WorldWideScience

Sample records for analytical atomic spectrometry

  1. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  2. Theory of analytical curves in atomic fluorescence flame spectrometry

    NARCIS (Netherlands)

    Hooymayers, H.P.

    1968-01-01

    An explicit expression for the intensity of atomic resonance fluorescence as a function of atomic concentration in a flame is derived under certain idealized conditions. The expression is generally valid for a pure Doppler absorption line profile as well as for a combined Doppler and collisional bro

  3. Saturation of Energy Levels in Analytical Atomic Fluorescence Spectrometry. II. Experimental.

    Science.gov (United States)

    1981-01-30

    RESEARCH Contract N14-76-C-0838 Task Ao. NR 051-622 TECHNICAL REPORT NO. 34 SATURATION OF ENERGY LEVELS IN ANALYTICAL ATOMIC FLUORESCENCE SPECTROMETRY II...an assumption which is valid only if the daral o’l of 111, cxcilIatio n pulse is mucl ) longer than the fluorescence life- time of the tjaii!,ition

  4. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    Science.gov (United States)

    Montaser, A.

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  5. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  6. Arsenic speciation by hydride generation-quartz furnace atomic absorption spectrometry. Optimization of analytical parameters and application to environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Molenat, N.; Astruc, A.; Holeman, M.; Pinel, R. [Laboratoire de Chimie Analytique Bioinorganique et Environnement, Dept. de Chimie, Faculte des Sciences et Techniques, 64 - Pau (France); Maury, G. [Montpellier-2 Univ., 34 (France). Dept. de Chimie Organique Fine

    1999-11-01

    Analytical parameters of hydride generation, trapping, gas chromatography and atomic absorption spectrometry detection in a quartz cell furnace (HG/GC/QFAAS) device have been optimized in order to develop an efficient and sensitive method for arsenic compounds speciation. Good performances were obtained with absolute detection limits in the range of 0.1 - 0.5 ng for arsenite, arsenate, mono-methyl-arsonic acid (MMAA), dimethyl-arsinic acid (DMAA) and trimethyl-arsine oxide (TMAO). A pH selective reduction for inorganic arsenic speciation was successfully reported. Application to the accurate determination of arsenic compounds in different environmental samples was performed. (authors)

  7. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  8. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    Science.gov (United States)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  10. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  11. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  12. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    Science.gov (United States)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  13. Noise-immune cavity-enhanced analytical atomic spectrometry - NICE-AAS - A technique for detection of elements down to zeptogram amounts

    Science.gov (United States)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-10-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10- 12 cm- 1 Hz- 1/2 (corresponding to a single-pass absorbance of 7 × 10- 11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10- 5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10- 21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated under atmospheric

  14. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l{sup -1} level

    Energy Technology Data Exchange (ETDEWEB)

    Kula, I. [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Arslan, Y. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Bakirdere, S. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O.Y. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. Gold coating on W-coil was prepared by using an organic solution of Au. The atom trap is held at 165 {sup o}C during the collection stage and is heated up to 675 deg. C for revolatilization; analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. The carrier gas consisted of 112.5 ml min{sup -1} Ar with 75 ml min{sup -1} H{sub 2} during the collection step and 112.5 ml min{sup -1} Ar with 450 ml min{sup -1} H{sub 2} in the revolatilization step. The half width of the transient signal obtained is less than 0.5 s. The RSD for the measurements was found to be 3.9% (n = 11) for 0.10 {mu}g l{sup -1} Se using peak height measurements. The calibration plot for 27.0 ml of sample collected in 4.0 min using a flow rate of 6.75 ml min{sup -1} was linear between 0.13 and 2.0 {mu}g l{sup -1} of Se. The limit of detection (3 s) is 39 ng l{sup -1}. The enhancement factor for the characteristic concentration (C{sub o}) was found to be 20.1 when compared to conventional hydride generation atomic absorption spectrometry system without trap. In order to check the accuracy of the method, standard reference material, natural water NIST 1640 was employed; the result was found to be in good agreement with the certified value at the 95% confidence level.

  15. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l - 1 level

    Science.gov (United States)

    Kula, İ.; Arslan, Y.; Bakırdere, S.; Ataman, O. Y.

    2008-08-01

    A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. Gold coating on W-coil was prepared by using an organic solution of Au. The atom trap is held at 165 °C during the collection stage and is heated up to 675 °C for revolatilization; analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. The carrier gas consisted of 112.5 ml min - 1 Ar with 75 ml min - 1 H 2 during the collection step and 112.5 ml min - 1 Ar with 450 ml min - 1 H 2 in the revolatilization step. The half width of the transient signal obtained is less than 0.5 s. The RSD for the measurements was found to be 3.9% ( n = 11) for 0.10 µg l - 1 Se using peak height measurements. The calibration plot for 27.0 ml of sample collected in 4.0 min using a flow rate of 6.75 ml min - 1 was linear between 0.13 and 2.0 µg l - 1 of Se. The limit of detection (3 s) is 39 ng l - 1 . The enhancement factor for the characteristic concentration ( Co) was found to be 20.1 when compared to conventional hydride generation atomic absorption spectrometry system without trap. In order to check the accuracy of the method, standard reference material, natural water NIST 1640 was employed; the result was found to be in good agreement with the certified value at the 95% confidence level.

  16. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  17. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Masanobu, E-mail: mori@gunma-u.ac.jp [Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan, (Japan); Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke [Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan, (Japan); Hirayama, Kazuo [College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan); Onozato, Makoto; Itabashi, Hideyuki [Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan, (Japan)

    2014-08-20

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10{sup −6} M of heavy metal ions at a flow rate of 5.0 mL min{sup −1}. Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu{sup 2+}, Zn{sup 2+}, and Pb{sup 2+} by 50-fold. This new enrichment system successfully performed the separation and determination of Cu{sup 2+} (5.0 × 10{sup −8} M) and Zn{sup 2+} (5.7 × 10{sup −8} M) in a river water sample and Pb{sup 2+} (3.8 × 10{sup −9} M) in a ground water sample.

  18. Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene M. [Universidade Federal do Pampa, Bage, RS (Brazil); Universidade Federal de Pelotas, Pelotas, RS (Brazil); Dessuy, Morgana B.; Boschetti, Wiliam [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)

    2012-05-15

    The purpose of the present work was to optimize the conditions for the determination of arsenic in gasoline with hydride generation-graphite furnace atomic absorption spectrometry after acid digestion using a full two-level factorial design with center point. The arsine was generated in a batch system and collected in a graphite tube coated with 150 {mu}g Ir as a permanent modifier. The sample volume, the pre-reduction conditions, the temperature program and modifier mass were kept fixed for all experiments. The estimated main effects were: reducing agent concentration (negative effect), acid concentration (negative effect) and trapping temperature (positive effect). It was observed that there were interactions between the variables. Moreover, the curvature was significant, indicating that the best conditions were at the center point. The optimized parameters for arsine generation were 2.7 mol L{sup -1} hydrochloric acid and 1.6% (w/v) sodium tetrahydroborate. The optimized conditions to collect arsine in the graphite furnace were a trapping temperature of 250 Degree-Sign C and a collection time of 30 s. The limit of detection was 6.4 ng L{sup -1} and the characteristic mass was 24 pg. Two different systems for acid digestion were used: a digester block with cold finger and a microwave oven. The concentration of arsenic found with the proposed method was compared with that obtained using a detergentless microemulsion and direct graphite furnace determination. The results showed that the factorial design is a simple tool that allowed establishing the appropriate conditions for sample preparation and also helped in evaluating the interaction between the factors investigated. - Highlights: Black-Right-Pointing-Pointer We determined As in gasoline using hydride generation-graphite furnace AAS. Black-Right-Pointing-Pointer We compared three sample preparation procedures. Black-Right-Pointing-Pointer A multivariate approach was used to optimize the conditions. Black

  19. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Dědina, J. (Jiří)

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were ...

  20. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz

    2012-05-15

    A compact trap-and-atomizer device and a preconcentration procedure based on hydride trapping in excess of oxygen over hydrogen in the collection step, both constructed and developed previously in our laboratory, were employed to optimize plumbane trapping in this device and to develop a routine method for ultratrace lead determination subsequently. The inherent advantage of this preconcentration approach is that 100% preconcentration efficiency for lead is reached in this device which has never been reported before using quartz or metal traps. Plumbane is completely retained in the trap-and-atomizer device at 290 Degree-Sign C in oxygen-rich atmosphere and trapped species are subsequently volatilized at 830 Degree-Sign C in hydrogen-rich atmosphere. Effect of relevant experimental parameters on plumbane trapping and lead volatilization are discussed, and possible trapping mechanisms are hypothesized. Plumbane trapping in the trap-and-atomizer device can be routinely used for lead determination at ultratrace levels reaching a detection limit of 0.21 ng ml{sup -1} Pb (30 s preconcentration, sample volume 2 ml). Further improvement of the detection limit is feasible by reducing the blank signal and increasing the trapping time. - Highlights: Black-Right-Pointing-Pointer In-atomizer trapping HG-AAS was optimized for Pb. Black-Right-Pointing-Pointer A compact quartz trap-and-atomizer device was employed. Black-Right-Pointing-Pointer Generation, preconcentration and atomization steps were investigated in detail. Black-Right-Pointing-Pointer 100% preconcentration efficiency for lead was reached. Black-Right-Pointing-Pointer Routine analytical method was developed for Pb determination (LOD of 0.2 ng ml{sup -1} Pb).

  1. Evaluation of analyte additions method for sodium determination in fuel ethanol by flame atomic emission spectrometry; Avaliacao do metodo das adicoes de analito para a determinacao de sodio em alcool combustivel por espectrometria de emissao atomica em chama

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriana Paiva de; Okumura, Leonardo Luiz; Gomes Neto, Jose Anchieta [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2002-07-01

    The analyte additions method was applied for sodium determination in fuel ethanol by atomic emission spectrometry. Graphics involving emission intensity versus analyte concentration in the 0 - 0.300 mg Na L{sup -1} interval concentration range containing 2.1 g K L{sup -1} as an ionisation buffer. Twenty samples of commercial fuel ethanol were collected in different gas stations located in Araraquara city, analyzed and results obtained varied from 0.0072 to 1.55 mg Na L{sup -1}. The limits of detection (L.O.D.) varied from 0.0026 to 0.0239 mg Na L{sup -1}. Recoveries varied in the 95 - 104 % interval. The relative standard deviations (n=12) for three analyte additions in all samples were {<=}4,1 %. (author)

  2. Interface for time-resolved introduction of gaseous analytes for atomic spectrometry by purge-and-trap multicapillary gas chromatography (PTMGC)

    Science.gov (United States)

    Wasik, Andrzej; Rodriguez Pereiro, Isaac; Łobiński, Ryszard

    1998-08-01

    A semi-automated compact interface that enables time-resolved introduction of gaseous analytes from aqueous solutions into an atomic spectrometer without the need for a full-size GC-oven is described. The interface is based on purging the gaseous analytes with an inert gas, drying the gas stream using a 30-cm tubular Nafion membrane and trapping the compounds in a thick film-coated capillary tube followed by their isothermal separation on a 1-m multicapillary GC column. Developments regarding each of the steps of the analytical procedure and effects of operational variables (sample volume, purge flow, trap temperature, speed of injection, GC separation conditions) are discussed using the speciation analysis of a mixture of tetraalkyllead compounds as an example. Recoveries are quantitative up to a sample volume of 50 ml. Figures of merit for the interface coupled to a microwave-induced plasma atomic emission detector are given. The interface allows the full speciation analysis (including sample preparation) to be carried out within less than 5 min with detection limits down to 5 pg l -1.

  3. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    Science.gov (United States)

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  4. Study on Atomic Fluorescence Spectrometry Excited by Synchrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    Jia-jia Guo; Wu-er Gan; Guo-bin Zhang; Qing-de Su

    2008-01-01

    A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.

  5. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  6. The rewards of fundamental atomic spectrometry research.

    Science.gov (United States)

    Slavin, W

    2000-04-01

    Atomic spectrometry research is the life-blood of the atomic spectrometry instrument industry. The instrument designer can be expected to innovate in the execution of instrumentation and should be expected to be the expert in optical, electronic and software engineering. Fundamentally new technology has required too long a period of gestation to be compatible with commercial time scales and budgets. But in the past decade, the pressure from stockholders for increased return on investments has put increasingly strong pressure on management to reduce expenses and focus increasingly on projects that guarantee a fast payback. This pressure falls particularly heavily on the larger companies; the same companies that a decade or more ago were the ones that brought the more far-reaching and expensive new concepts to market. Fundamental research in atomic spectrometry has been accomplished in the past several decades mostly in the academic environment and in research institutions that are Federally funded. All of the Federally funded research institutions have been forced to alter their missions to more tangible and immediate goals, and many have also seen severe financial reductions.

  7. The Rewards of Fundamental Atomic Spectrometry Research

    Institute of Scientific and Technical Information of China (English)

    Walter Slavin

    2000-01-01

    Atomic spectrometry research is the life-blood of the atomic spectrometry instrument industry.The instrument designer can be expected to innovate in the execution of instrumentation and should be expected to be the expert in optical,electronic and software engineering.Fundamentally new technology has required too long a period of gestation to be compatible with commercial time scales and budgets.But in the past decade,the pressure from stockholders for increased return on investments has put increasingly strong pressure on management to reduce expenses and focus increasingly on projects that guarantee a fast payback.This pressure falls particularly heavily on the larger companies;the same companies that a decade or more ago were the ones that brought the more far-reaching and expensive new concepts to market. Fundamental research in atomic spectrometry has been accomplished in the past several decades mostly in the academic environment and in research institutions that are Federally funded.All of the Federally funded research institutions have been forced to alter their missions to more tangible and immediate goals,and many have also seen severe financial reductions.

  8. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  9. Analytical atomic spectrometry with flames and plasmas

    CERN Document Server

    Broekaert, Jose A C

    2006-01-01

    Born in 1948, José Broekaert studied chemistry at the University of Gent, Belgium, graduating in 1970. After receiving his PhD from the University of Gent in 1976 and a stay in Germany as Alexander-von-Humboldt postdoctoral fellow the following year, he was a scientist at the ISAS, Dortmund from 1978 to 1991 and obtained the degree of ""Geaggregeerde voor het hoger onderwijs"" from the University of Antwerp, Belgium in 1985. He became associate professor at the University of Dortmund in 1991, full professor at the University of Leipzig in 1998 and, in 2002, joined the University of Hamburg. I

  10. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2016-09-29

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg(-1); ICP-MS, 437ngg(-1)) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses.

  11. Analytical evaluation of atomic form factors: application to Rayleigh scattering

    CERN Document Server

    Safari, L; Amaro, P; Jänkälä, K; Fratini, F

    2014-01-01

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wavefunctions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  12. New Directions and Capabilities in Analytical Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Gary M. HIEFTJE; Timothy L. DANIELSON; Andrew M. LEACH; Denise M. MCCLENATHAN; Radislav A. POTYRAILO; Steven J. RAY; Andrew W. SZUMLAS; Michael R. WEBB; William C. WETZEL

    2003-01-01

    In this presentation, a number of recent activities in our research group will be highlighted. The studies represent a broad range in the general field of spectrochemical analysis, sometimes take entirely new directions, usually employ novel instrumentation, and all provide important new capabilities in analytical measurements.

  13. Feasibility of filter atomization in high-resolution continuum source atomic absorption spectrometry

    Science.gov (United States)

    Heitmann, Uwe; Becker-Ross, Helmut; Katskov, Dmitri

    2006-03-01

    A prototype spectrometer for high-resolution continuum source atomic absorption spectrometry (HR-CS AAS), built at ISAS Berlin, Germany, was combined with a graphite filter atomizer (GFA), earlier developed at TUT, Pretoria, South Africa. The furnace and auto-sampler units from a commercial AA spectrometer, model AAS vario 6 (Analytik Jena AG, Jena, Germany), were employed in the instrument. Instead of conventional platform tube, the GFA was used to provide low measurement susceptibility to interferences and short determination cycle. The GFA was modified according to the design of the furnace unit and optimal physical parameters of its components (filter and collector) found. Afterwards, optimal GFA was replicated and tested to outline analytical performances of the HR-CS GFA AA spectrometer in view of prospects of multi-element analysis. In particular, reproducibility of performances, repeatability of analytical signals, lifetime, temperature limit and duration of the measurement cycle were examined, and elements available for determination justified. The results show that the peak area of the atomic absorption signal is reproduced in various GFA copies within ± 4% deviation range. The GFA can stand temperatures of 2800 °C with 6 s hold time for 55 temperature cycles, and 2700 °C (8 s) for about 200 cycles. Only the external tube is prone to destruction while the filter and collector do not show any sign of erosion caused by temperature or aggressive matrix. Analytical signals are affected insignificantly by tube aging. Repeatability of the peak area remains within 1.1-1.7% RSD over more than hundred determination cycles. Peak areas are proportional to the sample volume of injected organic and inorganic liquids up to at least 50 μL. The drying stage is combined with hot sampling and cut down to 15-20 s. The list of metals available for determination with full vapor release includes Al, Co, Cr, Ni, Pt as well as more volatile metals. Characteristic masses at

  14. Literature study of microwave-assisted digestion using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Chakraborty, R; Das, A K; Cervera, M L; De La Guardia, M

    1996-05-01

    The literature on the use of microwave-assisted digestion procedures for subsequent sample analysis by means of electrothermal atomic absorption spectrometry (ETAAS) is reviewed. The literature survey reveals that this digestion technique has been applied mainly for biological materials. The elements most extensively determined by this method are cadmium and lead followed by copper, chromium, nickel and iron. The microwave digestion conditions, ETAAS furnace programmes and analytical details of the developed methodologies have been carefully revised.

  15. Analytical validation of accelerator mass spectrometry for pharmaceutical development.

    Science.gov (United States)

    Keck, Bradly D; Ognibene, Ted; Vogel, John S

    2010-03-01

    The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of (14)C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the (14)C label), stable across samples storage conditions for at least 1 year, linear over four orders of magnitude with an analytical range from 0.1 Modern to at least 2000 Modern (instrument specific). Furthermore, accuracy was excellent (between 1 and 3%), while precision expressed as coefficient of variation was between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of (14)C, respectively (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with (14)C corresponds to 30 fg equivalents. Accelerator mass spectrometry provides a sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  16. Analytic Solutions of Three-Level Dressed-Atom Model

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ling; YIN Jian-Ping

    2004-01-01

    On the basis of the dressed-atom model, the general analytic expressions for the eigenenergies, eigenstates and their optical potentials of the A-configuration three-level atom system are derived and analysed. From the calculation of dipole matrix element of different dressed states, we obtain the spontaneous-emission rates in the dressed-atom picture. We find that our general expressions of optical potentials for the three-level dressed atom can be reduced to the same as ones in previous references under the approximation of a small saturation parameter. We also analyse the dependences of the optical potentials of a three-level 85Rb atom on the laser detuning and the dependences of spontaneous-emission rates on the radial position in the dark hollow beam, and discuss the probability (population) evolutions of dressed-atomic eigenstates in three levels in the hollow beam.

  17. Development of an analytical model for the determination of {sup 60}Co in aqueous samples by atomic absorption and gamma spectrometry techniques; Elaboracion de un modelo analitico para la determinacion de {sup 60}Co en muestras acuosas mediante tecnicas de absorcion atomica y espectrometria gamma

    Energy Technology Data Exchange (ETDEWEB)

    Solis A, N. A.

