without further regulations for unrestricted use. Those parts of the bars which can not be released must be stored in special containers suitable for the KONRAD final disposal. Using this method, about 70 % of the total mass can be released. (author)

  16. The Hot Cell Radioactive Waste Concept of Forschungszentrum Juelich

    International Nuclear Information System (INIS)

    During the last 30 years extensive scientific examinations on radioactive metals,ceramics and fuel elements have been carried out, so that a high volume of waste has resulted. Also from the dismantling of irradiated facilities metallics waste has o be handed. Prior for equipment repair the hot cell involved has to be decontaminated and a large amount of lower active waste is produced. The waste is collected for conditioning and storing. There are different categories as: low active liquid waste, low active burnable waste, fuel waste, low and high active metallic waste. For each waste category special transport container are used. For the volume reduction our Waste Department is equipped with special facilities e.g.: furnace for burning, drying, liquids evaporators, hydraulic press for pelletizing, decontamination box for the dismantling ad cleaning of components. After conditioning the waste will be stored on site or transported to final storage in a salt mine (ERAM) . Special documentation has to be done for the acceptance of this waste

  17. Volume reduction of the radioactive solid wastes in hot cell

    International Nuclear Information System (INIS)

    The amount of radioactive waste is expected to be increased continuously because of the rapid growth of the domestic nuclear industry, full power operation of the HANARO reactor and the increased research activities of the nuclear fuel cycle. Accordingly the efforts are focused to achieve the handling of radioactive waste in safe and reduce the volume of radioactive waste. The PIEF is carrying out the PIE (Post Irradiation Examination) of spent fuel rods related to the identification of cause defect and evaluation of integration safety. This study describes the technologies and experiences of compaction, shredding and cutting of the solid radioactive waste used in the PIE. The quantity of the high level waste was reduced by 1/12 using the 100-ton compressor installed in hot-cell. Also middle and low level waste was reduced by 1/8 using the 60-ton compressor installed in intervention area. Plastic drums were shredded by crusher to be compacted in the ratio of 1/5, used filters in the ratio of 1/6 and the number of drum is also reduced by cutting procedure for the non-volatile materials such as metal

  18. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    International Nuclear Information System (INIS)

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  19. Reversible electron-hole separation in a hot carrier solar cell

    OpenAIRE

    Limpert, Steven; Bremner, Stephen; Linke, Heiner

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the ...

  20. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  1. Robot Work Platform for Large Hot Cell Deactivation

    Energy Technology Data Exchange (ETDEWEB)

    BITTEN, E.J.

    2000-05-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area.

  2. The development of electric discharge machine for hot cell usages

    International Nuclear Information System (INIS)

    The electric discharge machine (EDM) has been developed to fabricate the test specimens directly from the irradiated CANDU pressure tubes in hot cell. The machine was composed of mainly two parts, which were main body to discharge cutting specimens including filter unit and electric and control part. The whole layout size of main body is 1000(W) x 905(D) x 800mm(H). The maximum size of plate work piece was 300(X) x 200(Y) x 100mm(H) and specially chucking device could fully rotate for tube type material. The work tank sizes is 450(L) x 350(W) x 250mm(H) and the volume of discharging oil were 80 liters. The electrode was attached to the head in the method of air chuck with 6-bar compressed air. The discharge conditions were set by computer numerical controls. The tests with various operation conditions were performed to get the optimum conditions for fabricating specimen from Zr-2.5Nb tube materials. The heat affected zone size from hardness test was about 100 μm in depth from cutting edges. The average and maximum roughness were 5 - 7 μm and 30 - 60 μm with various input current conditions. The maximum specimen temperature was reached up about 90degC acquired from embedded thermocouple test. The specimen shape deformation acquired from discharge cutting was about 100 μm in the edge surface. The detailed specifications and the effects of specimen from discharge conditions were discussed. (author)

  3. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  4. Consideration on the analytical method for heat anomalies based on distribution of heat discharge by hot springs

    International Nuclear Information System (INIS)

    Distribution of heat discharge by hot spring is a valuable feature for evaluating geologic repository site because it reflects both underground temperature and underground hydrologic conditions. Considering preparatory procedure of updating the manner of heat discharge calculation, several points have been noted. The following two points are particularly significant. For the time being naturally discharging hot springs occupy about 30 percent of the total amount of hot spring water in Japan. Therefore (1) we must evaluate natural discharge and pumped hot water separately. Recently developed hot springs, especially those by deep wells, are likely to be suffered from changes in their condition such as decrease in water temperature and/or production rate in a shot period after development. Therefore (2) hot spring data should be carefully treated for evaluating heat discharge by them. (author)

  5. Shielding calculation of a hot cell for the processing of fission products

    International Nuclear Information System (INIS)

    A dose rate estimation is made for an operator of a lead wall, fission products processing hot cell, in a distance of 50 cm from the emission source, at Brazilian Institute of Nuclear Engineering (IEN). (L.C.J.A.)

  6. The measurement technique of radiation shielding performance for hot cell walls in IMEF

    International Nuclear Information System (INIS)

    Hot cell is the facility to test irradiated materials. The capability of radiation shielding through wall should be conformed to protect the workers from expose. In this report, the measurement techniques of radiation shielding performance through hot cell walls are described. Detailed contents are as following; 1. The theory of test 2. The measuring equipment of radiations capability 3. The choice of measuring points 4. Test procedures and data analysis method 5. The reinforcement of shielding lack area. (author). 13 tabs., 19 figs

  7. Upgrading the INR hot cell laboratory by new equipment for microanalysis and mechanical testing sample preparation

    International Nuclear Information System (INIS)

    The hot cell laboratory at SCN (Romanian acronym for Nuclear Research Branch) has a set of typical methods for post-irradiation examination (PIE) of nuclear fuel and materials. However, to obtain relevant information concerning the safety and reliability of nuclear fuel and materials in nuclear power plants (NPP), three new equipment were installed in the hot cell laboratory: - Leica TELATOM 4 Remote Controlled Inverted Widefield Metallographic Microscope; - Tescan MIRA II LMU CS High Resolution Schottky Field Emission Variable Pressure Scanning Electron Microscope. - DYNA DM1007 Milling Machine with Numerical Process Control System for Preparation of Radioactive Samples. The funds for purchasing these equipment were obtained by SCN NUCLAB project as a result of national competition within the framework of National Program for Research, Development and Innovation. The overall objective of the NUCLAB project is to modernize the extant laboratory by endowment with performing equipment to increase the research capacity and the capability to offer scientific and technological services for nuclear industry. The TELATOM 4 metallographic microscope replaced the old LEITZ MM5RT optical microscope. Prior to installing the new microscope into a steel hot cell, the old microscope was removed and the hot cell was refurbished. The MIRA II SEM will be installed in a lead hot cell and The DYNA DM1007 Milling Machine will be installed in a heavy concrete hot cell. The paper describes the basic parameters of the three new pieces of equipment and some results from irradiated CANDU fuel and unirradiated CANDU pressure tube. (authors)

  8. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  9. A semi-analytical model for semiconductor solar cells

    Science.gov (United States)

    Ding, D.; Johnson, S. R.; Yu, S.-Q.; Wu, S.-N.; Zhang, Y.-H.

    2011-12-01

    A semi-analytical model is constructed for single- and multi-junction solar cells. This model incorporates the key performance aspects of practical devices, including nonradiative recombination, photon recycling within a given junction, spontaneous emission coupling between junctions, and non-step-like absorptance and emittance with below-bandgap tail absorption. Four typical planar structures with the combinations of a smooth/textured top surface and an absorbing/reflecting substrate (or backside surface) are investigated, through which the extracted power and four types of fundamental loss mechanisms, transmission, thermalization, spatial-relaxation, and recombination loss are analyzed for both single- and multi-junction solar cells. The below-bandgap tail absorption increases the short-circuit current but decreases the output and open-circuit voltage. Using a straightforward formulism this model provides the initial design parameters and the achievable efficiencies for both single- and multiple-junction solar cells over a wide range of material quality. The achievable efficiency limits calculated using the best reported materials and AM1.5 G one sun for GaAs and Si single-junction solar cells are, respectively, 27.4 and 21.1% for semiconductor slabs with a flat surface and a non-reflecting index-matched absorbing substrate, and 30.8 and 26.4% for semiconductor slabs with a textured surface and an ideal 100% reflecting backside surface. Two important design rules for both single- and multi-junction solar cells are established: i) the optimal junction thickness decreases and the optimal bandgap energy increases when nonradiative recombination increases; and ii) the optimal junction thickness increases and the optimal bandgap energy decreases for higher solar concentrations.

  10. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  11. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft2 and $96 per ft2 of cell surface area. 14 figs., 4 tabs

  12. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  13. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  14. Radioiodine speciation in the hot cell effluent gases of a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    In order to characterize the various chemical forms of airborne radioiodine species, grab-sampling measurements were conducted at the hot cell laboratory of a radiopharmaceutical production facility, using a selective-adsorbent-iodine filter system. Volatile radioiodine species were produced in the hot cell process which extracted the fission product 99Mo from the irradiated uranium target. The effluent gases were then released through the hot cell filter bank and the main filter bank. Two samplings were made, one at the inlet and one at the outlet of the hot cell filter bank. In comparison with other radioiodine isotopes detected, higher than expected concentrations of 132I were found, primarily in the form of organic iodide--an observation that could be explained by the beta decay of 132Te, the precursor of 132I, in the hot cell waste solution. The relative distribution of airborne 132I was considerably different from that of other iodine radioisotopes. An unexpected component of these distributions was radioiodine penetrating the silver zeolite filter and adsorbed on a triethylenediamine (TEDA) impregnated charcoal filter

  15. Characterization of organic photovoltaic cells in comparison with analytic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Christian [Universitaet Wuerzburg (Germany). Experimentelle Physik VI; Universitaet Wuerzburg (Germany). Experimentelle Physik II; Holch, Florian; Schoell, Achim; Reinert, Friedrich [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Deibel, Carsten; Dyakonov, Vladimir [Universitaet Wuerzburg (Germany). Experimentelle Physik VI

    2008-07-01

    Electronic devices based on organic semiconductors receive a growing interest in fundamental and application related research. One reason is that organic thin film photovoltaic cells promise to offer a cost- and resource-efficient fabrication. In order to achieve higher efficiencies it is indispensable to better understand the fundamental processes within the solar cell and at the interfaces, such as charge-carrier generation, separation and transport. The samples, composed of copper-phthalocyanine (CuPc) and C{sub 60} layers and sandwiched between an ITO-coated glass substrate and metal electrodes, are prepared via organic molecular beam deposition under clean and well defined conditions in ultra high vacuum. By in-situ measurements of the current-voltage characteristics, the influence of incident light power, temperature, and cathode material can be investigated in detail. The experimental results are discussed in comparison to an analytical simulation of the open-circuit voltage, in view of different models for the charge carrier injection at the electrodes.

  16. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant

  17. Reversible electron-hole separation in a hot carrier solar cell

    Science.gov (United States)

    Linke, Heiner

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. To achieve this, we consider a highly selective energy filter such as a quantum dot embedded into a one-dimensional conductor. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. In addition this theoretical analysis, I will also report on first experimental results in a nanowire-based energy filter device. Ref: S Limpert, S Bremner, and H Linke, New J. Phys 17, 095004 (2015)

  18. ITER diagnostics: Maintenance and commissioning in the hot cell test bed

    International Nuclear Information System (INIS)

    In-vessel diagnostic equipment in ITER integrated in six equatorial and 12 upper ports, 16 divertor cassettes and five lower ports is designed to be removed in modules and then repaired, tested and commissioned in the same location at the ITER hot cell. The repair requirements and tests on these components are described along with design features that facilitate repair. The testing establishes the repair strategy, qualifies the refurbishment work and finally checks the mechanical and diagnostic function before the return of the modules. At the hot cell, a dummy port is provided for tests of mechanical and vacuum integrity as well as commissioning of the diagnostic equipment. The scope of the hot cell maintenance and commissioning activities is summarised and an overview of the integration of the diagnostic equipment is given

  19. Remote maintenance for a new generation of hot cells

    International Nuclear Information System (INIS)

    For several years the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been developing facility concepts, designing specialized equipment, and testing prototypical hardware for reprocessing spent fuel from fast breeder reactors. The major facility conceptual design, the Hot Experimental Facility, was based on total remote maintenance to increase plant availability and to reduce radiation exposure. This thrust included designing modular equipment to facilitate maintenance and the manipulation necessary to accomplish maintenance. Included in the design repetoire was the development effort in advanced servomanipulator systems, a remote sampling system, television viewing, and a transporter for manipulator positioning. Demonstration of these developed items is currently ongoing, and the technology is available for applications where production operations in highly radioactive environments are required

  20. Post-irradiation investigation techniques in metallurgical hot cells in the NRI

    International Nuclear Information System (INIS)

    Metallographic methods are described used in the research of irradiated material as are mechanical tests (tensile strength measurements, bending measurements, hardness measurements, determination of transition temperature curves, etc.). Density represents an important criterion in the evaluation of radiation stability of uranium metal kernel of fuel elements. For density determination the elements are weighed in the air and in n-octanol. Roughness is measured by maximal height of unevenness by the imprint technique using the Schmalz microscope. The equipment of another 6 hot cells and 2 semi-hot cells with new instrumentation is recommended. (M.K.)

  1. Spin-polarized lithium diffusion in a glass hot-vapor cell

    Science.gov (United States)

    Ishikawa, Kiyoshi

    2016-08-01

    We report diffusion coefficients of optically pumped lithium atoms in helium buffer gas. The free-induction decay and the spin-echo signals of ground-state atoms were optically detected in an external magnetic field with the addition of field gradient. Lithium hot vapor was produced in a borosilicate-glass cell at a temperature between 290 and 360°C. The simple setup using the glass cells enabled lithium atomic spectroscopy in a similar way to other alkali-metal atoms and study of the collisional properties of lithium atoms in a hot-vapor phase.

  2. Installation of a Scanning Electron Microscope in the Hot Cell Laboratory of NRG Petten

    International Nuclear Information System (INIS)

    In 2010 a new scanning electron microscope (SEM), equipped with several detectors (EDS, WDS and EBSD) is installed in a new hot cell. The SEM is modified for use in a radioactive environment. Therefore the irradiation sensitive parts are removed or protected. In addition changes have been made to the SEM to allow remote handling and to allow maintenance of the important parts. This paper describes the new facility at the NRG Hot Cell Laboratories and gives some examples of the first microscopy results. (author)

  3. A microelectrochemical scanning flow cell with downstream analytics

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Sebastian Oliver [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Schauer, Janine-Christina; Schuhmacher, Bernd [Dortmunder OberflaechenCentrum, Eberhardstr. 12, 44145 Dortmund (Germany); Hassel, Achim Walter, E-mail: hassel@elchem.d [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria)

    2011-04-15

    Research highlights: A flow type scanning droplet cell with in situ detection via UV-vis to investigate corrosion was constructed. Dependency of OCP of Zn on pH between 6.6 and 9.0 was studied with passive active transition between pH 7.1 and 7.4. Zinc concentration profiles revealed a steady etching process that is diffusion controlled at all pH values. Sulfate ions interfere with the passivity of zinc and increase the etching rate, they also influence the pitting potential. - Abstract: The combination of a capillary based microelectrochemical flow cell system and downstream UV-vis analytics allows obtaining synchronized electrochemical and spectroscopic data in a fully automated mode. This method combination can be generally applied to microelectrochemical studies in which an electrochemical species is released or consumed during the electrochemical reaction. For the example of pure zinc surfaces, the characterization of the integrated spectroscopic system is presented with a Zn{sup 2+} detection limit below 0.1 {mu}mol l{sup -1} using Zincon as complexing agent. A parameter screening of the effect of pH in the range of 6.6-9.0 in borate buffer reveals a linear increase in zinc dissolution with proton concentration but a distinct step in the open circuit potential from the active state (around -700 mV SHE, pH 6.6-7.1) to the passive state (around -300 mV SHE, pH 7.4-9.0) indicating the formation of a closed passive layer. This mechanism is strongly influenced by sulfate anions which increase the dissolution rate of the passive film and promote the active state as monitored by the dissolution profile and OCP (open circuit potential) values. Within the scope of this parameter variation, the congruency between OCP transients, potentiodynamic sweeps and time resolved dissolution profiles is discussed.

  4. A microelectrochemical scanning flow cell with downstream analytics

    International Nuclear Information System (INIS)

    Research highlights: → A flow type scanning droplet cell with in situ detection via UV-vis to investigate corrosion was constructed. → Dependency of OCP of Zn on pH between 6.6 and 9.0 was studied with passive active transition between pH 7.1 and 7.4. → Zinc concentration profiles revealed a steady etching process that is diffusion controlled at all pH values → Sulfate ions interfere with the passivity of zinc and increase the etching rate, they also influence the pitting potential. - Abstract: The combination of a capillary based microelectrochemical flow cell system and downstream UV-vis analytics allows obtaining synchronized electrochemical and spectroscopic data in a fully automated mode. This method combination can be generally applied to microelectrochemical studies in which an electrochemical species is released or consumed during the electrochemical reaction. For the example of pure zinc surfaces, the characterization of the integrated spectroscopic system is presented with a Zn2+ detection limit below 0.1 μmol l-1 using Zincon as complexing agent. A parameter screening of the effect of pH in the range of 6.6-9.0 in borate buffer reveals a linear increase in zinc dissolution with proton concentration but a distinct step in the open circuit potential from the active state (around -700 mV SHE, pH 6.6-7.1) to the passive state (around -300 mV SHE, pH 7.4-9.0) indicating the formation of a closed passive layer. This mechanism is strongly influenced by sulfate anions which increase the dissolution rate of the passive film and promote the active state as monitored by the dissolution profile and OCP (open circuit potential) values. Within the scope of this parameter variation, the congruency between OCP transients, potentiodynamic sweeps and time resolved dissolution profiles is discussed.

  5. The PLUTO reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Technical information is given on the PLUTO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of five information sheets under the headings; main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices

  6. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H.W.

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  7. Control rod examinations in hot cells: actions opened for resolving wear problems

    International Nuclear Information System (INIS)

    Hot cell examinations of worn rodlets, as well as site data evaluation and mechanical computations, have been used to evaluate the residual lifetime of worn RCCAs, considering EDF's present wear management strategy. Further investigations are underway to study vibratory and wear mechanisms; improved components are being tested

  8. Mechanical characterisation of irradiated RPV materials by hot cell investigations to ensure RPV integrity

    International Nuclear Information System (INIS)

    The contribution gives an exemplary illustration of how to assess material characteristics after irradiation for the PWR power station GKN I and the BWR power station KKP1. This necessitates detailed mechanical technological investigations of test samples in so-called hot cells, which are evaluated according to current concepts according to KTA 3202. (orig.)

  9. Radiation shielding test for hot cells of Irradiated Material Examination Facility(IMEF)

    International Nuclear Information System (INIS)

    Radiation shielding test for IMEF(Irradiated Material Examination Facility) hot cell walls was executed using two Co 60 sources with the activities of 1,600 Ci and 30 Ci respectively. The tested walls are made of heavy concrete or lead, with the maximum thickness of 1,200 mm for concrete cell and 200 mm for lead cell. At first, we measured the dose rates for several standard walls and the result was used as standard reference. We also measured dose rates for hot cell walls by the same method and compared with reference. The number of testing points are 6,000 and we found out defect for several points which are mostly located in boundaries between embedded material and concrete. The defective areas were re tested after repaired and results for the areas were acceptable

  10. Development of analytical methods relating to aerosol and fission product release from hot and boiling sodium pools

    International Nuclear Information System (INIS)

    Analytical methods are described for (a) sodium; (b) the following anions of sodium aerosols: OH-, CO2- and HCO3-; (c) fission products Cs and Sr. For sodium, the ion selective electrode was used. The anions were determined by a titration method using phenolphthalein and methyl orange as indicators. Atomic absorption spectroscopy was used for Cs and Sr. (U.K.)

  11. Small Punch Test Techniques for Irradiated Materials in Hot Cell

    International Nuclear Information System (INIS)

    Detailed procedures of the small punch test including the apparatus, the definition of small punch-related parameters, and the interpretation of results were presented. The testing machine should have a capability of the compressive loading and unloading at a given deflection level. The small punch specimen holder consists of an upper and lower die and clamping screws. The clamped specimen is deformed by using ball or spherical head punch. Two type of specimens with a circular and a square shape were used. The irradiated small punch specimen is made from the undamaged portion of the broken CVN bars or prepared by the irradiation of the specimen fabricated from the fresh materials. The heating and cooling devices should have the capability of the temperature control within ±2 .deg. C for the target value during the test. Based on the load-deflection data obtained from the small punch test. the empirical correlation between the small punch related parameters and a tensile properties such as 0.2% yield strength and ultimate tensile strength, fracture toughness, ductile-brittle transition temperature and creep properties determined from the standard test method is established and used to evaluate the mechanical properties of an irradiated materials. In addition, from the quantitative fractographic assessment of small punch test specimens, the relationship between the small punch energy and the quantity of ductile crack growth is obtained. Analytical formulations demonstrated good agreement with experimental load-deflection curves

  12. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    International Nuclear Information System (INIS)

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  13. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff; Clausen, Sønnik

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions...

  14. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 1013 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  15. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    Science.gov (United States)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  16. Electron-phonon energy transfer in hot-carrier solar cells

    OpenAIRE

    Luque López, Antonio; Martí Vega, Antonio

    2010-01-01

    Hot-carrier solar cells may yield very high efficiency if the heat transfer from electrons to phonons is low enough. In this paper we calculate this heat transfer for the two inelastic mechanisms known to limit the electric conductivity: the multi-valley scattering in non-polar semiconductors and the coupling of electrons to longitudinal optical phonons in polar semiconductors. Heat transfer is ruled by matrix elements deduced from electric conductivity measurements. The cell power extracted ...

  17. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    International Nuclear Information System (INIS)

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit

  18. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  19. Hot-bed of fuel cell R&D

    Directory of Open Access Journals (Sweden)

    Nigel Sammes

    2003-03-01

    Anticipating the approaching trend, the University of Connecticut’s School of Engineering began negotiating in 2000 with Connecticut companies and government/private sector venture capitalists to establish a state-of-the-art center devoted to fuel cell science and technology. The Center was born in December 2001 as a partnership between the School of Engineering, the Connecticut Clean Energy Fund (the state’s renewable energy investment fund, and local industry.

  20. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  1. Development of special seals and systems for a leaktight hot cell facility

    International Nuclear Information System (INIS)

    A hot cell facility has been recently commissioned in the Radiochemistry Laboratory, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam with the objective of carrying out post - irradiation studies on fast reactor fuels as well as PHWR fuels. The hot cell facility has several novel features such as a double containment system with high purity argon atmosphere in the containment box, low probabilities of contamination or radiation exposure to operating personnel and economy in both capital and operating costs. This report describes the different concepts used to achieve a high degree of leaktightness in the stainless steel containment boxes as well as in the cells and the development of special gaskets and O-rings like formed gaskets and co-seals. (author)

  2. Analysis on the shielding ability of a hot cell to accommodate advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    A design work is conducting for the IMEF's future cell which located in the basement to use it as a demonstration facility for Advanced Spent Fuel Conditioning Process (ACP). Since the total radiation source which used in ACP is expected as approximately 10 times higher than the design criteria of IMEF, the existing concrete structure cannot meet the shielding requirements. Therefore, shielding design which reinforcing the shielding capability has carried out for the ACP hot cell to satisfy the shielding criteria for the expected maximum radioactivity of ACP. This study presents a shielding analysis results using QADS code for the reinforced shielding wall with heavy concrete, steel or lead, etc. As a results of the analysis, a shielding wall reinforcing method was proposed. Additional shielding analysis was performed for the ACP hot cell with proposed reinforced shielding design using MCNP-4C code, and the validity of radiation shielding design was evaluated

  3. Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state

    International Nuclear Information System (INIS)

    Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well

  4. Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tbtsh@hotmail.com [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China); Yuan, Zhengjun; Cheng, Gang [School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101 (China); Huang, Lili; Zheng, Wei [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); Xie, Hui [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China)

    2013-11-15

    Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well.

  5. Analytical results for cell constriction dominated by bending energy

    OpenAIRE

    Almendro Vedia, Victor Galileo; Monroy Muñoz, Francisco; Cao García, Francisco Javier

    2015-01-01

    Analytical expressions are obtained for the main magnitudes of a symmetrically constricted vesicle. These equations provide an easy and compact way to predict minimal requirements for successful constriction and its main magnitudes. Thus, they can be useful for the design of synthetic divisomes and give good predictions for magnitudes including constriction energy, length of the constriction zone, volume and area of the vesicle, and the stability coefficient for symmetric constriction. The an...

  6. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  7. Materials testing at the hot cell laboratory of the Institute for Safety Research

    International Nuclear Information System (INIS)

    The hot cell laboratories for handling and testing of irradiated specimens were firstly introduced in the annual report 1997. The following equipments are installed in the 'Shielded Containment' of the materials testing laboratory. Irradiated specimens must be tested and handled remotely, i.e. automatically by manipulators. Any direct action by hand is impossible as routine and only very restricted in case of uncommon events. Therefore, the handling, testing and measuring systems must work practicably, correctly and reliably. To prove this, a comprehensive test programme was accomplished before starting testing of irradiated specimens. In detail, the programme had to show that: - All systems work satisfactorily under the hot cell conditions, - the testing procedures fulfill the recommendations of the test specifications according to the standards, and - the results measured are accurate. (orig.)

  8. Hot carrier solar cell absorbers: investigation of carrier cooling properties of candidate materials

    Science.gov (United States)

    Conibeer, G.; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Smyth, Suntrana; Liao, Yuanxun; Lin, Shu; Wang, Pei; Dai, Xi; Chung, Simon; Yang, Jianfeng; Zhang, Yi

    2015-09-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  9. Reliable Wireless Data Acquisition and Control Techniques within Nuclear Hot Cell Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.L.; Tulenko, J.

    2000-09-20

    On this NEER project the University of Florida has investigated and applied advanced communications techniques to address data acquisition and control problems within the Fuel Conditioning Facility (FCF) of Argonne National Laboratory-West (ANL-W) in Idaho Falls. The goals of this project have been to investigate and apply wireless communications techniques to solve the problem of communicating with and controlling equipment and systems within a nuclear hot cell facility with its attendant high radiation levels. Different wireless techniques, including radio frequency, infrared and power line communications were reviewed. For each technique, the challenges of radiation-hardened implementation were addressed. In addition, it has been a project goal to achieve the highest level of system reliability to ensure safe nuclear operations. Achievement of these goals would allow the eventual elimination of through-the-wall, hardwired cabling that is currently employed in the hot cell, along wit h all of the attendant problems that limit measurement mobility and flexibility.

  10. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  11. Radiological assessment in case of an incident at the hot cells clean-up

    Directory of Open Access Journals (Sweden)

    Dragolici Cristian A.

    2014-01-01

    Full Text Available The clean-up and decontamination of the hot cells will be performed in the second phase of the WWR-S research reactor decommissioning. Identification of possible incidents or accidents is the key element in radiological assessment and prevention. As major incident it was considered a fire burst that occurred during the progress of the clean-up operations. The postulated incident has, as a consequence, thick smoke generation from the burned radioactive material and the dispersion of this material in the environment through the technological ventilation system and the evacuation chimney. From the performed analysis it can be seen that in the case of an incident to the reactor hot cells, an operator engaged in intervention operations could take an effective dose of 5.29 Sv per event, coming from both external and internal exposure. Such an incident, if it happens, would be classified of level 3 on the INES scale.