    2015-07-01

    The applications of the nuclear energy in industry and medicine generate radioactive wastes that must be isolated and confined in order to limit its spread in the biosphere. These types of wastes are generated in hospitals, industry, research centers and nuclear power plants (during de fuel cycle). The radioactive elements (radionuclides) cannot be destroyed by any known method, either chemical or mechanical. Its final destruction is produced by radioactive decay, which makes them stable isotopes, or nuclear transmutation being bombarded with atomic particles. Consequently, the radioactive waste management is to control the radioactive discharges and reduce to tolerable limits, eliminating of effluents and wastes the radionuclides of interest, concentrating them so they can be stored or evacuated so that later not appear in dangerous concentration in the biosphere. In Mexico, the main generators of radioactive wastes are the nuclear power plant of Laguna Verde in Veracruz, Hospitals of the public and private sector, in addition Instituto Nacional de Investigaciones Nucleares (ININ) some institutes and facilities of the UNAM and Instituto Politecnico Nacional (IPN) and industries among others. The aqueous radioactive wastes, particularly those from the nuclear power plants contain traces of cobalt-60. Currently there is no model or analytical technique for the separation of this radionuclide, so it became necessary to develop an analytical model for separation and facilitate their disposal. In this paper was shown that atomic absorption and gamma spectrometry techniques can separate the active concentration of the inactive, which is important because the total concentration can be associated through direct relationships with the wear of metal parts of the nuclear reactor, since the metal alloys of the same reactor containing a fraction of cobalt. Also this analytical and mathematical model that can be reproducible and applicable to full sets of samples and that this

  18. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    Science.gov (United States)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  19. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    Science.gov (United States)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  20. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  1. Gas Atomization of Aluminium Melts: Comparison of Analytical Models

    Directory of Open Access Journals (Sweden)

    Georgios Antipas

    2012-06-01

    Full Text Available A number of analytical models predicting the size distribution of particles during atomization of Al-based alloys by N2, He and Ar gases were compared. Simulations of liquid break up in a close coupled atomizer revealed that the finer particles are located near the center of the spray cone. Increasing gas injection pressures led to an overall reduction of particle diameters and caused a migration of the larger powder particles towards the outer boundary of the flow. At sufficiently high gas pressures the spray became monodisperse. The models also indicated that there is a minimum achievable mean diameter for any melt/gas system.

  2. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  3. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  4. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaodong [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Wu Peng [Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Chen Li [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Hou Xiandeng, E-mail: houxd@scu.edu.cn [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China)

    2009-09-14

    In this work, the microsampling nature of tungsten coil electrothermal vaporization Ar/H{sub 2} flame atomic fluorescence spectrometry (W-coil ETV-AFS) as well as tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) was used with cloud point extraction (CPE) for the ultrasensitive determination of cadmium in rice and water samples. When the temperature of the extraction system is higher than the cloud point temperature of the selected surfactant Triton X-114, the complex of cadmium with dithizone can be quantitatively extracted into the surfactant-rich phase and subsequently separated from the bulk aqueous phase by centrifugation. The main factors affecting the CPE, such as concentration of Triton X-114 and dithizone, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimal conditions, the limits of detection for cadmium by W-coil ETV-AFS and W-coil ET-AAS were 0.01 and 0.03 {mu}g L{sup -1}, with sensitivity enhancement factors of 152 and 93, respectively. The proposed methods were applied to the determination of cadmium in certified reference rice and water samples with analytical results in good agreement with certified values.

  5. Driving the atom by atomic fluorescence: Analytic results for the power and noise spectra

    OpenAIRE

    2000-01-01

    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both subnatural linewidth narrowing and large asymmetries while the noise spectrum of the squeezed quadrature narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discus...

  6. 中国原子光谱发展近况概述%Recent Development of Atomic Spectrometry in China

    Institute of Scientific and Technical Information of China (English)

    肖元芳; 王小华; 杭纬

    2015-01-01

    As an important part of modern analytical techniques,atomic spectrometry occupies a decisive status in the whole an-alytical field.The development of atomic spectrometry also reflects the continuous reform and innovation of analytical tech-niques.In the past fifteen years,atomic spectrometry has experienced rapid development and been applied widely in many fields in China.This review has witnessed its development and remarkable achievements.It contains several directions of atomic spec-trometry,including atomic emission spectrometry (AES),atomic absorption spectrometry (AAS),atomic fluorescence spec-trometry (AFS),X-ray fluorescence spectrometry (XRF),and atomic mass spectrometry (AMS).Emphasis is put on the inno-vation of the detection methods and their applications in related fields,including environmental samples,biological samples,food and beverage,and geological materials,etc.There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry.Finally,the prospects of atomic spectrometry in China have been forecasted.%原子光谱技术作为现代分析检测技术中的一个重要组成部分,在分析领域中占据着举足轻重的地位,而其发展也反映了分析技术的不断改革与创新。综述了中国原子光谱技术近15年来(2000年—2014年)的研究与应用进展。内容涉及原子光谱的多个分支领域,包括原子发射光谱(atomic emission spectrometry, AES),原子吸收光谱(atomic absorption spectrometry,AAS),原子荧光光谱(atomic fluorescence spectrome-try,AFS),X 射线荧光光谱(X-ray fluorescence spectrometry,XRF)以及原子质谱(atomic mass spectrome-try,AMS)五种原子光谱技术,重点关注各技术在检测方法上的创新及其在环境样品、生物样品、食品饮料以及地质材料等相关领域中的应用,并对原子光谱分析中利用到的各种联用技术进行了简要介绍。最后展望了今后我

  7. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  8. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  9. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  10. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    OpenAIRE

    Levine, Keith E.; Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a res...

  11. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Ezequiel; Piano, Ornela; Stripeikis, Jorge; Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar

    2012-11-15

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 {mu}g mL{sup -1}, sensitivity: 0.306 ({mu}g mL{sup -1}){sup -1}, RSD% (n = 10, 1 {mu}g mL{sup -1}): 2.5, linear range: 0.01-4 {mu}g mL{sup -1} and sample throughput: 72 h{sup -1}. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: Black-Right-Pointing-Pointer Quartz tubes as furnaces in TS-FFAAS. Black-Right-Pointing-Pointer Small tubes for controlling radial dispersion. Black-Right-Pointing-Pointer Improved figures of merit for gold determination. Black-Right-Pointing-Pointer Analysis of homeopathic medicines.

  12. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Science.gov (United States)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  13. Cloud point extraction-thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Wu Peng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China); Zhang Yunchang [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Lv Yi [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Hou Xiandeng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China) and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China)]. E-mail: houxd@scu.edu.cn

    2006-12-15

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 {mu}g/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  14. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Science.gov (United States)

    Titretir, Serap; Kendüzler, Erdal; Arslan, Yasin; Kula, İbrahim; Bakırdere, Sezgin; Ataman, O. Yavuz.

    2008-08-01

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH 3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 °C. Following the preconcentration step, the trap is heated to 895 °C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH 4 solutions, H 2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l - 1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  15. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  16. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    Science.gov (United States)

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  17. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  18. Atomic force microscopy fishing and mass spectrometry identification of gp120 on immobilized aptamers

    Directory of Open Access Journals (Sweden)

    Ivanov YD

    2014-10-01

    Full Text Available Yuri D Ivanov,1 Natalia S Bukharina,1 Tatyana O Pleshakova,1 Pavel A Frantsuzov,1 Elena Yu Andreeva,1 Anna L Kaysheva,1,2 Victor G Zgoda,1 Alexander A Izotov,1 Tatyana I Pavlova,1 Vadim S Ziborov,1 Sergey P Radko,1 Sergei A Moshkovskii,1 Alexander I Archakov1 1Department of Personalized Medicine, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Moscow, Russia; 2PostgenTech Ltd., Moscow, Russia Abstract: Atomic force microscopy (AFM was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted. It was shown that an image contrast of the protein/aptamer complexes was two-fold higher than the contrast of the protein/antibody complexes. Mass spectrometry identification provided an additional confirmation of the target protein presence on the AFM chips after biospecific fishing to avoid any artifacts. Keywords: gp120 HIV-1 envelope glycoprotein, aptamer, atomic force microscopy, mass spectrometry

  19. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, Bohumil [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveri 97, CZ-61142, Brno (Czech Republic)], E-mail: docekal@iach.cz; Vojtkova, Blanka [Institute of Materials Science, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic)

    2007-03-15

    A true direct solid sampling electrothermal atomic absorption spectrometry method with Zeeman-effect background correction (Analytik Jena ZEEnit 60 AAS) was developed for the determination of As, Cd, Hg, Pb, Sb and Zn in powdered titanium dioxide of pharmaceutical, food and cosmetics grade. The interaction of the titanium matrix and graphite surface of the sample carrier boat in a transversely heated graphite tube atomizer was investigated. Conversion of titanium dioxide to interfering TiO{sub 2}-TiC-liquid phase, running out the sampling boat, was observed at temperatures above 2000 deg. C. The temperature program was optimized accordingly for these volatile analytes in atomization and cleaning steps in order to prevent this interference and to prolong significantly the analytical lifetime of the boat to more than one thousand runs. For all elements, calibration by aqueous standard addition method, by wet-chemically analyzed samples with different content of analytes and/or by dosing one sample in different amounts, were proved as adequate quantification procedures. Linear dynamic calibration working ranges can be considerably expanded up to two orders of magnitude within one measurement run by applying three-field dynamic mode of the Zeeman background correction system. The results obtained by true direct solid sampling technique are compared with those of other independent, mostly wet-chemical methods. Very low limits of detection (3{sigma} criterion) of true solid sampling technique of 21, 0.27, 24, 3.9, 6.3 and 0.9 ng g{sup -1} were achieved for As, Cd, Hg, Pb, Sb and Zn, respectively.

  20. Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2008-01-01

    Full Text Available A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU, copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS. Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4 of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.

  1. Preconcentration of Vanadium(Ⅴ) on Crosslinked Chitosan and Determination by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol*L-1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0-12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg*L-1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.

  2. Determination of barium in bottled drinking water by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fagioli, F.; Locatelli, C.; Lanciotti, E.; Vallone, G.; Mazzotta, D.; Mugelli, A.

    1988-11-01

    In relation to the wide environmental spread of barium and to its cardiovascular effects, barium levels were determined by graphite furnace atomic absorption spectrometry in 60 different brands of bottled water marketed in Italy. Matrix interferences were investigated in order to evaluate the use of an analytical calibration function rather than the much more time consuming addition technique. The barium content ranged from limit of detection C/sub L/ (7.0 ..mu..g/1) up to 660 ..mu..g/1, the median value being 80 ..mu..g/l, while the recovery tests varied between 90 and 110% and the precision of the method (s/sub yx/) was 2.5%.

  3. [Atomic force microscopy fishing of gp120 on immobilized aptamer and its mass spectrometry identification].

    Science.gov (United States)

    Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I

    2015-01-01

    A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.

  4. Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, Asli; Tokman, Nilgun [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Akman, Suleyman [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey)], E-mail: akmans@itu.edu.tr; Ozeroglu, Cemal [Istanbul University, Department of Chemistry, Faculty of Engineering, 34320 Avcilar-Istanbul (Turkey)

    2008-02-11

    In this study, in order to eliminate the drawbacks of elution step and to reach higher enrichment factors, a novel preconcentration/separation technique for the slurry analysis of sorbent loaded with lead prior to its determination by electrothermal atomic absorption spectrometry was described. For this purpose, at first, lead was collected on ethylene glycol dimethacrylate methacrylic acid copolymer (EGDMA-MA) treated with ammonium pyrolidine dithiocarbamate (APDC) by conventional batch technique. After separation of liquid phase, slurry of the sorbent was prepared and directly pipetted into graphite furnace of atomic absorption spectrophotometer. Optimum conditions for quantitative sorption and preparation of the slurry were investigated. A 100-fold enrichment factor could be easily reached. The analyte element in certified sea-water and Bovine-liver samples was determined in the range of 95% confidence level. The proposed technique was fast and simple and the risks of contamination and analyte loss were low. Detection limit (3{delta}) for Pb was 1.67 {mu}g l{sup -1}.

  5. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    Science.gov (United States)

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  6. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  7. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  8. Chlorine Analysis by Diode Laser Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Joachim Koch; Aleksandr Zybin; Kay Niemax

    2000-01-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particulary with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine-and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the exspected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample.

  9. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  10. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C. A.

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 ..mu..g/g with the majority falling in the 0.01 to 0.1 ..mu..g/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 ..mu..m suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  11. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    Science.gov (United States)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    optimise signal to noise ratios from low ion beam intensities on Faraday cups [2,3]. Data will be presented from the Thermo Scientific NEPTUNE Plus MC-ICP-MS, sampling sub-nanogram quantities of analyte from solution and by laser ablation. Faraday only measurements of sub-microgram analyte quantities will also be presented, using a 1012 Ω amplifier for the minor isotope 234U. These data are compared to a dataset collected by a first generation MC-ICP-MS instrument, reported by Lloyd et al. [1]. [1] N. S. Lloyd, R. R. Parrish, M. S. A. Horstwood & S. R. N. Chenery, Journal of Analytical Atomic Spectrometry 24 (6), 752 (2009). [2] C. Bouman, J.B. Schwieters, M. Deerberg & D. Tuttas, Geochimica et Cosmochimica Acta 73 (13, Supplement 1) (2009). [3] D. Tuttas, J.B. Schwieters, & N.S. Lloyd, Geochimica et Cosmochimica Acta 74 (11, Supplement 1) (2010).

  12. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  13. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  14. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  15. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  16. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four......An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... of 1300 W. The limit of detection achieved under these conditions was 1 mu g L-1 (100 mu L injections). The HPLC-ICP-MS system was used for selenium speciation of selenite and selenate in aqueous solutions during a BCR certification exercise and for selenium speciation in the certified reference material...

  17. Mass spectrometry imaging for visualizing organic analytes in food.

    Science.gov (United States)

    Handberg, Eric; Chingin, Konstantin; Wang, Nannan; Dai, Ximo; Chen, Huanwen

    2015-01-01

    The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.

  18. Analytical strategies in mass spectrometry-based phosphoproteomics

    DEFF Research Database (Denmark)

    Rosenqvist, Heidi; Ye, Juanying; Jensen, Ole N

    2011-01-01

    to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We......Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers...

  19. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    Science.gov (United States)

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1).

  20. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  1. Analytical Properties of Solid-substrate Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2013-01-01

    Conventional electrospray ionization mass spectrometry (ESI-MS) uses a capillary for sample loading and ionization. Along with the development of ambient ionization techniques, ESI-MS using noncapillary emitters has attracted more interest in recent years. Following our recent report on ESI-MS using wooden tips ( Anal. Chem. 83, 8201-8207 (2011)), the technique was further investigated and extended in this study. Our results revealed that the wooden tips could serve as a chromatographic column for separation of sample components. Sequential and exhaustive ionization was observed for proteins and salts on wooden tips with salts ionized sooner and proteins later. Nonconductive materials that contain microchannels/pores could be used as tips for ESI-MS analysis with sample solutions loaded to the sharp-ends only, since rapid diffusion of sample solutions by capillary action would enable the tips to become conductive. Tips of inert materials such as bamboo, fabrics, and sponge could be used for sample loading and ionization, while samples such as tissue, mushroom, and bone could form tips to induce ionization for direct analysis with application of a high voltage. [Figure not available: see fulltext.

  2. Padronização interna em espectrometria de absorção atômica Internal standardization in atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Kelly G. Fernandes

    2003-03-01

    Full Text Available This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry and the future of this compensation strategy are critically discussed.

  3. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  4. Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Freschi, Gian P. G.; Dakuzaku, Carolina S.; de Moraes, Mercedes; Nóbrega, Joaquim A.; Gomes Neto, José A.

    2001-10-01

    A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l -1 HNO 3 and in 1+1 v/v diluted wine using mixtures of Pd(NO 3) 2+Mg(NO 3) 2 and NH 4H 2PO 4+Mg(NO 3) 2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l -1 HNO 3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 μg l -1 Cd and 5.0-50 μg l -1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l -1 for Cd, 0.8 μg l -1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l -1 and for Pb at 500 μg l -1. The relative standard deviations ( n=12) were typically wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.

  5. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Alexandre de; Zmozinski, Ariane Vanessa [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Damin, Isabel Cristina Ferreira [Faculdade Dom Bosco de Porto Alegre, 90520-280, Porto Alegre, RS (Brazil); Silva, Marcia Messias, E-mail: mmsilva@iq.ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti Rodrigues [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2012-05-15

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 {mu}g kg{sup -1} for arsenic and 0.2 {mu}g kg{sup -1} for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a 'cold finger' was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis. - Highlights: Black-Right-Pointing-Pointer A direct sampling GF AAS method to determine As and Cd in crude oil was proposed. Black-Right-Pointing-Pointer The conventional chemical modifier Pd/Mg has been used to stabilize As and Cd. Black

  6. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  7. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    Science.gov (United States)

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  8. Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grases, F.; Perello, J.; Isern, B.; Prieto, R.M

    2004-05-10

    Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers' evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described. The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l{sup -1} phosphorus (0-7 mg l{sup -1} phytate). The limit of detection was 64 {mu}g l{sup -1} of phytate and the limit of quantification was 213 {mu}g l{sup -1}. The relative standard deviation (R.S.D.) for 1.35 mg l{sup -1} phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.

  9. Analytical study of ultrasound influence on the molten metals atomization

    Science.gov (United States)

    Antonnikova, A.; Arkhipov, V.; Boiko, V.; Basalaev, S.; Konovalenko, A.; Zolotorev, N.

    2016-04-01

    This paper focuses on the study of influence of ultrasound on liquid atomization using ejection nozzles. Two principles of influence of ultrasound on the atomization process such as a change of conditions on gas-liquid boundary during the generation of ultrasound oscillation in the gas and liquid jet (film) disintegration under the action of capillary forces in cases of generation of ultrasound oscillation in the liquid are considered. The optimal values of the ultrasound oscillation frequencies are calculated. Two constructions of the nozzles patented are proposed.

  10. A NEW GENERATION OF INSTRUMENTATION AND CAPABILITIES FOR ATOMIC MASS SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Atomic mass spectrometry,embodied usually as inductively coupled plasma mass spectrometry (ICPMS) or glow-discharge mass spectrometry (GDMS),has become a widely accepted tool for trace and ultra-trace elemental analysis.ICPMS offers detection limits below 1 ppt in solution,a dynamic concentration levels,isotope-analysis and isotope-dilution capabilities,modest matrix interferences,understandable spectral interferences (isobaric overlaps),precision in range of 2—5%,and rapid measurements (typically 10 seconds per isotope).

  11. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  12. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte is initi......A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte...

  13. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    Science.gov (United States)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  14. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    Science.gov (United States)

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  15. Spatially resolved measurements to improve analytical performance of solution-cathode glow discharge optical-emission spectrometry

    Science.gov (United States)

    Schwartz, Andrew J.; Ray, Steven J.; Chan, George C.-Y.; Hieftje, Gary M.

    2016-11-01

    Past studies of the solution-cathode glow discharge (SCGD) revealed that elemental and molecular emission are not spatially homogenous throughout the source, but rather conform to specific zones within the discharge. Exploiting this inhomogeneity can lead to improved analytical performance if emission is collected only from regions of the discharge where analyte species emit strongly and background emission (from continuum, elemental and/or molecular sources) is lower. Effects of this form of spatial discrimination on the analytical performance of SCGD optical emission spectrometry (OES) have been investigated with an imaging spectrograph for fourteen atomic lines, with emphasis on detection limits and precision. Vertical profiles of the emission intensity, signal-to-background ratio, and signal-to-noise ratio were collected and used to determine the optimal region to view the SCGD on a per-element basis. With optimized spatial filtering, detection limits ranged from 0.09-360 ppb, a 1.4-13.6 fold improvement over those obtained when emission is collected from the full vertical profile (1.1-840 ppb), with a 4.2-fold average improvement. Precision was found to be unaffected by spatial filtering, ranging from 0.5-2.6% relative standard deviation (RSD) for all elements investigated, closely comparable to the 0.4-2.4% RSD observed when no spatial filtering is used. Spatial profiles also appear useful for identifying optimal line pairs for internal standardization and for flagging the presence of matrix interferences in SCGD-OES.

  16. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne;

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve...