  12. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  13. Analyticity of Transverse Polarization Tensor in the Normal Phase of hot QED and Gauge/Gravity Duality

    CERN Document Server

    Yin, Lei; Lee, Ting Kou; Hou, Defu

    2016-01-01

    We explore the momentum analyticity of the static transverse polarization tensor of a 2+1 dimensional holographic superconductor in its normal phase with a nonzero chemical potential, aiming at finding the holographic counterpart of the singularities underlying the Friedel-like oscillations of an ordinary field theory. We prove that the polarization tensor is a meromorphic function with an infinite number of poles located on the complex momentum plane off real axis. With the aid of the WKB approximation these poles are found to lies asymptotically along two straight lines parallel to the imaginary axis for a large momentum magnitude. The similarity between the holographic Green's function and that of an weakly coupled ordinary field theory (e.g., 2+1 dimensional QED) regarding the location of the momentum singularities offers further support to the validity of the gauge/gravity duality.

  14. The improvement of dynamic universal testing machine for hot cell usages

    International Nuclear Information System (INIS)

    Dynamic universal testing machine(UTM) were developed for hot cell usages, which can perform tensile, compression, bending, fracture toughness and fatigue crack growth tests. In this report, technical reviews in the course of developing machine were described. Detailed subjects are as follows; 1. Outline of testing method using dynamic UTM 2. Detailed testing system organizations 3. Technical specification to develop machine 4. Setting up load string 5. Inspection and pre-commissioning tests on machine. (author). 14 figs

  15. Evaluation of modular robot system for maintenance tasks in hot cell

    International Nuclear Information System (INIS)

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown

  16. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  17. PIE in Hot Cells and Poolside: Facilities and Techniques applied in Argentina. A brief overview

    International Nuclear Information System (INIS)

    Full text: Argentina has covered a wide range of activities concerning PIE, visual inspection of Fuel Elements (FE), internal components of NPP and Research Reactors (RR). These activities are performed both in the Poolside Bay (Spent Fuel Pool) at each nuclear power plant and in external Hot Cell Laboratories. Argentina has two PHWR power reactors (one CANDU type at C.N.Embalse and other KWU prototype at C.N.ATUCHA 1) which have started operation in the early 80's and 70's respectively. Argentina has also one 10 MW research reactor (RA-3) for radioisotope production for more than 40 years ago. The PIE activities have covered the basic requirement for the controls and improvements of the FE and the surveillance programs for the behavior assessment of the critical internal components of the NPP (pressure vessel or tubes, control rods, guide tubes etc) consistently. PIE activities for FE were begun with the application techniques to evaluate the fission product release in the primary circuit and localization of failed FE in the core, on-line Sipping Test and exhaustive underwater visual inspection including metrology of the dimensional changes of the components. In some cases it was necessary to make available the equipment for disassembling the fuel element for further analysis. The other cases involved the studies including the determination of the cause of the primary failure to discriminate among fabrication flaws or flaws related to PCI or with the operation outside the design range. The Hot Cells Laboratory is divided in two installations i.e. the Physical Hot Cells and the Radiochemical Hot Cells The Physical Hot Cells (CELCA) consist of one beta-gamma cell for structural materials with five working positions and two alpha tight boxes for fuel material testing with four working positions. An Optical Microscopy bench and Scanning Electronic Microscope are also exited in these cells. The following destructive tests for PIE are available: - Metallurgical Test

  18. Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates

    OpenAIRE

    Li, H. B. T.; van der Werf, C.H.M.; J.K. Rath; Schropp, R.E.I.

    2009-01-01

    In silicon thin film solar cell technology, frequently rough or textured substrates are used to scatter the light and enhance its absorption. The important issue of the influence of substrate roughness on silicon nanocrystal growth has been investigated through a series of nc-Si:H single junction p-i-n solar cells containing i-layers deposited with Hot-wire CVD. It is shown that silicon grown on the surface of an unoptimized rough substrate contains structural defects, which deteriorate solar...

  19. Experiences from Refurbishment of Metallography Hot Cells and Application of a New Preparation Concept for Materialography Samples

    International Nuclear Information System (INIS)

    After more than 30 years of operation the lead shielded metallography hot cells needed a basic renewal and modernisation not least of the specimen preparation equipment. Preparation in hot cells of radioactive samples for metallography and ceramography is challenging and time consuming. It demands a special design and quality of all in-cell equipment and skill and patience from the operator. Essentials in the preparation process are: simplicity and reliability of the machines, and a good quality, reproducibility and efficiency in performance. Desirable is process automation, flexibility and an alara amounto of radioactive waste produced per sample prepared. State of the art preparation equipment for materialography seems to meet most of the demands, however, it cannot be used in hot cells without modifications. Therefore. IFE and Struers in Copenhagen modified a standard model of a Strues precision cutting machine and a microprocessor controlled grinding and polishing machine for Hot Cell application. Hot cell utilisation of the microcomputer controlled grinding and polishing machine and the existing automatic dosing equipment made the task of preparing radioactive samples more attractive. The new grinding and polishing system for hot cells provides good sample preparation quality and reproductibility at reduced preparation time and reduced amount of contaminated waste produced per sample prepared. the sample materials examined were irradiated cladding materials and fuels

  20. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  1. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  2. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  3. Image analytic study of nuclear area in mantle cell lymphoma

    OpenAIRE

    Baek, Taehwa; Huh, Jooryung; Kwak, Hyoungjong; Park, Meeja; Lee, Hyekyung

    2010-01-01

    Background Malignant lymphomas are classified on the basis of morphology, immunohistochemistry, and genetic and molecular biological features. Morphology is considered the most important and basic feature. Lymphomas can be classified as small, medium, or large depending on the cell size, but this criterion tends to be rather subjective. The aim of this study was to investigate the usefulness of an objective approach based on quantitative measurements. Methods Twenty specimens of mantle cell l...

  4. Exposure management in a hot-cell decontamination and refurbishment campaign

    International Nuclear Information System (INIS)

    We developed a minicomputer-based system to provide rapid access to personnel dosimetry data during a campaign to decontaminate and refurbish a hot-cell at the Hot Fuel Examination Facility (HFEF) Complex. This system allows project management to estimate doses for future tasks, assess the effectiveness of decontamination and personnel protection techniques, and balance exposures among members of various skill groups. As the campaign progresses, projected total exposures can be minimized by tradeoffs between estimated doses during decontamination and estimated dose savings during the refurbishment phase. The effectiveness of various dose-reduction procedures can be compared on the basis of data from a few cell entries before more extensive routine operations are scheduled. Because the radiation fields vary significantly with location in the cell, we find that measurements of whole-body, skin, and extremity doses are more valuable than dose-rate information. Penetrating and skin radiation doses to personnel can be compared to administrative guidelines. This helps us to select the most effective combination of protective clothing. For example, leaded gauntlets reduce the dose rate to the workers' hands, but their use can increase the time required for some in-cell tasks. Hence, use of gauntlets can lead to higher whole-body and skin doses. The program is written for the HFEF Complex Harris/6 minimainframe computer with a disk-monitor operating system

  5. Hot particles - a hot topic

    International Nuclear Information System (INIS)

    The health effects of hot particles have remained largely unknown. The nuclear power plant accident in Chernobyl spread hot particles into the environment, and findings by a Finnish research team show that their health effects have generally been underestimated. The essential feature from the point of view of health effect is that hot particles cause a very high radiation dose in a very small area in the surrounding organ or tissue. Up to now it has generally been thought that a dose limited within a small area would be even less dangerous than the same dose distributed throughout the body. Hot particles, however, are very effective in causing malignant changes in cells. Beta radiation emitted by hot particles causes permanent mutations in the genetic constitution, or the DNA molecule, of cells. At the same time they effectively stimulate the multiplication of cells by first causing the death of cells in their vicinity. When this results in a chronic wound around the hot particle, cells that are further away from the particle try to heal the wound by dividing rapidly. These cells have received high radiation doses but managed to survive. The mutated cell is thus able to build a malignant clone, which can develop further into cancer. Exposure to hot particles takes place mostly through the skin and, in particular, through the respiratory tract Most of the particles that were carried to Finland from Chernobyl were small in both size and activity. They became deposited onto the ground within a few days, and thus disappeared quickly from breathing air (orig.)

  6. Analytical modelling and experimental studies of SIS tunnel solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheknane, Ali [Laboratoire de Valorisation des Energies Renouvelables et Environnements Agressifs, Universite Amar Telidji de Laghouat, BP 37G route de Ghardaia, Laghouat (03000) Algerie (Algeria)], E-mail: cheknanali@yahoo.com

    2009-06-07

    This paper presents an experimental and computational study of semiconductor-insulator-semiconductor (SIS) tunnel solar cells. A transparent and conductive film of thallium trioxide Tl{sub 2}O{sub 3} has been deposited by anodic oxidation onto an n-Si(1 0 0) face to realize the SIS tunnel solar cells based on Si/SiO{sub x}/Tl{sub 2}O{sub 3}. An efficiency of 8.77% has been obtained under an incident power density of 33 mW cm{sup -2} illumination condition. A PSPICE model is implemented. The calculated results show that the theoretical values are in good agreement with experimental data. Moreover, the simulation clearly demonstrates that the performance of the tested device can be significantly improved.

  7. Exposure management in a hot-cell decontamination and refurbishment campaign

    International Nuclear Information System (INIS)

    The authors developed a minicomputer-based system to provide rapid access to personnel dosemetry data during a campaign to decontaminate and refurbish a hot-cell at the Hot Fuel Examination Facility (HFEF) Complex. This system allows project management to estimate doses for future tasks, assess the effectiveness of decontamination and personnel protection techniques, and balance exposures among members of various skill groups. As the campaign progresses, projected total exposures can be minimized by tradeoffs between estimated doses during decontamination and estimated dose savings during the refurbishment phase. The effectiveness of various dose-reduction procedures can be compared on the basis of data from a few cell entries before more extensive routine operations are scheduled. Because the radiation fields vary significantly with location in the cell, they find that measurements of whole-body, skin, and extremity doses are more valuable than dose rate information. Penetrating and skin radiation doses to personnel can be compared to administrative guidelines. This helps select the most effective combination of protective clothing. The program is written for the HFEF Complex Harris/6 minimainframe computer with a disk-monitor operating system

  8. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  9. Development of hydraulic oil pressure cooler for thermoelectric module in hot cell

    International Nuclear Information System (INIS)

    Universal testing machine, heat treatment furnace and EPMA are being operated in hot cell of Irradiated Materials Examination Facility. In order to maintain the proper temperature of coolant, very expensive water chiller is operated or cooling water is used only once and then thrown it away at all times. Therefore, it is necessary to cut down on unnecessary expense for maintenance of equipments. In this study, the cooling system was developed by using a thermoelectric module so that the uniform temperature of hydraulic oil is maintained. This system has the following advantages: 1) a compact size, 2) a high efficiency, 3) an ease of maintenance

  10. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  11. Metallographic examination of irradiated nuclear fuel elements at Radiometallurgy Hot Cell Facility

    International Nuclear Information System (INIS)

    Radiometallurgy Hot Cells at the Bhabha Atomic Research Centre, Bombay, are fully equipped to carry out detailed metallographic examination of irradiated fuel elements. Procedures have been standardi.sed for the various steps needed in the preparation of samples suitable for metallographic observation. Existing facilities afford estimation of various parameters, like grain size and other structural changes in fuel and cladding materials, corrosion aspects and the various types of hydride formation in zircaloy clad, pellet clad interaction between fuel and clad which will help in assessing the actual behaviour of fuel elements during operation. (author)

  12. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    Science.gov (United States)

    van Veenendaal, P. A. T. T.

    2002-10-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques, but the use of these cells is limited by the high cost of electricity. The major contributions to these costs are the material and manufacturing costs. Over the past decades, the development of silicon based thin film solar cells has received much attention, because the fabrication costs are low. A promising material for use in thin film solar cells is polycrystalline silicon (poly-Si:H). A relatively new technique to deposit poly-Si:H is Hot-Wire Chemical Vapor Deposition (Hot-Wire CVD), in which the reactant gases are catalytically decomposed at the surface of a hot filament, mainly tungsten and tantalum. The main advantages of Hot-Wire CVD over PE-CVD are absence of ion bombardment, high deposition rate, low equipment cost and high gas utilization. This thesis deals with the full spectrum of deposition, characterization and application of poly-Si:H thin films, i.e. from gas molecule to solar cell. Studies on the decomposition of silane on the filament showed that the process is catalytic of nature and that silane is decomposed into Si and 4H. The dominant gas phase reaction is the reaction of Si and H with silane, resulting in SiH3, Si2H6, Si3H6 and H2SiSiH2. The film growth precursors are Si, SiH3 and Si2H4. Also, XPS results on used tantalum and tungsten filaments are discussed. The position dependent measurements show larger silicon contents at the ends of the tungsten filament, as compared to the middle, due to a lower filament temperature. This effect is insignificant for a tantalum filament. Deposition time dependent measurements show an increase in silicon content of the tungsten filament with time, while the silicon content on the tantalum filament saturates

  13. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  14. Final cleansing of the PIVER prototype vitrification facility -Decontamination of the hot-cell

    International Nuclear Information System (INIS)

    Dismantling of the PIVER pilot vitrification facility began in 1984. Under a first contract FI 1D - 0057 with the European Community, all the process equipment was removed from the cell and decontamination was undertaken. The residual in-cell irradiation level was less than 10 mGy.h-1 by the beginning of 1990, allowing brief access of operators to the cell for specific tasks. The cell cleanup work was completed in 1990; the telemanipulators were dismantled, and biological shielding was set up around a few remaining localized hot spots. By the end of the year, the in-cell dose rate had dropped to below 0.2 mGy.h-1. Research and development work on final decontamination processes was conducted from January to July 1991. Four already developed processes (electrolytic, shotpeening, cryogenic and gel) were tested under hostile radioactive conditions on a representative facility to assess their advantages and drawbacks, their effectiveness, and any points requiring special attention for large-scale application. The final decontamination operations were carried out on only a portion of the cell wall ; they did not significantly reduce the overall ambient irradiation level in the cell. (author). 1 ref., 6 figs., 2 tabs., 5 appendices

  15. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    Science.gov (United States)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  16. Dismantling of a hot cell-block and the treatment of the produced concrete bars

    International Nuclear Information System (INIS)

    A building with hot cells had been operated in Karlstein/Main from 1968 to 1989 in order to perform check-ups at radiated fuel rods and nuclear components. The operation of the system was stopped after an operation period of approximately 20 years. The core part of the building to be disassembled is a U-shaped hot cell-block with nine individual cells, partly consisting of heavy reinforced concrete, located in the ground floor (fig. 1 and fig. 2). The major part of the cells was covered with 10 mm steel plate and provided with approx. 1,400 openings of all different kinds. The wall thickness of the cells was between 0.90 m and 1.10 m. Under these conditions a successful decontamination at the ''existing building structure'' was not possible. Therefore, the non-supporting structures of the hot cell-block were removed in individual blocks by means of sawing and the remaining walls and floors were peeled by using the diamond rope sawing technique. The dismantling took 17 months. A re-treatment of the produced concrete blocks (235 blocks, approx. 970 Mg) to reduce the radioactive waste to a minimum was performed at the Research Centre Karlsruhe, Central Decontamination Department (HDB). The Target of the concrete bar treatment at HDB is to reduce the volume of radioactive waste to a minimum and to add the major part of the concrete bars to harmless utilisation. To achieve the same, initially the more contaminated parts of the bars without openings, such as tubes, cable or ventilating shafts, are removed by means of wire cutting and packed into a KONRAD-Container as radioactive waste. The remaining bar is decontaminated by means of sandblasting and afterwards, following successful release measurement, released from the scope of the regulations under the Atomic Energy. Bars with openings are crushed into small pieces by means of the remote-controlled chisel excavator, in order to separate the individual kinds of material. The rubble is packed into drums and measured by

  17. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.

    Science.gov (United States)

    Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Revathidevi, Sundaramoorthy; Arun, Kanagaraj; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Rajkumar, Kottayasamy Seenivasagam; Ajay, Chandrasekar; Rajaraman, Ramamurthy; Ramani, Rajendren; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2016-06-01

    Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers. PMID:26700669

  18. Fire safety assessment for a typical hot cell handling failed fuel sub-assembly. Contributed Paper MS-03

    International Nuclear Information System (INIS)

    This paper presents a systematic study of fire hazard potential within a typical hot cell that handles Failed Fuel SubAssemblies (FSA) for cleaning purposes. A hot cell configuration is considered wherein ethyl alcohol is used as the cleaning agent. The potential for generation of ethyl alcohol vapors due to heat load of FSA, hydrogen generation during the cleaning process, possibility of vapour ignition and sustainability of fire within the cell are discussed. Detailed heat transfer and CFD studies were performed using computational tools developed in-house at SRI to address these issues. Based on this, several recommendations and suggestions are provided for safe operating conditions that could preclude the occurrence of fire within the hot cell. (author)

  19. The new electron beam facility for materials testing in hot cells - design and preliminary experience

    International Nuclear Information System (INIS)

    Testing of materials which have been subjected to neutron irradiation will be carried out for the fusion reactor research programme at the KFA. An electron beam test apparatus Juelich Divertor Test Equipment in Hot Cells (JUDITH) has been installed in the Hot Cells of the Institute for Materials in Energy Systems, complementing the test equipment available in Japan, USA, France and RF [1-3]. Gamma ray emitting specimens are to be tested under thermal shock, thermal cycling and long-term loading conditions. The apparatus, built in cooperation with the PTR (Praezisionstechnik Remagen), consists of a electron beam unit with a beam power of 60 kW. The max. acceleration voltage is 150 kV, the max. beam current 400 mA. The beam can be deflected with a frequency of 100 kHz in x-y-direction with an amplitude of ±50 mm. Short pulses between 1 and 10 ms for the simulation of disruptions are possible, also longtime pulses on actively cooled samples. The samples are positioned in a vacuum chamber by remote handling. The sample holder is mounted on a cross-table, allowing the appropriate beam position for each specimen to be defined. A flange on the side of the chamber can be used for introducing an actively cooled divertor element. The cooling circuit has a flow rate of 5 m3/h and a pressure of 4 MPa, enabling a high thermal power to be used under continuous operation. (orig.)

  20. Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    The hot-pressing conditions for fabricating the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC) was investigated by using a 2n full factorial design. Time, temperature and pressure were key parameters that were varied from 500 to 1500 psi, 1 to 5 min and 100 to 160 deg. C, respectively. The results from the full factorial analysis indicated that the order of significance of the main MEA fabricating effects was temperature, pressure, time-temperature interaction and pressure-time-temperature interaction. By examining the cell performance curves, the lower fabrication conditions of temperature and pressure were suitable for MEA preparation. The conductive layer between the membrane and the catalyst layer became thin at high pressure and high temperature, as seen from scanning electron microscopy (SEM) images. In the ranges of condition studied, the most suitable hot-pressing condition for MEA fabrication was at 100 deg. C, 1000 psi and 2 min. This condition provided the highest maximum power density from the MEA and the best contact at the interfaces between the gas diffusion layer, the active layer and the electrolyte membrane. The experimental results were verified by testing with a commercial MEA in the same operating condition and with the same equipment. The performance of the fabricated MEA was better than that of the commercial one

  1. Teachable, high-content analytics for live-cell, phase contrast movies.

    Science.gov (United States)

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings. PMID:20639505

  2. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  3. Development of a pattern hot cell for production of injectable radiopharmaceuticals

    International Nuclear Information System (INIS)

    A controlled ambient should be established to the production/processing of materials susceptible to contamination, like injectable pharmaceuticals, in order to agree with normative and regulatory requirements. Considering medical but also toxic, radioactive and dangerous products, the ambient should work in special conditions to assure that the materials, which in same cases can be also volatile, do not escape to the external ambient, working in a selective, secure and controlled way. The conditions recommended by local and international rules in use, report an negative pressured ambient in relation to the adjacent areas. The technology related with the sizing of project to this kind of system is fully described in the literature, taking in account the rules that clearly describe the essential requirements. However, it is necessary to develop a controlled ambient for radiopharmaceutical production, in a way compatible with the concept of clean rooms and with the safety related to the manipulation of open radioactive wastes. In this work, some devices were created, methods and procedures were established making possible the classification of the ambient inside the hot cell, without physical barriers in the area, using ergonomic, flexible and practical conditions of work, that can results in the improvement of the productivity. The project resulted in the creation of a controlled ambient, in agreement with the normative requirements, using a pass through for entrance and exit of the materials, without compromise the internal air condition. The tight of the hot cell was obtained using doors with efficient sealing system and active joints. Tong manipulators were used to produce ergonomic and secure conditions, without compromise the internal conditions related to tight and classification in A and B grade, according to local and international rules. An efficient ventilation/exhaustion system was adopted to produce these results, composed by filters and special devices

  4. Analytical Cell Potentials for Clathrate-Hydrates from Inversion of Langmuir Constant Versus Temperature Curves

    CERN Document Server

    Bazant, M Z; Bazant, Martin Z.; Trout, Bernhardt L.

    2000-01-01

    Experimental Langmuir constants for clathrate-hydrates, which are inferred from phase equilibrium data using an equation of state and the statistical thermodynamical model of van der Waals and Platteeuw (vdWP), contain a wealth of information about intermolecular forces. In the simplest (Lennard-Jones and Devonshire) approximation of a spherical cell, the Langmuir constant is related to a configurational integral involving a spherically averaged cell potential. All previous attempts to interpret experimental data based on this formalism have involved numerical fitting with ad hoc functional forms, such as the popular Kihara potential. In addition to lacking analytical insight, however, such empirical fits often produce parameters contradicting those obtained by other means. As a more appealing alternative, the spherical-cell vdWP formula for the Langmuir constant versus temperature can be viewed as a nonlinear integral equation for the cell potential. In this article, a variety of exact analytical solutions a...

  5. Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism ofSphingomyelinase-Induced Hot-Cold Hemolysis

    DEFF Research Database (Denmark)

    Montes, Ruth; Lopez, David; Sot, Jesus;

    2008-01-01

    Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 °C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 °C. The mechanism of this phenomenon is not understood. PlcHR2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa......, that is the prototype of a new phosphatase superfamily, induces hot-cold hemolysis. We found that the sphingomyelinase, but not the phospholipase C activity, is essential for hot-cold hemolysis because the phenomenon occurs not only in human erythrocytes that contain both phosphatidylcholine (PC) and sphingomyelin (SM...... as a phenomenon of gradual release of aqueous contents, induced by the sphingomyelinase activity, as described by Ruiz-Argu¨ello et al. [(1996) J. Biol. Chem. 271, 26616]. These hypotheses are supported by the fact that ceramidase, which is known to facilitate slow hemolysis at 37 °C, actually hinders hot...

  6. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  7. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  8. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question in......Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste...

  9. Hot embossing for fabrication of a microfluidic 3D cell culture platform.

    Science.gov (United States)

    Jeon, Jessie S; Chung, Seok; Kamm, Roger D; Charest, Joseph L

    2011-04-01

    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfluidic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact. PMID:21113663

  10. Molecular motion in cell membranes: analytic study of fence-hindered random walks

    CERN Document Server

    Kenkre, V M; Kalay, Z

    2008-01-01

    A theoretical calculation is presented to describe the confined motion of transmembrane molecules in cell membranes. The study is analytic, based on Master equations for the probability of the molecules moving as random walkers, and leads to explicit usable solutions including expressions for the molecular mean square displacement and effective diffusion constants. One outcome is a detailed understanding of the dependence of the time variation of the mean square displacement on the initial placement of the molecule within the confined region. How to use the calculations is illustrated by extracting (confinement) compartment sizes from experimentally reported published observations from single particle tracking experiments on the diffusion of gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell membrane, and by further comparing the analytical results to observations on the diffusion of phospholipids, also in normal rat kidney cells.

  11. Molecular motion in cell membranes: Analytic study of fence-hindered random walks

    Science.gov (United States)

    Kenkre, V. M.; Giuggioli, L.; Kalay, Z.

    2008-05-01

    A theoretical calculation is presented to describe the confined motion of transmembrane molecules in cell membranes. The study is analytic, based on Master equations for the probability of the molecules moving as random walkers, and leads to explicit usable solutions including expressions for the molecular mean square displacement and effective diffusion constants. One outcome is a detailed understanding of the dependence of the time variation of the mean square displacement on the initial placement of the molecule within the confined region. How to use the calculations is illustrated by extracting (confinement) compartment sizes from experimentally reported published observations from single particle tracking experiments on the diffusion of gold-tagged G -protein coupled μ -opioid receptors in the normal rat kidney cell membrane, and by further comparing the analytical results to observations on the diffusion of phospholipids, also in normal rat kidney cells.

  12. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); Le Corre, Alain; Durand, Olivier [INSA, FOTON-OHM, UMR 6082, F-35708 Rennes (France); Guillemoles, Jean-François [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); NextPV, LIA CNRS-RCAST/U. Tokyo-U. Bordeaux, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-05-04

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit.

  13. Development of oxide layer thickness measuring device for irradiated nuclear fuel rods in hot cell

    International Nuclear Information System (INIS)

    It has been known that water side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors in the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water side oxide layer thickness by means of the eddy current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi function testing bench in the nondestructive test hot cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within 10% error

  14. Non destructive assay measurement for the verification of spent fuel in a dry hot cell

    International Nuclear Information System (INIS)

    In this paper non destructive assay technique based on the measurement of gamma ray signatures from fission and activation products is used for the verification of spent fuel in a dry hot cell. A high resolution gamma -spectrometer was employed for the measurements. Energy calibration of the spectrometer was done by aid of an europium - 152 source. For the purpose of authentication a cobalt - 57 source was used during each verification measurement. Measurements done for spent fuel rods randomly selected from different batches - showed that the employed technique is capable of giving a sound signature confirming the presence of irradiated nuclear material in the spent fuel. Also, it seems possible from the analysis of spectra obtained with the present technique to correlate the activity ratio of Cs - 134/ Cs -137 with the burn - Up. This would give a method for checking the average burnup of a specific reactor. 5 fig., 1 tab

  15. The reliability improvement plan of hot cell examination data by introducing of Kolas

    International Nuclear Information System (INIS)

    For enhancement of hot cell data reliability produced at Irradiated Material Examination Facility in KAERI,Korea a project to introduce Kolas of National Quality Assurance Institute. By Kolas introduction the examination data currently produced would be reinforced by additional function of uncertainty evaluation and would obtained more reliable data. The all of data collected would be quality controlled, so that it would be re-traceable. Presently at IMEF shock test, tension test, dimension measurement test, hardness test, density test, and composition analysis test will be subject to Kolas. It is also planned to expand the number of test items in near future. At the end of 2000 year IMEF aims to secure the certificate issued by the National Quality Assurance Institute. (Hong, J. S.)

  16. Process Faults Analysis and Design Considerations for Pyroprocess Hot Cell Safety

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Choung, W. M.; Ku, J. H.; Moon, S. I.; Kim, H. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    KAERI (Korea Atomic Energy Research Institute) has been studied the pyroprocess since 1997. For demonstration of pyroprocess, KAERI developed two facilities, the ACPF (Advanced spent fuel Conditioning Process Facility) and the PRIDE (PyRoprocess-Integrated inactive DEmonstration facility). From 2013 KAERI performs a pre-conceptual design of the ESPF (Engineering-Scale Pyroprocess Facility). In this paper, the process faults analysis and design considerations for pyroprocess hot cell safety are described. KAERI has been developing a pyroprocess for conditioning and reutilization of PWR spent nuclear fuels. The safety evaluations of the pyroprocess facilities were performed to confirm the safe design. The process safety as one of the safety evaluations was analyzed by the faults tree method. The corresponding safe design considerations for each fault type were also considered.

  17. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group is...... currently developing a novel technique to obtain an ad-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. In this work, the hot wire sensor is placed in the anode outlet of a commercial air-cooled fuel cell stack by Ballard Power Systems, and the voltage......Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...

  18. Blood analyte sensing using fluorescent dye-loaded red blood cells

    Science.gov (United States)

    Ritter, Sarah C.; Shao, Xiaole; Cooley, Nicholas; Milanick, Mark A.; Glass, Timothy E.; Meissner, Kenith E.

    2014-02-01

    Measurement of blood analytes provides crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Due to analyte transporters on red blood cell (RBC) membranes that equilibrate intracellular and extracellular analyte levels, RBCs serve as an attractive alternative for encapsulating analyte sensors. Once reintroduced to the blood stream, the functionalized RBCs may continue to live for the remainder of their life span (120 days for humans). They are biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed sensing system utilizes the ability of the RBCs to swell in response to a decrease in the osmolarity of the extracellular solution. Just before lysis, they develop small pores on the scale of tens of nanometers. While at low temperature, analyte-sensitive dyes in the extracellular solution diffuse into the perforated RBCs and become entrapped upon restoration of temperature and osmolarity. Since the fluorescent signal from the entrapped dye reports on changes in the analyte level of the extracellular solution via the RBC transporters, interactions between the RBCs and the dye are critical to the efficacy of this technique. In this work, we study the use of a near infrared pH sensitive dye encapsulated within RBCs and assess the ability to measure dye fluorescence in vivo.

  19. Hot sample archiving. Revision 3

    International Nuclear Information System (INIS)

    This Engineering Study revision evaluated the alternatives to provide tank waste characterization analytical samples for a time period as recommended by the Tank Waste Remediation Systems Program. The recommendation of storing 40 ml segment samples for a period of approximately 18 months (6 months past the approval date of the Tank Characterization Report) and then composite the core segment material in 125 ml containers for a period of five years. The study considers storage at 222-S facility. It was determined that the critical storage problem was in the hot cell area. The 40 ml sample container has enough material for approximately 3 times the required amount for a complete laboratory re-analysis. The final result is that 222-S can meet the sample archive storage requirements. During the 100% capture rate the capacity is exceeded in the hot cell area, but quick, inexpensive options are available to meet the requirements

  20. Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    CERN Document Server

    Korn, C B

    2008-01-01

    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.

  1. A multi-analyte serum test for the detection of non-small cell lung cancer

    OpenAIRE

    Farlow, E C; Vercillo, M S; Coon, J. S.; S. Basu; Kim, A.W.; Faber, L P; Warren, W H; Bonomi, P; Liptay, M. J.; Borgia, J A

    2010-01-01

    Background: In this study, we appraised a wide assortment of biomarkers previously shown to have diagnostic or prognostic value for non-small cell lung cancer (NSCLC) with the intent of establishing a multi-analyte serum test capable of identifying patients with lung cancer. Methods: Circulating levels of 47 biomarkers were evaluated against patient cohorts consisting of 90 NSCLC and 43 non-cancer controls using commercial immunoassays. Multivariate statistical methods were used on all biomar...

  2. Fused-salt-liquid-metal corrosion of refractory alloys in the presence of hot cell impurities

    International Nuclear Information System (INIS)

    The pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL). One aspect of this program is to develop a lithium preprocessing stage for the Fuel Conditioning Facility (FCF). Furthermore, a pilot scale of this preprocessing stage is being designed by ANL-W to demonstrate the in situ hot cell capability of this process. In this pilot scale system, fused lithium chloride salt is saturated with molten lithium to form a powerful fluxing compound with a vigorous reducing agent. During this stage of the fuel conditioning, the reduction will take place at a nominal temperature of 650 C in an argon-cell atmosphere contaminated with up to 10,000 ppm nitrogen, 100 ppm oxygen and 100 ppm of moisture. The maximum local temperature was calculated to be 725 C on the inner shell of the reduction vessel during operation. One of the significant concerns of this project is the system''s corrosion response in the presence of irradiated commercial fuel as well as atmospheric impurities. The purpose of this work was to demonstrate the potential corrosivity of the salt matrix in a worse case environment as well as provide a boundary for allowable impurities in the system during operation

  3. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131I. The collection efficiency for iodine in form of elementary iodine (I2) and methyliodide (CH3I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  4. On the development of single and multijunction solar cells with hot-wire CVD deposited active layers

    OpenAIRE

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; Schuttauf, J.A.; van der Werf, C.H.M.; J.K. Rath; Schropp, R.E.I.

    2008-01-01

    We present an overview of the scientific challenges and achievements during the development of thin film silicon based single and multijunction solar cells with hot-wire chemical vapor deposition (HWCVD) of the active silicon layers. The highlights discussed include the development of Ag/ZnO coatings with a proper roughness and morphology for optimal light trapping in single and multijunction thin film silicon solar cells, studies of the structural defects created by a rough substrate surface...

  5. ''ALCESTE'', a hot cell for the full-scale low and intermediate level waste packages characterization and expert investigation

    International Nuclear Information System (INIS)

    In order to characterize radioactive waste packages, equipments have been developed in the CHICADE facility (Basic nuclear facility) which belong to the department of Radioactive Waste Storage and Disposal of the CEA Fuel Directory. One of the most recent equipment is the ALCESTE hot cell. This cell allows sampling extraction from large scale radioactive waste drums. Sampling may be carried out in homogeneous or heterogeneous wastes packages by dry coring or drilling techniques in hydraulic binder, concrete, bitumen or polymer materials. (authors)

  6. Analytical Device-Physics Framework for Non-Planar Solar Cells

    OpenAIRE

    Kirkpatrick, T.; Burns, M. J.; Naughton, M J

    2014-01-01

    Non-planar solar-cell devices have been promoted as a means to enhance current collection in absorber materials with charge-transport limitations. This work presents an analytical framework for assessing the ultimate performance of non-planar solar-cells based on materials and geometry. Herein, the physics of the p-n junction is analyzed for low-injection conditions, when the junction can be considered spatially separable into quasi-neutral and space-charge regions. For the conventional plana...

  7. Closure of the concrete supercontainer in hot cell under thermal load

    International Nuclear Information System (INIS)

    Research highlights: → We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. → We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. → In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the

  8. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    Science.gov (United States)

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. PMID:24856922

  9. Hot Wire CVD for thin film triple junction cells and for ultrafast deposition of the SiN passivation layer on polycrystalline Si solar cells

    OpenAIRE

    Schropp, R.E.I.; Franken, R.H.; Goldbach, H.D.; Houweling, Z.S.; Li, H. B. T.; J.K. Rath; Schuttauf, J.A.; Stolk, R.L.; Verlaan, V.; van der Werf, C.H.M.

    2008-01-01

    We present recent progress on hot-wire deposited thin film solar cells and applications of silicon nitride. The cell efficiency reached for μc-Si:H n–i–p solar cells on textured Ag/ZnO presently is 8.5%, in line with the state-of-the-art level for μc-Si:H n–i–p's for any method of deposition. Such cells, used in triple junction cells together with hot-wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.5% efficiency. The single junction μc-Si:H n–i–p cell is entirely stable...

  10. Development of remote crane system for use inside small argon hot-cell

    International Nuclear Information System (INIS)

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  11. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  12. Post irradiation examination of thoria-plutonia mixed oxide fuel in Indian hot cells

    International Nuclear Information System (INIS)

    Mixed oxide (MOX) fuel clusters containing ThO2+4%PuO2, and ThO2+6.75%PuO2 fuel pins were irradiated in the pressurized water loop of the Indian research reactor CIRUS, to burn up in the range of 20 GWd/T(HM). The ThO2+4%PuO2 fuel elements had free standing cladding made of Zircaloy-2 and the ThO2+6.75%PuO2 had collapsible Zircaloy-2 cladding. The fuel clusters had performed well during irradiation with no apparent indications of failure. The techniques used for the post irradiation examination (PIE) of these fuels in the hot cells included visual examination, fuel pin diameter measurements, leak testing, gamma scanning, gamma spectrometry, ultrasonic testing, eddy current testing, ceramography, metallography, beta gamma autoradiography and measurement of released fission gases. Micro hardness measurement of cladding and evaluation of mechanical properties using ring tension test were also carried out. This paper elaborates on the techniques and the results of the PIE carried out on ThO2+4%PuO2 fuel. (author)

  13. Decommissioning of the Siemens Hanau fuel fabrication plant and hot cells

    International Nuclear Information System (INIS)

    In the early and mid-1990s, a series of decisions had to be made - partially as a result of political requirements but also, in some cases, for economic reasons - to permanently shut down four facilities operated by the Nuclear Fuel Cycle Division of Siemens' Power Generation Group (KWU). 1989 saw the closure of the hot cells in Karlstein in which Germany's most extensive post-irradiation examinations of fuel assemblies had been carried out since 1967. In 1994/95, manufacture of gadolinium-bearing uranium fuel assemblies was abandoned at the Siemens Karlstein Fuel Fabrication Plant which had been in operation since 1963. At the Siemens Hanau Fuel Fabrication Plant, the facilities for manufacturing mixed-oxide (MOX) fuel assemblies and uranium fuel assemblies were permanently shut down in 1991 and 1995, respectively. The uranium processing facility had been in operation since 1969, and the MOX processing facility since 1970. Shutdown and decommissioning of these four facilities have mainly been proceeding in the following stages. First of all the facilities are cleaned out and all process equipment is removed. Then the auxiliary and support systems are dismantled. Finally the buildings are decontaminated and, in some cases, demolished. Possibly contaminated soil will be removed and the site restorated, after which it is released for unrestricted use and is no longer subject to the licensing requirements of the German Atomic Energy Act. Nuclear fuel materials as well as a few of the process components have been given to other nuclear fuel manufacturers. (orig.)

  14. Hot cell examination on the surveillance capsule and HANARO capsule in IMEF

    International Nuclear Information System (INIS)

    For the maintenance of integrity and safety of pressurizer of commercial power plant until its life span, it is required by US NRC 10CFR50 APP. G and H and ASTM E185-94 to periodically monitor irradiation embrittlement by neutron irradiation. In order to accomplished the requirement reactor operator has been carrying out the test by extracting the monitoring capsule embeded in reactor during the period of planned preventive maintenance. In relation to this irradiation samples are being used for prediction of reactor vessel life span and reactor vessel's adjusted reference temperature by irradiation of neutron flux enough to reach to end of life span. And also irradiation capsules with and without instrumentation are used for R and D on nuclear materials. Each capsule contains high radioactivity, therefore, post irradiation examination has to be handled by all means in the hot cell. The facility available for this purpose is Irradiated material examination facility (IMEF) to handle such works as capsule receiving, capsule cut and dismantling, sample classification, various examination, and finally development and improvement of examination equipment and instrumentation. (Hong, J. S.)

  15. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    Science.gov (United States)

    Takeda, Yasuhiko; Ichiki, Akihisa; Kusano, Yuya; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2015-09-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  16. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    International Nuclear Information System (INIS)

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs

  17. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  18. Remote-welding technique for assembling in-pile IASCC capsule in hot cell

    International Nuclear Information System (INIS)

    In order to investigate behavior of the irradiation assisted stress corrosion cracking (IASCC) caused by the simultaneous effects of neutron irradiation and high temperature water environment in such a light water reactor (LWR), it is necessary to perform crack growth tests in an in-pile IASCC capsule irradiated in the Japan Materials Testing Reactor (JMTR). The development of the remote-welding technique is essential for remotely assembling the in-pile IASCC capsule installing the pre-irradiated CT specimens. This report describes a new remote-welding machine developed for assembling the in-pile IASCC capsule. The remote-welding technique that the capsule tube is rotated light under the fixed torch was applied to the machine for the welding of thick and large-diameter tubes. The assembly work of four in-pile IASCC capsules having pre-irradiated CT specimens in the hot cell was succeeded for performing the crack growth test under the neutron irradiation in JMTR. The irradiation test of two capsules has been already finished in JMTR without problems. (author)

  19. Hot Money, Hot Potato

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    International hot money flowing into Chinese capital markets has caught the attention of Chinese watchdogs The Chinese are not the only ones feasting on the thriving property and stock markets. Apparently, these markets are the targets of international h

  20. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Science.gov (United States)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  1. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2009-04-15

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  2. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  3. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GRC and AR have identified the following roles and responsibilities necessary to accomplish the hot fire objective of this task.  AR will be responsible for...

  4. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    International Nuclear Information System (INIS)

    Highlights: → A dual-chambered internet-accessible heavily shielded facility has been built. → The facility allows distance users to analyze neutron irradiated samples remotely. → The Missouri S and T system uses computer automation with user feedback. → The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  5. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  6. An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arnab, Salman M.; Kabir, M. Z., E-mail: kabir@encs.concordia.ca [Department of Electrical and Computer Engineering, Concordia University, 1455 Blvd. de Maisonneuve West, Montreal, Quebec H3G 1M8 (Canada)

    2014-01-21

    An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiO{sub x}) layer (at the back contact) on the J-V characteristics of PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells.

  7. An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells

    International Nuclear Information System (INIS)

    An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiOx) layer (at the back contact) on the J-V characteristics of PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells

  8. Disruption and erosion on plasma facing materials with Oarai hot-cell electron beam irradiating system (OHBIS)

    International Nuclear Information System (INIS)

    To evaluate the effects of neutron irradiation on erosion behavior of plasma facing materials by plasma disruption, thermal shock tests with neutron irradiated specimens of 2-directional carbon fiber reinforced carbon composites (CFCs) were carried out at the electron beam facility ('OHBIS', Oarai Hot cell electron Beam Irradiating System) in the hot laboratory of the JMTR (Japan Materials Testing Reactor). The test conditions on CFCs were 800 MW m-2 x 25 ms and 500 MW m-2 x 40 ms. Neutron irradiation condition of CFCs in JMTR was the total fast neutron fluence of 3-6 x 1020 ncm-2 (E>1 MeV) at about 563 K. As results of these experiments, the weight loss of neutron irradiated specimens increased almost linearly with neutron fluence, and was about two times larger than that of the un-irradiated specimen. (author)

  9. Post-irradiation examination of the BN-600 core assemblies. The second modification of the hot cell equipment

    International Nuclear Information System (INIS)

    The current state of methodological support to the post irradiation examination of the reactor assemblies and their components operability implemented in accordance with the requirements of the regulations related to nuclear safety of nuclear reactors is described. The methodology of the examination is based on the experience of those mass primary post irradiation examinations of the BN-600 assemblies that have been performed in the spent fuel cooling pond and in the hot laboratory of Beloyarsk-3 reactor. This paper presents the main results of the second modification of the process and experimental equipment of the hot cell of BN-600 reactor carried out after the year of 2000. Further development prospects of the on-site examination complex are discussed

  10. Industrial start-up of a cold crucible induction melter for high level waste vitrification in an existing hot cell

    International Nuclear Information System (INIS)

    With over 15 000 glass canisters produced at the end of 2010, AREVA benefits from the largest experience worldwide in commercial vitrification of highly active liquid waste. AREVA has demonstrated the group's capabilities and experience to deploy innovative high level waste (HLW) processing technologies in industrial facilities. AREVA and CEA have continuously improved the hot metallic crucible melter vitrification technology through operational feedback as well as ongoing research and development. The resulting know-how paved the way for the development and implementation of Cold Crucible Induction Melter technology (CCIM). The cold crucible is a compact water-cooled melter in which radioactive waste and glass are heated and molten by direct high frequency induction. This technology can withstand highly corrosive solutions and high operating temperatures, and allows, among other things: a greater flexibility in matrix compositions, a higher production throughput. AREVA and CEA developed together the cold crucible technology, and adapted it for vitrification of high active liquid waste vitrification. They pursued cooperation to put CCIM into commercial operation in one of the existing vitrification lines of AREVA La Hague plant in 2010. One of the main challenges for the project team was to replace the hot metallic crucible melter with the CCIM in an existing hot cell that had already been operated for 20 years. The paper will describe why this event is a major milestone for the vitrification of HLW and how the change to a brand new technology was performed in an existing Hot Cell and succeeded in record time, without any impact on the La Hague plant's production. The start-up sequence and the results of first industrial production campaigns of the CCIM will also be presented. (author)

  11. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which......Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...

  12. Experience of Integrated Safeguards Approach for Large-scale Hot Cell Laboratory

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency (JAEA) has been operating a large-scale hot cell laboratory, the Fuels Monitoring Facility (FMF), located near the experimental fast reactor Joyo at the Oarai Research and Development Center (JNC-2 site). The FMF conducts post irradiation examinations (PIE) of fuel assemblies irradiated in Joyo. The assemblies are disassembled and non-destructive examinations, such as X-ray computed tomography tests, are carried out. Some of the fuel pins are cut into specimens and destructive examinations, such as ceramography and X-ray micro analyses, are performed. Following PIE, the tested material, in the form of a pin or segments, is shipped back to a Joyo spent fuel pond. In some cases, after reassembly of the examined irradiated fuel pins is completed, the fuel assemblies are shipped back to Joyo for further irradiation. For the IAEA to apply the integrated safeguards approach (ISA) to the FMF, a new verification system on material shipping and receiving process between Joyo and the FMF has been established by the IAEA under technical collaboration among the Japan Safeguard Office (JSGO) of MEXT, the Nuclear Material Control Center (NMCC) and the JAEA. The main concept of receipt/shipment verification under the ISA for JNC-2 site is as follows: under the IS, the FMF is treated as a Joyo-associated facility in terms of its safeguards system because it deals with the same spent fuels. Verification of the material shipping and receiving process between Joyo and the FMF can only be applied to the declared transport routes and transport casks. The verification of the nuclear material contained in the cask is performed with the method of gross defect at the time of short notice random interim inspections (RIIs) by measuring the surface neutron dose rate of the cask, filled with water to reduce radiation. The JAEA performed a series of preliminary tests with the IAEA, the JSGO and the NMCC, and confirmed from the standpoint of the operator that this

  13. Hot-cell design considerations for interfacing eddy-current systems

    International Nuclear Information System (INIS)

    The Hot Fuel Examination Facility/North conducts remote eddy-current examination of irradiated fuel elements. Applications include cladding breach detection and irradiation-induced ferrite examination. The seccussful use of remote eddy-current techniques is achieved by applying basic test parameters and interfacing considerations. These include impedance matching, operating frequency, and feedthrough considerations

  14. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    International Nuclear Information System (INIS)

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  15. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio E.; Araujo, Elaine B., E-mail: fecampos@ipen.b, E-mail: ebaraujo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  16. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  17. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 2: Experimental

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small, it...

  18. Silicon quantum dots in SiOx dielectrics as energy selective contacts in hot carrier solar cells

    International Nuclear Information System (INIS)

    Thin films of c-Si QDs embedded in a-SiOx dielectric matrix was achieved at a low temperature ∼400°C, from one step process by reactive rf magnetron co-sputtering of c-Si wafer and pure SiO2 targets, in the (H2+Ar)- plasma. Formation of a double-barrier structure has been primarily identified from the SAX data and exclusively confirmed from the resonant tunneling current appearing in the J-E characteristic curve peaks, determined by the discrete energy levels of c-Si QDs, at which it could be used as energy selective contacts in hot carrier solar cells

  19. Silicon quantum dots in SiOx dielectrics as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Kar, Debjit; Das, Debajyoti

    2015-06-01

    Thin films of c-Si QDs embedded in a-SiOx dielectric matrix was achieved at a low temperature ˜400°C, from one step process by reactive rf magnetron co-sputtering of c-Si wafer and pure SiO2 targets, in the (H2+Ar)- plasma. Formation of a double-barrier structure has been primarily identified from the SAX data and exclusively confirmed from the resonant tunneling current appearing in the J-E characteristic curve peaks, determined by the discrete energy levels of c-Si QDs, at which it could be used as energy selective contacts in hot carrier solar cells.

  20. Resolution-independent modeling of environmental effects in semi-analytic models of galaxy formation that include ram-pressure stripping of both hot and cold gas

    CERN Document Server

    Luo, Yu; Kauffmann, Guinevere; Fu, Jian

    2016-01-01

    The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al (2011) and Fu et al (2013) semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes ($\\rm log M_{halo}=[14,15]$). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fix...

  1. Loading of red blood cells with an analyte-sensitive dye for development of a long-term monitoring technique

    Science.gov (United States)

    Ritter, Sarah C.; Meissner, Kenith E.

    2012-03-01

    Measurement of blood analytes, such as pH and glucose, provide crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Red blood cells serve as an attractive alternative for carriers of analyte sensors. Once reintroduced to the blood stream, these carriers may continue to live for the remainder of their life span (120 days for humans). They are also biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed carrier system takes advantage of the ability of the red blood cells to swell in response to a decrease in the osmolarity of the extracellular solution. Just before the membranes lyse, they develop small pores on the scale of tens of nanometers. Analyte-sensitive dyes in the extracellular solution may then diffuse into the perforated red blood cells and become entrapped upon restoration of physiological temperature and osmolarity. Because the membranes contain various analyte transporters, intracellular analyte levels rapidly equilibrate to those of the extracellular solution. A fluorescent dye has been loaded inside of red blood cells using a preswelling technique. Alterations in preparation parameters have been shown to affect characteristics of the resulting dye-loaded red blood cells (e.g., intensity of fluorescence).

  2. Resolution-independent modelling of environmental effects in semi-analytic models of galaxy formation that include ram-pressure stripping of both hot and cold gas

    Science.gov (United States)

    Luo, Yu; Kang, Xi; Kauffmann, Guinevere; Fu, Jian

    2016-05-01

    The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al. and Fu et al. semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes (log Mhalo = [14, 15]). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fixed halo mass. At fixed halo mass, the quenched fraction of satellites does not depend on stellar mass in the models, but increases strongly with mass in the data. In addition to the overprediction of low-mass passive satellites, the models also predict too few quenched central galaxies with low stellar masses, so the problems in reproducing quenched fractions are not purely of environmental origin. Further improvements to the treatment of the gas-physical processes regulating the star formation histories of galaxies are clearly necessary to resolve these problems.

  3. Studies and research concerning BNFP. Spent fuel disassembly: increasing hot-cell storage capacity at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    This report presents the results of work performed at AGNS in 1979 related to production-rate fuel disassembly in the existing hot cell spaces of the BNFP. The primary advantage of the developed technique is realized at a reprocessing plant facility where suitable hot cells and connecting storage pools are available. The existing spent fuel pools are also candidates for away-from-reactor (AFR) storage space. Storage estimates based on utilization of the BNFP indicate that a major expansion from 1600 MTU up to 3000 MTU is possible. The report presents data on the results of initial process development and prototype equipment testing. Assessments were made of operational safety, licensing, and economic factors. These studies indicate that the techniques are performable and have economic merit when there is a requirement for a large increment of new storage capacity. A development program plan is presented. This plan delineates the future work required to bring the process to a point where implementation is possible

  4. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    Science.gov (United States)

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when

  5. Applicability of analytical protocols for the characterisation of carbon-supported platinum group metal fuel cell electrocatalysts

    Directory of Open Access Journals (Sweden)

    V. Linkov

    2010-01-01

    Full Text Available The nanoparticulate size of fuel cell electrocatalysts raises significant challenges in the analytical techniques used in their structural and electrochemical characterisation. For this reason, the applicability of analytical protocols in the qualitative and quantitative characterisation of nanophase fuel cell electrocatalysts was investigated. A set of structural and chemical properties influencing the performance of the electrocatalysts was identified. A large range of analytical tools was employed in characterising the electrocatalysts of interest. High accuracy and precision in the quantitative and qualitative structural and electrochemical characterisation of Pt/C and Pt-Ru/C nanophase electrocatalysts was demonstrated. Certain techniques were deemed to be highly applicable in discriminating between high- and low-performance electrocatalysts based on their structural and electrochemical properties. The goal of this effort is to contribute to the development of South Africa’s capabilities in the emerging hydrogen economy.

  6. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 microSv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 microSv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey

  7. Surveillance and radiological protection in the Hot Cell laboratory; Vigilancia y proteccion radiologica en el Laboratorio de Celdas Calientes

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  8. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    The absorbing kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising for future thin film solar cells. The material is non-toxic, the elements abundant, and it has a high absorption coefficient. These properties make CZTS a potential candidate also for large-scale applications. Here......, solution processing allows for comparatively fast and inexpensive fabrication, and also holds the record efficiency in the kesterite family. Unfortunately, the record cell is deposited with a highly toxic solvent, hydrazine. This toxic solvent can be avoided through the nanocrystal ink approach...... the amount of ligands necessary to stabilize the particles in solution. Today, CZTS nanoparticles synthesized through the so-called hot-injection method vary between 2 nm and 60 nm in diameter. In our group, we have synthesized particles larger than 200 nm. Transmission electron microscopy (TEM) allows us...