  17. Different Algorithms for Improving Detection Power of Atomic Fluorescence Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2012-11-01

    Full Text Available The purpose of detecting trace concentrations of analytes often is hindered by occurring noise in the signal curves of analytical methods. This is also a problem when different arsenic species (organic arsenic species such as arsanilic acid, nitarsone and roxarsone are to be determined in animal meat by HPLC-UV-HG-AFS, which is the basis of this work. In order to improve the detection power, methods of signal treatment may be applied. We show a comparison of convolution with Gaussian distribution curves, Fourier transform, and wavelet transform. It is illustrated how to estimate decisive parameters for these techniques. All methods result in improved limits of detection. Furthermore, applying baselines and evaluating peaks thoroughly is facilitated. However, there are differences. Fourier transform may be applied, but convolution with Gaussian distribution curves shows better results of improvement. The best of the three is wavelet transform, whereby the detection power is improved by factors of about 2.4

  18. A new heating strategy in electrothermal atomic absorption spectrometry for better absorbance-time curves at high atomization rate

    Energy Technology Data Exchange (ETDEWEB)

    Torsi, Giancarlo [Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna (Italy)]. E-mail: giancarlo.torsi@unibo.it; Zattoni, Andrea [Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Locatelli, Clinio [Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Valcher, Sergio [Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna (Italy)

    2005-03-31

    The results previously obtained by using fast heating in electrothermal atomic absorption spectrometry are considerably improved by using a new heating sequence which can be summarized as transverse-longitudinal heating mode. The absorbance vs. time curves, obtained with the new heating mode, follow almost perfectly a simple model in which only diffusion is considered as the force acting on the atomic vapor. From the fitting of the experimental absorbance vs. time data points with theoretical values, it is possible to calculate both the absorbance, when all atoms injected are assumed to be present, and their diffusion coefficient. Both values can be calculated by a simple software approach without the operator intervention. The asymptotic absorbance calculated in this way is the maximum absorbance physically obtainable and is the basis for standardless analysis.

  19. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  20. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  1. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...

  2. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  3. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4.

    Science.gov (United States)

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2009-06-15

    A matrix separation and analyte preconcentration system using Amberlite XAD copolymer resins functionalized by Schiff base reactions coupled with atomic spectrometry has been developed. Three different functionalized Amberlite XAD resins were synthesized using 4-phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and 2-thiophenecarboxaldehyde as reagents. These resins could be used to preconcentrate transition and other trace heavy metal analytes from nitric acid digests of soil and sediment samples. Analyte retention was shown to work well at pH 6.0. After treatment of the digests with sodium fluoride and buffering to pH 6, samples that contain extremely large concentrations of iron were analysed for trace analytes without the excess iron overloading the capacity of the resin. The analytes Cd, Co, Cu, Ni and Pb were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with 0.1M HNO(3) directly to the detection system. Flame atomic absorption spectrometry was used as a means of detection during the studies. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the analysis of soil (SO-2) and sediment (LGC 6157 and MESS-3) certified reference materials.

  4. A sapphire tube atomizer for on-line atomization and in situ collection of bismuthine for atomic absorption spectrometry

    OpenAIRE

    Musil, S. (Stanislav); Dědina, J. (Jiří)

    2013-01-01

    Sapphire was tested as a new material for volatile species atomizers and bismuthine was chosen as a convenient model for volatile species. Its performance was compared with a quartz atomizer in both modes of operation - on-line atomization versus in situ collection.

  5. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  6. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Maranhão, Tatiane De A.; Borges, Daniel L. G.; da Veiga, Márcia A. M. S.; Curtius, Adilson J.

    2005-06-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 °C for both elements and atomization temperatures of 1400 and 1600 °C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3σB) of 6 and 40 ng g-1, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H2O2 and HNO3. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  7. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)]. E-mail: daniel@qmc.ufsc.br; Veiga, Marcia A.M.S. da [Instituto de Quimica, Universidade de Sao Paulo, 05513-970, CP 26077, Sao Paulo, SP (Brazil); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2005-06-30

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 deg. C for both elements and atomization temperatures of 1400 and 1600 deg. C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3{sigma} {sub B}) of 6 and 40 ng g{sup -1}, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H{sub 2}O{sub 2} and HNO{sub 3}. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  8. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  9. Determination of cadmium and lead in urine by derivative flame atomic absorption spectrometry using the atom trapping technique

    Science.gov (United States)

    Han-wen, Sun; De-qiang, Zhang; Li-li, Yang; Jian-min, Sun

    1997-06-01

    A method is described for the determinations of cadmium and lead in urine by derivative flame atomic absorption spectrometry with a modified water-cooled stainless steel atom trapping tube. The effects of the trap position, the flame conditions, the coolant flow rates, and the collection time were studied. With a 1 min collection time, the characteristic concentrations (derivative absorbance of 0.0044) for cadmium and lead were 0.028 and 1.4 μg L -1, the detection limits (3σ) were 0.02 and 0.27 μg L -1, respectively. The detection limits and sensitivities of the proposed method were 2 and 3 orders of magnitude higher for 1-3 min collection time than those of conventional flame atomic absorption spectrometry for cadmium and lead, respectively. Urine samples from a small population of normal individuals have been analyzed for cadmium and lead by the proposed method. Satisfactory recoveries of 91-110% and 91-106%, for Cd and Pb were obtained with these urine samples.

  10. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Kumar, K. Suresh; Prasad, B.; Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati, 517502 A.P. (India); Lekkala, Ramesh Babu [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Janardhanam, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India)], E-mail: Kandukurijanardhanam@gmail.com

    2008-02-11

    bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 {mu}g L{sup -1}.

  11. Design and evaluation of a continuous flow, integrated nebulizer-hydride generator for flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Miguel Murillo

    2008-01-01

    Full Text Available An evaluation of the performance of a continuous flow hydride generator-nebulizer for flame atomic absorption spectrometry was carried out. Optimization of nebulizer gas flow rate, sample acid concentration, sample and tetrahydroborate uptake rates and reductant concentration, on the As and Se absorbance signals was carried out. A hydrogen-argon flame was used. An improvement of the analytical sensitivity relative to the conventional bead nebulizer used in flame AA was obtained (2 (As and 4.8 (Se µg L-1. Detection limits (3σb of 1 (As and 1.3 (Se µg L-1 were obtained. Accuracy of the method was checked by analyzing an oyster tissue reference material.

  12. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  13. Selective Flow-Injection Quantification of Ultra-trace Amounts of Cr(VI) via On-line Complexation and Preconcentration with APDC Followed by Determination by Electrothermal Atomic Absorption Spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1998-01-01

    is effected by adsorption on the inner wall of a knotted reactor made from PTFE tubing. The complex is subsequently eluted with a monosegmented discrete zone of ethanol (55 mu l), and the analyte is quantified by electrothermal atomic absorption spectrometry (ETAAS). The operations of the FI...

  14. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Bentlin, Fabrina R S; Pozebon, Dirce; Mello, Paola A; Flores, Erico M M

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 microg g(-1) of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES).

  15. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  16. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  17. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  18. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Science.gov (United States)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  19. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeini Jahromi, Elham [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidari, Araz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of) and Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)]. E-mail: y_assadi@iust.ac.ir; Milani Hosseini, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jamali, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2007-03-07

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 {mu}L methanol (disperser solvent) containing 34 {mu}L carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 {+-} 1 {mu}L). Then a 20 {mu}L of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L{sup -1} with detection limit of 0.6 ng L{sup -1}. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L{sup -1} of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L{sup -1} are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data

  20. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  1. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  2. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  3. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  4. On the expression 'external calibration' in atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Tibor [Geological Institute of Hungary, Stefania Ave 14, 1143 Budapest (Hungary)], E-mail: kantib@t-online.hu

    2008-04-15

    The expressions 'calibration' and 'external calibration' appear together in the present literature of atomic spectrometry resulting in a dilemma of understanding and correct use. It is examined how the IUPAC can provide a guidance to the solution of this problem by recalling the definitions of related terms of optical, mass and X-ray atomic spectrometry techniques. The introduction and definition of these expressions in widely used text books are investigated and statistically evaluated for the articles published during the last 30 years in the periodical Spectrochimica Acta Part B. For the elimination of the literary difficulties with the use of the term 'calibration', attributes are proposed to express the degree of matrix matching of standards and samples.

  5. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  6. Determination of Trace Iron in High Purity Sodium Fluoride by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method is described for the direct determination of iron in high purity sodium fluoride using graphite furnace atomic absorption spectrometry. Interferences caused by the matrix are investigated. It is shown that the ashing temperature can be increased to 1 400°C and matrix interferences eliminated, the sensi tivity of iron increased in 1.27 fold by the addition of nickel nitrate. The method is applied to the determina tion of iron in sodium fluoride and satisfactory results are obtained.

  7. Determination of Uranium in Apatite Minerals by Solvent Extraction--Inductively Coupled Plasma Atomic Emission Spectrometry

    OpenAIRE

    1993-01-01

    [Abstract] Solvent, extraction-ICP atomic emission spectrometry was applied to the determination of uranium in apatite minerals. Apatite minerals were treated with nitric acid. After removing a small quantity of insoluble residue, uranium was extracted with 0.05 mol/dm^3 1-phonyl-3-mcthyl-4-trifluoroacetyl-5-pyrazolonc-diisobutyl kctone at pH 0.8. The uranium content in the apatite was found to be (20.3〜132.9)×10^%.

  8. Determination of diethyllead in the urine by flameless atomic absorption spectrometry.

    OpenAIRE

    Turlakiewicz, Z; Jakubowski, M.; Chmielnicka, J

    1985-01-01

    A method for the determination of diethyllead in urine by flameless atomic absorption spectrometry after chelation with glyoxal-bis (2-hydroxyanil) and extraction of the formed complex with methyl isobutyl ketone is described. The method is specific in relation to both triethyllead and inorganic lead. The limit of detection was 3.2 micrograms Pb/l and the relative standard deviation in the concentration range 20-100 micrograms Pb/l was 0.076.

  9. EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Cristiana Radulescu; Claudia Stihi; Valerica Gh. Cimpoca; Popescu, Ion V.; Gabriela Busuioc; Ana Irina Gheboianu

    2011-01-01

    The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu) content of the fruiting bodies (cap and stipe) of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea) and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS) after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and...

  10. Atomization mechanisms and gas phase reactions in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frech, W.; Lindberg, A.O.; Lundberg, E.; Cedergren, A.

    1986-04-01

    The amounts of carbon monoxide as well as the total amounts of hydrocarbons generated in different types of graphite tubes were investigated under various experimental conditions. Depending on whether or not a matrix like 50 ..mu..g of sodium nitrate was added the amount of carbon monoxide formed during atomization at 1,700 K in a pyrocoated tube was in the range 60 to 600 nmoles when using a thermal pretreatment temperature of 1,200 K. The corresponding values for an uncoated tube were 250 to 1,300 nmoles. The effect of carbon monoxide on the atomization behaviour of silver, bismuth, chromium, copper and lead was investigated experimentally and the results were evaluated by means of thermodynamically based models. In accordance with theoretical predications, only lead, bismuth and chromium, which are assumed to be atomized by oxide decomposition, showed substantial shifts in their appearance temperatures in different gas mixtures, and changes in activation energies.

  11. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dancsak, Stacia E. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Silva, Sidnei G.; Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2014-01-02

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg{sup −1}. •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg{sup −1} for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg{sup −1} for Na and K, and between 0.22 and 0.43 mg kg{sup −1} for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated

  12. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The

  13. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina por espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method’s performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 ± 11,70)μg.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L{sup −1}. The obtained

  14. Study on Determination of copper ores by atomic absorption spectrometry%原子吸收光谱分析测定铜矿石成分探讨

    Institute of Scientific and Technical Information of China (English)

    廖淑珍

    2016-01-01

    In 1950s,China began to use atomic spectroscopy to analyze various elements,such as metallurgy, geology and machinery and other industries.With the development of the atomic spectrum analysis technology,a lot of new analytical techniques are derived. At present,the combination of atomic absorption spectrometry and atomic fluorescence spectrometry has become the main means of atomic spectrum analysis in China. In this paper,we study the chemical analysis of silver,copper,zinc and other elements in the samples of the mine.%20世纪50年代,我国开始应用原子光谱对各种元素进行分析,诸如,冶金、地质和机械等行业.随着原子光谱分析技术的不断发展,衍生出很多新的分析技术,使样品元素的研究更加清晰.目前,原子吸收和原子荧光光谱分析的结合,成为我国原子光谱分析的主要手段.本文以此为切入点,研究矿山样品中的银、铜、锌等元素的化学分析.

  15. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  16. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    Science.gov (United States)

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  17. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  18. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  19. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  20. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  1. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)], E-mail: edsonqmc@hotmail.com; Santos Roldan, Paulo dos [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L{sup -1} HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 {mu}g L{sup -1} for lead and cadmium, respectively. For a solution containing 100 and 10 {mu}g L{sup -1} of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.

  2. Self-interstitial configuration in molybdenum studied by modified analytical embedded atom method

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhang Fang Wang; Ke-Wei Xu

    2009-05-01

    The stability of various atomic configurations containing a self-interstitial atom (SIA) in a model representing Mo has been investigated using the modified analytical embedded atom method (MAEAM). The lattice relaxations are treated with the molecular dynamics (MD) simulation at absolute zero of temperature. Six relatively stable self-interstitial configurations and formation energies have been described and calculated. The results indicate that the [1 1 1] dumbbell interstitial S111 has the lowest formation energy, and in ascending order, the sequence of the configurations is predicted to be S111, C, S110, T, S001 and O. From relaxed displacement field up to the fifth-NN atoms of six configurations, we know that the relaxed displacements depend not only on separation distances of the NN atoms from the defect centre but also strongly on the direction of the connected line between the NN atoms and the defect centre. The equilibrium distances between two nearest atoms in the core of the S111, C, S110, T, S001 and O configurations are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and 0.70a, respectively.

  3. Determination of Zn-citrate in human milk by CIM monolithic chromatography with atomic and mass spectrometry detection.

    Science.gov (United States)

    Milačič, Radmila; Ajlec, Dejan; Zuliani, Tea; Žigon, Dušan; Ščančar, Janez

    2012-11-15

    In human milk zinc (Zn) is bound to proteins and low molecular mass (LMM) ligands. Numerous investigations demonstrated that Zn bioavailability in human milk is for infant much higher than in cow's milk. It was presumed that in the LMM human milk fraction highly bioavailable Zn-citrate prevails. However, literature data are controversial regarding the amount of Zn-citrate in human milk since analytical procedures reported were not quantitative. So, complex investigation was carried out to develop analytical method for quantitative determination of this biologically important molecule. Studies were performed within the pH range 5-7 by the use of synthetic solutions of Zn-citrate prepared in HEPES, MOPS and MES buffers. Zn-citrate was separated on weak anion-exchange convective interaction media (CIM) diethylaminoethyl (DEAE) monolithic chromatographic column using NH(4)NO(3) as an eluent. Separated Zn species were determined by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Quantitative separation of Zn-citrate complexes ([Zn(Cit)](-) and [Zn(Cit)(2)](4-); column recoveries 94-102%) and good repeatability and reproducibility of results with relative standard deviation (RSD±3.0%) were obtained. In fractions under the chromatographic peaks Zn-binding ligand was identified by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Limits of detection (LOD) for determination of Zn-citrate species by CIM DEAE-FAAS and CIM DEAE-ICP-MS were 0.01 μg Zn mL(-1) and 0.0005 μg Zn mL(-1), respectively. Both techniques were sensitive enough for quantification of Zn-citrate in human milk. Results demonstrated that about 23% of total Zn was present in the LMM milk fraction and that LMM-Zn corresponded to Zn-citrate. The developed speciation method represents a reliable analytical tool for investigation of the percentage and the amount of Zn-citrate in human milk.

  4. Calculation of phonon spectrum for noble metals by modified analytic embedded atom method (MAEAM)

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Jun; Zhang Jian-Min; Xu Ke-Wei

    2006-01-01

    In the harmonic approximation, the atomic force constants are derived and the phonon dispersion curves along four major symmetry directions [00ζ], [0ζζ], [ζζζ] and [0ζ1] (or △, ∑, A and Z in group-theory notation) are calculated for four noble metals Cu, Ag, Au and Pt by combining the modified analytic embedded atom method (MAEAM) with the theory of lattice dynamics. A good agreement between calculations and measurements, especially for lower frequencies,shows that the MAEAM provides a reasonable description of lattice dynamics in noble metals.

  5. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    Science.gov (United States)

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  6. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saygi, Kadriye Ozlem; Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com; Elci, Latif [Pamukkale University, Faculty of Science and Arts, Chemistry Department, 20020 Denizli (Turkey)

    2008-05-30

    A solid phase extraction procedure has been established for chromium speciation in natural water samples prior to determination by atomic absorption spectrometry. The procedure is based on the solid phase extraction of the Cr(VI)- Dowex M 4195 chelating resin. After oxidation of Cr(III) to Cr(VI) by using H{sub 2}O{sub 2}, the presented method was applied to the determination of the total chromium. The level of Cr(III) is calculated by difference of total chromium and Cr(VI) levels. The procedure was optimized for some analytical parameters including pH, eluent type, flow rates of sample and eluent, matrix effects, etc. The presented method was applied for the speciation of chromium in natural water samples with satisfactory results (recoveries >95%, RSDs <10%). In the determinations of chromium species, flame atomic absorption spectrometer was used. The results were checked by using NIST SRM 2711 Montana soil and GBW 07603 Bush branched and leaves.

  7. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L{sup -1} HNO{sub 3} nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO{sub 3}, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL{sup -1} for Cu{sup 2+}, Co{sup 2+} and Ni{sup 2+} along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+}, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  8. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Ghaedi, M; Shokrollahi, A; Ahmadi, F; Rajabi, H R; Soylak, M

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L(-1) HNO(3) nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO(3), bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL(-1) for Cu(2+), Co(2+) and Ni(2+) along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu(2+), Ni(2+) and Co(2+), respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  9. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Woinska, Sylwia; Godlewska-Zylkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2011-07-15

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L{sup -1} thiourea in 0.3 mol L{sup -1} HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL{sup -1} for Pt and 0.012 ng mL{sup -1} for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g{sup -1} for Pt and 1.24 mg g{sup -1} for Pd.

  10. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  11. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Woińska, Sylwia; Godlewska-Żyłkiewicz, Beata

    2011-07-01

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L - 1 thiourea in 0.3 mol L - 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL - 1 for Pt and 0.012 ng mL - 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g - 1 for Pt and 1.24 mg g - 1 for Pd.

  12. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Teslima Daşbaşı

    2016-01-01

    Full Text Available A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4- complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n=13. The precision as relative standard deviation was 3% (n=11, 0.20 mg L−1 and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water.

  13. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41

    DEFF Research Database (Denmark)

    Fiamegkos, I.; Cordeiro, F.; Robouch, P.;

    2016-01-01

    the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry......A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow...

  14. Pre-analytical and analytical variation of drug determination in segmented hair using ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian

    2014-01-01

    Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with focus on the assessment of both the analytical and pre-analytical sampling variations. The validated method was specific, accurate (80-120%), and precise (CV≤20%) across a wide linear concentration range from 0.025-25 ng/mg for most compounds. The analytical variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two bundles of hair collected from each subject after subtraction of the analytical component. For the most frequently detected analytes, the pre-analytical variation was estimated to be 26-69%. Thus, the pre-analytical variation was 3-7 folds larger than the analytical variation (7-13%) and hence the dominant component in the total variation (29-70%). The present study demonstrated the importance of including the pre-analytical variation in the assessment of the total uncertainty budget and in the setting of the 95%-uncertainty interval (±2CVT). Excluding the pre-analytical sampling variation could significantly affect the interpretation of results from segmental hair analysis.

  15. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J.L. [IAEA, SAL, Vienna (Austria); Raab, W. [IAEA, SAL, Vienna (Austria); Donohue, D. [IAEA, SAL, Vienna (Austria); Jansta, V. [IAEA, SAL, Vienna (Austria); Kierzek, J. [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  16. Pure-rotational spectrometry: a vintage analytical method applied to modern breath analysis.