  9. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Villar, F.; Bertomeu, J.; Andreu, J. [CeRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Roca-i-Cabarrocas, P. [LPICM-Ecole Polytechnique, CNRS 91128 Palaiseau (France)

    2008-08-30

    The growing interest in using thinner wafers (< 200 {mu}m) requires the development of low temperature passivation strategies for the back contact of heterojunction solar cells. In this work, we investigate low temperature deposited back contacts based on boron-doped amorphous silicon films obtained by Hot-Wire CVD. The influence of the deposition parameters and the use of an intrinsic buffer layer have been considered. The microstructure of the deposited thin films has been comprehensively studied by Spectroscopic Ellipsometry in the UV-visible range. The effective recombination velocity at the back surface has been measured by the Quasi-Steady-State Photoconductance technique. Complete double-side heterojunction solar cells (1 cm{sup 2}) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  10. Hot standby safety related control systems for inclined fuel transfer machine and cell transfer machine for refuelling of PFBR

    International Nuclear Information System (INIS)

    For 500 MWe Prototype Fast Breeder Reactor (PFBR), shutdown refuelling is envisaged in every eight months to replace approximately 92 various sub-assemblies viz., Fuel, Blanket, Absorber, Reflector and Shielding SA. Refuelling commences after 2 days of reactor shutdown when temperature of sodium pool comes down to 473 K and fuel handling startup authorisation signal is made available by FHStartup Computer. This paper deals with the development of three independent VME based Fault tolerant Dual redundant Hot standby Real Time Computer based Control systems for controlling Inclined Fuel Transfer Machine (IFTM) and two Cell Transfer Machines (CTM-FS and CTM-SS). IFTM carries spent subassembly from In-Vessel Transfer Position (IVTP) to Ex-Vessel Transfer Position (EVTP) and new subassembly from EVTP to IVTP. The spent fuel sub assembly which has significant decay heat (5 KW) is to be cooled during its transfer from IVTP to EVTP. The spent fuel sub assembly is carried in Transfer Pot (TP) filled with liquid sodium to provide sufficient cooling. Complete system has to be kept leak tight, since sodium is very reactive with both air and water. Cell transfer concept has been used for fuel handling of PFBR, in which the fuel gets transferred within leak tight cell under inert atmosphere. Both CTMs operate in Fuel Transfer Cell (FTC) filled with nitrogen. CTM-FS loads new fuel in EVTP from Fresh Sub Assembly Entry Port (FSEP) after pre heating in Fresh Subassembly Preheating Facility (FSPF). CTM-SS takes out spent subassemblies from EVTP and after washing in SSWF discharges in Spent Assembly Exit Port (SSEP). To meet high reliability and high availability several design features such as fault tolerance, hot standby, fail safe operation and online diagnostics for fault detection has been incorporated. Well defined software development methodology has been followed with independent verification and validation (IV and V) of deliverables at each stage of development. (author)

  11. Silicon heterojunction solar cells: Optimization of emitter and contact properties from analytical calculation and numerical simulation

    International Nuclear Information System (INIS)

    Highlights: ► We relate the open circuit voltage and the band-bending in crystalline silicon. ► We calculate the band-bending in the crystalline part of a silicon heterojunction. ► The band-bending is strongly influenced by the work function and density of states. ► A high defect density in the amorphous silicon emitter increases the band bending. ► A high defect density reduces the impact of the contact on the open circuit voltage. -- Abstract: The key constituent of silicon heterojunction solar cells, the amorphous silicon/crystalline silicon heterojunction (a-Si:H/c-Si), offers a high open-circuit voltage (Voc) potential providing that both the interface defect passivation and the band bending in the c-Si absorber are sufficient. We detail here analytical calculations of the equilibrium band bending in c-Si (ψc-Si) in Transparent Conductive Oxide (TCO)/a-Si:H emitter/c-Si absorber structures. We studied the variation of some electronic parameters (density of states, work function) according to relevant experimental values. This study introduces a discussion on the optimization of the doped emitter layer in relation with the work function of the TCO. In particular, we argue on the advantage of having a highly defective (p)a-Si:H emitter layer that maximizes ψc-Si and reduces the influence of the TCO on Voc

  12. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  13. Use of a CO2 pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO2) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO2 pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility

  14. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  15. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  16. Possibilities and prospects of investigation of irradiated structural and fuel materials using scanning electron microscope PHILLIPS XL 30 ESEM-TMP installed in the hot cell

    International Nuclear Information System (INIS)

    Scanning electron microscope Philips XL 30 ESEM - TMP with X-ray microanalysis system INCA has been installed at SSC RF RIAR. The microscope is placed in the hot cell. Monitoring and control system is installed in the operator's room. Irradiated specimens are supplied to the hot cell through the transport terminal and installed into the microscope by manipulators. Direct contact of the personnel with radioactive materials is impossible. In addition it is developed the system of remote placement of the irradiated specimens into the specimen chamber of microscope. The system includes a stage with three seats, holders for different types of specimens and equipment for their remote loading in the holders. (Author)

  17. Experience of Hot Cell Renovation Work in CPF (Chemical Processing Facility)

    International Nuclear Information System (INIS)

    Renovation work for operation room A of the Chemical Processing Facility (CPF) was carried out. Cell renovation work involved disassembly, removal and installation of new equipment for the CA-3 cell of operation room A and the crane renovation work involved the repair of the in-cell crane for the CA-5 cell of operation room A. There were not many examples of renovation work performed on cells under high radiation environment and alpha contamination in Japan. Lessons learnt: With respect to the cell renovation work and crane repair work, a method that gave full consideration to safety was employed and the work was performed without accidents or disaster. Moreover, through improvement of the method, reduction of radioactive exposure of the workers was achieved and a melt reduction device was designed to deal with the radioactive waste material that was generated in the renovation work to achieve significant melt reduction of waste material

  18. Laser dismantling of PHWR spent fuel bundles and decladding of fuel pins in the highly radioactive hot cells

    International Nuclear Information System (INIS)

    Full text: For reprocessing of PHWR fuel, fuel bundles are at present chopped mechanically into small pieces of pins using high tonnage mechanical press before dissolution. The existing method of bundle dismantling is purely mechanical using very high force for chopping. A laser based automated bundle dismantling system is developed. In the system, end-plates of bundle, which holds the fuel pins together, are cut using Nd-YAG laser to separate the bundles into pins. In addition to pin separation, the pins are to be chopped into small pieces using a small mechanical chopper. Since the spent fuel is highly radioactive, all these operations are performed remotely in hot cells. Post irradiation examination also requires dismantling of bundles into pins so that they can select the pins for the further examinations. In both these applications laser dismantling remains the most. important step and this system has been developed and tested. This paper describes the experience gained during the development efforts

  19. Development of a bridge transported servo manipulator for the maintenance of the hot cell equipment - a prototype design

    International Nuclear Information System (INIS)

    Mechanical Master - Slave Manipulators (MSMs ) which are mounted on the hot cell wall cannot access all the areas for the equipment maintenance due to their reach limitation. A Bridge Transported Servo Manipulator (BTSM) has been designed to overcome the limitation of access that is a drawback of the MSMs for the equipment maintenance. The BTSM system consists of four components : a transporter with a telescoping tubeset , a slave manipulator, a master manipulator, and a remote control system. T he BTSM system has been designed by Solid Edge which is a 3D CAD, except for the remote control system. In this paper, it is addressed the design and analysis of the mechanical parts, except for the design of the remote control system

  20. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul;

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...... corrosion triggered platinum detachment; and (4) influencing transport property of the soluble platinum species (SPS) which may redeposit. Strict control of the lamination conditions is needed in order to avoid damage of the polymer and degradation of the catalyst....

  1. Silicon quantum dots in SiO{sub x} dielectrics as energy selective contacts in hot carrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata – 700032 (India)

    2015-06-24

    Thin films of c-Si QDs embedded in a-SiO{sub x} dielectric matrix was achieved at a low temperature ∼400°C, from one step process by reactive rf magnetron co-sputtering of c-Si wafer and pure SiO{sub 2} targets, in the (H{sub 2}+Ar)- plasma. Formation of a double-barrier structure has been primarily identified from the SAX data and exclusively confirmed from the resonant tunneling current appearing in the J-E characteristic curve peaks, determined by the discrete energy levels of c-Si QDs, at which it could be used as energy selective contacts in hot carrier solar cells.

  2. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  3. Autologous bone marrow stem cell transplantation in patients with liver failure: a meta-analytic review.

    Science.gov (United States)

    Wang, Kewei; Chen, Xiaopan; Ren, Jinma

    2015-01-15

    Autologous bone marrow stem cell (ABMSC) transplantation has been utilized in clinical practice to treat patients with liver failure, but the therapeutic effect remains to be defined. A meta-analysis is essential to assess clinical advantages of ABMSC transplantation in patients with liver failure. A systematic search of published works [eg, PubMed, Medline, Embase, Chin J Clinicians (Electronic edition), and Science Citation Index] was conducted to compare clinical outcomes of ABMSC transplantation in patients with liver failure. Meta-analytic results were tested by fixed-effects model or random-effects model, dependent on the characteristics of variables. A total of 534 patients from seven studies were included in final meta-analysis. Subsequent to ABMSC transplantation, there was no significant improvement in general symptom and signs such as loss of appetite, fatigue, and ascites. Activities of serum ALT were not significantly decreased with weighted mean difference (WMD) of -19.36 and 95% confidence interval (CI) -57.53 to 18.80 (P=0.32). Postoperative level of albumin (ALB) was expectedly enhanced by stem cell transplantation (WMD 2.97, 95% CI 0.52 to 5.43, P<0.05, I(2)=84%). Coagulation function was improved as demonstrated by a short prothrombin time (PT) (WMD -1.18, 95% CI -2.32 to -0.03, P<0.05, I(2)=6%), but was not reflected by prothrombin activity (PTA) (P=0.39). Total bilirubin (TBIL) was drastically diminished after ABMSC therapy (WMD -14.85, 95% CI -20.39 to -9.32, P<0.01, I(2)=73%). Model for end-stage liver disease (MELD) scores were dramatically reduced (WMD -2.27, 95% CI -3.53 to -1.02, P<0.01, I(2)=0%). The advantage of ABMSC transplantation could be maintained more than 24 weeks as displayed by time-courses of ALB, TBIL, and MELD score. ABMSC transplantation does provide beneficial effects for patients with liver failure. Therapeutic effects can last for 6 months. However, long-term effects need to be determined. PMID:25356526

  4. Formation of hot Neptunes by evaporation of hot Jupiters

    CERN Document Server

    Boué, Gwenaël; Correia, Alexandre C M; Santos, Nuno C

    2011-01-01

    Hot Jupiters are subject to intense energetic irradiations from their stars. It has been shown that this can lead to significant atmospheric mass-loss and create a population of smaller mass planets. Here, we analyse whether the observed hot Neptunes can be the outcome of the partial evaporation of hot Jupiters. The orbital evolution of a planet undergoing evaporation is derived analytically in a very general way. Analytical results are then compared with the period distribution of the two classes of inner exoplanets: Jupiter-mass planets and Neptune-mass planets. We show that hot Jupiters and hot Neptunes have a very distinct period distribution, with a probability lower than 0.0001 that they were derived from the same parent distribution. This difference can be perfectly explained by the presented migration mechanism if hot Neptunes are partially evaporated hot Jupiters, where matter is ejected from the hottest region of the planet surface. Hot Neptunes and lower-mass planets are thus likely to be partially...

  5. Hot embossing for fabrication of a microfluidic 3D cell culture platform

    OpenAIRE

    Jeon, Jessie S.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.

    2011-01-01

    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying t...

  6. Hot embossing for fabrication of a microfluidic 3D cell culture

    OpenAIRE

    Jeon, Jessie S.; Chung, Seok; Kamm, Roger Dale; Charest, Joseph L.

    2010-01-01

    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying t...

  7. Regulative effect for natural killer cell by hot spring hydrotherapy—Quantitative and qualitative discussion

    OpenAIRE

    Nobuo Yamaguchi; Wenhan Wan; Daisuke Sakamoto; Amat Nurmuhammad; Kengo Matsumoto; Takafumi Takei; Katsuko Okuzumi; Tsugiya Murayama; Takashi Takahashi

    2013-01-01

    Along with maintaining immune competent cells, one of the purposes of cancer patient is regulating the first line of defense for survival. Moreover, the factors that influence the acquired immune activity are systemic metabolic disorder in diabetes, malnutrition, extreme exhaustion, stresses, aging and medical side effect such as chemotherapy. So we have to select appropriate menu to regulate immune function through leukocyte storage. Especially, NK cell is first line of defense against virus...

  8. 粮食热风干燥含水率在线模型解析%Analytical study on on-line model of moisture in hot air drying process of grain

    Institute of Scientific and Technical Information of China (English)

    李长友; 马兴灶; 麦智炜

    2014-01-01

    drying methods of concurrent flow and counter flow, cross flow and standing drying were obtained. The result showed that the drying rate experienced the continuously decreasing process inside the concurrent flow deep bed drying, and the maximum point occurred at the beginning of the drying, that said the moisture content decreased quickly, and the late changed extremely smooth in the hot air inlet position. In counter flow deep bed drying, the drying rate had an extreme value point, and the maximum drying rate did not necessarily in the position of hot air inlet and outlet of drying layer. Indeed, the drying rate of counter flow was significantly higher than concurrent flow drying under the same drying conditions of ventilating temperature, humidity and air volume. And in cross flow and standing drying, the drying rate in the position of hot air inlet and outlet had a big difference. When the layer thickness was 0.5 m, and the grain moisture content was more than 20%, the drying rate was nearly zero in the air outlet. This paper pointed out that the change process of grain drying was from initial state point(wet grain)to the final state point (dry grain), the uniformity of cross flow and standing drying was poor, and the counter flow drying technology was more energy-saving than concurrent flow. The experiment was studied in 5HP-3.5 type circulating and tempering dryer, and the results showed that the analytical values and measured values of paddy moisture content in dryer export presented high fitting degree after experiencing the drying and tempering every time. And the maximum deviation between analytical values and measured values was 0.69%, the range of drying process was 0.27%-0.69%. Grain drying was a typical larger inertia and nonlinear process, which pointed out the reason for deviation should be detection error caused by instrument, and confirmed the reliability of the analytical results. The given analytical method avoided the problem of the poor reliability

  9. Mechanical characterisation of irradiated RPV materials by hot cell investigations to ensure RPV integrity; Werkstoffmechanische Charakterisierung bestrahlter RDB-Werkstoffe durch Heisszellenuntersuchungen zur Absicherung der RDB-Integritaet

    Energy Technology Data Exchange (ETDEWEB)

    Ilg, U. [EnBW Kernkraft GmbH, Philippsburg (Germany); Koenig, G. [EnBW Kernkraft GmbH, Neckarwestheim (Germany)

    2007-07-01

    The contribution gives an exemplary illustration of how to assess material characteristics after irradiation for the PWR power station GKN I and the BWR power station KKP1. This necessitates detailed mechanical technological investigations of test samples in so-called hot cells, which are evaluated according to current concepts according to KTA 3202. (orig.)

  10. A simplified analytical model of radiative heat transfer in open cell foams

    International Nuclear Information System (INIS)

    A simplified one-dimensional analytical model of radiative heat transfer in foams is presented, based on the idea of dividing the porous material into layers at the pore level and then modeling each layer of the porous material as an equivalent semi-transparent, absorbing and reflecting plane. Compared to existing models, the model proposed in this paper has the advantage of explicitly accounting for the geometry of the foam and the radiative energy fluxes, at the same time ensuring self-consistency and offering the computational lightness of analytical models, without sacrificing the mathematical simplicity of the formulation. Using a regular cubic lattice representation and assuming diffuse radiation, straightforward analytical correlations are derived to evaluate the characteristics both of single layers of foam and of finite thickness samples, accounting for various boundary conditions. The predictions of the model are in good agreement with experimental data taken from the literature

  11. Dose levels in the hot cells area ININ; Niveles de dosis en el area de celdas calientes-ININ

    Energy Technology Data Exchange (ETDEWEB)

    Torre, J. De la; Ramirez, J.M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Solis, M.L. [UAEM, Toluca, Estado de Mexico (Mexico)]. E-mail: jto@nuclear.inin.mx

    2004-07-01

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  12. Preliminary report for the license of a hot cell that will be use in the technology development for the obtention of Mo-99

    International Nuclear Information System (INIS)

    A preliminary report for the license of a hot cell that will be used in the development of the technology for the obtaining of Mo-99 is presented. The following topics are also included: objective of the project, technical description, description of the prototype cell, handling of radioactive wastes, lists of equipment that will be used, risk analysis, curricula, quality assurance plan and an annex with the report on handling of radioactive wastes presented to the PAGD-IAEA. (Author)

  13. Analytical considerations for linear and nonlinear optimization of the TME cells. Application to the CLIC pre-damping rings

    CERN Document Server

    Fanouria, Antoniou

    2014-01-01

    The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.

  14. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology.

    Science.gov (United States)

    Kuystermans, Darrin; Avesh, Mohd; Al-Rubeai, Mohamed

    2016-05-01

    Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications. PMID:25352493

  15. Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), shows great promise as the absorber layer for future thin film solar cells. Solution processing allows for comparatively fast and inexpensive fabrication, and holds the record efficiency in the kesterite family. However, for nanoparticle (NP...... microscopy (SEM) as well as other surface characterization techniques. Our first photovoltaic device consisting of soda lime glass/Mo/CZTS/CdS/ZnO has been built from doctor blading of approx. 20 nm Cu2ZnSnS4 NPs in octanethiol, and annealed in Se-atmosphere. It had an efficiency of 1.4%....

  16. Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.

    OpenAIRE

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    2015-01-01

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), shows great promise as the absorber layer for future thin film solar cells. Solution processing allows for comparatively fast and inexpensive fabrication, and holds the record efficiency in the kesterite family. However, for nanoparticle (NP) solution processing to be a feasible fabrication route, the amount of carbon in the film has to be limited. In our work, we try to limit the organic material in the film by synthesizing larger NPs. Larger...

  17. GHz Rabi flopping to Rydberg states in hot atomic vapor cells

    CERN Document Server

    Huber, B; Schlagmüller, M; Kölle, A; Kübler, H; Löw, R; Pfau, T

    2011-01-01

    We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.

  18. Analytical and equivalent-circuit models based on numerical solutions for amorphous silicon p/i/n solar cells

    Science.gov (United States)

    Misiakos, K.; Lindholm, F. A.

    The authors present contact-to-contact computer solutions of the a-Si:H p/i/n solar cell and uses these to obtain the approximations and insight needed for the development of analytical models. The numerical results allow study of many aspects of internal variables as functions of position, terminal voltage, and phonon flux density. Based on the numerical results, analytical and equivalent-circuit models are proposed which support each other and explain the physical origin of interdependencies among such variables as quantum efficiency, electric field and recombination rate profiles, and their relation to current-voltage characteristics. The concept of the limiting carrier is mathematically treated by separating the current into photocollected and back-injection components. The limiting carrier is the carrier with the least photocollected current.

  19. Pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA or histone modification H3K9Me3

    DEFF Research Database (Denmark)

    Rasmussen, Louise; Herzog, Marielle; Aastrup rømer, Eva Christine;

    2016-01-01

    AIM: To evaluate pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA (5mC) or histone modification H3K9Me3 (H3K9Me3). MATERIALS AND METHODS: Six studies were designed to assess the possible influence of pre-analytical variables. Study 1: influence of stasis...

  20. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    International Nuclear Information System (INIS)

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ∼4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  1. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  2. The development of crack measurement system using the direct current potential drop method for use in the hot cell

    International Nuclear Information System (INIS)

    The crack length measurement system using the direct current potential drop (DCPD) method was developed for the detection of crack growth initiation and subsequent crack growth. The experimental precautions and data processing procedure required for its application were also described find discussed. The system presented herein was specially built for use in fracture toughness testing of unirradiated or irradiated pressure tube materials from nuclear reactor. The application of this system for fracture toughness determination was illustrated from the test of curved compact tension specimens removed from CANDU reactor pressure tubes. The crack extension was monitored using the DCPD method. It is found that the changes of the potential drop and the changes of the crack length have a linear relationship. The final crack front was marked by heat-tinting after the test and the specimen broken open for determination of the initial and final physical crack length. The physical crack lengths, obtained by the 9-point average method described in ASTM E1737-96 on heat-tinted fracture surface, were used to calibrate the DCPD method for each test on an individual basis by matching the change in voltage to the crack extension. It is found that this system can be recommended for determination of the J-integral resistance (J-R) curve of unirradiated or irradiation materials in the hot cell, especially when testing at elevated temperature and in the environment chamber or furnace. (author)

  3. New flow through reactor installed in the ITU Hot Cell laboratory to investigate the dissolution rates of the irradiated fuels

    International Nuclear Information System (INIS)

    In order to study the dissolution rates for the different radionuclides, the effect of water radiolysis and to elucidate the dissolution mechanisms of the different radionuclides contained in the spent fuel matrix, irradiated spent fuel and UO2 was used. This study is performed as a part of the collaboration programme ENRESA-CIEMAT-ITU (EC DG/JRC) to provide a source term for use in a performance assessment calculation. For the determination of the dissolution rates a continuous flow through reactor specially designed for hot cell handling was built. This reactor allows the control in situ of different important parameters for leaching experiments such as, redox potential, pH and temperature. These leaching experiments reported the effects of four important parameters (redox potential, pH, carbonate concentration and temperature) on the dissolution kinetics of the spent fuel matrix phase. The kinetic of dissolution of irradiated UO2 fuel has been studied in synthetic granite groundwater under oxidizing conditions at room temperature. preliminary results indicate that for spent fuel, dissolution rate depends on the burnup, being the dissolution rate calculated for the UO2 LWR fuel with a burnup of 53 MWd/kg U of 2.66 10''-10 mol m''1 and of 6.77 10''11 mol m''2 s''-1 for the spent fuel of 29 MWd/kg U. (Author)

  4. Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household

    Directory of Open Access Journals (Sweden)

    Vincenzo Liso

    2015-03-01

    Full Text Available In this paper a solid oxide fuel cell (SOFC system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is low (for instance during the night, taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown that in the case of syngas, due to larger system heat output, a larger tank volume was required in order to accumulate unused heat over the night. The detailed description of the tank model will be useful to energy system modelers when sizing hot water tanks. Problem formulation is reported also using a Matlab script.

  5. Hot Cell Post-Irradiation Examination and Poolside Inspection of Nuclear Fuel. Proceedings of the IAEA-HOTLAB Technical Meeting

    International Nuclear Information System (INIS)

    The growing operational requirements for nuclear fuel, such as longer fuel cycles, higher burnups and wider use of transient regimes, require more robust fuel designs and more radiation resistant materials. Development of such advanced fuels is only possible with testing and analysis of their performance and application of adequate post-irradiation examination (PIE) methods and techniques. In addition, operational feedback data from poolside and PIE facilities are absolutely necessary for verification of fuel modelling codes and analysis of fuel failure mechanisms. For these reasons, the International Atomic Energy Agency (IAEA) has supported the international exchange of knowledge and sharing of best practices in the application of modern destructive and non-destructive methods of investigation of highly radioactive materials through a series of technical meetings (TMs), the last of which was held in 2006 in Buenos Aires. Since 1963, similar meetings, initially at the European level, have been organized by the Hot Laboratories and Remote Handling Working Group (HOTLAB), a partner in the development of the IAEA's Post Irradiation Examination Facilities Database (PIEDB), part of the IAEA's Integrated Nuclear Fuel Cycle Information System. With this successful partnership in mind, in 2010 the IAEA Technical Working Group on Fuel Performance and Technology recommended that a joint IAEA-HOTLAB TM be held on 'Hot Cell Post-Irradiation Examination and Pool-Side Inspection of Nuclear Fuel', covering questions relevant to the IAEA sub-programmes on 'Nuclear Power Reactor Fuel Engineering' and 'Management of Spent Fuel from Nuclear Power Reactors'. The TM was held on 23-27 May 2011, in Smolenice, Slovakia, with the participation of a large number of interested organizations and comprehensive coverage of major PIE and poolside inspection issues relating to both operation and storage of fuel for nuclear power reactors. The proceedings, summaries and conclusions of that joint

  6. Inhibitory effect of hot-water extract of quince (Cydonia oblonga) on immunoglobulin E-dependent late-phase immune reactions of mast cells

    OpenAIRE

    Kawahara, Takeshi; Iizuka, Tatsuhiro

    2011-01-01

    We evaluated the effect of a crude hot-water extract (HW) of quince (Cydonia oblonga Miller) fruit on immunoglobulin E (IgE)-dependent late-phase immune reactions of mast cells using in vitro system. Mast cell-like RBL-2H3 cells were treated with quince HW and late-phase reaction was then induced by stimulation with IgE + Antigen. Quince HW reduced the elevation of interleukin-13 and tumor necrosis factor-α expression level. Furthermore, quince HW suppressed these cytokine expressions of mous...

  7. Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical Vapour Deposition at low temperature (<150 ºC)

    OpenAIRE

    Villar, Fernando; Antony, Aldrin; Escarré i Palou, Jordi; Ibarz, D.; Roldán, Rubén; Stella, Marco; Muñoz Ramos, David; Asensi López, José Miguel; Bertomeu i Balagueró, Joan

    2009-01-01

    Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the...

  8. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    Science.gov (United States)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  9. Dose rate estimation in the hot cell and in the transfer flask, due to a metallic uranium foil irradiated at RECH-1

    International Nuclear Information System (INIS)

    The Chilean Nuclear Energy Commission trough his Production and Services Department, has decided to develop a method to obtain fission 99 Mo, from the irradiation of low enrichment uranium target. This target is made of one metallic uranium foil inserted between two concentric aluminium cylinders. When the irradiation ends, the target will be transported in appropriated container to the RECH-1 hot cell, where a modified Cintichem method will be applied. Dose rate has been estimated in two situations, when the irradiated metallic uranium is confined in its container and when the target is inside the hot cell. Dose rate has been obtained using ISOSHLD-II code, taking into account different decay times and positions of metallic uranium target

  10. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    In the new nuclear fuel reprocessing extraction processes studies, a miniature short-residence-time annular centrifugal solvent extraction contactor and the assembly of multistage group system suitable for use in hot cells has been designed and tested for both hydrodynamic performance and mass transfer efficiency. The liquid hold-up of this unit is 6 to 9 mL and the inside diameter of the rotor is 12 mm. The superior separating capacities were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h-1. Essentially 100% stage efficiency was demonstrated in extraction of nitric acid in 30% tri-n-butyl phosphate in TPH with total throughputs lower than 1 L.h-1 at 4000 rpm. A total of 48 units have been built and equip a hot cell in the ATALANTE facility at Marcoule. (authors)

  11. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the sensor...... has to be divided by a pre-determined voltage signal E0 that has been obtained for a stream of dry hydrogen where the molar flow rate corresponds to a total current I of the fuel cell stack and a stoichiometric flow ratio, ξ. Because the last two properties are usually continuously known in fuel cell...... experiments, E0 is also continuously known. There is a one-to-one correlation between the relative voltage signal E/E0 and the fuel cell water balance, and therefore the fuel cell water balance can be a continuous output signal similar to the fuel cell voltage and the high frequency resistance. This method...

  12. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  13. Profiling of bacterial cells and cell-surface proteins of plant-associated bacteria by standard analytical techniques

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Horká, Marie; Šalplachta, Jiří; Kubesová, Anna; Vykydalová, Marie; Kahle, Vladislav

    Latvia: Latvian Institute of Organic Synthesis, 2011 - (Kažoka, H.). s. 94 [Nordic Separation Science Society Conference /6./. 24.09.2011-27.09.2011, Riga] R&D Projects: GA AV ČR IAAX00310701; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : bacterial profiling * Rhizobium * MALDI-TOF MS Subject RIV: CB - Analytical Chemistry, Separation http://www.nosss.eu

  14. Technical Development of Gamma Scanning for Irradiated Fuel Rod after Upgrade of System in Hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, Hee Moon; Baik, Seung Je; Yoo, Byung Ok; Choo, Yong Sun

    2007-06-15

    Non-destructive test system was installed at hot-cell(M1) in IMEF(Irradiated Materials Examination Facility) more than 10 years ago for the diametric measurement and gamma scanning of fuel rod. But this system must be needed to be remodeled for the effective operations. In 2006, the system was upgraded for 3 months. The collimator bench can be movable with horizontal direction(x-direction) by motorized system for sectional gamma scanning and 3-dimensional tomography of fuel rod. So, gamma scanning for fuel rod can be detectable by x, y and rotation directions. It may be possible to obtain the radioactivities with radial and axial directions of pellet. This system is good for the series experiments with several positions. Operation of fuel bench and gamma detection program were linked each other by new program tools. It can control detection and bench moving automatically when gamma inspection of fuel rod is carried out with axial or radial positions. Some of electronic parts were added in PLC panel, and operating panel was re-designed for the remote control. To operate the fuel bench by computer, AD converter and some I/O cards were installed in computer. All of software were developed in Windows-XP system instead of DOS system. Control programs were made by visual-C language. After upgrade of system, DUPIC fuel which was irradiated in HANARO research reactor was detected by gamma scanning. The results were good and operation of gamma scanning showed reduced inspection time and easy control of data on series of detection with axial positions. With consideration of ECT(Eddy Current Test) installation, the computer program and hardware were set up as well. But ECT is not installed yet, so we have to check abnormal situation of program and hardware system. It is planned to install ECT in 2007.

  15. Analytical characterization of cell-asbestos fiber interactions in lung pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Seydou; Petibois, Cyril [Universite de Bordeaux, Pessac Cedex (France); DellaVentura, Giancarlo [Universita Roma Tre, Dipartimento Scienze Geologiche, Rome (Italy)

    2010-07-15

    Asbestos is a fiber causing lung diseases such as asbestosis and mesothelioma. Although the process involving these diseases remains to be elucidated for developing drugs and treatments, direct consequences of fiber exposure in humans have been clearly demonstrated. These diseases are first characterized by histological heterogeneity and combine chronic inflammation with fibrosis and cellular alterations. As a consequence, asbestosis is usually diagnosed at advanced stages of the disease and treatments are usually inefficient to cure the patients. Here, we review the links established between asbestos fiber chemistry and morphology with the occurrence of associated lung diseases. Cytological and histological aspects of diseases are described with respect to current analytical capabilities, notably for microscopy techniques. (orig.)

  16. Highly conductive microcrystalline silicon carbide films deposited by the hot wire cell method and its application to amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Microcrystalline silicon carbide (μc-Si1-xCx) films were successfully deposited by the hot wire cell method using a gas mixture of SiH4, H2 and C2H2. It was confirmed by Fourier transform infrared and X-ray diffraction analyses that the films consisted of μc-Si grains embedded in a-Si1-xCx tissue. The p-type μc-Si1-xCx films were deposited using B2H6 as a doping gas. A dark conductivity of 0.2 S/cm and an activation energy of 0.067 eV were obtained. The p-type μc-Si1-xCx was used as a window layer of a-Si solar cells, in which the intrinsic layer was deposited by photo-chemical vapor deposition, and an initial conversion efficiency of 10.2% was obtained

  17. An analytical, control-oriented state space model for a PEM fuel cell system

    OpenAIRE

    Grasser, Félix

    2006-01-01

    If fuel cell technology – with its inherent benefits of high efficiency and low emissions – is to be used in decentralised power sources, in mobile or transportation applications, the systems have to be able to adapt to fast load changes and varying operating conditions. In order to achieve such performance, the balance of plant systems – typically governed by an on-board system controller – need to dynamically supply the fuel cell stack with reactant gases at the right flow rates, pressures ...

  18. Analytical study of PPV-oligomer- and C60-based devices for optimising organic solar cells

    NARCIS (Netherlands)

    Geens, Wim; Poortmans, Jef; Jain, Suresh C.; Nijs, Johan; Mertens, Robert; Veenstra, Sjoerd C.; Krasnikov, Viktor V.; Hadziioannou, Georges

    2000-01-01

    A blend of a 5-ring n-octyloxy-substituted oligo(p-phenylene vinylene) and C60, sandwiched between two electrodes, has been used as the active layer for an organic solar cell. It delivered external quantum efficiencies up to 60% in the visible and 70% in the UV part of the spectrum. To unambiguously

  19. Solutions for a local equation of anisotropic plant cell growth: an analytical study of expansin activity.

    Science.gov (United States)

    Pietruszka, Mariusz

    2011-07-01

    This paper presents a generalization of the Lockhart equation for plant cell/organ expansion in the anisotropic case. The intent is to take into account the temporal and spatial variation in the cell wall mechanical properties by considering the wall 'extensibility' (Φ), a time- and space-dependent parameter. A dynamic linear differential equation of a second-order tensor is introduced by describing the anisotropic growth process with some key biochemical aspects included. The distortion and expansion of plant cell walls initiated by expansins, a class of proteins known to enhance cell wall 'extensibility', is also described. In this approach, expansin proteins are treated as active agents participating in isotropic/anisotropic growth. Two-parameter models and an equation for describing α- and β-expansin proteins are proposed by delineating the extension of isolated wall samples, allowing turgor-driven polymer creep, where expansins weaken the non-covalent binding between wall polysaccharides. We observe that the calculated halftime (t(1/2) = εΦ(0) log 2) of stress relaxation due to expansin action can be described in mechanical terms. PMID:21227964

  20. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus;

    2013-01-01

    Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an Rh...

  1. Analytical solution and experimental validation of the energy management problem for fuel cell hybrid vehicles

    NARCIS (Netherlands)

    Hoppenbrouwers, Stijn; Grimminck, M.; Bosch, P.P.J. van den; Veenhuizen, Bram; Tazelaar, Edwin

    2011-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem. Strate

  2. Analytical solution of the energy management for fuel cell hybrid propulsion systems

    NARCIS (Netherlands)

    Veenhuizen, Bram; Tazelaar, E.; Bosch, P.P.J. van den

    2012-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem. Strate

  3. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  4. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO2 - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and Dismantlement

  5. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (DT), pore area fractal dimensions (df), water phase (df,w) and gas phase (df,g) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  6. Softlithography in Chemical Sensing – Analytes from Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Anton Leidl

    2005-12-01

    Full Text Available Imprinting is a flexible and straightforward technique to generate selective sensormaterials e.g. for mass-sensitive detection. Inherently, the strategy suits both molecularanalytes and entire micro organisms or cells. Imprinted polyurethanes e.g. are capable ofdistinguishing the different xylene isomers with very appreciable selectivity factors.Combining imprinted titanates with surface transverse wave resonators (STW leads to apowerful tool for detecting engine oil degradation, which is an excellent example foroxidative deterioration processes in a highly complex matrix. Surface imprints withgeometrically equal cavities exhibit clear chemical selectivity, as can e.g. be seen throughthe example of different human rhinovirus (HRV serotypes. Another example is a bloodgroup-selective sensor prepared by templating with erythrocyte ghosts. Both the bloodgroupA and B imprinted material selectively distinguish between blood groups A, B and O,whereas no difference in sensor signal has been observed for AB, where both blood groupantigen types are present on the cell surface.

  7. Surface Analytical Methods for the Development of Electrochemical Components of Polymer Electrolyte Fuel Cells

    OpenAIRE

    Biswas, Indro; Gazdzicki, Pawel; Schulze, Mathias

    2013-01-01

    The transition from fossil to renewable energies implies significant changes in the energy system regarding the distribution, storage and energy conversion due to the intrinsic natural fluctuations of renewable power sources. Polymer electrolyte fuel cells (PEFC) are highly efficient electrochemical energy converters that may be implemented in a wide range of power and dynamics. Their high gravimetric energy density makes them attractive for many applications, especially for mobile purpos...

  8. Proteome of leukaemic cells after cisplatin treatment - comparison of three independent analytical techniques

    Czech Academy of Sciences Publication Activity Database

    Martinková, Jiřina; Skalníková, Helena; Hrabáková, Rita; Novák, Petr; Man, Petr; Pompach, Petr; Strohalm, Martin; Havlíček, Vladimír; Džubák, P.; Hajdúch, M.; Kovářová, Hana

    Budapest : Hungarian proteomic society, 2009, s. 56-56. ISBN 978-963-9319-99-8. [3rd Central and Eastern European Proteomics Conference. Budapešť (HU), 06.10.2009-09.10.2009] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50450515 Keywords : Proteomics * Cis-platin * Leukaemic cells Subject RIV: FK - Gynaecology, Childbirth

  9. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Science.gov (United States)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  10. First analysis of remote handling maintenance procedure in the hot cell for the ITER ICH and CD antenna – RVTL replacement

    International Nuclear Information System (INIS)

    This paper deals with a first analysis of the Remote Handling (RH) maintenance procedure for the replacement of Removable Vacuum Transmission Lines (RVTL) of the ICRH antenna Port Plug (PP). In the framework of the grant F4E-2009-GRT-026, CEA IRFM studied the maintenance in parallel with the design of the antenna provided by CCFE. The RVTL are 8 components of the ICRH antenna which form the interface between the matching system and the four port junction integrating the straps. A folded stub is attached to the principal line to ensure water cooling of the interspace. At the front and the rear of the RVTL are installed double RF windows that provide the first tritium barrier. In case of failure of the first window, all the RVTL have to be replaced. Due to the contamination and activation, the replacement must take place in the hot cell. The complete maintenance sequence is studied. It starts when the PP is in place in the Tokamak equatorial port, it continues with: the preparation in the port cell, transfer to the HC, cleaning, RVTL replacement, returns to the port cell. It finishes with reconnection to the port. The ITER requirements [1] and the hot cell constraints [2] are used to extract specifications for the RH tooling (for handling, cutting, welding, etc.). Each step is studied and suitable tools identified. For specific steps, mechanical concepts for dedicated tools are proposed. Furthermore, the critical steps identified are simulated to check the feasibility

  11. Fermion damping rate in a hot medium

    CERN Document Server

    Henning, P A; Weigert, H; Henning, P A; Sollacher, R; Weigert, H

    1994-01-01

    In hot systems, fermions coupled to a massless boson field acquire a finite lifetime. This nonzero spectral width is calculated self-consistently for the case of scalar, vector and pseudoscalar coupling: The one-loop Fock diagram is evaluated with an effective propagator. We find solutions that are analytical in the coupling constant, but not analytical in the temperature parameter around T=0.

  12. Hot Money,Hot Problems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After emerging from the economic doldrums, developing economies are now confronted with a new danger-a flood of international hot money. But how has the speculative capital circumvented regulatory controls and what are the consequences concerning the stability of the developing world? Zhao Zhongwei, a senior researcher with the Institute of World Politics and Economics at the Chinese Academy of Social Sciences, discussed these issues in an article recently published in the China Securities Journal. Edited excerpts follow

  13. Online state of health estimation on NMC cells based on predictive analytics

    Science.gov (United States)

    Berecibar, Maitane; Devriendt, Floris; Dubarry, Matthieu; Villarreal, Igor; Omar, Noshin; Verbeke, Wouter; Van Mierlo, Joeri

    2016-07-01

    Accurate on board state of health estimation is a key battery management system function to provide optimal management of the battery system under control. In this regard, this paper presents an extensive study and comparison of three of commonly used supervised learning methods for state of health estimation in Graphite/Nickel Manganese Cobalt oxide cells. The three methods were based from the study of both incremental capacity and differential voltage curves. According to the ageing evolution of both curves, features were extracted and used as inputs for the estimation techniques. Ordinary Least Squares, Multilayer Perceptron and Support Vector Machine were used as the estimation techniques and accurate results were obtained while requiring a low computational effort. Moreover, this work allows a deep comparison of the different estimation techniques in terms of accuracy, online estimation and BMS applicability. In addition, estimation can be developed by partial charging and/or partial discharging, reducing the required maintenance time.

  14. Analytic studies on satellite detection of severe, two-cell tornadoes

    Science.gov (United States)

    Carrier, G. F.; Dergarabedian, P.; Fendell, F. E.

    1979-01-01

    From funnel-cloud-length interpretation, the severe tornado is characterized by peak swirl speed relative to the axis of rotation of about 90 m/s. Thermohydrodynamic achievement of the pressure deficit from ambient necessary to sustain such swirls requires that a dry, compressionally heated, non-rotating downdraft of initially tropopause-level air lie within an annulus of rapidly swirling, originally low-level air ascending on a near-moist-adiabatic locus of thermodynamic states. The two-cell structure furnishes an observable parameter possibly accessible to a passively instrumented, geosynchronous meteorological satellite with mesoscale resolution, for early detection of a severe tornado. Accordingly, the low-level turnaround region, in which the surface inflow layer separates to become a free ascending layer and for which inviscid modeling suffices, is examined quantitatively. Preliminary results indicate that swirl overshoot, i.e., swirl speeds in the turnaround region in excess of the maximum achieved in the potential vortex, is modest.

  15. Analytical and Numerical Study of Photocurrent Transients in Organic Polymer Solar Cells

    CERN Document Server

    de Falco, Carlo; Verri, Maurizio; 10.1016/j.cma.2010.01.018

    2012-01-01

    This article is an attempt to provide a self consistent picture, including existence analysis and numerical solution algorithms, of the mathematical problems arising from modeling photocurrent transients in Organic-polymer Solar Cells (OSCs). The mathematical model for OSCs consists of a system of nonlinear diffusion-reaction partial differential equations (PDEs) with electrostatic convection, coupled to a kinetic ordinary differential equation (ODE). We propose a suitable reformulation of the model that allows us to prove the existence of a solution in both stationary and transient conditions and to better highlight the role of exciton dynamics in determining the device turn-on time. For the numerical treatment of the problem, we carry out a temporal semi-discretization using an implicit adaptive method, and the resulting sequence of differential subproblems is linearized using the Newton-Raphson method with inexact evaluation of the Jacobian. Then, we use exponentially fitted finite elements for the spatial...

  16. Analytical calculation of transfers across a cermet for solid oxide fuel cells and electrolyzers

    Science.gov (United States)

    Dumortier, Mikaël; Sanchez, José; Keddam, Michel; Lacroix, Olivier

    2014-02-01

    This work focuses on the calculation of transfers inside a cermet for solid oxide membrane fuel cells and electrolyzers. A differential system of equations presented in a previous work is linearized for low inlet current densities using assumptions that can be checked quantitatively. By integrating the linearized equations, we obtain explicit functions that allow direct calculation of the physical quantities describing the transfers of the process inside the cermet. The functions show good agreement with the values obtained with the non-linearized system. In addition, the model does not require any numerical simulation to be solved and can be implemented in common spread sheets fairly accurately. A remarkable dimensionless number, named A, appears in the demonstration and is used for the calculation of the reaction layer thickness of the cermet, where 99.9% of the charge transfer occurs. This thickness does not depend on inlet current density or on the thickness of the cermet.

  17. Customer Analytics in Iceland: Attitudes and implementation

    OpenAIRE

    Rúrik Karl Björnsson 1987

    2014-01-01

    Analytics are incresingly becoming a hot topic in businesses around the world. More and more companies are implementing analytics to stay ahead of the competition and at the same time increase knowledge of their customer base and market environment. The author was interested in researching how analytics were being implemented in the Icelandic market. Not much is known about how Icelandic companies are using analytics. The author decided to conduct in-depth interviews with twelve companies ...

  18. An Analytical Solution for Exciton Generation, Reaction, and Diffusion in Nanotube and Nanowire-Based Solar Cells.

    Science.gov (United States)

    Bellisario, Darin O; Paulson, Joel A; Braatz, Richard D; Strano, Michael S

    2016-07-21

    Excitonic solar cells based on aligned or unaligned networks of nanotubes or nanowires offer advantages with respect of optical absorption, and control of excition and electrical carrier transport; however, there is a lack of predictive models of the optimal orientation and packing density of such devices to maximize efficiency. Here-in, we develop a concise analytical framework that describes the orientation and density trade-off on exciton collection computed from a deterministic model of a carbon nanotube (CNT) photovoltaic device under steady-state operation that incorporates single- and aggregate-nanotube photophysics published earlier (Energy Environ Sci, 2014, 7, 3769). We show that the maximal film efficiency is determined by a parameter grouping, α, representing the product of the network density and the effective exciton diffusion length, reflecting a cooperativity between the rate of exciton generation and the rate of exciton transport. This allows for a simple, master plot of EQE versus film thickness, parametric in α allowing for optimal design. This analysis extends to any excitonic solar cell with anisotropic transport elements, including polymer, nanowire, quantum dot, and nanocarbon photovoltaics. PMID:27357970

  19. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.

    Science.gov (United States)

    Wang, Xiao; Liedert, Christina; Liedert, Ralph; Papautsky, Ian

    2016-05-21

    Inertial microfluidics has been a highly active area of research in recent years for high-throughput focusing and sorting of synthetic and biological microparticles. However, existing inertial microfluidic devices always rely on microchannels with high-aspect-ratio geometries (channel width w h) to achieve size-based sorting of microparticles and cells. The simple LAR geometry of the device enables successful high-throughput fabrication using R2R hot embossing. With optimized flow conditions and channel dimensions, we demonstrate continuous sorting of a mixture of 15 μm and 10 μm diameter microbeads with >97% sorting efficiency using the low-cost and disposable R2R chip. We further demonstrate size-based sorting of bovine white blood cells, demonstrating the ability to process real cellular samples in our R2R chip. We envision that this R2R hot-embossed inertial microfluidic chip will serve as a powerful yet low-cost and disposable tool for size-based sorting of synthetic microparticles in industrial applications or cellular samples in cell biology research and clinical diagnostics. PMID:27050341

  20. Demonstration of a CMPO based extraction process in hot cells for the separation of minor actinides from fast reactor fuel solution

    International Nuclear Information System (INIS)

    Efficient recovery of minor actinides (MA) from a fast reactor dissolver solution (155 GWd/Te) has been successfully demonstrated using a TRUEX solvent and novel 16-stage ejector mixer settler in hot cells. Stripping of trivalents (Ln (III) + An(III)) from loaded TRUEX solvent by citric acid formulation in a batch mode was performed as a prelude to the demonstration run. Separation of trivalents were quantitative and the extracted trivalents were quantitatively stripped with citric acid formulation. Among the non-lanthanides only ruthenium was co-extracted into the product stream. (author)

  1. Dimensional analysis system for fuel elements experience in hot cells plate format; Sistema de analise dimensional para ensaios de elementos combustiveis em forma de placas em celulas quentes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Orozimbo J.; Dutra Neto, Aimore [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Ailton F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Informatica

    2002-07-01

    This paper describes a system for visual and dimensional analysis of compact-core reactors fuel elements in plate format. The system, composed of a co-ordinated x, y, z computerized table, has to be operative inside of a hot cell for the visual inspection and dimensional measurements of the post irradiated fuel elements. The control method of the x, y, z table axes, the data acquisition and the process control technique using computer, are described. Experimental data handling and the expected future of the project are presented and commented. This work expand previous investigations on a dimensional analysis system carried out by Brazilian Navy Technological Center in Sao Paulo (CTMSP). (author)

  2. Improvement of the efficiency of triple junction n–i–p solar cells with hot-wire CVD proto- and microcrystalline silicon absorber layers

    OpenAIRE

    Stolk, R.L.; Li, H. B. T.; Franken, R.H.; Schuttauf, J.A.; van der Werf, C.H.M.; J.K. Rath; Schropp, R.E.I.

    2008-01-01

    Hot-wire chemical vapour deposition (HWCVD) was applied for the deposition of intrinsic protocrystalline (proto-Si:H) and microcrystalline silicon (μc-Si:H) absorber layers in thin film solar cells. For a single junction μc-Si:H n–i–p cell on a Ag/ZnO textured back reflector (TBR) with a 2.0 μm i-layer, an 8.5% efficiency was obtained, which showed to be stable after 750 h of light-soaking. The short-circuit current density (Jsc) of this cell was 23.4 mA/cm2, with a high open-circuit voltage ...

  3. Inhibitory effect of hot-water extract of quince (Cydonia oblonga) on immunoglobulin E-dependent late-phase immune reactions of mast cells.

    Science.gov (United States)

    Kawahara, Takeshi; Iizuka, Tatsuhiro

    2011-03-01

    We evaluated the effect of a crude hot-water extract (HW) of quince (Cydonia oblonga Miller) fruit on immunoglobulin E (IgE)-dependent late-phase immune reactions of mast cells using in vitro system. Mast cell-like RBL-2H3 cells were treated with quince HW and late-phase reaction was then induced by stimulation with IgE + Antigen. Quince HW reduced the elevation of interleukin-13 and tumor necrosis factor-α expression level. Furthermore, quince HW suppressed these cytokine expressions of mouse bone marrow-derived mast cells (BMMCs), a normal mast cell model. Leukotriene C(4) and prostaglandin D(2) production in BMMCs after 1 and 6 h of stimulation, respectively, were also reduced by treating the cells with quince HW. We found that the induction of intracellular cyclooxygenase (COX)-2 expression but not COX-1 expression in BMMCs was reduced by quince HW. These results suggest that quince HW has an inhibitory effect on broad range of the late-phase immune reactions of mast cells. PMID:21264509

  4. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m3). (author)

  5. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    International Nuclear Information System (INIS)

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried out successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a non-destructive technique to easily carry out the measurement of the internal gas pressure and gas composition (mainly Helium-Xenon mixture, with a small amount of Krypton) of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now 5 bars on the pressure measurement result and 0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results (destructive sampling). Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. The sensor-operating characteristics have not been altered by a two-year exposure in the hot cell conditions. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

  6. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  7. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h-1. For a total throughput of 300 mL.h-1, the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the extraction

  8. Development and Design Considerations for a Suite of New Post-Irradiation Examination Hot Cells to be Constructed at McMaster University

    International Nuclear Information System (INIS)

    McMaster University, Hamilton, Ontario, houses the McMaster Nuclear Reactor (MNR), the highest flux university research reactor in Canada. MNR is a 5 MW(th), light water cooled and moderated, LEU fuelled, pool-type reactor. A single support hot cell also exists but is not suited for PIE. A suite of new PIE cells will be designed, constructed, and installed in room 105 of the Tandem Accelerator Building (TAB). The objective of the capability is materials characterization research at the atomistic level. This paper presents planning, design, and construction considerations associated with the new cells. The project poses a three way contest among limited available space, maximum desired PIE capabilities, and funding (the Canada Foundation for Innovation and the Ontario Ministry for Research and Innovation are jointly funding the project). Maintaining other tenants' use of the TAB complicates design and construction. The concept includes initial sizing of large specimens, such as entire CANDU pressure tubes, elsewhere, plus six new cells in the TAB to perform: receipt and shipping, non-destructive examination, waste management; machining; preparation of mechanical test specimens; mechanical testing; preparation of microscopy specimens/light microscopy; long term mechanical testing; and specimen archives. The first cell is highly shielded, to allow handling of maximum size and activity specimens. The remaining cells will handle smaller specimens, typical of PIE microscopy, and the cells are modular of all steel construction. In-cell capabilities and equipment include: material transfers - input and output; one pair of manipulators; in-cell lifting equipment; in-cell lighting, utilities, fire protection; heating, ventilation, and air conditioning (HVAC) connections; work tables or equipment stands, and specimen preparation and testing equipment (including focused ion beam (FIB) apparatus. A transmission electron microscope (TEM) and scanning electron microscope (SEM

  9. Use of designed experiments for the improvement of pre-analytical workflow for the quantification of intracellular nucleotides in cultured cell lines.

    Science.gov (United States)

    Machon, Christelle; Bordes, Claire; Cros-Perrial, Emeline; Clement, Yohann; Jordheim, Lars Petter; Lanteri, Pierre; Guitton, Jérôme

    2015-07-31

    The present study is focused on the development of a pre-analytical strategy for the quantification of intracellular nucleotides from cultured cell lines. Different protocols, including cell recovery, nucleotide extraction and purification, were compared on a panel of nucleoside mono-, di- and triphosphates from four cell lines (adherent and suspension cells). The quantification of nucleotides was performed using a validated technique with on-line solid-phase extraction coupled with liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS). Designed experiments were implemented to investigate, in a rigorous and limited-testing experimental approach, the influence of several operating parameters. Results showed that the technique used to harvest adherent cells drastically affected the amounts of intracellular nucleotides. Scraping cells was deleterious because of a major leakage (more than 70%) of intracellular nucleotides during scraping. Moreover, some other tested conditions should be avoided, such as using pure methanol as extraction solvent (decrease over 50% of intracellular nucleotides extracted from NCI-H292 cells) or adding a purification step with chloroform. Designed experiments allowed identifying an interaction between the percentage of methanol and the presence of chloroform. The mixture methanol/water (70/30, v/v) was considered as the best compromise according to the nucleoside mono-, di-, or triphosphates and the four cell lines studied. This work highlights the importance of pre-analytical step combined with the cell lines studied associated to sensitive and validated assay for the quantification of nucleotides in biological matrices. PMID:26094139

  10. Analgesic use and risk of renal cell carcinoma: A case-control, cohort and meta-analytic assessment.

    Science.gov (United States)

    Karami, Sara; Daughtery, Sarah E; Schwartz, Kendra; Davis, Faith G; Ruterbusch, Julie J; Wacholder, Sholom; Graubard, Barry I; Berndt, Sonja I; Hofmann, Jonathan N; Purdue, Mark P; Moore, Lee E; Colt, Joanne S

    2016-08-01

    Analgesics are the most commonly consumed drugs worldwide. Evidence that analgesics increase kidney cancer risk has been mixed. We investigated the association between renal cell carcinoma (RCC) and analgesic use in a large population-based case-control study and a post-trial observational cohort study. Findings were used to update a recent meta-analytic review. We analyzed data from 1,217 RCC cases and 1,235 controls in the US Kidney Cancer Study and 98,807 participants in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO: n = 137 RCCs). Self-reported acetaminophen, aspirin and nonsteroid anti-inflammatory drug (NSAID) use and duration information was assessed in relation to RCC. For the US Kidney Cancer Study, we calculated odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression. For PLCO, we computed hazard ratios (HRs) and 95%CIs using Cox regression. Among case-control participants, RCC risk was associated with over-the-counter acetaminophen use (OR = 1.35, 95%CI = 1.01-1.83). There was a positive trend with increasing duration (p-trend = 0.01), with a two-fold risk for use ≥10 years (OR = 2.01, 95%CI = 1.30-3.12). No association with prescription acetaminophen use was detected. In PLCO, acetaminophen use was also associated with increased RCC risk (HR = 1.68, 95%CI = 1.19-2.39), although elevated risk was absent among the few long-term users. No association with RCC risk was detected for aspirin or NSAIDs use in either study. An association between acetaminophen use and kidney cancer was supported by meta-analytic cohort (n = 4; summary relative risk = 1.34; 95%CI = 1.13-1.59; p-heterogeneity  = 0.40) and case-control (n = 9, summary OR = 1.20; 95%CI = 1.01-1.42; p-heterogeneity  = 0.05) findings. In brief, acetaminophen use may increase the risk of developing RCC. PMID:27009534

  11. Critical Appraisal of Acuros XB and Anisotropic Analytic Algorithm Dose Calculation in Advanced Non-Small-Cell Lung Cancer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fogliata, Antonella, E-mail: afc@iosi.ch [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2012-08-01

    Purpose: To assess the clinical impact of the Acuros XB algorithm (implemented in the Varian Eclipse treatment-planning system) in non-small-cell lung cancer (NSCLC) cases. Methods and Materials: A CT dataset of 10 patients presenting with advanced NSCLC was selected and contoured for planning target volume, lungs, heart, and spinal cord. Plans were created for 6-MV and 15-MV beams using three-dimensional conformal therapy, intensity-modulated therapy, and volumetric modulated arc therapy with RapidArc. Calculations were performed with Acuros XB and the Anisotropic Analytical Algorithm. To distinguish between differences coming from the different heterogeneity management and those coming from the algorithm and its implementation, all the plans were recalculated assigning Hounsfield Unit (HU) = 0 (Water) to the CT dataset. Results: Differences in dose distributions between the two algorithms calculated in Water were <0.5%. This suggests that the differences in the real CT dataset can be ascribed mainly to the different heterogeneity management, which is proven to be more accurate in the Acuros XB calculations. The planning target dose difference was stratified between the target in soft tissue, where the mean dose was found to be lower for Acuros XB, with a range of 0.4% {+-} 0.6% (intensity-modulated therapy, 6 MV) to 1.7% {+-} 0.2% (three-dimensional conformal therapy, 6 MV), and the target in lung tissue, where the mean dose was higher for 6 MV (from 0.2% {+-} 0.2% to 1.2% {+-} 0.5%) and lower for 15 MV (from 0.5% {+-} 0.5% to 2.0% {+-} 0.9%). Mean doses to organs at risk presented differences up to 3% of the mean structure dose in the worst case. No particular or systematic differences were found related to the various modalities. Calculation time ratios between calculation time for Acuros XB and the Anisotropic Analytical Algorithm were 7 for three-dimensional conformal therapy, 5 for intensity-modulated therapy, and 0.2 for volumetric modulated arc therapy

  12. Amorphous-silicon module hot-spot testing

    Science.gov (United States)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  13. Analytical Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...