    Science.gov (United States)

    Hrubesh, Lawrence W; Droege, Michael W

    2013-09-01

    Pure-rotational spectrometry (PRS) is an established method, typically used to study structures and properties of polar gas-phase molecules, including isotopic and isomeric varieties. PRS has also been used as an analytical tool where it is particularly well suited for detecting or monitoring low-molecular-weight species that are found in exhaled breath. PRS is principally notable for its ultra-high spectral resolution which leads to exceptional specificity to identify molecular compounds in complex mixtures. Recent developments using carbon aerogel for pre-concentrating polar molecules from air samples have extended the sensitivity of PRS into the part-per-billion range. In this paper we describe the principles of PRS and show how it may be configured in several different modes for breath analysis. We discuss the pre-concentration concept and demonstrate its use with the PRS analyzer for alcohols and ammonia sampled directly from the breath.

  17. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  18. Inductively Coupled Plasma(ICP) Mass Spectrometry(MS) Hyphenated with Atomic Emission Spectrometry(AES) for Simultaneous Determination of Major, Minor and Micro Amounts of Elements in Geochemical Samples

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhen-yu; ZHANG Qin; HU Ke; WU Jian-ling; YANG Peng-yuan

    2005-01-01

    @@ Introduction Geological resource survey demands for determining various constituents including major, minor, micro, trace and ultra-trace levels of elements for preparing the map of resource distribution of our country. As a powerful and popularly used technique for multi-element analysis, inductively coupled plasma(ICP) atomic emission spectrometry (AES) has been applied to this field for a period of time[1-3]. However, ICP spectrometric determination of those micro, trace and ultratrace elements needs enrichment procedures for improving the detection limit, which is unacceptable in case a great mass of samples should be analyzed as that in the task of geological resource survey. On the other hand, although ICP mass spectrometry(MS) is considered the most powerful method for trace elements determination[4,5], it is difficult for ICP-MS to be used to determine the trace and major analytes simultaneously in a spectrum.

  19. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  20. Determination of total magnesium in biological samples using electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Hulanicki, Adam; Godlewska, Beata; Brzóska, Malgorzata

    1995-11-01

    Magnesium content is an important diagnostic parameter in medicine. It is recognized that its determination in one compartment is not sufficient for reliable information about the magnesium status in the body. In addition to the common procedures of magnesium determination in blood by flame atomic absorption spectrometry, the procedure of electrothermal atomization has also been developed and applied to the analysis of blood fractions, mononuclear cells and isolated nuclei of liver cells. Electrothermal atomization is preferred in cases where the sample size is limited and the magnesium content low. The total errors are in the order of 3-4%. Various techniques of sample pretreatment have been tested and direct dilution with 0.05 mol l -1 nitric acid was optimal when the samples were not mineralized. The calibration graph based on standards containing albumin was found to give the best results, as the form of magnesium in the samples may influence the ashing and atomization processes. Good agreement was obtained for determination of magnesium in standard serum. The results are compared with those obtained by the standard flame atomization technique.

  1. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and 75Se radiotracer efficiency study

    Science.gov (United States)

    Rybínová, Marcela; Musil, Stanislav; Červený, Václav; Vobecký, Miloslav; Rychlovský, Petr

    2016-09-01

    Volatile selenium compounds were generated UV-photochemically in the continuous flow mode using four UV-photoreactors differing in the material of the reaction coil; Teflon tubing and quartz tubes with various inner diameters and wall thicknesses were tested. Atomic absorption spectrometry with an externally heated quartz furnace atomizer was employed as the detector. The relevant experimental generation parameters were optimized and the basic analytical characteristics were determined. Using formic acid as the photochemical agent, limits of detection achieved for selenium were in the range 46-102 ng L- 1 in dependence on the type of UV-photoreactor employed. When nitric acid was also added to the photochemical agent, the limits of detection were reduced to 27-44 ng L- 1. The repeatability did not exceed 2.4% (5 μg L- 1 Se(IV), n = 10). Experiments with 75Se radiotracer have been performed for the first time to quantify the efficiency of UV-photochemical vapor generation (UV-PVG) of selenium. The highest efficiency of 67 ± 1% was obtained for a UV-photoreactor containing a quartz reaction coil (2.0 mm i.d., 4.0 mm o.d.). The generation efficiency of 61 ± 1% was obtained for a Teflon reaction coil (1.0 mm i.d., 1.4 mm o.d.). Mapping of the radiotracer distribution in the individual parts of the apparatus did not reveal substantial transport losses of the analyte in the UV-PVG system.

  2. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry.

    Science.gov (United States)

    Dancsak, Stacia E; Silva, Sidnei G; Nóbrega, Joaquim A; Jones, Bradley T; Donati, George L

    2014-01-02

    High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg(-1) for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg(-1) for Na and K, and between 0.22 and 0.43 mg kg(-1) for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are comparable to other traditional methods.

  3. Determination of lead in blood by chelation with ammonium pyrrolidine dithio-carbamate followed by tungsten-coil atomic absorption spectrometry

    Science.gov (United States)

    Salido, Arthur; Sanford, Caryn L.; Jones, Bradley T.

    1999-08-01

    An inexpensive, bench-top blood Pb analyzer has been developed. The system is based on tungsten-coil atomic absorption spectrometry. Pb atomization occurs on W-coils extracted from commercially available slide projector bulbs. The system has minimal power requirements: 120 ACV and 15 A. A small, computer-controlled CCD spectrometer is used as the detector. A Pb hollow cathode lamp is used as the source. Blood Pb is chelated with ammonium pyrrolidine dithio-carbamate and extracted into methyl iso-butyl ketone (4-methyl 2-pentanone). Twenty-microliter volumes of the organic phase are deposited on the W-coil, dried at 1.4 A, charred at 2.3 A and atomized at 6.0 A. Graphite furnace atomic absorption spectrometry is used as a comparison for W-coil results. Levels 1-4 of a NIST standard reference material 955b ‘lead in bovine blood’ are used to test accuracy and precision. The analytical figures of merit for the system are: 12-pg instrument detection limit, 24-pg blood detection limit and a characteristic mass of 28 pg.

  4. Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution.

    Science.gov (United States)

    McCullagh, Peter; Lake, Peter T; McCullagh, Martin

    2016-09-13

    An analytic method to assign optimal coarse-grained charges based on electrostatic potential matching is presented. This solution is the infinite size and density limit of grid-integration charge-fitting and is computationally more efficient by several orders of magnitude. The solution is also minimized with respect to coarse-grained positions which proves to be an extremely important step in reproducing the all-atom electrostatic potential. The joint optimal-charge optimal-position coarse-graining procedure is applied to a number of aggregating proteins using single-site per amino acid resolution. These models provide a good estimate of both the vacuum and Debye-Hückel screened all-atom electrostatic potentials in the vicinity and in the far-field of the protein. Additionally, these coarse-grained models are shown to approximate the all-atom dimerization electrostatic potential energy of 10 aggregating proteins with good accuracy.

  5. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are pres......Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  6. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  7. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  8. [Determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry].

    Science.gov (United States)

    Liu, Dong-yan; Zhang, Yuan-li

    2002-02-01

    A direct method was reported for the determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution conditions of coal samples as well as interference conditions of hydrochloric acid and matrix were studied. The recommended method not only proved to be simple and rapid than traditional gravimetric method but show satisfying precision and accuracy as well. The results of samples are as same as gravimetry. The recoveries are more than 96%, and the relative standard deviation of six samples are less than 3%.

  9. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed....../preconcentration procedures have been suggested and applied, such as liquid-liquid extraction, (co)precipitation with collection in knotted reactors, adsorption, hydride generation, or ion-exchange. Selected examples of some of these procedures will be discussed. Emphasis will be placed on the use of FI...

  10. Determination of trace elements in maifanite by outer cover electrode atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI Jianqiang; LU Yiqiang; JIANG Wei

    2005-01-01

    Maifanite is a nature medicinal stone used in many fields for long time. The research on it showed that there are many trace elements in maifanite. In this paper, 36 trace elements in maifanite were determined by outer cover electrode atomic emission spectrometry, and the determination conditions were studied systematically. The results show that the concentrafions of elements, which are beneficial to human health, are higher, and the elements harmful to people health such as As, Cd, Hg, Cr, and Pb are tiny in maifanite. The precision and the accuracy were also discussed.

  11. Analysis of tree leaves, bark and wood by sequential inductively coupled argon plasma atomic emission spectrometry

    Science.gov (United States)

    Verbeek, A. A.

    The analysis of extracts from tree leaf, bark and wood samples for Ca, Mg, K, Na, P, Mn, Fe, Al, B, Cu and Zn by inductively coupled argon plasma sequential emission spectrometry is described. Recovery percentages for simulated tree extracts and for spiked tree samples are presented together with typical analysis values for a leaf and a wood sample. The choice of analytical line for each element is discussed and spectral interferences, not listed in the ICP tables of Boumans, of Cu on the 214.9 nm line of P and of Fe on the 249.7 nm line of B are noted.

  12. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  13. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  14. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  15. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Kaneco, Satoshi; Suzuki, Tohru; Katsumata, Hideyuki; Ohta, Kiyohisa

    2005-05-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry with a metal tube atomizer has been applied to the determination of lead in Bangladeshi fish samples. The slurry sampling conditions, such as slurry stabilizing agent, slurry concentration, pyrolysis temperature for the slurried fish samples, particle size and ultrasonic agitation time, were optimized for electrothermal atomic absorption spectrometry with the Mo tube atomizer. Thiourea was used as the chemical modifier for the interference of matrix elements. The detection limit was 53 fg (3S/N). The determined amount of lead in Bangladeshi fish samples was consistent with those measured in the dissolved acid-digested samples. The advantages of the proposed methods are easy calibration, simplicity, low cost and rapid analysis.

  16. Determination of Elements by Atomic Absorption Spectrometry in Medicinal Plants Employed to Alleviate Common Cold Symptoms

    Institute of Scientific and Technical Information of China (English)

    F Zehra Küçükbay; Ebru Kuyumcu

    2014-01-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of com-mon cold have been studied for their mineral contents .Eleven minor and major elements (essential ,non-essen-tial and toxic) were identified in the Asplenium adiantum-nigrum L .,Althaea of ficinalis L .,Verbascum phlomoides L .,Euphorbiachamaesyce L .,Zizyphus jujube Miller ,Peganum harmala L .,Arum dioscori-dis Sm .,Sambucus nigra L .,Piper longum L .,Tussilago farfara L .and Elettariacardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrom-etry .Microwave digestion procedure for total concentration was applied under optimized conditions for dissolu-tion of medicinal plants .Plant based biological certified reference materials (CRMs) served as standards for quantification .These elements are found to be present in varying concentrations in the studied plants .The baseline data presented in this work can be used in understanding the role of essential ,non-essential and toxic elements in nutritive ,preventive and therapeutic properties of medicinal plants .

  17. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    Science.gov (United States)

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  18. Simultaneous determination of p-arsanilic acid and roxarsone in feed by liquid chromatography-hydride generation online coupled with atomic fluorescence spectrometry.

    Science.gov (United States)

    Liu, Jianjing; Yu, Hongxia; Song, Haibin; Qiu, Jing; Sun, Fengmei; Li, Ping; Yang, Shuming

    2008-08-01

    A novel, simple and sensitive liquid chromatography-hydride generation online coupled with atomic fluorescence spectrometry (LC-HG-AFS) method was developed for simultaneous determination of p-arsanilic acid (p-ASA) and roxarsone in feed. 20% Methanol aqueous was used as extraction reagent, after preprocessing samples by ultrasonic oscillation, then injected into the chromatography Waters symmetry shield RP18 analytical column (150mm x 4.6mm, 5 microm), finally detected by an atomic fluorescence spectrometer. The calibration curves of analyses were linear over a range of concentrations (0.2-4mg L-1 and the correlation coefficients were higher than 0.9990. The limits of detection were 0.2 mg L-1. The method has been validated by linearity, precision and recovery. p-ASA and roxarsone in feed can be successfully and simultaneously determined using the developed method without a tedious pretreatment procedure.

  19. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed.

  20. A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS).

    Science.gov (United States)

    Machado, Ignacio; Bergmann, Gabriela; Pistón, Mariela

    2016-03-01

    A simple and fast ultrasound-assisted procedure for the determination of iron and zinc in infant formulas is presented. The analytical determinations were carried out by flame atomic absorption spectrometry. Multivariate experiments were performed for optimization; in addition, a comparative study was carried out using two ultrasonic devices. A method using an ultrasonic bath was selected because several samples can be prepared simultaneously, and there is less contamination risk. Analytical precision (sr(%)) was 3.3% and 4.1% for iron and zinc, respectively. Trueness was assessed using a reference material and by comparison of the results obtained analyzing commercial samples using a reference method. The results were statistically equivalent to the certified values and in good agreement with those obtained using the reference method. The proposed method can be easily implemented in laboratories for routine analysis with the advantage of being rapid and in agreement with green chemistry.

  1. Determination of Ultra-trace Amounts of Arsenic(III) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Coprecipitation with Lanthanum Hydroxide or Hafnium Hydroxide

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    A time-based flow-injection (FI) procedure for the determination of ultra-trace amounts of inorganic arsenic(III) is described, which combines hydride generation atomic absorption spectrometry (HG-AAS) with on-line preconcentration of the analyte by inorganic coprecipitation-dissolution in a filt......A time-based flow-injection (FI) procedure for the determination of ultra-trace amounts of inorganic arsenic(III) is described, which combines hydride generation atomic absorption spectrometry (HG-AAS) with on-line preconcentration of the analyte by inorganic coprecipitation....../h. The limit of detection (3s) was 0.003 µg/l and the precision (relative standard deviation) was 1.0% (n = 11)at the 0.1 µg/l level....

  2. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)-hydrogen flame.

    Science.gov (United States)

    Kobayashi, S; Nakahara, T; Musha, S

    1979-10-01

    A method has been developed for the determination of bismuth by generation of its gaseous hydride and introduction of the hydride into a premixed argon (entrained air)-hydrogen flame, the atomic-fluorescence lines from which are all detected by use of a non-dispersive system. The detection limit is 5 pg/ml, or 0.1 ng of bismuth, but the reagent blank found in a 20-ml sample volume was approximately 2 ng of bismuth. Analytical working curves obtained by measuring peak-heights and integrated peak-areas of the signals are linear over a range of about four orders of magnitude from the detection limit. Perchloric, phosphoric and sulphuric acids up to 2.0M concentration give no interference, but nitric acid gives slight depression of the signal. The presence of silver, gold, nickel, palladium, platinum, selenium and tellurium in 1000-fold ratio to bismuth causes pronounced depression of the signal, whereas mercury and tin slightly enhance the atomic-fluorescence signal. The method has been applied to the determination of bismuth in aluminium-base alloys and sulphide ores with use of the standard additions method. The results are in good agreement with those obtained by flame atomic-absorption spectrometry and optical emission spectrometry with an inductively coupled plasma.

  3. Analytical study of four-wave mixing with large atomic coherence

    CERN Document Server

    Korsunsky, E A; Marangos, J P; Bergmann, K

    2002-01-01

    Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a coupling scheme involving maximum coherence and demonstrate how a large atomic coherence between a ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propagation problem taking into account pump field depletion are derived. The solutions are obtained with the help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refraction is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refraction contrib...

  4. Rhodium as permanent modifier for atomization of lead from biological fluids using tungsten filament electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Zhou, Ying; Parsons, Patrick J.; Aldous, Kenneth M.; Brockman, Paul; Slavin, Walter

    2002-04-01

    Rhodium (Rh) was investigated as a permanent modifier for the atomization of Pb from biological fluids in W-filament atomic absorption spectrometry (AAS). Heating the W-filament with a Rh solution provided a protective coating for subsequent determinations of Pb in blood and urine matrices. The W-filament AAS instrumentation used was based on a prototype design that utilized self-reversal background correction scheme and peak area measurements. We found that Rh not only stabilized Pb during the pyrolysis step, but also facilitated the removal of carbonaceous residues during the cleaning step, requiring much less power than with phosphate modifier. Thus, the filament lifetime was greatly extended to over 300 firings. Periodic reconditioning with Rh was necessary every 30 firings or so. Conditioning the filament with Rh also permitted direct calibration using simple aqueous Pb standards. The method detection limit for blood Pb was approximately 1.5 μg dl -1, similar to that reported previously. Potential interferences from concomitants such as Na, K, Ca and Mg were evaluated. Accuracy was verified using lead reference materials from the National Institute of Standards and Technology and the New York State Department of Health. Blood lead results below 40 μg dl -1 were within ±1 μg dl -1 of certified values, and within ±10% above 40 μg dl -1; within-run precision was ±10% or better. Additional validation was reported using proficiency test materials and human blood specimens. All blood lead results were within the acceptable limits established by regulatory authorities in the US. When measuring Pb in urine, sensitivity was reduced and matrix-matched calibration became necessary. The method of detection limit was 27 μg l -1 for urine Pb. Urine lead results were also validated using an acceptable range comparable to that established for blood lead by US regulatory agencies.

  5. Cloud point extraction for the preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein; Yazdandoust, Saeed; Yazdandoust, Mozhdeh [Department of Chemistry, Payame Noor University (PNU), Shiraz (Iran)

    2010-03-15

    A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag{sup +} and Pd{sup 2+} in various samples. After complexation with 2-((2-((1H-benzo[d]imidazole-2-yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X-114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0.10{sup -5} mol/L BIMPI and 0.036% (w/v) Triton X-114), calibration graphs were linear in the range of 28.0-430.0 {mu}g/L and 57.0-720.0 {mu}g/L with detection limits of 10.0 and 25.0 {mu}g/L for Ag{sup +} and Pd{sup 2+}, respectively. The enrichment factors were 35.0 and 28.0 for Ag{sup +} and Pd{sup 2+}, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: ashokrollahi@mail.yu.ac.ir; Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Hossaini, Omid; Khanjari, Narges [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-12-30

    A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO{sub 3} concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.{sub b}/m, n = 10) of 0.6 ng mL{sup -1} along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.

  7. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, H. [Chemistry Department, Payamenore University, Shiraz (Iran); Shokrollahi, A.; Zahedi, M. [Chemistry Department, Yasouj University, Yasouj (Iran); Niknam, K. [Chemistry Department, Persian Gulf University, Bushehr (Iran); Soylak, M. [Chemistry Department, University of Erciyes, Kayseri (Turkey); Ghaedi, M.

    2009-04-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead(II) and zinc(II). After complexation with 3-[(4-bromophenyl) (1-H-inden-3-yl)methyl]-1 H-indene (BPIMI), the analytes were quantitatively extracted to a phase rich in Triton X-114 after centrifugation. Methanol acidified with 1 mol/L HNO{sub 3} was added to the surfactant rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of bis((1H-benzo [d] imidazol-2yl)ethyl)sulfane, Triton X-114, pH and amount of surfactant were all optimized. Detection limits (3 SDb/m) of 2.5 and 1.6 ng/mL for Pb{sup 2+} and Zn{sup 2+} along with preconcentration factors of 30 and an enrichment factor of 32 and 48 for Pb{sup 2+}and Zn {sup 2+} ions were obtained, respectively. The proposed cloud point extraction was been successfully applied for the determination of these ions in real samples with complicated matrices such as food and soil samples, with high efficiency. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Evaluation of arsenic, cobalt, copper and manganese in biological Samples of Steel mill workers by electrothermal atomic absorption Spectrometry.