  14. Analytical testing

    Science.gov (United States)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  15. Examination of irradiated PHWR fuel pins subjected to isothermal heating at 700oC-900oC inside the hot cells

    International Nuclear Information System (INIS)

    High temperature deformation behaviour of irradiated zircaloy-2 cladding has been studied by carrying out isothermal heating of irradiated PHWR fuel pins, having burnup up to 15000MWd/tU at 700°C -900°C inside hot-cells. Post-test examination included visual examination, leak testing, dimension measurement on the tested fuel pins and optical and SEM examination of cladding sections taken from the ballooned and failed fuel pins. The specific aspects investigated in these experiments included cladding tube deformation and ballooning-failure as function of cladding temperature, internal gas pressure and burn up of the fuel pin and microstructural aspects of high temperature creep deformation and mode of cladding failure. (author)

  16. Effects of temperature, triazole and hot-pressing on the performance of TiO2 photoanode in a solid-state photoelectrochemical cell

    International Nuclear Information System (INIS)

    The photocurrent of hydrogen generating solid-state photoelectrochemical cell utilising a polybenzimidazole proton-conducting membrane and gaseous anode reactants has been enhanced by operation at higher temperatures. With a bias of 0 V for example, photocurrent increased from 15 to 30 μA/cm2 on moving from 25 °C to 45 °C. The increase in photocurrent, which was limited by the dehydration of the cell, was shown to have contribution from improved electrode kinetics. Modification of TiO2 surface with triazole, a conjugated heterocyclic compound, led to significant increase in photocurrent up to 4 fold increase at 0 V and 25 °C. This was attributed to improved separation of photogenerated charge carriers, as confirmed by correspondingly increased carrier lifetimes from 50 ns to 90 ns for triazole-modified TiO2. Assembly of the photoelectrochemical cell by hot-pressing induced a 0.3 eV red shift in optical absorption edge of TiO2, in agreement with a shift of its valence band maximum to higher binding energy

  17. Fermion damping rate in a hot medium

    International Nuclear Information System (INIS)

    In hot systems, fermions coupled to a massless boson field acquire a finite lifetime. This nonzero spectral width is calculated self-consistently for the case of scalar, vector and pseudoscalar coupling: The one-loop Fock diagram is evaluated with an effective propagator. We find solutions that are analytical in the coupling constant, but not analytical in the temperature parameter around T=0. (orig.)

  18. Fermion damping rate in a hot medium

    Energy Technology Data Exchange (ETDEWEB)

    Henning, P.A. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Sollacher, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). Forschungsbereich Theorie; Weigert, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). Forschungsbereich Theorie

    1994-09-01

    In hot systems, fermions coupled to a massless boson field acquire a finite lifetime. This nonzero spectral width is calculated self-consistently for the case of scalar, vector and pseudoscalar coupling: The one-loop Fock diagram is evaluated with an effective propagator. We find solutions that are analytical in the coupling constant, but not analytical in the temperature parameter around T=0. (orig.)

  19. Fermion damping rate in a hot medium

    OpenAIRE

    Henning, P. A.; Sollacher, R.; Weigert, H.

    1994-01-01

    In principle every excitation acquires a finite lifetime in a hot system. This nonzero spectral width is calculated self-consistently for massive fermions coupled to massless scalar, vector and pseudoscalar bosons. It is shown that the self-consistent summation of the corresponding Fock diagram for fermions eliminates all infrared divergences although the bosons are not screened at all. Our solutions for the fermion damping rate are analytical in the coupling constant, but not analytical in t...

  20. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  1. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.

    OpenAIRE

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    2015-01-01

    The absorbing kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising for future thin film solar cells. The material is non-toxic, the elements abundant, and it has a high absorption coefficient. These properties make CZTS a potential candidate also for large-scale applications. Here, solution processing allows for comparatively fast and inexpensive fabrication, and also holds the record efficiency in the kesterite family. Unfortunately, the record cell is deposited with a highly toxi...

  2. Game Analytics

    DEFF Research Database (Denmark)

    Seif El-Nasr, Magy; Drachen, Anders; Canossa, Alessandro

    2013-01-01

    Game Analytics has gained a tremendous amount of attention in game development and game research in recent years. The widespread adoption of data-driven business intelligence practices at operational, tactical and strategic levels in the game industry, combined with the integration of quantitative...... measures in user-oriented game research, has caused a paradigm shift. Historically, game development has not been data-driven, but this is changing as the benefits of adopting and adapting analytics to inform decision making across all levels of the industry are becoming generally known and accepted....

  3. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  4. TRUEX hot demonstration

    International Nuclear Information System (INIS)

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility

  5. Analytical modeling and simulation of electrochemical charge/discharge behavior of Si thin film negative electrodes in Li-ion cells

    Science.gov (United States)

    Jagannathan, M.; Chandran, K. S. Ravi

    2014-02-01

    Physically-based analytical models that provide insights into the diffusion and/or interface charge transfer effects in bulk (lithiating/delithiating) electrodes are needed to truly assess the performance/limitations of electrode materials for Li-ion batteries. In this context, an analytical modeling framework is constructed here to predict the electrochemical charge-discharge characteristics during lithiation and delithiation of solid amorphous Si (a-Si) thin film electrodes. The framework includes analytical expressions that satisfy Fick's second law for Li transport and the requisite flux boundary conditions of lithiation and delithiation steps. The expressions are derived here by the method of separation of variables. They enable the determination of transient Li concentration profiles in the thin film electrode as a function of state of charge/discharge. The time-dependent electrode surface concentrations (at the electrode-electrolyte interface) obtained from these profiles were used to determine the activation overpotentials and thus, the non-equilibrium cell potentials, as a function of state of charge/discharge using Butler-Volmer kinetics. The simulated charge/discharge characteristics agreed well with the experimental data of a-Si thin film electrodes obtained at different C-rates. The model offers insights into how the charge-discharge behavior is controlled by diffusion limitation within electrode and/or the activation overpotentials at the interface. The analytical framework is also shown to predict successfully the hysteretic behavior of lithiation/delithiation voltage curves.

  6. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for rs approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  7. Analytical Searching.

    Science.gov (United States)

    Pappas, Marjorie L.

    1995-01-01

    Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…

  8. On the burn topology of hot-spot-initiated reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory; Zimmermann, Bjorn [WOLFRAM RESEARCH INC.; Nichols, Albert L [LLNL

    2009-01-01

    We determine the reaction progress function for an ideal hot spot model problem. The considered problem has an exact analytic solution that can derived from a reduction of Nichols statistical hot spot model. We perform numerical calculations to verify the analytic solution and to illustrate the error realized in real, finite systems. We show how the baseline problem, which does not distinguish between the reactant and product densities, can be scaled to handle general cases for which the two densities differ.

  9. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  10. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver...

  11. Modelling of a solid oxide fuel cell CHP system coupled with a hot water storage tank for a single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan;

    2015-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is...

  12. Structural and photoelectrical characterization of hot wall deposited CuInSe2 thin films and the fabrication of CuInSe2 based solar cells

    International Nuclear Information System (INIS)

    Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 nm. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as CdS, CdSe, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm2 white light under AM1 conditions

  13. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids

  14. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    water balance for all current densities. Therefore, only one curve-fit equation will be required. The voltage curve E0 is an arbitrary calibration curve, and this can be conveniently chosen to be the voltage signal for a dry hydrogen stream at a given temperature and various flow rates which can be......In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... summarizes the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream...

  15. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  16. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  17. Analytical chemistry

    International Nuclear Information System (INIS)

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  18. Hot Fuel Examination Facility's neutron radiography reactor

    International Nuclear Information System (INIS)

    Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell

  19. Construction of a multicolor GeneScan analytical system to detect clonal rearrangements of immunoglobulin and T cell receptor genes in canine lymphoid tumors.

    Science.gov (United States)

    Goto-Koshino, Yuko; Mochizuki, Hiroyuki; Sato, Masahiko; Nakashima, Ko; Hiyoshi, Saaya; Fujiwara-Igarashi, Aki; Maeda, Shingo; Nakamura, Kenji; Uchida, Kazuyuki; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2015-05-15

    Polymerase chain reaction (PCR) amplification to detect immunoglobulin heavy chain (IgH) and T cell receptor γ-chain (TCRγ) gene rearrangements has recently become widely used as part of the diagnostic strategy for lymphoid tumors in dogs. In this study, we constructed a multicolor GeneScan analytical system to improve the sensitivity and resolution of the clonality analysis of antigen receptor gene rearrangements in dogs. We used 7 reactions per sample, with 2 PCR conditions, to amplify IgH/TCRγ and control genes. By using multicolor-labeled primers, these 7 PCR products could be combined into 3 tubes before capillary electrophoresis. Clonal rearrangement of the IgH/TCRγ genes was detected in 93.3% of dogs with multicentric lymphoma and 84.6% of dogs with gastrointestinal lymphoma. Detection sensitivity of the clonally expanded cells in the background of normal peripheral blood mononuclear cells was 1-10%. The multicolor GeneScan analytical system developed here may prove to be helpful for the diagnosis of lymphoid tumors in dogs. PMID:25840823

  20. Development of a gas trapping system for Xenon and Krypton fission products throughout dissolution of irradiated targets and fuels in hot cells

    International Nuclear Information System (INIS)

    In the frame of full characterisation of irradiated targets and/or nuclear fuels, the analysis of the fission products including gases is required. Nowadays at Atalante laboratory thanks to the specific dissolution process of irradiated targets and fuels used, gaseous forms of iodine or carbon can be quantitatively desorbed from dissolution solution and trapped for isotopic analyses. This was until now not achievable for krypton and xenon linked to dissolution step. As future studies will need such data, a gas trapping system for these rare gases is under development. Up to now, two trapping ways were retained and evaluated: one where gases are physically trapped inside a storage capacity and the other one where xenon and krypton are chemically absorbed into organic oils or n-heptane. These systems have to take into account the requirement of previous gas traps (iodine and carbon dioxide). Moreover the Kr and Xe quantities are usually quite small and isotopic proportion data have a great interest. Thus this trapping system must avoid interferences with Xe and Kr air components (airtightness) and loss (adsorption, iodine traps). These constraints are defining the materials and the design that will be used. In the present paper, the developed experimental loops are presented together with the methodology and the first results obtained during the 'cold' (i.e. not in hot cells) qualification and calibration phases. (authors)

  1. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.

    2016-09-01

    Present work is devoted to the analytical investigation of the bifurcation structure of special class of nonstationary low-energy regimes emerging in the locally resonant unit-cell model. System under consideration comprises an outer mass with internal rotator and subject to the 2D, nonlinear local potential. These regimes are characterized by the slow, purely rotational motion of the rotator synchronized with the periodic energy beats between the axial and the lateral vibrations of the outer element. Thus the angular speed of the rotator and the beating frequency of the outer element satisfy the 1:2 resonance condition. In the present study these regimes are referred to as regimes of synchronous nonlinear beats (RSNB). Using the regular muti-scale analysis in the limit of low energy excitation we derive the slow-flow model. To showcase the evolution of RSNBs we used the special Poincaré map technique applied on the slow-flow model. Results of the Poincaré sections unveiled some interesting local bifurcations undergone by these regimes. Further analysis of the slow-flow model enabled us to describe the RSNBs analytically as well as exposed their entire bifurcation structure. The bifurcation analysis has shown the coexistence of several branches of RSNBs corresponding to the regimes of weak and strong, two-dimensional, recurrent energy channeling. We substantiate the results of the analytical study with numerical simulations of the full model and find them to be in the very good agreement.

  2. Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer

    OpenAIRE

    Doseeva, Victoria; Colpitts, Tracey; Gao, Grace; Woodcock, Juliana; Knezevic, Vladimir

    2015-01-01

    Objectives “PAULA’s” test (Protein Assays Utilizing Lung cancer Analytes) is a novel multiplex immunoassay blood test that incorporates both tumor antigens and autoantibodies to determine the risk that lung cancer (LC) is present in individuals from a high-risk population. The test’s performance characteristics were evaluated in a study using 380 retrospective clinical serum samples. Methods PAULA’s test is performed on the Luminex xMAP technology platform, and detects a panel of 3 tumor anti...

  3. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    Science.gov (United States)

    Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073

  4. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

    Directory of Open Access Journals (Sweden)

    Richard B Lanman

    Full Text Available Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999% enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.

  5. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Science.gov (United States)

    Maslova, O.; Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P.

    2015-09-01

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  6. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  7. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV

  8. Analytical techniques

    International Nuclear Information System (INIS)

    The paper concerns the physical principles behind the analytical techniques employing high energy ion microbeams, with special attention to features that affect their use with microbeams. Particle-induced x-ray emission (PIXIE) is discussed with respect to X-ray production, thick-target PIXIE, a microbeam PIXIE system, sensitivity, and microbeam PIXIE applications. An explanation of nuclear reaction analysis (NRA) is given for NRA with charged particle detection, NRA with neutron detection and NRA with gamma detection. The essentials of Rutherford back scattering (RBS) are given, along with the elastic recoil detection analysis, which has very close connections with RBS but was introduced much more recently. Finally a comparison of the microbeam's capability with those of its main competitors is presented. (UK)

  9. Documentation associated with the shipping of Hot-Cell Waste from WESF 225-B to the 200W (218-W-3AE) burial grounds under shipment number RSR-37338

    International Nuclear Information System (INIS)

    The purpose of this report is to compile the records generated during the Packaging and Shipping of WESF Hot-Cell Waste from the 225-B Facility to 200W (218-W-3AE) burial grounds. A total of six 55-gallon drums were packaged and shipped using the Chem-Nuc Cask in accordance with WHC-SD-TP-SARP-025, Rev.0 ''Safety Analysis Report for Packaging (Onsite) for Type B Material in the CNS-14-215H Cask''

  10. Monitoring, recording and balance assessment of the release of radioactive substances via the exhaust air and waste water of Siemens' Hot Cell Facility at Seligenstaedter Strasse 100 in Karlstein, Germany

    International Nuclear Information System (INIS)

    Annual radioactive releases from Siemens' hot cell facility in Karlstein, Germany, via exhaust air and waste water are far lower than the permitted release values of 2 x 106 Bq (via water) and 5 x 104 Bq (via air). The equipment, procedures and methods applied at Karlstein for monitoring releases, recording data and keeping the required activity balance sheet are described in the report. (orig.)

  11. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    Directory of Open Access Journals (Sweden)

    Gunetti Monica

    2012-05-01

    Full Text Available Abstract Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells and under five percent (viable cells. The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a

  12. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    International Nuclear Information System (INIS)

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium Cooled Pebble Bed Test Blanket Module- (HCPB-TBM) System is developed. The TBM test schedule foresees four different campaigns for simulation of DEMO relevant conditions, campaign requires a dedicate TBM. Therefore a concept for TBM integration into ITER is designed with attention to simplify the mounting/dismounting operations. This paper presents the status of this concept with regard to the operations in hot cell required to install a new TBM into an equatorial TBM Port Plug (PP). This includes the establishment of the connection for the attachment, supply- and diagnostic lines in the environment of the interface (IF 1) between the TBM rear part and the PP backside shield. The connection of IF 1 has to be designed to cope with a temperature difference between TBM and PP (∝200 K) and the EM-loads during normal operation and disruption scenarios. The reference attachment concept based on shear keys and flexible cartridges is revised to cope with new conditions on the load and at the interface to the PP. According to the latest results of EM analysis, a radial component of the Maxwell forces (due to the ferromagnetic structural material) has been identified as an additional challenging load for the attachment. Furthermore, the replacing operations at IF 1 are influenced by the design of the PP; the recent ITER proposal based on a removable back side shield allows access to the IF 1 from the periphery after the frame of the PP surrounding the TBM is removed. As for the mechanical attachment, the tools and operations for connection of the TBM supply lines (Helium-, Purge- and measurement lines for different purpose depending on the test schedule) are strongly influenced by the restrictions to access IF 1, too. Dismantling of the frame would allow direct access to the interface by e.g. orbital welding tools. The concept for connection of the TBM

  13. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, H.; Boccaccini, L.V.; Roccella, R. [Forschungszentrum Karlsruhe (Germany). Euratom Association; Tesini, A.; Bede, O. [ITER International Team-Cadarache Joint Work Site, Saint-Paul-lez-Durance (France)

    2007-07-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium Cooled Pebble Bed Test Blanket Module- (HCPB-TBM) System is developed. The TBM test schedule foresees four different campaigns for simulation of DEMO relevant conditions, campaign requires a dedicate TBM. Therefore a concept for TBM integration into ITER is designed with attention to simplify the mounting/dismounting operations. This paper presents the status of this concept with regard to the operations in hot cell required to install a new TBM into an equatorial TBM Port Plug (PP). This includes the establishment of the connection for the attachment, supply- and diagnostic lines in the environment of the interface (IF 1) between the TBM rear part and the PP backside shield. The connection of IF 1 has to be designed to cope with a temperature difference between TBM and PP ({proportional_to}200 K) and the EM-loads during normal operation and disruption scenarios. The reference attachment concept based on shear keys and flexible cartridges is revised to cope with new conditions on the load and at the interface to the PP. According to the latest results of EM analysis, a radial component of the Maxwell forces (due to the ferromagnetic structural material) has been identified as an additional challenging load for the attachment. Furthermore, the replacing operations at IF 1 are influenced by the design of the PP; the recent ITER proposal based on a removable back side shield allows access to the IF 1 from the periphery after the frame of the PP surrounding the TBM is removed. As for the mechanical attachment, the tools and operations for connection of the TBM supply lines (Helium-, Purge- and measurement lines for different purpose depending on the test schedule) are strongly influenced by the restrictions to access IF 1, too. Dismantling of the frame would allow direct access to the interface by e.g. orbital welding tools. The concept for connection of

  14. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  15. Determination of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Electrochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques

    Science.gov (United States)

    Coutanceau, C.; Baranton, S.; Lamy, C.

    There is now a great interest in developing different kinds of fuel cells for several applications (stationary electric power plants, transportation, portable electronic devices). For many applications, hydrogen is the most convenient fuel, but it is not a primary fuel, so that it has to be produced from different sources: water, fossil fuels (natural gas, hydrocarbons, etc.), biomass resources, etc. When produced from fossil fuel and biomass resources, hydrogen gas contains a non negligible amount of CO, which acts as a poisoning species for platinum electrocatalysts. Other fuels, particularly alcohols, which are liquid under ambient temperature and pressure, are more convenient due to the easiness of their handling and distribution and high theoretical energy density (6 to 8 kWh kg-1, for methanol and ethanol, respectively). Direct Methanol Fuel Cells (DMFCs) and Direct Ethanol Fuel Cells (DEFCs) are based on the Proton Exchange Membrane Fuel Cell (PEMFC) system, in which hydrogen is replaced by the alcohol. Moreover, due to the presence of carbon monoxide, the issues for PEMFCs working with reformate gas are close to those met in Direct Alcohol Fuel Cells (DAFCs), where the dissociative adsorption of alcohol leads to the formation of adsorbed CO species.

  16. Analytical methods for the extraction and identification of secondary metabolite production in 'in vitro' plant cell cultures.

    Science.gov (United States)

    Bertoli, Alessandra; Ruffoni, Barbara; Pistelli, Laura; Pistelli, Luisa

    2010-01-01

    The production of plant secondary metabolites by in vitro culture is one of the most challenging and thrilling field of recent scientific researches. In the few last years, pharmaceutical and food industry demand in phytochemicals has increased steadily. Therefore, the establishment of in vitro plant protocols has to be monitored by phytochemical investigation of their selected extracts in order to supply standardized raw material. In this chapter, the advantages and disadvantages of some modem techniques have been described for the sampling, extraction and analysis ofthe invitro plants and derivatives. Depending on the volatile or nonvolatile substances produced by in vitro plant raw material, different kinds of laboratory facilities are needed for the extraction and quali-quantitative analysis. Recent extraction technology such as accelerated solvent extraction or microwave assisted extraction in combination with hyphenated techniques such as gas chromathography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) represent a modern approach to perform fast and reproducible analytical methods for the quality control of secondary metabolite production in 'in vitro' plant material. PMID:21520717

  17. Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells.

    Science.gov (United States)

    Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius

    2014-01-13

    Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm. PMID:24922000

  18. Effects of hot liquid-water treatment on local proton conductivity at surfaces of sulfonated poly(arylene ketone) block copolymer membrane for fuel cells studied by current-sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Proton-conductive areas on SPK-bl-1 surfaces were investigated by current-sensing AFM. • The distributions of proton-conductive spots on the substrate and air sides were different. • After the hot-water treatment, the surface morphology changed, and the surface conductivity increased. • After the hot water treatment, the bulk structure, water uptake, and conductivity did not change. • The relationship between the MEA conditioning and the hot-water treatment was discussed. - Abstract: Microscopic proton conductivity at surfaces of a hydrocarbon-type polymer electrolyte membrane of sulfonated poly(arylene ketone) block copolymers (SPK-bl-1) was investigated by current-sensing atomic force microscopy (CS-AFM) under a hydrogen atmosphere. The distributions of proton-conductive regions on the SPK-bl-1 membrane surfaces were different on two surface sides of the membrane: the substrate side and the air side after being cast on a poly(ethylene terephthalate) substrate. After a liquid-water treatment of the membrane at 60 °C, the surface morphology of both sides changed. The proton-conductive area and the “pseudo current density” increased especially on the substrate side, and the difference between two sides of the membrane became very small. The scanning transmission electron microscopy inside the membrane showed no structural change after the hot-water treatment, and the water uptake and conductivity of the membrane were also unchanged. This hot liquid-water treatment activating the membrane surfaces should be related to the conditioning processes of the membrane-electrode assemblies of polymer electrolyte fuel cells

  19. Analytical Estimate of Open-Circuit Voltage of a Schottky-Barrier Solar Cell Under High Level Injection

    Directory of Open Access Journals (Sweden)

    Pramila Mahala

    2011-01-01

    Full Text Available The open-circuit voltage developed across a Schottky-Barrier (SB solar cell was theoretically modeled to estimate it under high level injection conditions. An Open-circuit voltage (Voc of 0.709 V was obtained for specific metal/n-Si SB solar cell. A substantial increase of 42.6 % in Voc was noticed while comparing our result with that previously calculated in low level injection conditions. Four different metals suitable for making Schottky contact with n-Si were investigated and calculated the variation of Voc with different values of doping concentrations in the semiconductor. The effect of surface recombination velocities (SRV of charge carriers on Voc was also estimated at such high level injections.

  20. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  1. Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines : HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study.

    Science.gov (United States)

    Ito, Hiromi; Kaji, Hiroyuki; Togayachi, Akira; Azadi, Parastoo; Ishihara, Mayumi; Geyer, Rudolf; Galuska, Christina; Geyer, Hildegard; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Karlsson, Niclas G; Jin, Chunsheng; Kato, Koichi; Yagi, Hirokazu; Kondo, Sachiko; Kawasaki, Nana; Hashii, Noritaka; Kolarich, Daniel; Stavenhagen, Kathrin; Packer, Nicolle H; Thaysen-Andersen, Morten; Nakano, Miyako; Taniguchi, Naoyuki; Kurimoto, Ayako; Wada, Yoshinao; Tajiri, Michiko; Yang, Pengyuan; Cao, Weiqian; Li, Hong; Rudd, Pauline M; Narimatsu, Hisashi

    2016-06-01

    The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples. PMID:26511985

  2. Finding out egyptian gods' secret using analytical chemistry: biomedical properties of egyptian black makeup revealed by amperometry at single cells.

    Science.gov (United States)

    Tapsoba, Issa; Arbault, Stéphane; Walter, Philippe; Amatore, Christian

    2010-01-15

    Lead-based compounds were used during antiquity as both pigments and medicines in the formulation of makeup materials. Chemical analysis of cosmetics samples found in Egyptians tombs and the reconstitution of ancient recipes as reported by Greco-Roman authors have shown that two non-natural lead chlorides (laurionite Pb(OH)Cl and phosgenite Pb(2)Cl(2)CO(3)) were purposely synthesized and were used as fine powders in makeup and eye lotions. According to ancient Egyptian manuscripts, these were essential remedies for treating eye illness and skin ailments. This conclusion seems amazing because today we focus only on the well-recognized toxicity of lead salts. Here, using ultramicroelectrodes, we obtain new insights into the biochemical interactions between lead(II) ions and cells, which support the ancient medical use of sparingly soluble lead compounds. Submicromolar concentrations of Pb(2+) ions are shown to be sufficient for eliciting specific oxidative stress responses of keratinocytes. These consist essentially of an overproduction of nitrogen monoxide (NO degrees ). Owing to the biological role of NO degrees in stimulating nonspecific immunological defenses, one may argue that these lead compounds were deliberately manufactured and used in ancient Egyptian formulations to prevent and treat eye illnesses by promoting the action of immune cells. PMID:20030333

  3. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer

    Directory of Open Access Journals (Sweden)

    B. A. S. Jaeger

    2014-01-01

    Full Text Available Background. Evidence is accumulating that circulating tumor cells (CTC out of peripheral blood can serve as prognostic marker not only in metastatic but also in early breast cancer (BC. Various methods are available to detect CTC. Comparisons between the different techniques, however, are rare. Material and Methods. We evaluate two different methods for CTC enrichment and detection in primary BC patients: the FDA-approved CellSearch System (CSS; Veridex, Warren, USA and a manual immunocytochemistry (MICC. The cut-off value for positivity was ≥1 CTC. Results. The two different nonoverlapping patient cohorts evaluated with one or the other method were well balanced regarding common clinical parameters. Before adjuvant CHT 21.1% (416 out of 1972 and 20.6% (247 out of 1198 of the patients were CTC-positive, while after CHT 22.5% (359 out of 1598 and 16.6% (177 out of 1066 of the patients were CTC-positive using CSS or MICC, respectively. CTC positivity rate before CHT was thus similar and not significantly different (P=0.749, while CTC positivity rate immediately after CHT was significantly lower using MICC compared to CSS (P<0.001. Conclusion. Using CSS or MICC for CTC detection, we found comparable prevalence of CTC before but not after adjuvant CHT.

  4. Experimental and analytical studies for the validation of HTR-VGD and primary cell passive decay heat removal. Supplement. Measurements

    International Nuclear Information System (INIS)

    The alternative concept for a modular HTR-reactor design by Siempelkamp, Krefeld, using a prestressed cast iron vessel (VGD) combined with a cast iron/concrete module for the primary cell with integrated passive decay heat removal system was fully qualified with respect to operational and accidental thermal loads. The main emphasis was to confirm and validate the passive decay heat removal capability. An experimental facility (INWA) was designed, instrumented and operated with an appropriate electrical heating system simulating steady-state operational and transient accidental thermal loads. The experiments were accompanied by extensive computations concerning the combination of conductive, radiative and convective energy transport mechanisms in the different components of the VGD/primary cell structures, as well as elastic-plastic stress analyses of the VGD. In addition, a spectrum of potential alternatives for passive energy removed options have been parametrically examined. The experimental data clearly demonstrate that the proposed Siempelkamp-design is able to passively and safely remove the decay heat for operational and accidental conditions without invalidating technological important thermal limits. This also holds in case of failures of both the natural convection system and ultimate heat sink by outside concrete water film cooling. (orig./HP)

  5. Experimental and analytical studies for the validation of HTR-VGD and primary cell passive decay heat removal. Supplement. Calculations

    International Nuclear Information System (INIS)

    The alternative concept for a modular HTR-reactor design by Siempelkamp, Krefeld, using a prestressed cast iron vessel (VGD) combined with a cast iron/concrete module for the primary cell with integrated passive decay heat removal system was fully qualified with respect to operational and accidental thermal loads. The main emphasis was to confirm and validate the passive decay heat removal capability. An experimental facility (INWA) was designed, instrumented and operated with an appropriate electrical heating system simulating steady-state operational and transient accidental thermal loads. The experiments were accompanied by extensive computations concerning the combination of conductive, radiative and convective energy transport mechanisms in the different components of the VGD/primary cell structures, as well as elastic-plastic stress analyses of the VGD. In addition, a spectrum of potential alternatives for passive energy removed options have been parametrically examined. The experimental data clearly demonstrate that the proposed Siempelkamp-design is able to passively and safely remove the decay heat for operational and accidental conditions without invalidating technological important thermal limits. This also holds in case of failures of both the natural convection system and ultimate heat sink by outside concrete water film cooling. (orig./HP)

  6. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences

    CERN Document Server

    Komacek, Thaddeus D

    2016-01-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here we present a three-dimensional model that explains this relationship, in order to shed insight on the processes that control heat redistribution in tidally-locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside-nightside temperature differences over a range of equilibrium temperature, atmospheric composition, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. This analytic theory shows that the longitudinal propagation of waves mediates dayside-nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth's tropics. These waves can be damped in hot Jupiter atmospheres by either r...

  7. Ablation driven by hot electrons in shock ignition

    Science.gov (United States)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.; Zhao, Y. T.

    2016-03-01

    An analytical model for the ablation driven by hot electrons is developed. The hot electrons are assumed to carry on the totality of the absorbed laser energy. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front. To achieve this goal for high laser intensities a short enough laser wavelength is required. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloud are found in terms of the laser and target parameters.

  8. Biomineralization of pisoliths in hot springs

    International Nuclear Information System (INIS)

    Biological activity can produce complex patterned structures in accretionary carbonate spheres (pisoliths) from hot springs. Pisoliths from a few millimeters to 50 mm diameter were collected from a geyser at the high-salinity Arima Hot Springs near Kobe, Japan. High-resolution electron microscope images show that microorganisms produced concentric laminar layers of aragonite alternating with Si- and Fe-rich layers. STEM elemental distribution maps show that the cementation of aragonite is associated with NaCl-rich bacterial cells and elevated phosphorous and sulfur concentrations. The filamentous microbes build the concentric framework for mineral laminae with a web-like network of microbial strands. The intricate patterns of mineralogical and bacterial variation in the pisoliths correlate with the change of water chemistry in the hot spring. These patterns could improve our understanding of nano-scale biomineralization. In addition, the terrestrial hot spring pisoliths might be a counterpart of the tiny spherules recently found on Mars

  9. Future analytical provision - Relocation of Sellafield Ltd Analytical Services Laboratory

    International Nuclear Information System (INIS)

    Sellafield Ltd Analytical Services provide an essential view on the environmental, safety, process and high hazard risk reduction performances by analysis of samples. It is the largest and most complex analytical services laboratory in Europe, with 150 laboratories (55 operational) and 350 staff (including 180 analysts). Sellafield Ltd Analytical Services Main Laboratory is in need of replacement. This is due to the age of the facility and changes to work streams. This relocation is an opportunity to -) design and commission bespoke MA (Medium-Active) cells, -) modify HA (High-Active) cell design to facilitate an in-cell laboratory, -) develop non-destructive techniques, -) open light building for better worker morale. The option chosen was to move the activities to the NNL Central laboratory (NNLCL) that is based at Sellafield and is the UK's flagship nuclear research and development facility. This poster gives a time schedule

  10. Detection of ''hot particles''

    International Nuclear Information System (INIS)

    Activities for this project include systematic analysis of the specialized literature and screening of the various subject-specific reports of studies performed in the CIS; identification of open questions, particularly relating to the ''hot particle'' measuring methods. Investigation of unresolved questions in connection with the measuring techniques and uncertainties resulting from inhomogenous radioactivity distributions due to the ''hot particles''; testing of the major measuring methods for assessment of error potentials due to ''hot particles'' in the material; cost/benefit analysis with respect to the relation of technical efforts/expense and results obtained with the various measuring techniques. (orig./CB)

  11. Test methods for evaluating hot cracking: Review and perspective

    International Nuclear Information System (INIS)

    The phenomenon of hot cracking is described and discussed, and criteria for tests to assess hot cracking are elucidated. The historical development of hot cracking tests is traced from the 1930s to present, with categorization of tests into several types. It is noted that the number of tests developed continues to increase dramatically. The number of literature citations also increases with time, with few popular tests receiving a major share of interest. Predominant countries of origin of both tests and citations shift with time, and a few journals account for most of the published information. Reviews of hot cracking are reviewed, and it is predicted that modeling and other developing analytical techniques will contribute greatly to an increase in our understanding of hot cracking. 30 refs., 10 figs., 1 tab

  12. Nuclear Hot Spot Factor of JMTR-LEU core

    International Nuclear Information System (INIS)

    The core conversion from MEU fuel to LEU fuel of the JMTR, a 50 MW light water moderated and cooled tank type reactor using ETR-type fuel, is scheduled in 1993. As a part of the safety analyses for JMTR LEU Core, the investigation of the Hot Spot Factor was carried out. This report describes the analytical methods and results of the Nuclear Hot Spot Factor of the Hot Spot Factor to be used in the thermohydraulic design and safety analysis of JMTR LEU Core. Factors of each compose of Nuclear Hot Spot Factor, which are based on neutronic calculations, were investigated. The maximum Nuclear Hot Spot Factor was 3.14. (author)

  13. Reactor hot spot analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  14. In hot water, again

    Science.gov (United States)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  15. Hot Air Engines

    OpenAIRE

    P. Stouffs

    2011-01-01

    Invented in 1816, the hot-air engines have known significant commercial success in the nineteenth century, before falling into disuse. Nowadays they enjoy a renewed interest for some specific applications. The "hot-air engines" family is made up of two groups: Stirling engines and Ericsson engines. The operating principle of Stirling and Ericsson engines, their troubled history, their advantages and their niche applications are briefly presented, especially in the field of...

  16. Localisation of 'hot particles'

    International Nuclear Information System (INIS)

    This report intends to advance procedures for decision whether environmental samples are contaminated with hot particles and to quantify the resulting measurement uncertainty. For that purpose the knowledge about various aspects of hot particles is summarised and made available in a classified bibliography. Two important areas of technical measuring problems are examined in detail by stochastic simulation and experiments. First, the methods of sample splitting and repeated mixing are tested for their suitability to proof the presence of hot particles in environmental samples. For both methods procedures are given according to which it is possible to quantify the probability that hot particles are included in the sample. Finally, the measuring uncertainty is determined for several measuring geometries which occur when hot particles are included in a sample. E.g., the potential error in radiocesium concentration range from 3.5 times overestimation to 3 times underestimation if the soil measured in the 1 liter Marinelli-beaker is contaminated by a single hot particle instead of a homogeneous activity. (orig.)

  17. CANSAR. Analytical irradiation for PCI analysis

    International Nuclear Information System (INIS)

    The aim of ''CANSAR'' analytical irradiation is to evaluate the various mechanisms expected to be active during PCI failures (local concentration of fission products, fuel expansion, stress concentration induced by fuel fragment relocation, etc.). Two identical test pins, similar to classical PWR pins, but shorter, will be power-ramped in parallel. They will be filled with fuel pellets machined in various ways in order to simulate pellet fracture, relocation and preferential fission product migration path. One pin is highly instrumented with fission gas analysis, centre-line temperature and strain gauges on the cladding. The other can be unloaded between the pile cycles to perform other measurements such as diameter change, eddy currents, hot cell γ scanning. The gauges are necessary to obtain valuable information on cladding stresses. However, they induce significant modification of the thermal and mechanical behaviour of the cladding. Extensive finite element computation has been undertaken to estimate the temperature shift and the cladding reinforcement due to the gauges. Details of this work performed to design and implement the experiment will be presented. This included, in particular, high precision machining of UO2 sectors to obtain ''precracked'' pellets and computation of the thermo-mechanical behaviour of the cladding with the gauges. (author)

  18. HOTLAB: European hot laboratories research capacities and needs. Plenary meeting 2004

    International Nuclear Information System (INIS)

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented

  19. HOTLAB: European hot laboratories research and capacities and needs. Plenary meeting 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Jenssen, H.K. (ed.)

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented.

  20. Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    de A. Melo, Lis G.; Hitchcock, Adam P.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Botton, Gianluigi A.

    2016-04-01

    Optimizing the structure of the porous electrodes of polymer electrolyte membrane fuel cells (PEM-FC) can improve device power and durability. Analytical microscopy techniques are important tools for measuring the electrode structure, thereby providing guidance for structural optimization. Transmission Electron Microscopy (TEM), with either Energy Dispersive X-Ray (EDX) or Electron Energy Loss Spectroscopy (EELS) analysis, and Scanning Transmission X-Ray Microscopy (STXM) are complementary methods which, together, provide a powerful approach for PEM-FC electrode analysis. Both TEM and STXM require thin (50-200 nm) samples, which can be prepared either by Focused Ion Beam (FIB) milling or by embedding and ultramicrotomy. Here we compare TEM and STXM spectromicroscopy analysis of FIB and ultramicrotomy sample preparations of the same PEM-FC sample, with focus on how sample preparation affects the derived chemical composition and spatial distributions of carbon support and ionomer. The FIB lamella method, while avoiding pore-filling by embedding media, had significant problems. In particular, in the FIB sample the carbon support was extensively amorphized and the ionomer component suffered mass loss and structural damage. Although each sample preparation technique has a role to play in PEM-FC optimization studies, it is important to be aware of the limitations of each method.

  1. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    Science.gov (United States)

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. PMID:24139506

  2. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation of...

  3. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  4. Solar-powered hot-water system

    Science.gov (United States)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  5. Analytics for Education

    Science.gov (United States)

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  6. Hot Air Engines

    Directory of Open Access Journals (Sweden)

    P. Stouffs

    2011-01-01

    Full Text Available Invented in 1816, the hot-air engines have known significant commercial success in the nineteenth century, before falling into disuse. Nowadays they enjoy a renewed interest for some specific applications. The "hot-air engines" family is made up of two groups: Stirling engines and Ericsson engines. The operating principle of Stirling and Ericsson engines, their troubled history, their advantages and their niche applications are briefly presented, especially in the field of micro-combined heat and power, solar energy conversion and biomass energy conversion. The design of an open cycle Ericsson engine for solar application is proposed. A first prototype of the hot part of the engine has been built and tested. Experimental results are presented.

  7. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  8. Techniques and devices developed by the CEA for hot cell and in-situ examinations of PWR components and PWR fuel assembliess after irradiation

    International Nuclear Information System (INIS)

    Within the framework of the electro-nuclear development of the PWR system, the CEA has provided itself with facilities for developing techniques for analyzing assemblies, pins and fuels. These are examinations and tests on irradiated heads and assemblies with the aid of the Fuel Examination Module (FEM), of machining of assemblies and examinations in the Celimene hot laboratory or detailed examinations and analyses on fuel elements using eddy currents, the electronic microprobe and the Fisher ''permeascope'' which enables the outline of the oxide coat present on the cladding to be followed

  9. Fending Off Hot Money

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amid uncertainties about the amount of hot money,the government strives to curb the harmful capital The benchmark Shanghai Composite Index was plagued by dips, climbs and dives as the stock market slumped from 3,186 to 2,838 points

  10. Zen Hot Dog Molecules

    Science.gov (United States)

    Ryan, Dennis

    2009-01-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  11. Annual report on operation and management of hot laboratories and facilities. From April 1, 2008 to March 31, 2009

    International Nuclear Information System (INIS)

    This is an annual report in a fiscal year 2008 that describes activities of the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF), the Research Hot Laboratory (RHL) and the other research hot facilities in the Department of Hot Laboratories and Facilities. In RFEF, various PIEs were performed related to the advanced high burn-up fuel cladding, Innovative Nuclear Research and Development Programme, the Advanced LWR fuel Performance and Safety research program and the new cross over research program (NOX). In WASTEF, various material tests were performed, such as basic characteristic examinations for stainless steel under high temperature water environment, stress corrosion cracking tests for high-performance fuel claddings and crevice corrosion tests under γ-ray irradiation in high temperature water. In RHL, attached equipments such as manipulators and a conveyer were uninstalled and dismantled from each lead cells according to the decommissioning plan. And un-irradiated fuels from decommissioning facilities were carried in. In addition, managements of the other research hot facilities (No.1 Plutonium Laboratory, No.2 Research Laboratory, No.4 Research Laboratory, Analytical Chemistry Laboratory, Uranium Enrichment Laboratory, Simulation Test for Environmental Radionuclide Migration (STEM), Clean Laboratory for Environmental Analysis and Research (CLEAR) and fuel storage) were carried out. (author)

  12. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  13. Molecular interfaces for plasmonic hot electron photovoltaics

    Science.gov (United States)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  14. Extended Analytic Device Optimization Employing Asymptotic Expansion

    Science.gov (United States)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  15. Hot Tub Rash (Pseudomonas Folliculitis)

    Science.gov (United States)

    ... clinical tools newsletter | contact Share | Hot Tub Rash ( Pseudomonas Folliculitis) Information for adults A A A This ... small pus-filled lesions. Overview Hot tub rash ( Pseudomonas folliculitis) is an infection of the hair follicle ...

  16. Do scientists trace hot topics?

    OpenAIRE

    Tian Wei; Menghui Li; Chensheng Wu; Xiao-Yong Yan; Ying Fan; Zengru Di; Jinshan Wu

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries,...

  17. Evaporation of hot jupiters and hot neptunes

    Directory of Open Access Journals (Sweden)

    Ehrenreich D.

    2011-02-01

    Full Text Available Among the nearly five hundred extra-solar planets known, almost 30% orbit closer than 0.1 AU from their parent star. We will review the observations and the corresponding models of the evaporation of these ‘hot jupiters’. The observations started with the discovery made with HST that the planet orbiting HD 209458 has an extended atmosphere of escaping hydrogen. Subsequent observations obtained with HST/STIS and HST/ACS confirm the escape of the gas. Even more, oxygen and carbon have been shown to be present at very high altitude in the upper atmosphere. Observations of other targets like HD 189733 and WASP-12 show that evaporation is a general phenomenon which could contribute to the evolution of planets orbiting close to their parent stars. To interpret these observations, we developed models to quantify the escape rate from the measured occultation depths. Numerous models have also been published to investigate mechanisms which can lead to the estimated escape rate. In general, the high temperature of the upper atmosphere heated by the far and extreme UV combined with the tidal forces allow a very efficient evaporation of the upper atmosphere. We will review the different models and their implications.

  18. Croatian Analytical Terminology

    OpenAIRE

    Kastelan-Macan; M.

    2008-01-01

    Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals...

  19. Manufacture Domestically Improvement Design of Import Hot Cell Die-casting Machine%进口热室压铸机H-150XZv喷嘴体的国产化设计

    Institute of Scientific and Technical Information of China (English)

    杨兵兵; 屈雪丽

    2011-01-01

    Through analyzing and studying working conditions, the material as well as the structure of the H-150XZv import hot cell die-casting machine spray nozzle body, the article proposed the manufacture domestically improvement design proposal of spray nozzle body, solved the difficult problem which has caused the spray nozzle body burst as a result of the penetrability crack production, radically enhanced the service life of spray nozzle body.%通过对H-150XZv型进口热室压铸机喷嘴体的工作环境、材料以及结构的分析、研究,提出了喷嘴体国产化改进设计方案,解决了由于穿透性裂纹的产生导致喷嘴体破裂的难题,大幅度提高了喷嘴体的使用寿命.

  20. Hot chocolate effect

    International Nuclear Information System (INIS)

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  1. THE HOT CHOCOLATE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Frank S.

    1980-12-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  2. The hot Hagedorn Universe

    CERN Document Server

    Rafelski, Johann

    2016-01-01

    In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM) we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM) and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB) temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP) physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.

  3. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  4. Hot fusion, cold fusion

    International Nuclear Information System (INIS)

    The publication of observations of nuclear fusion reactions in electrolysis experiments has led to hope that an easy way to domesticate this major source of energy had been found. In this article are recalled the classical solutions which are studied for hot fusion, the state of the art the difficulties and the perspectives, followed by the present situation concerning the experiments related to what has been called, perhaps a little too quickly, cold fusion

  5. Hot interstellar medium

    International Nuclear Information System (INIS)

    In view of that the diffuse component of soft X-rays is emitted mainly by extended supernova remnants and the hot interstellar medium produced thereby, the following three points are discussed. (1.) In the early stage of supernova remnants expanding in low density media, neither the equipartition of energy between electrons and ions nor the ionization equilibrium holds. The shock structure is modified by the pressure of hot plasma. X-ray features of the North Polar Spur are interpreted by taking these points into account. (2.) Several compilations of X-ray line emission are compared. Those by Kato and by Raymond and Smith are different in the equilibrium ion abundances and the collisional excitation rates for some important lines. The origins of differences are shown for some examples. It is demonstrated how the difference affects astrophysical interpretations. (3.) The solar system is surrounded by a hot, tenuous interstellar medium extended in the direction of 1 -- 1500 in the northern hemisphere. In other directions X-rays emitted farther than absorbing clouds are appreciable. (author)

  6. Hot subluminous stars

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 ...

  7. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  8. External verification of ATHLET code by analytical and phenomenological evaluation of one PKL and TRAM test each. Pt. 2. Post-test calculation of the UPTF-TRAM A2 experiment using the ATHLET thermohydraulic system code. Formation of stratified flow regimes in a hot leg of a PWR. Final report

    International Nuclear Information System (INIS)

    The post test calculations of three runs of the experiment UPTF-TRAM A2 using the thermohydraulic system code ATHLET are presented. This separate-effects-test was designed to investigate the formation of flow regimes in a hot leg of a PWR under different two-phase flow conditions. The formation of a stratified flow has influence on the distribution of the coolant mass in the primary system. Using an input model with the same nodalization for the represented components as employed for the analyses of integral transients in PWR-facilities the following results and knowledges were gained. The process of mixture level increase in the reactor vessel just after the start of the steam injection into the core simulator could only be simulated with differences to the experiment. The displacement of the water inventory in the upper plenum and the initial water carry over into the hot legs were strongly overpredicted. Under all specified mass flow conditions the formation of a stratified flow in the horizontal part of the hot leg has been calculated in correspondence to the experiment. Except for the observed change of the flow regime the spatial water distribution in the hot leg depending on the boundary conditions could be simulated qualitatively. The ATHLET code always predicts a flow regime with strong two-phase momentum transfer, which could not be observed in all test phases. (orig.)

  9. 基于文献计量方法的神经干细胞研究现状分析%Bibliometric analysis on research hot and trends on neural stem cells

    Institute of Scientific and Technical Information of China (English)

    葛菲菲; 安新颖; 黄家学; 池慧

    2012-01-01

    目的 分析国际神经干细胞研究领域的研究现状和研究热点.方法 通过科学引文索引数据库,应用文献计量方法,分别从文献外部特征和文献内容特征对1991-2011年的3389篇关于神经干细胞研究的文献进行统计学分析,主要分析国际神经干细胞研究的时间分布、国家分布、机构分布、基金来源,重点分析目前神经干细胞研究文献中的热点主题词.结果 神经干细胞相关研究在近10年得到了快速发展,从事该研究的主要有美国、中国、日本及欧盟国家等,基础研究内容主要集中在神经干细胞增殖、分化、基因转录、基因表达方面,神经干细胞移植研究热点集中在帕金森病、脊髓损伤、阿尔茨海默病、卒中、亨延顿病等神经系统疾病的治疗方面.结论 当前国际上关于神经干细胞的研究较为热门,也取得了令人鼓舞的进展,然而要实现神经干细胞移植治疗的临床应用,还存在诸多问题有待深入研究探索.%Objective To analyze international research status and research focus of neural stem cells.Methods Using bibliometric analysis,the paper analyzed the international neural stem cells research documents in web of science database by analysis tools such as Thomson Data Analyzer.Research status on neural stem cells was analyzed including the distributions of years,countries,institutions and currently hot topics of international research on neural stem cells were emphatically analyzed.Results Researches on neural stem cells have developed rapidly in the recent 10 years.Main research countries include the America,China,Japan,and European Union etc.The key research topics in the field of international neural stem cells included neural stem cells proliferation,differentiation,gene transcription,gene expression in basic research and research on neural stem cells transplantation therapy including Parkinson' s disease,spinal cord injuries,stroke,Alzheimer disease

  10. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  11. Session: Hot Dry Rock

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  12. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    International Nuclear Information System (INIS)

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  13. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    The EuCheMS Division of Analytical Chemistry (DAC) maintains a website with informations on groups of analytical chemistry at European universities (www.dac-euchems. org). Everyone may contribute to the database and contributors are responsible for an annual update of the information. The service...... is offered free of charge. The report on activities of DAC during 2008 was published in journals of analytical chemistry where Manfred Grasserbauer contributed with his personal view on analytical chemistry in the assessment of climate changes and sustainable application of the natural resources to...... committee directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in...

  14. The SKB spent fuel corrosion programme. An evaluation of results from the experimental programme performed in the Studsvik Hot Cell Laboratory

    International Nuclear Information System (INIS)

    During the last few years, many of the specimens in the SKB programme on the corrosion of spent fuel have been analysed by the ICP-MS technique, shortly after conclusion of the corrosion tests, or by the analysis of archive samples. Together with the previous results, this has made available a much more extended analytical data base than that available before, and this has been used in a new evaluation which complements those published earlier. Some of the new analytical data is for tests performed on fuel specimens (from two reference fuel rods, one BWR and one PWR) which have been corrosion tested for over ten years. Most of the data refers to 16 fuel/clad specimens from a short BWR fuel rod, which had burnups over a range of 27.0 to 48.8 MWd/kg U. Detailed examination and characterisation of three other fuel specimens from the rod had shown that the specimens with the higher burnups in this series would have a fuel microstructure and alpha activity content and distribution which, theoretically, may promote enhanced corrosion. These specimens had been exposed to over 5 years of corrosion during nine water contact periods. The corrodants used were a simulated bicarbonate groundwater and de-ionised water, and both oxic and nominally anoxic conditions were included in the test matrix. Most of the emphasis in the evaluation has, therefore, been on the possible effects on corrosion behaviour of the linear heat rating and burnup of the fuels. However, examination of the variation with water contact time of the fractional release rates of selected fission products and their total release over the five years of corrosion, have shown that the corrosion rates during the first few weeks of corrosion of the specimens with the higher burnups were lower than those for specimens with slightly lower burnup. Later, the corrosion rates converged for all specimens. This has been interpreted to be due to burnup-related differences in the fuel microstructure, particularly in the

  15. Development of system analysis code for pyrochemical process using molten salt electrorefining part 2. Cathode processor calculation code with distillation process and parameter surveys using developed analytical model for cooling system of pyrochemical process cell

    International Nuclear Information System (INIS)

    This report describes accomplishment of development of a cathode processor calculation code to simulate the mass and heat transfer phenomena with the distillation process and parameter survey using developed analytical model for cooling behavior of the pyrochemical process cell on personal computers. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. Evaporation calculations using cathode processor calculation code with distillation process, which was developed in 2000, were evaluated. By selecting proper input data (time step, mesh size etc.), the results showed that the present code agreed well for the evaporation rate of cadmium., and the capability of the distillation process design and simulation with the code has been confirmed. Parameter surveys using developed analytical model were performed for the purpose of reflection of cooling system design of the pyrochemical process cell. 4 cases of cooling flow patterns were surveyed at the normal and low flow rate conditions. From the result of parameter surveys, it was shown that the cooling pattern with direct cooling for heating facilities in the lower cell and balk cooling for upper cell is desirable. (author)

  16. Global analytic geometry

    OpenAIRE

    Paugam, Frederic

    2008-01-01

    We define a new type of valuation of a ring that combines the notion of Krull valuation with that of multiplicative seminorm. This definition partially restores the broken symmetry between archimedean and non-archimedean valuations. This also allows us to define a notion of global analytic space that reconciles Berkovich's notion of analytic space of a (Banach) ring with Huber's notion of non-archimedean analytic space. After defining natural generalized valuation spectra and computing the sp...

  17. Overconvergent global analytic geometry

    OpenAIRE

    Paugam, Frédéric

    2014-01-01

    We define a notion of global analytic space with overconvergent structure sheaf. This gives an analog on a general base Banach ring of Grosse-Kloenne's overconvergent p-adic spaces and of Bambozzi's generalized affinoid varieties over R. This also gives an affinoid version of Berkovich's and Poineau's global analytic spaces. This affinoid approach allows the introduction of a notion of strict global analytic space, that has some relations with the ideas of Arakelov geometry, since the base ex...

  18. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  19. Hot rolling joining process

    International Nuclear Information System (INIS)

    In the case of incorporating nonferrous metal equipment in fuel reprocessing processes, from the viewpoint of reducing maintenance works for the piping connection to peripheral equipments, it is desirable to adopt the pipe joints of joining the materials of different kinds, which have the high reliability against leakage. In order to meet this demand, the development of the manufacturing technology of the pipe joints by hot rolling process has been carried out. As for the structure of this pipe joint, a small diameter nonferrous metal pipe and a large diameter stainless steel pipe are joined by hot rolling by using an inserted material. The materials are Ti-5% Ta, Ti and Zr for the nonferrous metals, SUS 304L for the stainless steel, and Ta foil for the inserted material. The merits and demerits of this pipe joints are shown. The control of the interface structure in the joining of different materials was carried out by using the inserted material. The method of manufacturing the pipe joints and the proper conditions of the rolling joining are explained. As for the performance of the pipe joints, the evaluations of the defects in the joining interface, the strength of the joining, the corrosion resistance and the susceptibility to stress corrosion cracking are reported. (K.I.)

  20. Hot pressing aluminum nitride

    International Nuclear Information System (INIS)

    Experiment was performed on the hot pressing of aluminum nitride, using three kinds of powder which are: a) made by electric arc method, b) made by nitrifying aluminum metal powder, and c) made from alumina and carbon in nitrogen atmosphere. The content of oxygen of these powders was analyzed by activation analysis using high energy neutron irradiation. The density of hot pressed samples was classified into two groups. The high density group contained oxygen more than 3 wt. %, and the low density group contained about 0.5 wt %. Typical density vs. temperature curves have a bending point near 1,5500C, and the sample contains iron impurity of 0.5 wt. %. Needle crystals were found to grow near 1,5500C by VLS mechanism, and molten iron acts a main part of mechanism as a liquid phase. According to the above-mentioned curve, the iron impurity in aluminum nitride prevents densification. The iron impurity accelerates crystal growth. Advance of densification may be expected by adding iron impurity, but in real case, the densification is delayed. Densification and crystal growth are greatly accelerated by oxygen impurity. In conclusion, more efforts must be made for the purification of aluminum nitride. In the present stage, the most pure nitride powder contains about 0.1 wt. % of oxygen, as compared with good silicon carbide crystals containing only 10-5 wt. % of nitrogen. (Iwakiri, K.)