    Science.gov (United States)

    Afridi, H I; Kazi, T G; Kazi, N G; Jamali, M K; Arain, M B; Sirajuddin; Kandhro, G A; Shah, A Q; Baig, J A

    2009-02-01

    The determination of trace and toxic elements in biological samples (blood, urine and scalp hair samples) of human beings is an important clinical test. The aim of our present study was to determine the concentration of arsenic (As), copper (Cu), cobalt (Co) and manganese (Mn), in biological samples of male production workers (PW) and quality control workers (QW) of steel mill, with aged 25-55 years, to assess the possible influence of environmental exposure. For comparison purpose, the same biological samples of unexposed healthy males of same age group were collected as control subjects. The determination of all elements in biological samples was carried out by electrothermal atomic absorption spectrometry, prior to microwave assisted acid digestion. The accuracy of the As, Cu, Co and Mn measurements was tested by simultaneously analyzing certified reference materials (CRMs) and for comparative purposes conventional wet acid digestion method was used on the same CRMs. No significant differences were observed between the analytical results and the certified values, using both methods (paired t-test at P > 0.05). The results indicate that concentrations of As, Cu, Co and Mn in all three biological samples of the exposed workers (QW and PW) were significantly higher than those of the controls. The possible correlation of these elements with the etiology of different physiological disorders is discussed. The results were also demonstrated the need of attention for improvements in workplace, ventilation and industrial hygiene practices.

  9. Unusual calibration curves observed for iron using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Santos, Lisia M.G. dos [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Araujo, Rennan G.O. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Departamento de Quimica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao-SE (Brazil); Jacob, Silvana do C. [Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre-RS (Brazil); Okruss, Michael; Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-Department Berlin, 12489 Berlin (Germany)

    2010-03-15

    The simultaneous determination of cadmium and iron in plant and soil samples has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary cadmium resonance line at 228.802 nm and an adjacent secondary iron line at 228.726 nm, which is within the spectral interval covered by the charge-coupled device (CCD) array detector, have been used for the investigations. Due to the very high iron content in most of the soil samples the possibility has been investigated to reduce the sensitivity and extend the working range by using side pixels for measurement at the line wings instead of the line core. It has been found that the calibration curves measured at all the analytically useful pixels of this line consisted of two linear parts with distinctly different slopes. This effect has been independent of the positioning of the wavelength, i.e., if the Cd line or the Fe line was in the center of the CCD array. The most likely explanation for this unusual behavior is a significant difference between the instrument width DELTAlambda{sub Instr} and the absorption line width DELTAlambda{sub Abs}, which is quite pronounced in the case of Fe. Using both parts of the calibration curves and simultaneous measurement at the line center and at the wings made it possible to extend the working range for the iron determination to more than three orders of magnitude.

  10. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, Aristidis N.; Ioannou, Kallirroy-Ioanna G. [Aristotle University, Laboratory of Analytical Chemistry, Department of Chemistry, Thessaloniki (Greece)

    2012-08-15

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF{sub 6}]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr{sub 4} {sup -} complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 {mu}g L{sup -1} and a precision (RSD) of 2.7% at 20.0 {mu}g L{sup -1} Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications. (orig.)

  11. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Julieta [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral. Paz 1499, 1650-San Martin, Pcia. de Buenos Aires (Argentina); Smichowski, Patricia [Comision Nacional de Energia Atomica, Unidad Proyectos Especiales de Suministros Nucleares, Av. Libertador 8250, 1429-Buenos Aires (Argentina)

    2002-09-01

    Volatile species of Ni were generated by merging acidified aqueous samples and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the inlet tube of the plasma torch. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for detection. The operating conditions (chemical and physical parameters) and the concentrations of different acids were evaluated for the efficient generation of Ni vapor. The detection limit (3 {sigma}{sub blank}) was 1.8 ng mL{sup -1}. The precision (RSD) of the determination was 4.2% at a level of 500 ng mL{sup -1} and 7.3% for 20 ng mL{sup -1} (n=10). The efficiency of the generation process was estimated to be 51%. The possible interfering effect of transition metals (Cd, Co, Cu, Cr, Fe, Mn, Zn), hydride forming elements (As, Ge, Pb, Sb, Se, Sn, Te), and Hg on Ni signal was examined. This study has demonstrated that Ni vapor generation is markedly free of interferences. (orig.)

  12. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

    Science.gov (United States)

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-21

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.

  13. Determination of Cd, Pb and As in sediments of the Sava River by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    SIMONA MURKO

    2010-01-01

    Full Text Available The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers were estimated for the accurate and reproducible determination of cadmium (Cd, lead (Pb and arsenic (As in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimised for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analysed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ±5 % for Cd, ±4 % for Pb and ±2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

  14. Determination of Anionic Surfactants Using Atomic Absorption Spectrometry and Anodic Stripping Voltammetry

    Science.gov (United States)

    John, Richard; Lord, Daniel

    1999-09-01

    An experiment has been developed for our undergraduate analytical chemistry course that demonstrates the indirect analysis of anionic surfactants by techniques normally associated with metal ion determination; that is, atomic absorption spectroscopy (AAS) and anodic stripping voltammetry (ASV). The method involves the formation of an extractable complex between the synthetic surfactant anion and the bis(ethylenediamine)diaqua copper(II) cation. This complex is extracted into chloroform and then back-extracted into dilute acid. The resulting Cu(II) ions are determined by AAS and ASV. Students are required to determine the concentration of a pre-prepared "unknown" anionic surfactant solution and to collect and analyze a real sample of their choice. After the two extraction processes, students typically obtain close to 100% analytical recovery. Correlation between student AAS and ASV results is very good, indicating that any errors that occur probably result from their technique (dilutions, extractions, preparation of standards, etc.) rather than from the end analyses. The experiment is a valuable demonstration of the following analytical principles: indirect analysis; compleximetric analysis; liquid-liquid (solvent) extraction; back-extraction (into dilute acid); analytical recovery; and metal ion analysis using flame-AAS and ASV.

  15. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Science.gov (United States)

    Kruger, Pamela C.; Parsons, Patrick J.

    2007-03-01

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3

  16. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  17. Comparison of action of mixed permanent chemical modifiers for cadmium and lead determination in sediments and soils by slurry sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dobrowolski, Ryszard; Adamczyk, Agnieszka; Otto, Magdalena

    2010-09-15

    Slurry sampling atomic absorption spectrometry with electrothermal atomization was used to the determination of cadmium (Cd) and lead (Pb) in soils and sediments using permanent modifiers. Comparison of action of mixed permanent modifiers niobium (Nb)/iridium (Ir) and tungsten (W)/iridium (Ir) were studied in detail. The effect of amount of Ir, W and Nb on analytical signals of Cd and Pb was examined. The optimal amounts of modifiers for Cd and Pb determination were stated. Niobium carbide formation on graphite surface was studied for different pyrolysis temperatures. Finally for Cd determination in sediments and soils 200 microg of Nb mixed with 5 microg of Ir was used as permanent modifiers and 15 microg of Nb mixed with 200 microg of Ir for Pb determination. Suspensions were prepared in 5% HNO(3). The analytical procedure was optimized carefully basing on data from pyrolysis and atomization curves studies. Ammonium dihydrogen phosphate was used additionally as matrix modifier during Cd determination in samples in order to prevent interferences coming from matrix components. The analysis of CRMs confirmed the reliability of the proposed approach. The precision and accuracy of Cd and Pb determination by the described method for soils and sediments were acceptable.

  18. Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shemirani, Farzaneh; Baghdadi, Majid; Ramezani, Majid; Jamali, Mohammad Reza

    2005-04-04

    A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent. After phase separation at 50 deg. C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 {mu}l of 0.1% (w/v) Pd(NO{sub 3}){sub 2} as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml{sup -1} and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml{sup -1}. Relative standard deviations were <5%. The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair)

  19. Preconcentration and Determination of Chromium Species Using Octadecyl Silica Membrane Disks and Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    MOGHIMI Ali; SABER-TEHRANI Mohammad; WAQIF-HUSAIN Syed; MOHAMMADHOSSEINI Majid

    2007-01-01

    A novel and selective method for the fast determination of trace amounts of chromium species in water samples has been developed.The procedure is based on the selective formation of chromium diethyldithiocarbamate complexes at different pH in the presence of Mn(Ⅱ) as an enhancement agent of chromium signals followed by elutionwith organic eluents and determination by atomic flame absorption spectrometry.The maximum capacity of the employed disks was found to be (3964±3) μg and (376±2) μg for Cr(Ⅲ) and Cr(Ⅵ),respectively.The detection limit of the proposed method is 49 and 43 ng·L-1 for Cr(Ⅲ) and Cr(Ⅵ),respectively.The proposed method was successfully applied for determination of chromium species Cr(Ⅲ) and Cr(Ⅵ) in different water samples.

  20. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  1. Determination of sodium in foods by flame atomic absorption spectrometry after microwave digestion: NMKL interlaboratory study.

    Science.gov (United States)

    Julshamn, Kaare; Lea, Per; Norli, Hilde Skaar

    2005-01-01

    Nine laboratories participated in an interlaboratory method performance (collaborative) study of a method for the determination of sodium in foods by flame atomic absorption spectrometry after wet digestion, using a microwave oven technique. Before the study, the laboratories were able to practice on samples with defined sodium levels (pretrial test). The method was tested on a total of 6 foods (broccoli, carrot, bread, saithe fillet, pork, and cheese) with sodium concentrations of 1480-8260 mg/kg. The materials were presented to the participants in the study as blind duplicates, and the participants were asked to perform single determinations for each sample. The repeatability relative standard deviations (RSDr) for sodium ranged from 1.9 to 6.5%. The reproducibility relative standard deviations (RSDR) ranged from 4.2 to 6.9%. The HorRat values ranged from 0.9 to 1.6.

  2. Selenosugar determination in porcine liver using multidimensional HPLC with atomic and molecular mass spectrometry.

    Science.gov (United States)

    Lu, Ying; Pergantis, Spiros A

    2009-01-01

    A methodology based on liquid chromatography coupled online with atomic and molecular mass spectrometry was developed for identifying trace amounts of the selenosugar methyl 2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeGalNAc) in porcine liver, obtained from an animal that had not received selenium supplementation. Sample preparation was especially critical for the identification of SeGalNAc by molecular mass spectrometry. This involved liver extraction using a Tris buffer, followed by sequential centrifugations. The resulting cytosolic fraction was pre-concentrated and the low molecular weight selenium (LMWSe) fraction obtained from a size exclusion column was collected, concentrated, and subsequently analyzed using a tandem dual-column HPLC-ICP-MS system which consisted of strong cation exchange (SCX) and reversed phase (RP) columns coupled in tandem. Hepatocytosolic SeGalNAc was tentatively identified by retention time matching and spiking. Its identity was further confirmed by using the same type of chromatography on-line with atmospheric pressure chemical ionization tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode. Four SRM transitions, characteristic of SeGalNAc, were monitored and their intensity ratios determined in order to confirm SeGalNAc identification. Instrument limits of detection for SeGalNAc by SCX-RP HPLC-ICP-MS and SCX-RP HPLC-APCI-MS/MS were 3.4 and 2.9 μg Se L(-1), respectively. Selenium mass balance analysis revealed that trace amounts of SeGalNAc, 2.16±0.94 μg Se kg(-1) liver (wet weight) were present in the liver cytosol, corresponding to 0.4% of the total Se content in the porcine liver.

  3. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  4. Analytical expression for K- and L-shell cross sections of neutral atoms near ionization threshold by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Campos, C S [Instituto de Geociencias, Centro de Pesquisa em Geologia e GeofIsica, Universidade Federal da Bahia (UFBA), 40170-290 Salvador (Brazil); Vasconcellos, M A Z [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS (Brazil); Trincavelli, J C [Facultad de Matematica, AstronomIa y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000, Cordoba (Argentina); Segui, S [Centro Atomico Bariloche, Comision Nacional de EnergIa Atomica, 8400 San Carlos de Bariloche, RIo Negro (Argentina)

    2007-10-14

    An analytical expression is proposed to describe the K- and L-shell ionization cross sections of neutral atoms by electron impact over a wide range of atomic numbers (4 {<=} Z {<=} 79) and over voltages U < 10. This study is based on the analysis of a calculated ionization cross section database using the distorted-wave first-order Born approximation (DWBA). The expression proposed for cross sections relative to their maximum height involves only two parameters for each atomic shell, with no dependence on the atomic number. On the other hand, it is verified that these parameters exhibit a monotonic behaviour with the atomic number for the absolute ionization cross sections, which allows us to obtain analytical expressions for the latter.

  5. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zolnai, Z., E-mail: zolnai.zsolt@ttk.mta.hu [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Toporkov, M. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Volk, J. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Demchenko, D.O. [Department of Physics, Virginia Commonwealth University, 701W. Grace St., Richmond, VA 23284 (United States); Okur, S. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Szabó, Z. [Research Centre for Natural Sciences, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Özgür, Ü.; Morkoç, H.; Avrutin, V. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601W Main St, Richmond, VA 23284 (United States); Kótai, E. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2015-02-01

    Highlights: • BeMgZnO thin layers were grown with plasma-assisted molecular beam epitaxy (MBE). • The Be contents were accurately measured with RBS and proton elastic backscattering. • The Tauc bandgap was measured from optical transmittance experiments. • The bandgap has been varied between 3.26 eV and 4.62 eV via the Be and Mg content. • Experimental and density functional theory calculated bandgaps were in good agreement. - Abstract: The atomic composition with less than 1–2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He{sup +} analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and

  6. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  7. A espectrometria atômica e a determinação de elementos metálicos em material polimérico Atomic spectrometry and the determination of metals in polymeric materials

    Directory of Open Access Journals (Sweden)

    Solange Cadore

    2008-01-01

    Full Text Available Polymeric materials are widely used in the chemical industry and are part of our daily lives. Inorganic species may be added to them as additives, anti-oxidizing agents, stabilizers, plasticizers, colorants and catalysts and may be present in a wide range of concentrations. Their determination demands the development of analytical methods considering different kinds of polymeric materials, their composition and the final use of the material. Although many different analytical techniques may be used, this review emphasizes those based on atomic absorption and emission spectrometry. Solid sampling techniques and digestion methods are described and discussed and compared considering published results.

  8. Direct analysis of silica by means of solid sampling graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Resano, M.; Mozas, E.; Crespo, C.; Pérez, J.; García-Ruiz, E.; Belarra, M. A.

    2012-05-01

    This paper reports on the use of solid sampling-graphite furnace atomic absorption spectrometry for the direct analysis of synthetic amorphous silica. In particular, determination of hazardous elements such As, Cd, Cr, Cu, Pb and Sb is investigated, as required by regulations of the food industry. The conclusion of the work is that, after proper optimization of the working conditions, paying particular attention to the atomization temperature and the use of proper modifiers (graphite powder, HNO3 or Pd), it is possible to develop suitable procedures that rely on the use of aqueous standard solutions to construct the calibration curves for all the elements investigated. The proposed method shows important benefits for the cost-effective analysis of such difficult samples in routine labs, permitting fast screening of those elements that are very rarely present in this type of sample, but also accurate quantification of those often found, while offering low limits of detection (always below 0.1 mg g- 1) that comply well with legal requirements, and precision levels that are fit for the purpose (approx. 6-9% R.S.D.).

  9. Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Yu, J C; Ho, K F; Lee, S C

    2001-01-02

    A simple method for determining lead in fine particulates (PM2.5) by using electrothermal atomic absorption spectrometry (ETAAS) has been developed. Particulates collected on Nuclepore filter by using a dichotomous sampler were suspended in diluted nitric acid after ultrasonic agitation. The dislodging efficiency is nearly 100% after agitation for 5 min. In order to study the suspension behavior of PM2.5 in solvents, a Brookhaven ZetaPlus Particle Size Analyzer was used to determine the particle size distribution and suspension behavior of air particulates in the solvent. The pre-digestion and modification effect of nitric acid would be discussed. Palladium was added as a chemical modifier and the temperature program of ETAAS was changed in order to improve the recovery. The slurry was introduced directly into a graphite tube for atomization. The metal content in the sample was determined by the standard addition method. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling method. It offers a quick and efficient alternative method for heavy metal characterization in fine particulates.

  10. Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal.

    Science.gov (United States)

    Silva, M M; Goreti, M; Vale, R; Caramão, E B

    1999-12-06

    A procedure for lead, cadmium and copper determination in coal samples based on slurry sampling using an atomic absorption spectrometer equipped with a transversely heated graphite tube atomizer is proposed. The slurries were prepared by weighing the samples directly into autosampler cups (5-30 mg) and adding a 1.5 ml aliquot of a diluent mixture of 5% v/v HNO(3), 0.05% Triton X-100 and 10% ethanol. The slurry was homogenized by manual stirring before measurement. Slurry homogenization using ultrasonic agitation was also investigated for comparison. The effect of particle size and the use of different diluent compositions on the slurry preparation were investigated. The temperature programmes were optimized on the basis of pyrolysis and atomization curves. Absorbance characteristics with and without the addition of a palladium-magnesium modifier were compared. The use of 0.05% m/v Pd and 0.03% m/v Mg was found satisfactory for stabilizing Cd and Pb. The calibration was performed with aqueous standards. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling. Better recoveries of the analytes were obtained when the particle size was reduced to <37 mum. Several certified coal reference materials (BCR Nos. 40, 180, and 181) were analyzed, and good agreement was obtained between the results from the proposed slurry sampling method and the certificate values.

  11. Analytic Evaluation of some 2-, 3- and 4- Electron Atomic Integrals Containing Exponentially Correlated Functions of $r_{ij}$

    CERN Document Server

    Padhy, Bholanath

    2016-01-01

    A simple method is outlined for analytic evaluation of the basic 2-electron atomic integral with integrand containing products of atomic s-type Slater orbitals and exponentially correlated function of the form $r_{ij} exp(-\\lambda_{ij}r_{ij})$, by employing the Fourier representation of $exp(-\\lambda_{ij}r_{ij})/r_{ij}$ without the use of either the spherical harmonic addition theorem or the Feynman technique. This method is applied to obtain closed-form expressions, in a simple manner, for certain other 2-,3- and 4-electron atomic integrals with integrands which are products of exponentially correlated functions and atomic s-type Slater orbitals.

  12. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution.

  13. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders.

    Science.gov (United States)

    Peng, T; Chang, G; Wang, L; Jiang, Z; Hu, B

    2001-03-01

    A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 microL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 micrograms PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 microgram g-1 (Fe) and 0.08 microgram g-1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%.

  14. A novel slurry sampling analysis of lead in different water samples by electrothermal atomic absorption spectrometry after coprecipitated with cobalt/pyrrolidine dithiocarbamate complex

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, A. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey); Akman, S. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)], E-mail: akmans@itu.edu.tr; Calisir, F. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)

    2008-10-30

    A preconcentration/separation technique based on the coprecipitation of lead with cobalt/pyrrolidine dithiocarbamate complex (Co(PDC){sub 2}) and subsequently its direct slurry sampling determination by electrothermal atomic absorption spectrometry (AAS) was described. For this purpose, at first, lead was coprecipitated with cobalt/pyrrolidine dithiocarbamate complex formed using ammonium pyrrolidine dithiocarbamate (APDC) as a chelating agent and cobalt as a carrier element. The supernatant was then separated and the slurry of the precipitate prepared in Triton X-100 was directly analyzed by electrothermal atomic absorption spectrometry with respect to lead concentration. The effects of experimental conditions on coprecipitation of lead with gathering precipitate as well as homogeneity and stability of the slurry were investigated. After the optimization of experimental parameters, a 100-fold enrichment of the analyte with quantitative recovery (>90%) and high precision (<10% R.S.D.) were obtained. By using the proposed technique, the lead concentrations in heavy matrices of Certified Sea-water and wastewater samples could be practically and rapidly determined in the range of 95% confidence level. The detection limit of the described method for lead using sample-matching blanks was 1.5 ng/L (3{sigma}, N = 10)

  15. Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Babos, Diego Victor; Barros, Ariane Isis; Ferreira, Edilene Cristina; Neto, José Anchieta Gomes

    2017-04-01

    New methods are proposed for the determination of Mo, Ni, Co, and V in soils using high-resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling. Cobalt and V were simultaneously determined, and different analytical lines of Ni and V were monitored to adjust sensitivity for each sample. Accuracy was checked by means of soil certified reference materials, and also by flame atomic absorption spectrometry as comparative technique. The results for Mo, Ni, Co, and V found by proposed methods were in agreement with certified values and with those obtained by the comparative technique at 95% confidence level. The concentrations found in different soil samples were in the ranges 0.19-1.84 mg kg- 1 (Mo), 9.2-22.7 mg kg- 1 (Ni), 1.1-10.7 mg kg- 1 (Co), and 35.6-426.1 mg kg- 1 (V). The relative standard deviations were in the ranges 3.2-10% (Mo), 2.8-9.8% (Ni), 4.0-9.2% (Co), and 1.2-8.0% (V). The limits of quantification for Mo, Ni, Co, and V were 0.027, 0.071, 0.15, and 1.43 ng, respectively.

  16. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    Science.gov (United States)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M. M.; Duarte, Fabio A.

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid-liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L- 1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L- 1 and from 1.38 to 3.74 mg L- 1, respectively.

  17. Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton-Mouton constants using London atomic orbitals

    Science.gov (United States)

    Thorvaldsen, Andreas J.; Ruud, Kenneth; Rizzo, Antonio; Coriani, Sonia

    2008-10-01

    We present the first gauge-origin-independent, frequency-dependent calculations of the hypermagnetizability anisotropy, which determines the temperature-independent contribution to magnetic-field-induced linear birefringence, the so-called Cotton-Mouton effect. A density-matrix-based scheme for analytical calculations of frequency-dependent molecular properties for self-consistent field models has recently been developed, which is also valid with frequency- and field-dependent basis sets. Applying this scheme to Hartree-Fock wave functions and using London atomic orbitals in order to obtain gauge-origin-independent results, we have calculated the hypermagnetizability anisotropy. Our results show that the use of London orbitals leads to somewhat better basis-set convergence for the hypermagnetizability compared to conventional basis sets and that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.

  18. Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy

    CERN Document Server

    Mirsaidov, Utkur; Polyakov, Yuriy S; Misurkin, Pavel I; Musaev, Ibrahim; Polyakov, Sergey V

    2010-01-01

    The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial e...

  19. An analytic technique for statistically modeling random atomic clock errors in estimation

    Science.gov (United States)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  20. Validação de metodologia analítica para determinação de mercúrio total em amostras de urina por espectrometria de absorção atômica com geração de vapor frio (CV-AAS: estudo de caso Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS: case study

    Directory of Open Access Journals (Sweden)

    Sabine Neusatz Guilhen

    2010-01-01

    Full Text Available Mercury is a toxic metal used in a variety of substances over the course history. One of its more dubious uses is in dental amalgam restorations. It is possible to measure very small concentrations of this metal in the urine of exposed subjects by the cold vapor atomic absorption technique. The present work features the validation as an essential tool to confirm the suitability of the analytical method chosen to accomplish such determination. An initial analysis will be carried out in order to evaluate the environmental and occupational levels of exposure to mercury in 39 members of the auxiliary dental staff at public consulting rooms in the city of Araguaína (TO.

  1. Incorporating the nuclear vibrational energies into the -atom in molecules- analysis: An analytical study

    CERN Document Server

    Gharabaghi, Masumeh

    2016-01-01

    The orthodox quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and working solely with the electronic wavefunctions, so unable to include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e. those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction the quantum nuclei may be conceived pseudo-adiabatically as qua...

  2. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    Science.gov (United States)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  3. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  4. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    Science.gov (United States)

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  5. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    LIAO Meng-xia; DENG Tian-long

    2006-01-01

    It was observed that the atomic fluorescence emission due to As(Ⅴ) could has a 10% to 40% of fluorescence emission signal during the determination of As(Ⅲ) in the mixture of As(Ⅲ) and As(Ⅴ). Besides, interferes from heavy metals such as Pb(Ⅱ),Cu(Ⅱ) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(Ⅴ)emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples ofporewaters and sediments in Poyang Lake, China.

  6. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    Science.gov (United States)

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  7. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  8. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples

    Energy Technology Data Exchange (ETDEWEB)

    Arpa Sahin, Cigdem, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800, Beytepe, Ankara (Turkey); Efecinar, Melis; Satiroglu, Nuray [Hacettepe University, Chemistry Department, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    A simple, rapid, inexpensive, and nonpolluting cloud point extraction (CPE) technique has been improved for the preconcentration and determination of nickel and manganese. After complexation with p-nitrophenylazoresorcinol (Magneson I), the analytes could be competitively extracted in a surfactant octylphenoxy polyethoxyethanol (Triton X-114), prior to determination by flame atomic absorption spectrometry (FAAS). The effects of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on CPE were studied. Under the optimum conditions, preconcentration of a 25 mL sample solution permitted the detection of 2.7 ng mL{sup -1} Ni{sup 2+} and 2.9 ng mL{sup -1} Mn{sup 2+} with enrichment factors of 17 and 19 for Ni{sup 2+} and Mn{sup 2+}, respectively. The developed method was applied to the determination of trace nickel and manganese in water and food samples with satisfactory results.

  9. Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry.

    Science.gov (United States)

    Yilmaz, Erkan; Soylak, Mustafa

    2014-08-01

    A supramolecular solvent (Ss) made up of reverse micelles of 1-decanol in tetrahydrofuran (THF): water was used for the fast and selective microextraction of Cu(II) prior to its determination by microsampling flame atomic absorption spectrometry (FAAS). Cu(II) was complexed with dimethyl dithiocarbamate (DMDC) to obtain hydrophobic complex and extracted to supramolecular solvent phase. The influences of some analytical parameters including pH, type and volume of supramolecular solvent, amount of complexing agent, ultrasonication and centrifuge time and sample volume were investigated. The effects of matrix components were also examined. The detection limit (LOD) and the quantification limit (LOQ) were 0.52µg L(-1) and 1.71µg L(-1) respectively. An preconcentration factor was obtained as 60 and the relative standard deviation was copper in food and water samples with satisfactory results.

  10. Hooke's Atom in an Arbitrary External Electric Field: Analytical Solutions of Two-Electron Problem by Path Integral Approach

    Institute of Scientific and Technical Information of China (English)

    CAI Liang; ZHANG Ping; YANG Tao; PAN Xiao-Yin

    2011-01-01

    By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.

  11. Development of an analytical methodology using Fourier transform mass spectrometry to discover new structural analogs of wine natural sweeteners.

    Science.gov (United States)

    Marchal, Axel; Génin, Eric; Waffo-Téguo, Pierre; Bibès, Alice; Da Costa, Grégory; Mérillon, Jean-Michel; Dubourdieu, Denis

    2015-01-01

    Volatile and non-volatile molecules are directly responsible for the thrill and excitement provided by wine-tasting. Their elucidation requires powerful analytical techniques and innovative methodologies. In a recent work, two novel sweet compounds called quercotriterpenosides (QTT) were identified in oak wood used for wine-ageing. The aim of the present study is to discover structural analogs of such natural sweeteners in oak wood. For this purpose, an analytical approach was developed as an alternative to chemical synthesis. Orbitrap mass spectrometry proved to be a crucial technique both to demonstrate the presence of QTT analogs in oak wood by targeted screening and to guide the purification pathway of these molecules using complementary chromatographic tools. Four compounds were isolated and identified for the first time: two isomers, one glucosyl derivative and one galloyl derivative of QTT. Their tasting showed that only the two new isomers were sweet, thus demonstrating both the pertinence of the strategy and the influence of functional groups on gustatory properties. Finally, this paper presents some developments involving multistage Fourier transform mass spectrometry (FTMS) to provide solid structural information on these functional groups prior to any purification of compounds. Such analytical developments could be particularly useful for research on taste-active or bio-active products.

  12. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    Directory of Open Access Journals (Sweden)

    Shibdas Banerjee

    2012-01-01

    Full Text Available The Electrospray Ionization (ESI is a soft ionization technique extensively used for production of gas phase ions (without fragmentation of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  13. Determination of nickel in active pharmaceutical ingredients by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2010-03-01

    An electrothermal atomic absorption spectrometric procedure for the determination of nickel in active pharmaceutical ingredients was developed. Since the recoveries of nickel by the direct dissolution of samples in diluted nitric acid were low and caused errors in the determination of Ni in pharmaceutical samples, different approaches for sample pre-treatment were examined. It was found that the microwave digestion was the most suitable way for sample preparation. Various combinations of digestion agents and different microwave conditions were tested. The combination of nitric acid and hydrogen peroxide was found to be the most appropriate. The validity of the method was evaluated by recovery studies of spiked samples and by the comparison of the results obtained by inductively coupled plasma mass spectrometry (ICP-MS). The recovery ranged from 87.5 to 104.0% and a good agreement was achieved between both methods. The detection limit and the limit of quantification were 0.6 and 2.1 µg g-1 respectively. The precision of the method was confirmed by the determination of Ni in the spiked samples and was below 4%, expressed in terms of a relative standard deviation. The method was applied to the determination of nickel in production samples of active pharmaceutical ingredients and intermediates.

  14. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  15. Speciation analysis of iron in traditional Chinese medicine by flame atomic absorption spectrometry.

    Science.gov (United States)

    Li, Shun-Xing; Deng, Nan-Sheng

    2003-04-24

    In view of octanol, a long-chain alkanol, resembled as the configuration of carbohydrate and adipose in human body, the octanol-solubility and water-solubility were used to define the species of iron in medicine, to identify the lipophily and bioavailability of coordinated iron complex, and octanol-water system was adopted to study the distribution of iron in decoction of eight single medicines and compatibility of semen persicae and flos carthami in stomach and intestine. To study the effect of compatibility of medicines, the different acidity of stomach and intestine on the species of iron in phytomedicine decoction, the total concentration, octanol- and water-solubility concentration of iron in medicinal materials or decoctions under gastric and intestinal acidity, were determined, respectively, by flame atomic absorption spectrometry, analyzed and compared. The different acidity of digestive site, the different composition of medicine, and the compatibility of medicines, have greatly affected the species of iron, the pharmacological activity of coordinated iron complex in decoctions. Such factors, especially the concentration of octanol-solubility iron, could be the basis of the dosage to avoid iron overload.

  16. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  17. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Mehmet [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)]. E-mail: myaman@firat.edu.tr; Kaya, Gokce [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)

    2005-05-17

    A method for speciation, preconcentration and separation of Fe{sup 2+} and Fe{sup 3+} in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe{sup 2+} and chloroform as organic solvent were used. The complex of Fe{sup 2+}-PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe{sup 3+} remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe{sup 2+} and minimum recovery of Fe{sup 3+} were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe{sup 2+} and Fe{sup 3+} in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe{sup 2+}) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies.

  18. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  19. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Jose da [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Quimica, Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Guardia, Miguel de la [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2010-05-14

    A cold vapor atomic fluorescence spectrometry method (CV-AFS) has been developed for the determination of Hg in rice samples at a few ng g{sup -1} concentration level. The method is based on the previous digestion of samples in a microwave oven with HNO{sub 3} and H{sub 2}O{sub 2} followed by dilution with water containing KBr/KBrO{sub 3} and hydroxylamine and reduction with SnCl{sub 2} in HCl using external calibration. The matrix interferences and the effect of nitrogen oxide vapors have been evaluated and the method validated using a certified reference material. The limit of detection of the method was 0.9 ng g{sup -1} with a recovery percentage of 95 {+-} 4% at an added concentration of 5 ng g{sup -1}. The concentration level of Hg found in 24 natural rice samples from different origin ranged between 1.3 and 7.8 ng g{sup -1}.

  20. Direct solid sampling electrothermal atomic absorption spectrometry for the analysis of high-purity niobium pentaoxide.

    Science.gov (United States)

    Huang, M D; Krivan, V

    2000-01-01

    A direct solid sampling electrothermal atomic absorption spectrometry (SoS-ETAAS) method for ultratrace analysis of powdered niobium pentaoxide for Al, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni and Zn has been developed. The elements K, Mg, Na and Zn could be determined without any chemical modification. However, in the determination of the elements Al, Co, Cr, Cu, Fe, Mn and Ni, serious matrix-caused non-spectral interferences and background occurred which made their determination impossible. This problem was remedied by conversion of the niobium pentaoxide matrix into the thermally stable niobium carbide by using methane atmosphere during the pyrolysis stage. The development resulted in establishing an extraordinary powerful method for the analysis of niobium pentaoxide in term of limits of detection, accuracy, simplicity and analysis time. Quantification was performed using calibration curves measured with aqueous standard solutions. The accuracy was checked by comparing the results with those obtained by ETAAS in analysis of slurries and digests of the sample. Due to almost complete freedom of blank and high applicable sample amounts (up to 15 mg), extremely low limits of detection (0.5-2 ng/g) were achieved.

  1. Determination of selenium and tellurium in the gas phase using specific columns and atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Muangnoicharoen, S.; Chiou, K.Y.; Manuel, O.K.

    1986-11-01

    Total selenium and tellurium in the gas phase were analyzed after adsorption on gold-coated beads and charcoal. The thermally eluting gas was trapped on columns filled with quartz beads that were cooled in an ice bath. The beads were boiled in dilute HCl, and the resulting solution was analyzed for Se and Te by graphite furnace atomic absorption spectrometry. Their results demonstrate that gold-coated beads efficiently trap gaseous Se and Te at a low gas flow rate, but at higher flow rates charcoal traps are more expedient. With charcoal traps, it was found that local air samples contain Se in the range of 0.92-3.05 ng m/sup -3/ and Te in the range of 0.10-0.34 ng m/sup -3/. Detection limits down to about 0.1 ng m/sup -3/ allow the ready detection of Se and Te in rural air with a precision of about +/- 6% at the nanogram level of Te and about +/- 4% at the nanogram level of Se.

  2. Speciation Analysis of Serum Copper by Ultrafiltration Com-bined with Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Hua; MA Hui-Min; MA Quan-Li; LIANG Shu-Chuan

    2001-01-01

    UItrafiltration combined with graphite furnace atomic absorp-tion spectrometry(GFAAS)was used to study protein binding and speciation of copper in human serum..UItrafiltration was carried out using a cell unit ultrafiltration membraoes having a nominal cut-off of 10,000Dalton.The effects of var-ious experimental factors including the kind and concentration of electrolyte,sample storge,pH,pressure and the precon-ditioning of the membranes on the speciation analysis of serum copper by ultrafiltration were examined.It was observed that 4.5±2.3% of the total copper in serum was ultrafiltrable and this value did not seem to be influenced by the total serum ele-mental concentration,the PH (6.5——10) adn the pressure(≤1.5kg/cm2).the preconditioning of the ultrafiltration system with 0.1mol/L calcium nitrate can overcome the adsorption loss of copper effectively,and the addition of tris-HCI sohtion (pH 7.4)to serum accelerates the ultrafiltration.The present method was proved to be suitable for speciation analysis for its simplicity,rapidity,small sample reuqirement and easy con-trol.The results obtained with the method are accurate and reliable.

  3. [Determination of mercury in shark liver by cold atom fluorescence spectrometry after microwave dissolution].

    Science.gov (United States)

    Weng, Di

    2005-12-01

    The conditions for the determination of mercury in shark liver by cold atom fluorescence spectrometry (CAFS) with microwave dissolution were studied. After being dried completely, the method employed 2 mol x L(-1) HNO3-4 mol x L(-1) HCl as an oxidant, and with catalysis by V2O5, the samples were digested in a microwave oven. The mercury in absorption solution was reduced by SnCl2, and then was determined by CAFS at wavelength of 253.7 nm. 10% SnCl2 solution was used as a reductive agent for mercury. The linear range was 0-2.0 ng x mL(-1) mercury (r = 0.999 7). The detection limit was 0.05 ng x mL(-1), the relative standard deviation was 0.86%-2.22%, and the average recovery rate was 96.0%-108.5%. The method was suitable for the determination of mercury in shark liver.

  4. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  5. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  6. Novel Method for Indirect Determination of Iodine in Marine Products by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LU Jian-ping; TAN Fang-wei; TANG Qiong; JIANG Tian-cheng

    2013-01-01

    A method for the determination of iodine based upon compound H2HgI4,formed between I-and Hg2+ in nitric acid and extracted in methyl isobutyl ketone(MIBK),was developed via atomic fluorescence spectrometry(AFS).After the compound is reduced with potassium borohydrid(KBH4),the resultant mercury vapor was injected into the instrument and iodine was,therefore,indirectly determined.Experimental parameters such as the conditions of extraction reagents,aqueous phase acidity,elemental mercury diffusion temperature in a vial and other factors were investigated and optimized.Under the optimum experimental conditions,this method shows a detection limit of 0.038 μg/L iodine and a linear relationship between 0.04-20 μg/L.The method was applied to determining the iodine content in marine duck eggs,kelps,laver and Ganoderma lucidum spirulina,showing a relative standard deviation(RSD) of 2.15% and the recoveries in the range of 98.1%-102.5%.

  7. EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Cristiana Radulescu

    2011-05-01

    Full Text Available The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu content of the fruiting bodies (cap and stipe of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and mature fruiting bodies of mushrooms and their substrate. The high concentrations of lead, chrome and cadmium (Pb: 0.25 – 1.89 mg.kg-1, Cr: 0.36 – 1.94 mg.kg-1, Cd: 0.23 – 1.13 mg.kg-1 for all collected wild edible mushrooms, were determined. These data were compared with maximum level for certain contaminants in foodstuffs established by the commission of the European Committees (EC No 466/2001. A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the accumulation coefficient (Ka. The moderately acid pH value of soil influenced the accumulation of Zn and Cd inside of the studied species. The variation of heavy metals content between edible mushrooms species is dependent upon the ability of the species to extract elements from the substrate and on the selective uptake and deposition of metals in tissue.

  8. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  9. Purge-and-trap isothermal multicapillary gas chromatographic sample introduction accessory for speciation of mercury by microwave-induced plasma atomic emission spectrometry.

    Science.gov (United States)

    Rodriguez Pereiro, I; Wasik, A; Lobiński, R

    1998-10-01

    A compact device based on purge-and-trap multicapillary gas chromatography was developed for sensitive species-selective analysis of methylmercury and Hg2+ by atomic spectrometry. The operating mode includes in situ conversion of the analyte species to MeEtHg and HgEt2 and cryotrapping of the derivatives formed in a 0.53-mm-i.d. capillary, followed by their flash ( 60 mL min-1) compatible with an MIP AES detector (no dilution with a makeup gas is required). Developments regarding each of the steps of the analytical procedure and effects of operational variables (sample volume, purge flow, trap temperature, separation conditions) are discussed. The device allows speciation of MeHg+ and Hg2+ down to 5 pg g-1 in urine and, after a rapid microwave-assisted hydrolysis, down to 0.1 ng g-1 in solid biological samples with a throughput of 6 samples/h. The analytical protocols developed were validated by the analysis of DORM-1 (dogfish muscle), TORT-1 (lobster hepatopancreas), and Seronorm urine certified reference materials.

  10. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  11. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry

    Science.gov (United States)

    Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma

    2017-03-01

    This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.

  12. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction.

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-06-01

    The dispersive liquid-liquid microextraction of edible oils with a low volume of an acidic solution in the presence of isopropyl alcohol allows cadmium and lead to be completely separated into the aqueous phase. After centrifugation, the metals are determined by electrothermal atomization atomic absorption spectrometry using a palladium salt for chemical modification in the heating cycle. Using a 10 g oil sample, the enrichment factor is 140, which permits detection limits of 0.6 and 10 ng kg(-1) for cadmium and lead, respectively. The results agree with those obtained after sample mineralization. Data for the cadmium and lead levels for 15 samples of different characteristics are given.

  13. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    is subjected to in FI from the point of injection/introduction to the point of detection, which in turn allows suitable on-line pretreatments to be effected. The present paper will - via a number of selected examples - point to some of the potentials at hand, encompassing the use of FI as a suitable vehicle...

  14. Studies of ion-imprinted polymers for solid-phase extraction of ruthenium from environmental samples before its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elzbieta; Roszko, Dorota; Lesniewska, Barbara; Wilczewska, Agnieszka Z.; Godlewska-Zylkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2011-07-15

    The examination of the effect of interfering ions on the analytical signal of ruthenium measured by electrothermal atomic absorption spectrometry was initially performed in this work. The complexes of ruthenium(III) with thiosemicarbazide (TSd) and acetaldehyde thiosemicarbazone (AcTSn) were prepared and imprinted in polymeric network. The ion-imprinted polymers were synthesized by copolymerization of methacrylic acid, as functional monomer and ethylene glycol dimethacrylate, as crosslinking agent in the presence of 2,2-azobisisobutyronitrile as initiator. The effects of sample volume, pH, and flow rate on the extraction of analyte were studied in dynamic mode. The optimum pH for quantitative retention of ruthenium on each of the studied sorbents was 7.5 {+-} 0.5. The elution of analyte was completed with 0.2 mol L{sup -1} thiourea in 0.2 mol L{sup -1} HCl. The effect of matrix ions on ruthenium(III) separation process was studied. The analytical performance of the Ru-TSd polymer in the presence of competing ions was better than Ru-AcTSn polymer, considering recovery of analyte, reproducibility of results, selectivity coefficients, and sorbent capacity. The detection limit of the proposed method (0.16 ng mL{sup -1} on Ru-TSd and 0.25 ng mL{sup -1} on Ru-AcTSn) is lower in comparison with the previously published methods. The developed separation method was successfully applied to the determination of trace amounts of ruthenium in spiked water samples, sludge, grass, and human hair.

  15. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  16. Effect of Atomic Coherence on Absorption in Four-level Systems: an Analytical study

    CERN Document Server

    Sandhya, S N

    2006-01-01

    Absorption profile of a four-level ladder atomic system interacting with three driving fields is studied perturbatively and analytical results are presented. Numerical results where the driving field strengths are treated upto all orders are presented. The absorption features is studied in two regimes, i) the weak middle transition coupling, i.e. $\\Omega_2 \\Omega_{1,3}$ and ii) the strong middle transition coupling $\\Omega_2 \\Omega_{1,3}$. In case i), it is shown that the ground state absorption and the saturation characteristics of the population of level 2 reveal deviation due to the presence of upper level couplings. In particular, the saturation curve for the population of level 2 shows a dip for $\\Omega_1 = \\Omega_3$. While the populations of levels 3 and 4 show a maxima when this resonance condition is satisfied. Thus the resonance condition provides a criterion for maximally populating the upper levels. A second order perturbation calculation reveals the nature of this minima (maxima). In the second ca...

  17. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dittert, Ingrid M. [Departamento de Quimica, Universidade Federal de Santa Catarina, Campus Universitario, Trindade, 88040-900, Florianopolis, SC (Brazil); Silva, Jessee S.A. [Centro Federal de Educacao Tecnologica de Santa Catarina, Florianopolis, SC (Brazil); Araujo, Rennan G.O. [Departamento de Quimica, Universidade Federal de Santa Catarina, Campus Universitario, Trindade, 88040-900, Florianopolis, SC (Brazil)], E-mail: rgoa01@terra.com.br; Curtius, Adilson J.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, Campus Universitario, Trindade, 88040-900, Florianopolis, SC (Brazil); Becker-Ross, Helmut [ISAS, Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2009-06-15

    A simple, fast and sensitive direct method for the simultaneous determination of Cr and Fe in crude oil samples is proposed using high-resolution continuum source graphite furnace atomic absorption spectrometry. No sample preparation is used except for a 10-minute homogenization in an ultrasonic bath. Aliquots of 0.1-4 mg of the samples are weighed onto solid sampling platforms and analyzed directly using aqueous standards for calibration. The simultaneous determination was possible because there is a secondary Fe line at 358.120 nm in the vicinity of the most sensitive Cr line at 357.868 nm, and both absorption lines were within the wavelength interval covered by the linear charge-coupled device array detector. It has also been of advantage that the sensitivity ratio between the two analytical lines corresponded roughly to the concentration ratio of the two elements found in crude oil, and that both analytes have very similar volatility, so that no compromises had to be made regarding pyrolysis and atomization temperatures. Two oil reference materials have been analyzed and the results were in agreement with the certified or reported values. Characteristic masses of 3.6 pg and 0.5 ng were obtained for Cr and Fe, respectively. The limits of detection (3{sigma}, n = 10) were 1 {mu}g kg{sup - 1} for Cr and 0.6 mg kg{sup - 1} for Fe, and the precision, expressed as the relative standard deviation, ranged from 4 to 20%, which is often acceptable for a rapid direct analytical procedure. Five crude oils samples were analyzed.

  18. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Dittert, Ingrid M.; Silva, Jessee S. A.; Araujo, Rennan G. O.; Curtius, Adilson J.; Welz, Bernhard; Becker-Ross, Helmut

    2009-06-01

    A simple, fast and sensitive direct method for the simultaneous determination of Cr and Fe in crude oil samples is proposed using high-resolution continuum source graphite furnace atomic absorption spectrometry. No sample preparation is used except for a 10-minute homogenization in an ultrasonic bath. Aliquots of 0.1-4 mg of the samples are weighed onto solid sampling platforms and analyzed directly using aqueous standards for calibration. The simultaneous determination was possible because there is a secondary Fe line at 358.120 nm in the vicinity of the most sensitive Cr line at 357.868 nm, and both absorption lines were within the wavelength interval covered by the linear charge-coupled device array detector. It has also been of advantage that the sensitivity ratio between the two analytical lines corresponded roughly to the concentration ratio of the two elements found in crude oil, and that both analytes have very similar volatility, so that no compromises had to be made regarding pyrolysis and atomization temperatures. Two oil reference materials have been analyzed and the results were in agreement with the certified or reported values. Characteristic masses of 3.6 pg and 0.5 ng were obtained for Cr and Fe, respectively. The limits of detection (3 σ, n = 10) were 1 µg kg - 1 for Cr and 0.6 mg kg - 1 for Fe, and the precision, expressed as the relative standard deviation, ranged from 4 to 20%, which is often acceptable for a rapid direct analytical procedure. Five crude oils samples were analyzed.

  19. A robust analytical method for measurement of phytoestrogens and related metabolites in serum with liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Hongmei; Liao, Xiangjun; Wood, Carla M; Xiao, Chao-Wu; Feng, Yong-Lai

    2016-02-15

    A sensitive and robust method using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for quantitation of 13 phytoestrogens and related metabolites in rat serum samples. A new type of column, the Kinetex core-shell C18 column, was applied for rapid separation of the target analytes in 10min. Two enzymes, sulfatase H-1 and gulcuronidase H-5 from Helix pomatia were compared on the efficiency of releasing the conjugated forms of the target analytes to their free forms in serum samples. The method detection limit (MDL) defined as three times the signal to noise ratio in spiked serum matrix-based solutions was in the range of 0.1-3.5ng/mL. The linear dynamic calibration was in the broad range of 0.2-500ng/mL for all target compounds. Thirty-two rat serum samples from the rats that were fed with diets containing either casein or soy protein isolates with various amounts of isoflavones for 8 weeks were analyzed for the target analytes with the developed method. Nine target analytes were detected in the serum samples. Those detectable compounds are all the metabolites of the dietary isoflavones, suggesting that the diet isoflavones were mostly metabolized to their metabolites in rat.

  20. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects.

    Science.gov (United States)

    Bonaduce, Ilaria; Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla

    2016-02-01

    Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

  1. Structure determination of adipokinetic hormones using fast atom bombardment tandem mass spectrometry; An unknown adipokinetic hormone (AKH-III) from Locusta migratoria

    Energy Technology Data Exchange (ETDEWEB)

    Heerma, W.; Versluis, C.; Lankhof, H. (Utrecht University (Netherlands). Faculty of Chemistry, Department of Analytical Molecular Spectrometry); Oudejans, R.C.H.M.; Kooiman, F.P.; Beenakkers, A.M.T. (Utrecht University (Netherlands). Department of Experimental Zoology)

    1991-08-01

    Fast atom bombardment mass spectrometry combined with various tandem mass spectrometric techniques and accurate mass measurement were used to elucidate the structure of an unknown biologically active peptide isolated from Locusa migratoria. (author). 23 refs.; 6 figs.; 2 schemes.

  2. Determination of some antihistaminic drugs by atomic absorption spectrometry and colorimetric methods.

    Science.gov (United States)

    El-Kousy, N; Bebawy, L I

    1999-08-01

    Atomic absorption spectrometry (AAS) and colourimetric methods have been developed for the determination of pizotifen (I), ketotifen (II) and loratadine (III). The first method depends on the reaction of the three drugs (I); (II) and (III) with cobalt thiocyanate reagent at pH 2 to give ternary complexes. These complexes are readily extracted with organic solvent and estimated by indirect atomic absorption method via the determination of the cobalt content in the formed complex after extraction in 0.1 M hydrochloric acid. It was found that the three drugs can be determined in the concentration ranges from 10 to 74, 12 to 95 and 10 to 93 microg ml(-1) with mean percentage recovery of 99.71+/-0.87, 99.70+/-0.79 and 99.62+/-0.75%, respectively. The second method is based on the formation of orange red ion pairs as a result of the reaction between (I); (II) and (III) and molybdenum thiocyanate with maximum absorption at 469.5 nm in dichloromethane. Appropriate conditions were established for the colour reaction. Under the proposed conditions linearity was obeyed in the concentration ranges 3.5-25, 5-37.5 and 2.5-22.5 microg ml(-1) with mean percentage recovery of 99.60+/-0.41, 100.11+/-0.43 and 99.31+/-0.47% for (I): (II) and (III), respectively. The third method depends on the formation of radical ion using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The colour formed was measured at 588 nm for the three drugs (I); (II) and (III), respectively. The method is valid in concentration range 10-80 microg ml(-1) with mean percentage recovery 99.75+/-0.44, 99.94+/-0.72 and 99.17+/-0.36% for (I); (II) and (III), respectively. The proposed methods were applied to the analysis of pharmaceutical preparations. The results obtained were statistically analysed and compared with those obtained by applying the official and reference methods.

  3. Determination of Inorganic Arsenic Species by Electrochemical Hydride Generation Atomic Absorption Spectrometry with Selective Electrochemical Reduction

    Institute of Scientific and Technical Information of China (English)

    LI Xun; WANG Zheng-Hao

    2007-01-01

    A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L-1 H2SO4.The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(V) was 0.4 A, whereas the current for the determination of As(Ⅲ)and As(V) was 1.2 A. For equal concentrations of As(Ⅲ) and As(V) in a sample, the interferences of As(V) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(V) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(V) measured at 1.2 A, and then the concentration of As(V) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·ml-1 for As(Ⅲ) and As(V) respectively.The relative standrad deviations were of 3.5% for 20 ng·ml-1 As(Ⅲ) and 302% for 20 ng·ml-1 As(V).The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.

  4. Investigation of aging processes of graphite tubes modified with iridium and rhodium used for atomic spectrometry

    Science.gov (United States)

    Bulska, Ewa; Piaścik, Marek; Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2007-11-01

    UV spectrometry (187-380 nm) with charge coupled device (CCD) detection was used to study the evolution of absorption spectra during the vaporization of various species in the pyrocoated graphite furnace, with electrodeposited Ir and Rh as modifiers. In order to mimic a typical matrix composition, various salts of aluminum, manganese, copper, magnesium, sodium, and lead were used in microgram amounts. Changes in spectra and vapor release rate, along with aging of the tubes in the repetitive temperature cycles, were observed. Compared to the unmodified pyrocoated tubes, the presence of Ir or Rh causes a significant reduction in the vaporization efficiency, especially for microgram amounts of copper and aluminum introduced as nitrates, and manganese introduced as a sulfate. The vaporization efficiency, for magnesium and sodium as chlorides, and for lead as a sulfate, remained unchanged. Interestingly, the aging of the tubes was accompanied by partial restoration of the spectral characteristics for unmodified tubes. For example, with unmodified pyrocoated tubes, the vaporization spectrum, appearing as a consequence of the decomposition of aluminum nitrate, consisted of Al2O bands overlapped by Al atomic lines. In the freshly modified tubes, intensities of those lines and bands were substantially reduced, and in this case, the dominance of AlO molecules was observed. The efficiency of vaporization of aluminum species increased in the aged modified tubes. The scanning electron microscopy (SEM) images of the modified surfaces for the new and aged tubes indicated that aging of the tubes is accompanied by the destruction of the pyrocoating, formation of pyrographite shells around the areas where the modifier was electrodeposited, and finally, complete substitution of the metal on the graphite surface by pyrographite debris.

  5. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  6. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, Valeria [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Biagi, Simona [National Research Council of Italy, C.N.R., Istituto per i Processi Chimico-Fisici - IPCF-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ghimenti, Silvia [University of Pisa, Department of Chemistry and Industrial Chemistry, Via Risorgimento 35, 56126 Pisa (Italy); Onor, Massimo; D' Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-11-15

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H{sub 2} miniaturized flame after sodium borohydride reduction to Hg{sup 0}, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H{sub 2} microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10{sup -5} mol L{sup -1}), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L{sup -1} (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 {mu}mol L{sup -1} were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were

  7. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Science.gov (United States)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  8. On-line analysis of penicillin blood levels in the live rat by combined microdialysis/fast-atom bombardment mass spectrometry.

    OpenAIRE

    Caprioli, R.M.; Lin, S. N.

    1990-01-01

    The combination of microdialysis and fast-atom bombardment mass spectrometry has been used to follow the pharmacokinetics of penicillin G directly in the blood-stream of a live rat. After the intramuscular injection of the antibiotic, the blood dialysate was allowed to flow into the mass spectrometer via the continuous-flow/fast-atom bombardment interface. Tandem mass spectrometry provided the means for isolating and recording the ion fragments produced from the drug as the dialysate was expo...

  9. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Science.gov (United States)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  10. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  11. An analytical method for determination of mercury by cold vapor atomic absorption spectroscopy; Determinazione di mercurio. Metodo per spettrometria di assorbimento atomico a vapori freddi (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, L. [Rome Univ. La Sapienza, Rome (Italy); Mastroianni, D.; Capri, S.; Pettine, M. [CNR, Rome (Italy). Ist. di Ricerca sulle Acque; Spezia, S.; Bettinelli, M. [ENEL, Unified Modelling Language, Piacenza (Italy)

    1999-09-01

    An analytical procedure for the determination of total mercury in wastewaters and natural waters is described. Aqueous samples are fast digested with nitric acid by using the microwave-oven technique; the analysis of mercury is then performed by cold vapor atomic absorption spectrometry (CV-AAS) using two possible instrumental apparatus (batch system or flow injection). Sodium borohydride is used as the reducing agent for mercury in solution (Method A). The use of amalgamation traps on gold for the preconcentration of mercury lowers the detection limit of the analyte (Method B). [Italian] Viene descritta una procedura analitica per la determinazione del mercurio totale in acque di scarico e naturali. Il campione acquoso viene sottoposto a mineralizzazione con acido nitrico in forno a microonde e analizzato mediante spettroscopia di assorbimento atomico a vapori freddi (CV-AAS) in due possibili configurazioni strumentali (sistema batch oppure flow injection), utilizzando sodio boro idruro come agente riducente del mercurio (metodo A). L'impiego della trappola di oro per la preconcentrazione del mercurio mediante amalgama consente di determinare l'analita a livelli di pochi ng/L (metodo B).

  12. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  13. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Shakerian, Farid; Shabani, Ali Mohammad Haji

    2013-03-15

    The aim of this study was to describe a new method of microextraction based on the suspension of alumina nanoparticles in the surfactant media for simultaneous separation and preconcentration of the ultra-traces of cobalt, nickel and copper ions. In this technique, the alumina nanoparticles were suspended in the non-ionic surfactant solution of Triton X-114. The analytes in the sample solution were adsorbed onto the nanoparticles. After the phase separation based on the cloud point of the mixture at 40 °C, the nanoparticles settled down in the surfactant rich phase. Then 120 μL of nitric acid (3.0 mol L(-1)) was added to the surfactant rich phase which caused desorption of the analytes. Finally, the liquid phase was separated by centrifugation from the nanoparticles and was used for the quantification of the analytes by the electrothermal atomic absorption spectrometry (ETAAS). The parameters affecting the extraction and detection processes were optimized. Under the optimized experimental conditions (i.e. pH∼8, Triton X-114, 0.05% (v/v); temperature 40 °C), a sample volume of 25 mL resulted in the enhancement factors of 198, 205 and 206 and detection limits (defined as 3Sb/m) of 2.5, 2.8 and 2.6 ng L(-1) for Co(II), Ni(II) and Cu(II) respectively. The sorbent showed high capacity for these metal ions (30-40 mg g(-1) sorbent). The method was successfully applied to the determination of the analytes in natural water samples.

  14. Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA.

    Science.gov (United States)

    Chen, Piaopiao; Wu, Peng; Chen, Junbo; Yang, Peng; Zhang, Xinfeng; Zheng, Chengbin; Hou, Xiandeng

    2016-02-16

    Based on selective and sensitive determination of Hg(2+) released from mercury complex by cold vapor generation (CVG) atomic fluorescence spectrometry (AFS) using SnCl2 as a reductant, a novel label-free and separation-free strategy was proposed for DNA and protein bioassay. To construct the DNA bioassay platform, an Hg(2+)-mediated molecular beacon (hairpin) without labeling but possessing several thymine (T) bases at both ends was employed as the probe. It is well-known that Hg(2+) could trigger the formation of the hairpin structure through T-Hg(2+)-T connection. In the presence of a specific target, the hairpin structure could be broken and the captured Hg(2+) was released. Interestingly, it was found that SnCl2 could selectively reduce only free Hg(2+) to Hg(0) vapor in the presence of T-Hg(2+)-T complex, which could be separated from sample matrices for sensitive AFS detection. Three different types of analyte, namely, single-strand DNA (ssDNA), protein, and double-strand DNA (dsDNA), were investigated as the target analytes. Under the optimized conditions, this bioassay provided high sensitivity for ssDNA, protein, and dsDNA determination with the limits of detection as low as 0.2, 0.08, and 0.3 nM and the linear dynamic ranges of 10-150, 5-175, and 1-250 nM, respectively. The analytical performance for these analytes compares favorably with those by previously reported methods, demonstrating the potential usefulness and versatility of this new AFS-based bioassay. Moreover, the bioassay retains advantages of simplicity, cost-effectiveness, and sensitivity compared to most of the conventional methods.

  15. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation.

    Science.gov (United States)

    Musil, Stanislav; Matoušek, Tomáš; Currier, Jenna M; Stýblo, Miroslav; Dědina, Jiří

    2014-10-21

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).

  16. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  17. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  18. Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M.M.; Duarte, Fabio A., E-mail: fabioand@gmail.com

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid–liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L{sup −1} for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L{sup −1} and from 1.38 to 3.74 mg L{sup −1}, respectively. - Highlights: • Determination of Cu and Fe in wine using DLLME and F AAS • High preconcentration factors and low LODs were achieved. • Alternative method for the determination of Cu and Fe in wine for routine analysis.

  19. Analytical application of 2f-wavelength modulation for isotope selective diode laser graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Wizemann, H D

    2000-01-01

    Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer.

  20. The use of silver nanoparticles as an effective modifier for the determination of arsenic and antimony by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Gunduz, S.; Akman, S.; Baysal, A.; Kahraman, M.

    2010-04-01

    Silver nanoparticles (AgNPs) were proposed as a new chemical modifier for the elimination of interferences when determining arsenic and antimony in aqueous NaCl or Na 2SO 4 solutions and in sea-water by electrothermal atomic absorption spectrometry. For this purpose, the AgNPs were prepared simply by reducing silver nitrate with sodium citrate. The effects of pyrolysis and atomization temperatures and the amounts of interferents and modifiers on the sensitivities of these elements were investigated. In the presence of the proposed modifier, a pyrolysis temperature of at least 1100 °C for arsenic and 900 °C for antimony could be applied without the loss of analytes, and the interferences were greatly reduced to allow for interference-free determination. The detection limits ( N = 10, 3 σ) for arsenic and antimony were 0.022 ng and 0.046 ng, respectively. AgNPs are cheaper and more available compared to many other modifiers. No background was detected, and the blank values were negligible.

  1. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples.

  2. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    Science.gov (United States)

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  3. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Science.gov (United States)

    Brombach, Christoph-Cornelius; Chen, Bin; Corns, Warren T.; Feldmann, Jörg; Krupp, Eva M.

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography-cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation.

  4. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  5. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    Science.gov (United States)

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  6. Solid phase extraction method for the determination of iron, lead and chromium by atomic absorption spectrometry using Amberite XAD-2000 column in various water samples

    Energy Technology Data Exchange (ETDEWEB)

    Elci, Latif [Chemistry Department, Science and Arts Faculty, Pamukkale University, Denizli (Turkey)], E-mail: elci@pamukkale.edu.tr; Kartal, Aslihan A. [Chemistry Department, Science and Arts Faculty, Pamukkale University, Denizli (Turkey); Soylak, Mustafa [Chemistry Department, Science and Arts Faculty, Erciyes University, Kayseri (Turkey)

    2008-05-01

    This work describes a procedure for the separation-preconcentration of Fe(III), Pb(II) and Cr(III) from some water samples using a column-filled Amberlite XAD-2000 resin. The analyte ions retained on the column were eluted with 0.5 mol L{sup -1} HNO{sub 3}. The analytes in the effluent were determined by atomic absorption spectrometry. Several parameters governing the efficiency of the method were evaluated including pH, resin amount, sample volume, flow rates, eluent type and divers ion effects. The recoveries under the optimum working conditions were found to be as 100 {+-} 1% Fe, 96 {+-} 1% Pb and 93 {+-} 2% Cr. The relative standard deviations and errors were less than 2% and 5%, respectively. The detection limit based on three standard deviations of the blank was found to be 0.32, 0.51 and 0.81 {mu}g L{sup -1}, for Fe, Pb and Cr, respectively. The procedure was applied to the determination of Fe, Cr and Pb in hot spring water and drinking water samples.

  7. Automatic On-line Solid-phase Extraction-Electrothermal Atomic Absorption Spectrometry Exploiting Sequential Injection Analysis for Trace Vanadium, Cadmium and Lead Determination in Human Urine Samples.

    Science.gov (United States)

    Giakisikli, Georgia; Ayala Quezada, Alejandro; Tanaka, Junpei; Anthemidis, Aristidis N; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-01-01

    A fully automated sequential injection column preconcentration method for the on-line determination of trace vanadium, cadmium and lead in urine samples was successfully developed, utilizing electrothermal atomic absorption spectrometry (ETAAS). Polyamino-polycarboxylic acid chelating resin (Nobias chelate PA-1) packed into a handmade minicolumn was used as a sorbent material. Effective on-line retention of chelate complexes of analytes was achieved at pH 6.0, while the highest elution effectiveness was observed with 1.0 mol L(-1) HNO3 in the reverse phase. Several analytical parameters, like the sample acidity, concentration and volume of the eluent as well as the loading/elution flow rates, have been studied, regarding the efficiency of the method, providing appropriate conditions for the analysis of real samples. For a 4.5 mL sample volume, the sampling frequency was 27 h(-1). The detection limits were found to be 3.0, 0.06 and 2.0 ng L(-1) for V(V), Cd(II) and Pb(II), respectively, with the relative standard deviations ranging between 1.9 - 3.7%. The accuracy of the proposed method was evaluated by analyzing a certified reference material (Seronorm(TM) trace elements urine) and spiked urine samples.

  8. Solid phase extraction method for the determination of iron, lead and chromium by atomic absorption spectrometry using Amberite XAD-2000 column in various water samples.

    Science.gov (United States)

    Elci, Latif; Kartal, Aslihan A; Soylak, Mustafa

    2008-05-01

    This work describes a procedure for the separation-preconcentration of Fe(III), Pb(II) and Cr(III) from some water samples using a column-filled Amberlite XAD-2000 resin. The analyte ions retained on the column were eluted with 0.5 mol L(-1) HNO(3). The analytes in the effluent were determined by atomic absorption spectrometry. Several parameters governing the efficiency of the method were evaluated including pH, resin amount, sample volume, flow rates, eluent type and divers ion effects. The recoveries under the optimum working conditions were found to be as 100+/-1% Fe, 96+/-1% Pb and 93+/-2% Cr. The relative standard deviations and errors were less than 2% and 5%, respectively. The detection limit based on three standard deviations of the blank was found to be 0.32, 0.51 and 0.81 microg L(-1), for Fe, Pb and Cr, respectively. The procedure was applied to the determination of Fe, Cr and Pb in hot spring water and drinking water samples.

  9. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.

    Science.gov (United States)

    Jaiswal, Rakesh; Matei, Marius F; Golon, Agnieszka; Witt, Matthias; Kuhnert, Nikolai

    2012-09-01

    Coffee is one of mankind's most popular beverages obtained from green coffee beans by roasting. Much effort has been expended towards the chemical characterisation of the components of the roasted coffee bean, frequently termed melanoidines, which are dominated byproducts formed from its most relevant secondary metabolites - chlorogenic acids. However, impeded by a lack of suitable authentic reference standards and analytical techniques sufficiently powerful for providing insight into an extraordinarily complex enigmatic material, unsurprisingly little structural and mechanistic information about the products of coffee roasting is available. Here we report on the characterisation of low molecular weight melanoidine fractions of roasted coffee using a conceptually novel combination of targeted and non-targeted mass spectrometrical techniques. We provide an unprecedented account of the chemical composition of roasted coffee beans. Using a targeted analytical approach we show for the first time, by comparison to authentic reference standards obtained by chemical synthesis, that chlorogenic acids follow four distinct reaction pathways including epimerization, acyl migration, lactonisation and dehydration. The analytical strategy employed in a non-targeted approach uses high resolution mass spectrometry to identify the most abundant molecular formulas present in roasted coffee samples and model roasts followed by van Krevelen and homologous series analysis. We identified the molecular formulas formed from reactions of chlorogenic acids, carbohydrates and proteins, both between classes of compounds and within same classes of compounds. Furthermore, we identified two new classes of compounds formed from chlorogenic acids during roasting, chlorogenic acid acetates and O-phenolic quinoyl and shikimoyl esters of chlorogenic acids.

  10. Espectrometria de absorção atômica: o caminho para determinações multi-elementares Atomic absorption spectrometry: the way for multielement determinations

    Directory of Open Access Journals (Sweden)

    Fábio Alan Carqueija Amorim

    2008-01-01

    Full Text Available This paper present an overview of way covered for the spectrometry of atomic absorption (AAS, tracing a line of the historical events in its development and its establishment as a multielement technique. Additionally, the efforts carried by through several researchers in the search for the instrumental evolution, the advances, advantages, limitations, and trends of this approach are related. Several works focusing its analytical applications are cited employing simultaneous multielement determination by flame (FAAS and/or graphite furnace (GF AAS, and fast sequential multielement determination using FAAS are reported in the present review.

  11. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  12. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  13. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health.

  14. Gas chromatography – mass spectrometry of JWH-018 metabolites in urine samples with direct comparison to analytical standards

    Science.gov (United States)

    Emerson, Beth; Durham, Bill; Gidden, Jennifer; Lay, Jackson O.

    2013-01-01

    JWH-018 (1-pentyl-3-(1-naphthoyl)indole) is one of numerous potential aminoalkylindoles contained in products marketed as ‘K2’ or ‘Spice’. Investigation of the urinary metabolites from consumption of these compounds is important because they are banned in the United States and many European countries. An efficient extraction procedure and gas chromatography – mass spectrometry (GC-MS) method were developed for detection of ‘K2’ metabolites in urine from individuals suspected of using these products. Analytical standards were used to elucidate the structure-specific mass spectral fragmentations and retention properties to confirm proposed identifications and support quantitative studies. A procedure for the synthesis of one of these metabolites (5-hydroxypentyl JWH-018) was also developed. Results are comparable to existing LC-MS/MS methods, with the same primary metabolites detected. The specific metabolite hydrolysis products include 4-hydroxpentyl, 5-hydroxypentyl, and N-pentanoic acid derivatives. PMID:23683902

  15. Rapid process development of chromatographic process using direct analysis in real time mass spectrometry as a process analytical technology tool.

    Science.gov (United States)

    Yan, Binjun; Chen, Teng; Xu, Zhilin; Qu, Haibin

    2014-06-01

    The concept of quality by design (QbD) is widely applied in the process development of pharmaceuticals. However, the additional cost and time have caused some resistance about QbD implementation. To show a possible solution, this work proposed a rapid process development method, which used direct analysis in real time mass spectrometry (DART-MS) as a process analytical technology (PAT) tool for studying the chromatographic process of Ginkgo biloba L., as an example. The breakthrough curves were fast determined by DART-MS at-line. A high correlation coefficient of 0.9520 was found between the concentrations of ginkgolide A determined by DART-MS and HPLC. Based on the PAT tool, the impacts of process parameters on the adsorption capacity were discovered rapidly, which showed a decreased adsorption capacity with the increase of the flow rate. This work has shown the feasibility and advantages of integrating PAT into QbD implementation for rapid process development.

  16. Analytical Characterization of two new related impurities of Diltiazem by High Resolution Mass spectrometry and NMR techniques096

    Directory of Open Access Journals (Sweden)

    Jagadeesh Narkedimilli

    2015-09-01

    Full Text Available Diltiazem (DTZ is an optically active calcium channel blocker having a benzodiazepine structure. Two impurities (referred as DTZ-I and DTZ-II were detected with area percentages ranging from 0.1% to 0.15% during the impurity profile study of Diltiazem hydrochloride drug substance. A simple isocratic high performance liquid chromatographic method (HPLC and liquid chromatography–mass spectrometry (LC–MS were used for the detection. The impurities were isolated by preparative column chromatography. Analytical information from nuclear magnetic resonance and mass spectral data of the potential impurities revealed their structures as 2-(4-methoxyphenyl-5-methyl-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]thiazepin-3-yl acetate (DTZ-I and 2-(4-methoxyphenyl-4-oxo-5-vinyl-2,3,4,5-tetrahydrobenzo[b][1,4]thiazepin-3-yl acetate (DTZ-II. Impurity identification, isolation and structure elucidation were discussed.

  17. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  18. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    OpenAIRE

    Andrada,Daniel; Pinto,Frederico G.; Magalhães, Cristina Gonçalves; Nunes,Berta R.; Franco,Milton B.; Silva,José Bento Borba da

    2006-01-01

    The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS). Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC) were prepared directly in the autosampler cup...

  19. Total uncertainty budget calculation for the determination of mercury in incineration ash (BCR 176R) by atomic fluorescence spectrometry.

    Science.gov (United States)

    Tirez, Kristof; Beutels, Filip; Brusten, Wilfried; Noten, Bart; De Brucker, Nicole

    2002-11-01

    The mercury mass fraction has been determined by atomic fluorescence spectrometry (AFS) in the framework of the project "Certification of a reference material (trace elements in fly ash) in replacement of BCR CRM 176". Calculation of the uncertainty budget, as described in this manuscript, emphasizes a practical and realistic approach to estimation of uncertainty components on the basis of statistical assumptions. GUM Workbench software was used, and resulted in a mercury mass fraction of 1.58+/-0.11 mg kg(-1) (with coverage factor k=2.2, 95% probability) related to dry mass, submitted in the certification exercise. The calculated total uncertainty budget applies to analogous samples analyzed by this procedure.

  20. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  1. Determination of cadmium by electrothermal atomic absorption spectrometry after microwave-assisted digestion of animal tissues and sewage sludges.

    Science.gov (United States)

    Chakraborty, R; Das, A K; Cervera, M L; De La Guardia, M

    1996-04-01

    The determination of cadmium in different sample types has been carried out by electrothermal atomization atomic absorption spectrometry with D(2)-background correction using a unpyrocoated graphite tube, after pressurized microwave-assisted digestion. Five chemical modifiers [(NH(4))(2)HPO(4), Pd(NO)(3))(2), Ni(NO(3))(2), thiourea and Triton X-100] have been assayed and nickel nitrate has been found to be most effective for an accurate determination of cadmium in mussel tissue, pig kidney and sewage sludge. The characteristic mass of the method is of the order of 1 pg and the limit of detection is lower than 0.1 ng/ml.

  2. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Science.gov (United States)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  3. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  4. Accelerator mass spectrometry in pharmaceutical research and development--a new ultrasensitive analytical method for isotope measurement.

    Science.gov (United States)

    Garner, R C

    2000-09-01

    Accelerator mass spectrometry (AMS) permits the measurement of elemental isotopes at the individual atom level. The main application of AMS in drug discovery and development will be in the analysis of 14-carbon (14C). The principle behind AMS is the separation of individual positively charged atoms through mass, charge and momentum differences. In order to obtain the high-energy charge state required for separation, negative atoms are accelerated through a high voltage field (up to 10 million volts) generated by a tandem Van de Graaff accelerator. In the middle of the accelerator, the outer valency electrons are stripped from the atom and the resulting charged species are separated and counted. For 14C, AMS counts the number of individual atoms rather than measuring radioactive decays. The result is that AMS is up to one million times more sensitive than decay counting. Radioactivity levels as low 0.0001 dpm can be detected using AMS. The exquisite sensitivity of AMS analysis means that much lower amounts of 14C can be used than for conventional counting methods. This makes it easier to use 14C for in vitro, preclinical and clinical research programmes. As 14C poses both a biological and environmental hazard, AMS permits much lower doses to be used. Human drug mass balance studies have been conducted with doses of 50 nanoCuries and below. Radioactive HPLC metabolite profiles of plasma extracts from subjects given nanoCurie doses of 14C-labelled drug have been obtained by injecting as little as 0.25 dpm onto an HPLC column. In studies of biologics, biosynthetically 14C-labelled recombinant protein has been produced with a specific radioactivity sufficient to conduct human clinical studies with AMS analysis. For one human recombinant protein an increase in sensitivity of 2,000-fold over ELISA was obtained with AMS measurement. AMS is an enabling technology that should prove of value in increasing human and environmental safety as well as allowing new research

  5. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  6. Ion mobility spectrometry as a fast analytical tool in benzalkonium chloride homologs determination.

    Science.gov (United States)

    Gallart-Mateu, D; Armenta, S; Esteve-Turrillas, F A; de la Guardia, M

    2017-03-01

    A novel procedure is proposed for the determination by ion mobility spectrometry (IMS) of C12, C14 and C16 benzalkonium chloride (BAC) homologs. The proposed method requires minimum sample treatment and the measurement was made in less than one minute. A high sensitivity was obtained for BAC determination by IMS with limit of detection values from 37 to 69µgL(-1). Accuracy of the proposed methodology was evaluated through the analysis of aqueous and alcoholic samples spiked with BAC at concentration levels from 0.002% to 20% (w/v), providing recovery values from 91% to 104%. BAC was determined in sanitary alcohols, nasal sprays, postharvest products, algaecides, and treated swimming pool water. Results obtained by the proposed IMS methodology were statistically comparable to those provided by a liquid chromatography-ultraviolet (LC-UV) reference methodology. The Green Certificate evaluation of the proposed IMS methodology provided 91 score points in the Eco-Scale as compared with 77 for LC-UV method.

  7. Determination of gaseous semi-and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    Yifei Sun; Nobuhisa Watanabe; Wei Wang; Tianle Zhu

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds,including fluorine,chlorine,and bromine compounds,generated from combustion.We described the use of barrier-discharge radiofrequencyhelium-plasma/atomic emission spectrometry,for the detection of semi-and low-volatile organic halogen compounds (SLVOXs),which can be collected by CarbotrapTM adsorbents and analyzed using thermal desorption.The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min.The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms.Measuring F was more diflicult than measuring Cl or Br,because the wavelength ofF is dose to that of air.The barrierdischarge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample.It has been found that Carbotrap B is appropriate for high-boiling-point compounds,and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points,in the range 200-230℃.Under optimal analysis conditions,a chlorinecontaining plastic was destroyed using different oxygen concentrations.Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds.

  8. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    Science.gov (United States)

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  9. Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate(III).

    Science.gov (United States)

    Karadjova, Irina B; Lampugnani, Leonardo; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L

    2007-06-01

    A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L(-1) HCl and 1% m/v K(3)[Fe(CN)(6)] with 1% m/v NaBH(4) as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 microg L(-1) and 1 microg L(-1), respectively. The relative standard deviation varies between 2-6% (within-run) and 4-11% (between-run) at 3-30 microg L(-1) Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2-25.8 microg L(-1) Pb.

  10. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    Science.gov (United States)

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  11. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  12. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  13. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  14. Analytic Elastic Cross Sections for Electron-Atom Scattering from Generalized Fano Profiles of Overlapping Low-Energy Shape Resonances

    CERN Document Server

    Nicoletopoulos, P

    2003-01-01

    The variation with energy of the total cross section for elastic electron scattering from atoms of several elements is caused primarily by shape resonances corresponding to the formation of temporary negative ions. It is shown that such cross sections are expressible analytically in terms of a constant background added to a "generalized Fano profile" [Durand Ph, et al (2001) J. Phys. B: At. Mol. Opt. Phys. 34, 1953, ibid (2002) 35, 469]. In three cases (sodium, magnesium and mercury), a detailed consideration proves that this representation is accurate in a fairly wide energy range. Moreover, the related momentum transfer cross sections are tailor-made for studying "elastic" electron transport in terms of the two-term solution of the Boltzmann equation: Not only are the resulting swarm transport coefficients adjustable to the experimental values, but above all they are calculable very easily because the unnormalized energy distribution is obtainable analytically. The ample saving in computational effort is ex...

  15. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  16. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination

    Science.gov (United States)

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L-1, with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  17. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Maranhao, Tatiane de A; Martendal, Edmar; Borges, Daniel L.G.; Carasek, Eduardo [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Grupo de Pesquisa em Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)], E-mail: curtius@qmc.ufsc.br

    2007-09-15

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 deg. C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 deg. C for Pb and 800 deg. C for Cd, using a graphite tube with a platform treated with 500 {mu}g Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box-Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L{sup -1} for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  18. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    Science.gov (United States)

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%.

  19. Improving accuracy in the quantitation of overlapping, asymmetric, chromatographie peaks by deconvolution: theory and application to coupled gas chromatography atomic absorption spectrometry

    Science.gov (United States)

    Johansson, M.; Berglund, M.; Baxter, D. C.

    1993-09-01

    Systematic errors in the measurement of overlapping asymmetric, Chromatographic peaks are observed using the perpendicular-drop and tangent-skimming algorithms incorporated in commercial integrators. The magnitude of such errors increases with the degree of tailing and differences in peak size, and was found to be as great as 80% for peak-area and 100% for peak-height measurements made on the smaller, second component of simulated, noise-free chromatograms containing peaks at a size ratio of 10 to 1. Initial deconvolution of overlapping peaks, by mathematical correction for asymmetry, leads to significant improvements in the accuracy of both peak-area and height measurements using the simple, perpendicular-drop algorithm. A comparison of analytical data for the separation and determination of three organolead species by coupled gas chromatography atomic absorption spectrometry using peak-height and area measurements also demonstrates the improved accuracy obtained following deconvolution. It is concluded that the deconvolution method described could be beneficial in a variety of Chromatographic applications where overlapping, asymmetric peaks are observed.

  20. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    Science.gov (United States)

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples.

  1. Validated method for the determination of platinum from a liposomal source (SPI-77) in human plasma using graphite furnace Zeeman atomic absorption spectrometry.

    Science.gov (United States)

    Meerum Terwogt