  1. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    The EuCheMS Division of Analytical Chemistry (DAC) maintains a website with informations on groups of analytical chemistry at European universities (www.dac-euchems. org). Everyone may contribute to the database and contributors are responsible for an annual update of the information. The service...... is offered free of charge. The report on activities of DAC during 2008 was published in journals of analytical chemistry where Manfred Grasserbauer contributed with his personal view on analytical chemistry in the assessment of climate changes and sustainable application of the natural resources to...

  2. Recent results of the investigation of a micro-fluidic sampling chip and sampling system for hot cell aqueous processing streams

    International Nuclear Information System (INIS)

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and micro-fluidic sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. Different sampling volumes have been tested. It appears that the 10 μl volume has produced data that had much smaller relative standard deviations than the 2 μl volume. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The micro-fluidic-based robotic sampling system's mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of micro-fluidic sampling chips. (authors)

  3. Examination of fast reactor fuels, FBR analytical quality assurance standards and methods, and analytical methods development: irradiation tests. Progress report, January 1--March 31, 1977. [UO/sub 2/; PuO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.D. (comp.)

    1977-05-01

    This project is directed toward the examination and comparison of the effects of neutron irradiation on LMFBR Program fuel materials. Characterization of unirradiated and irradiated fuels by analytical chemistry methods will continue, and additional methods will be modified and mechanized for hot cell application. Macro- and microexaminations will be made on fuel and cladding, using the shielded electron microprobe, emission spectrograph, radiochemistry, gamma scanner, mass spectrometers, and other analytical facilities. New capabilities will be developed in gamma scanning, analyses to assess spatial distributions of fuel and fission products, mass spectrometric measurements of burnup and fission gas constituents and other chemical analyses. Microstructural analyses of unirradiated and irradiated materials will continue, using optical and electron microscopy and autoradiographic and x-ray techniques. Special emphasis will be placed on numerical representation of microstructures and its relationship to fabrication and irradiation parameters. New etching and mounting techniques will be developed for high burnup materials.

  4. Analytics for metabolic engineering

    Directory of Open Access Journals (Sweden)

    Christopher J Petzold

    2015-09-01

    Full Text Available Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants while deep omics analysis provide a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.

  5. Illustrative applicaton of AMTEC cell and analysis with overpotential correction, and predicted cell performance for a wide range of design and operating parameters

    International Nuclear Information System (INIS)

    In previous papers, the present authors described a coupled thermal, electrical, and fluid flow analysis of a multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cell. But those papers were over-optimistic in that they did not account for the effect of overpotential (interfacial impedance) at the cell's cathode surface. The present paper presents a detailed description of the coupled analyses with the previously omitted overpotential correction, and of their application to an illustrative cell design. The results indicate that -- for the same cell design, heat input, and voltage output -- the correction leads to significant reduction of the cell's power output and efficiency, and to a substantial increase in the cell's evaporator and hot-end temperatures. The paper also presents revised analytical results showing the effect of a wide range of heat inputs and voltage outputs on the cell's power output, efficiency, evaporator temperature, and hot-end temperature, for both superalloy and refractory cells. The revised analyses indicate that present performance goals require evaporator and hot-end temperatures that are much too high for stable, long-term operation of superalloy cells. This led to the current effort to develop cells with refractory hot components

  6. Preliminary report for the license of a hot cell that will be use in the technology development for the obtention of Mo-99; Informe preliminar para la licencia de una celda caliente que se utilizara en el desarrollo de la tecnologia para la obtencion de Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Fucugauchi, L.A.; Millan S, S.; Lopez M, A.E.; Lopez C, R; Sanchez M, V.; Reynoso V, R.; Vera, A

    1991-05-15

    A preliminary report for the license of a hot cell that will be used in the development of the technology for the obtaining of Mo-99 is presented. The following topics are also included: objective of the project, technical description, description of the prototype cell, handling of radioactive wastes, lists of equipment that will be used, risk analysis, curricula, quality assurance plan and an annex with the report on handling of radioactive wastes presented to the PAGD-IAEA. (Author)

  7. Learning Analytics Considered Harmful

    Science.gov (United States)

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  8. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  10. The Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2007-01-01

    The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....

  11. Teaching the Analytical Life

    Science.gov (United States)

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  12. Analytic Moufang-transformations

    International Nuclear Information System (INIS)

    The paper is aimed to be an introduction to the concept of an analytic birepresentation of an analytic Moufang loop. To describe the deviation of (S,T) from associativity, the associators (S,T) are defined and certain constraints for them, called the minimality conditions of (S,T) are established

  13. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column has once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year, we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges for...

  14. Some Heterodox Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Guillermo E. Rosado Haddock

    2013-04-01

    Full Text Available Analytic philosophy has been the most influential philosophical movement in 20th century philosophy. It has surely contributed like no other movement to the elucidation and demarcation of philosophical problems. Nonetheless, the empiricist and sometimes even nominalist convictions of orthodox analytic philosophers have served them to inadequately render even philosophers they consider their own and to propound very questionable conceptions.

  15. Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin

    Science.gov (United States)

    Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

    2000-12-01

    Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

  16. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  17. Modelling propagation of deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  18. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    Science.gov (United States)

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  19. Analytic results for the Tsallis thermodynamic variables

    CERN Document Server

    Bhattacharyya, Trambak; Mogliacci, Sylvain

    2016-01-01

    We analytically investigate the thermodynamic variables of a hot and dense system, in the framework of the Tsallis non-extensive classical statistics. After a brief review, we start by recalling the corresponding massless limits for all the thermodynamic variables. We then present the detail of calculation for the exact massive result regarding the pressure -- valid for all values of the $q$-parameter -- as well as the Tsallis $T$-, $\\mu$- and $m$- parameters, the former characterizing the non-extensivity of the system. The results for other thermodynamic variables, in the massive case, readily follow from appropriate differentiations of the pressure, for which we provide the necessary formulas. For the convenience of the reader, we tabulate all of our results. A special emphasis is put on the method used in order to perform these computations, which happens to reduce cumbersome momentum integrals into simpler ones. Numerical consistency between our analytic results and the corresponding usual numerical integ...

  20. On the Hot Money Trail

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The huge influx of international hot money is threatening inflation and affecting the country’s monetary policy In the last three months, the country’s financial supervisory departments have conducted frequent but atypical investi-gations of hot money.

  1. How hot is the sun

    Institute of Scientific and Technical Information of China (English)

    刘超

    2001-01-01

    Do you know how hot thesun is? There are no solidsor liquids on the sun. Why not? The temperature onoutside the sun is more than 10, 000℃, and that at the centre is about 20, 000, 000℃.The sun is so hot that all thesolids and all the liquids havebeen turned into gases.

  2. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  3. Process analytical technology (PAT) for biopharmaceuticals

    DEFF Research Database (Denmark)

    Glassey, Jarka; Gernaey, Krist; Clemens, Christoph;

    2011-01-01

    Process analytical technology (PAT), the regulatory initiative for building in quality to pharmaceutical manufacturing, has a great potential for improving biopharmaceutical production. The recommended analytical tools for building in quality, multivariate data analysis, mechanistic modeling, novel...... models for interpretation of systems biology data and new sensor technologies for cellular states, are instrumental in exploiting this potential. Industrial biopharmaceutical production has gradually become dependent on large-scale processes using sensitive mammalian cell cultures. This further...

  4. Analytical laboratory in NUCEF

    International Nuclear Information System (INIS)

    An analytical laboratory was completed in NUCEF (the Nuclear Fuel Cycle Safety Engineering Research Facility) of JAERI. NUCEF has two critical facilities (STACY and TRACY) and a fuel treatment system for criticality safety research. In addition, the facility has BECKY (Back-end Cycle Key Elements Research Facility) for the research on advanced reprocessing technology, TRU waste management and so on. This present report describes the design conditions and structure of the analytical laboratory as well as the specification of each analytical equipment. (J.P.N.)

  5. Google analytics integrations

    CERN Document Server

    Waisberg, Daniel

    2015-01-01

    A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens

  6. MAGNETICALLY CONTROLLED CIRCULATION ON HOT EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Through the process of thermal ionization, intense stellar irradiation renders hot Jupiter atmospheres electrically conductive. Simultaneously, lateral variability in the irradiation drives the global circulation with peak wind speeds of the order of ∼km s–1. In turn, the interactions between the atmospheric flows and the background magnetic field give rise to Lorentz forces that can act to perturb the flow away from its purely hydrodynamical counterpart. Using analytical theory and numerical simulations, we show here that significant deviations away from axisymmetric circulation are unstable in presence of a non-negligible axisymmetric magnetic field. Specifically, our results suggest that dayside-to-nightside flows, often obtained within the context of three-dimensional circulation models, only exist on objects with anomalously low magnetic fields, while the majority of highly irradiated exoplanetary atmospheres are entirely dominated by zonal jets

  7. Studies on hot wire and hot film under water

    International Nuclear Information System (INIS)

    This study concerns some problems involved in the use of a hot wire and a hot film immersed in water. Some theoretical considerations are made concerning the sensitivity and the calibration of hot wires. A specially designed water blower and a measurement apparatus are described. Various calibrations have been carried out as a function of the velocity and of the temperature for different wires and films. Measurements of the amount of turbulence and of the energy distribution made in the centre of the tube are in good agreement with those already carried out in air. (authors)

  8. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    highly sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  9. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  10. Trends in analytical CRM

    OpenAIRE

    Havelková, Martina

    2014-01-01

    This thesis describes major trends in the field of analytical CRM. The goal is to identify those trends and compare them with current situation on the CRM market. The thesis is devided among several parts. In the opening part is described Customer Relationship Management and architecture of CRM system. The next part discribes analytical CRM and its standard ways of using. The main part of the thesis is identification of trends. Idetificated trends are characterized and compared with situation...

  11. Realtime Web Analytics

    OpenAIRE

    Cardoso, João

    2011-01-01

    Tracking what is happening on a website in realtime is invaluable. The objective of this thesis was to start and launch the first version of Snowfinch, an open source realtime web analytics application. The thesis report contains up-to-date fundamentals of web analytics; reasoning behind the most important and difficult technical decisions in the project; product development methodologies; and an overview of the resulting application. Understanding visitors is the key to a site’s succ...

  12. Encyclopedia of analytical surfaces

    CERN Document Server

    Krivoshapko, S N

    2015-01-01

    This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions  and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.

  13. Learning analytics in education

    OpenAIRE

    Štrukelj, Tajda

    2015-01-01

    Learning analytics is a young field in computer supported learning, which could have a great impact on education in the future. It is a set of analytical tools which measure, collect, analyze and report about students' data for the purpose of understanding and optimizing students' learning and environments in which this learning occurs. Today, more and more learning related activities are placed on the web. Teachers are creating virtual learning environments (VLE), in which a great set of...

  14. Competing on analytics

    OpenAIRE

    Nagin, Gleb

    2011-01-01

    Business analytics refers to the skills, technologies, applications and practisies for continuous iterative exploration and investigation of past business performance to gain insight and drive business planning. Business analytics focuses on developing new insights and understanding of business performance based on data and statistical methods. Business intelligence traditionally focuses on using a consistent set of metrics to both measure past performance and guide business planning, which i...

  15. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  16. Intelligent Visual Analytics Queries

    OpenAIRE

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Morent, Dominik; Schneidewind, Jörn

    2007-01-01

    Visualizations of large multi-dimensional data sets, occurring in scientific and commercial applications, often reveal interesting local patterns. Analysts want to identify the causes and impacts of these interesting areas, and they also want to search for similar patterns occurring elsewhere in the data set. In this paper we introduce the Intelligent Visual Analytics Query (IVQuery) concept that combines visual interaction with automated analytical methods to support analysts in discovering ...

  17. Permeabilidade a quente de refratários para revestimento de cubas eletrolíticas Hot permeability of refractories for aluminum electrolytic cells lining at high temperatures

    Directory of Open Access Journals (Sweden)

    D. Y. Miyaji

    2007-03-01

    Full Text Available Na indústria do alumínio primário, um dos principais responsáveis pela deterioração do revestimento refratário nas cubas de redução eletrolítica é o ataque por banho criolítico com alta concentração de NaF, que penetra e reage com o refratário podendo, em condições extremas, causar a parada prematura de operação da cuba e grandes prejuízos econômicos. Baseando-se nos mais recentes estudos de caracterização de refratários para cubas, uma boa correlação tem sido encontrada entre a resistência à corrosão e a permeabilidade, a qual é calculada pela equação de Forchheimer para a obtenção das constantes k1 Darciana (efeito viscoso e k2 não Darciana (efeito inercial. Entretanto, na maioria das situações, as medidas da permeabilidade têm sido efetuadas à temperatura ambiente, embora o refratário em uso esteja a superior temperatura. Este trabalho visa avaliar como esta permeabilidade se altera em temperaturas de até 700 ºC buscando, assim, uma melhor correlação dos resultados com as condições reais de operação. Pretende-se também, investigar essa propriedade em refratários empregados no revestimento de cadinhos para o transporte de alumínio líquido, com o intuito de verificar a aplicabilidade da permeametria como uma ferramenta de caracterização desses materiais cujo interesse de aplicação e desenvolvimento tem sido cada vez maior.In the aluminium primary industry, one of the main causes for electrolytic cells lining deterioration is the chemical attack by high NaF content cryolitic bath, that penetrates and reacts with the refractory, shortening the cell’s service life and resulting great economic losses. Based on the most recent studies on characterization of alumino-silicate refractories for aluminum cell linings, a good correlation has been found between its chemical attack by molten fluorides and the permeability, which is calculated by Forchheimer’s equation in order to obtain the Darcian

  18. Performance evaluation of the analytical control line for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    The analytical line was placed in a five-section semi-hot cell of a total length of 35 m, height of fields 1 m and depth of 75 cm, comprising a manual lift, a sample store, equipment for the opening of the probe vessels, a chemical desk and a desk for preparing the chemical samples for radiometric determination. A two member team worked 6.5 hrs a day making an average of 4.4 chemical determinations and preparing two radiometric determinations. On the basis of experiences gained in this work recommendations are given for the construction of similar installations. A diagram is given of the line and the key parts are shown in figures. (M.K.)

  19. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  20. Carcinogenic risk of hot-particle exposures

    International Nuclear Information System (INIS)

    It has been suggested that spatially non-uniform radiation exposures, such as those from small radioactive particles ('hot particles'), may be very much more carcinogenic than when the same amount of energy is deposited uniformly throughout a tissue volume. This review provides a brief summary of in vivo and in vitro experimental findings, and human epidemiology data, which can be used to evaluate the veracity of this suggestion. Overall, this supports the contrary view and indicates that average dose, as advocated by the ICRP, is likely to provide a reasonable estimate of carcinogenic risk (within a factor of ∼ ±3). There are few human data with which to address this issue. The limited data on lung cancer mortality following occupational inhalation of plutonium aerosols, and the incidence of liver cancer and leukaemia due to thorotrast administration for clinical diagnosis, do not appear to support a significant enhancement factor. Very few animal studies, including mainly lung and skin exposures, provide any indication of a hot-particle enhancement for carcinogenicity. Some recent in vitro malignant transformation experiments provide evidence for an enhanced cell transformation for hot-particle exposures but, properly interpreted, the effect is modest. Few studies extend below absorbed doses of ∼ 0.1 Gy. (review)

  1. Anisotropy effects on curvature-driven flute instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    The effects of finite parallel temperature are investigated for a hot electron plasma with sufficiently large beta that the magnetic field scale length (Δ/sub B/) is small compared with the vacuum field radius of curvature (R). Numerical and analytical estimates of stability boundaries are obtained for the four possible modes that can be treated in this limit: the conventional hot electron interchange, the high frequency hot electron interchange (ω > ω/sub ci/), the compressional Alfven mode, and the interacting pressure-driven interchange

  2. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  3. Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  4. Tools for ultrasonic hot embossing

    OpenAIRE

    Liao, Sijie

    2016-01-01

    Ultrasonic hot embossing is an emerging technology enabling molding of thermo-plastic polymers in seconds. A stack of polymer foils is heated by the friction between the foils and protruding microstructures on a tool when ultrasonic vibrations are generated by a sonotrode. The polymer is molten and adapts to the shape of the microstructures on the tool. Thus, a micro structure is generated in much shorter time than by injection molding or hot embossing. The objective of this work was investig...

  5. Thyroid carcinoma and hot nodule

    Energy Technology Data Exchange (ETDEWEB)

    Fukata, Shuji; Tamai, Hajime; Matsubayashi, Sunao; Nagai, Keisuke; Hirota, Yoshihiko; Matsuzuka, Fumio; Katayama, Shoichi; Kuma, Kanji; Nagataki, Shigenobu

    1987-09-01

    A 70-year-old woman presented with a nodule in the thyroid gland. /sup 131/I scintigraphy of the gland showed a hot nodule. Histology of the resected thyroid revealed a papillary adenocarcinoma. Although a thyroid carcinoma with a hot nodule seen on the radioiodine isotope scan is a very rare occurrence, it is clinically very important because it may indicate a thyroid malignancy.

  6. COMBUSTION TURBINE (CT) HOT SECTION COATING LIFE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Krzywosz; S. Cheruvu; E. Wan

    2003-04-01

    The integrity of coatings used in hot section components of combustion turbines is crucial to the reliability of the buckets. This project was initiated in recognition of the need for predicting the life of coatings analytically, and non destructively; correspondingly, three principal tasks were established. Task 1, with the objective of analytically developing stress, strain and temperature distributions in the bucket and thereby predicting thermal fatigue (TMF) damage for various operating conditions; Task 2 with the objective of developing eddy current techniques to measure both TMF damage and general degradation of coatings and, Task 3, with the objective of developing mechanism based algorithms. Task 4 would be aimed at verifying analytical predictions from Task 1 and the NDE predictions from Task 3 against field observations. Task 5 would develop a risk-based decision analysis model to make run/repair decisions. This report is a record of the progress to date on these 3 tasks.

  7. COMBUSTION TURBINE (CT) HOT SECTION COATING LIFE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    D. Gandy; R. Viswanathan; S. Cheruvu; K. Krzywosz

    2006-03-31

    The integrity of coatings used in hot section components of combustion turbines is crucial to the reliability of the buckets. This project was initiated in recognition of the need for predicting the life of coatings analytically, and non-destructively; correspondingly, four principal tasks were established. Task 1, with the objective of analytically developing stress, strain and temperature distributions in the bucket and thereby predicting thermal fatigue (TMF) damage for various operating conditions; Task 2 with the objective of developing eddy current techniques to measure both TMF damage and general degradation of coatings and, Task 3 with the objective of developing mechanism based algorithms. Task 4 is aimed at verifying analytical predictions from Task 1 and the NDE predictions from Task 3 against field observations.

  8. Development and Validation of a Simple Analytical Model of the Proton Exchange Membrane Fuel Cell (Pemfc) in a Fork-Lift Truck Power System

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2013-01-01

    In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage overpotent......In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage...

  9. Advances in analytical chemistry

    Science.gov (United States)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  10. Twisted analytic torsion

    Institute of Scientific and Technical Information of China (English)

    MATHAI; Varghese

    2010-01-01

    We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Mller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.

  11. Ab InitioStudy of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

    OpenAIRE

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.

    2014-01-01

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no e...

  12. Flurry Analytics pelikehityksen apuna

    OpenAIRE

    Kuusisto, Rami

    2015-01-01

    Flurry Analytics on Yahoo Mobile Developer Suiten osa, joka keskittyy analytiikkaan. Opinnäytetyössä kerrotaan Flurry Analytics SDK:n implementoimisesta sovellukseen, Flurry Analyticsin tarjoaman web-portaalin käytöstä, sekä siitä, miten näitä ominaisuuksia käytettiin toteutettaessa pelin Cabals: Legends analytiikkatoteutusta. Työssä tarkastellaan myös miten jo kehitettyä analytiikkatoteutusta voitaisiin käyttää pohjana vielä pidemmälle viedylle analytiikkatoteutukselle ja kuinka pystyttäisii...

  13. An analytic thomism?

    Directory of Open Access Journals (Sweden)

    Daniel Alejandro Pérez Chamorro.

    2012-12-01

    Full Text Available For 50 years the philosophers of the Anglo-Saxon analytic tradition (E. Anscombre, P. Geach, A. Kenny, P. Foot have tried to follow the Thomas Aquinas School which they use as a source to surpass the Cartesian Epistemology and to develop the virtue ethics. Recently, J. Haldane has inaugurated a program of “analytical thomism” which main result until the present has been his “theory of identity mind/world”. Nevertheless, none of Thomás’ admirers has still found the means of assimilating his metaphysics of being.

  14. Strictly convergent analytic structures

    OpenAIRE

    Cluckers, Raf; Lipshitz, Leonard

    2013-01-01

    We give conclusive answers to some questions about definability in analytic languages that arose shortly after the work by Denef and van den Dries, [DD], on $p$-adic subanalytic sets, and we continue the study of non-archimedean fields with analytic structure of [LR3], [CLR1] and [CL1]. We show that the language $L_K$ consisting of the language of valued fields together with all strictly convergent power series over a complete, rank one valued field $K$ can be expanded, in a definitial way, t...

  15. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  16. Social network data analytics

    CERN Document Server

    Aggarwal, Charu C

    2011-01-01

    Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr

  17. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-01

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941

  18. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  19. 29 CFR 1915.14 - Hot work.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hot work. 1915.14 Section 1915.14 Labor Regulations... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine Chemist or Coast Guard authorized person. (1) The employer shall ensure that hot work is not performed...

  20. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    OpenAIRE

    Lanman, Richard B.; Mortimer, Stefanie A.; Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S.B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-relate...

  1. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  2. Social Learning Analytics

    Science.gov (United States)

    Buckingham Shum, Simon; Ferguson, Rebecca

    2012-01-01

    We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers. Online social…

  3. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  4. Analytics for Customer Engagement

    NARCIS (Netherlands)

    Bijmolt, Tammo H. A.; Leeflang, Peter S. H.; Block, Frank; Eisenbeiss, Maik; Hardie, Bruce G. S.; Lemmens, Aurelie; Saffert, Peter

    2010-01-01

    In this article, we discuss the state of the art of models for customer engagement and the problems that are inherent to calibrating and implementing these models. The authors first provide an overview of the data available for customer analytics and discuss recent developments. Next, the authors di

  5. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  6. Analytic number theory

    CERN Document Server

    Matsumoto, Kohji

    2002-01-01

    The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory

  7. Ada & the Analytical Engine.

    Science.gov (United States)

    Freeman, Elisabeth

    1996-01-01

    Presents a brief history of Ada Byron King, Countess of Lovelace, focusing on her primary role in the development of the Analytical Engine--the world's first computer. Describes the Ada Project (TAP), a centralized World Wide Web site that serves as a clearinghouse for information related to women in computing, and provides a Web address for…

  8. RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2010-03-25

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  9. Multispectral analytical image fusion

    International Nuclear Information System (INIS)

    With new and advanced analytical imaging methods emerging, the limits of physical analysis capabilities and furthermore of data acquisition quantities are constantly pushed, claiming high demands to the field of scientific data processing and visualisation. Physical analysis methods like Secondary Ion Mass Spectrometry (SIMS) or Auger Electron Spectroscopy (AES) and others are capable of delivering high-resolution multispectral two-dimensional and three-dimensional image data; usually this multispectral data is available in form of n separate image files with each showing one element or other singular aspect of the sample. There is high need for digital image processing methods enabling the analytical scientist, confronted with such amounts of data routinely, to get rapid insight into the composition of the sample examined, to filter the relevant data and to integrate the information of numerous separate multispectral images to get the complete picture. Sophisticated image processing methods like classification and fusion provide possible solution approaches to this challenge. Classification is a treatment by multivariate statistical means in order to extract analytical information. Image fusion on the other hand denotes a process where images obtained from various sensors or at different moments of time are combined together to provide a more complete picture of a scene or object under investigation. Both techniques are important for the task of information extraction and integration and often one technique depends on the other. Therefore overall aim of this thesis is to evaluate the possibilities of both techniques regarding the task of analytical image processing and to find solutions for the integration and condensation of multispectral analytical image data in order to facilitate the interpretation of the enormous amounts of data routinely acquired by modern physical analysis instruments. (author)

  10. Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction

    Science.gov (United States)

    Melnick, Corey; Kaviany, Massoud

    2016-03-01

    The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.

  11. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  12. High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis

    OpenAIRE

    Keisuke Tenda; Riki Ota; Kentaro Yamada; Terence G. Henares; Koji Suzuki; Daniel Citterio

    2016-01-01

    This work demonstrates the fabrication of microfluidic paper-based analytical devices (µPADs) suitable for the analysis of sub-microliter sample volumes. The wax-printing approach widely used for the patterning of paper substrates has been adapted to obtain high-resolution microfluidic structures patterned in filter paper. This has been achieved by replacing the hot plate heating method conventionally used to melt printed wax features into paper by simple hot lamination. This patterning techn...

  13. Femtosecond Cooling of Hot Electrons in CdSe Quantum-Well Platelets

    NARCIS (Netherlands)

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C.; Moes, Relinde; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-01-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatele

  14. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  15. Hot-pressing steatite bodies

    International Nuclear Information System (INIS)

    Requirements for some special nuclear engineering ceramic shapes are: big size, impervious, dimensional accuracy and good mechanical and dielectric properties. Limitations of te conventional methods and advantages of te hot pressing techniques for the manufacturing of these shapes are discussed. Hot pressing characteristics of a certain steatite powder are studied. Occurrence of an optimum densification temperature just above the tale decomposition range is found. Experimental data show that the height/diameter ratio of the specimen has no effect on the sintering conditions. Increasing darkness from the graphite mould is detected above the optimum temperature. The hot-pressed steatite is compared with a fired dry-pressed sample of the same composition. (Author) 13 refs

  16. Prometheus Hot Leg Piping Concept

    Science.gov (United States)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  17. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  18. Analytical chemists and dinosaurs

    International Nuclear Information System (INIS)

    The role of the analytical chemist in the development of the extraterrestrial impact theory for mass extinctions at the terminal Cretaceous Period is reviewed. High iridium concentrations in Cretaceous/Tertiary boundary clays have been linked to a terrestrial impact from an iridium-rich asteroid or large meteorite som 65 million years ago. Other evidence in favour of the occurrence of such an impact has been provided by the detection of shocked quartz grains originating from impact and of amorphous carbon particles similar to soot, derived presumably from wordwide wildfires at the terminal Cretaceous. Further evidence provided by the analytical chemist involves the determination of isotopic ratios such as 144Nd/143Nd, 187Os/186Os, and 87Sr/86Sr. Countervailing arguments put forward by the gradualist school (mainly palaeontological) as opposed to the catastrophists (mainly chemists and geochemists) are also presented and discussed

  19. Avatars in Analytical Gaming

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, Andrew J.; Cowell, Amanda K.

    2009-08-29

    This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

  20. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection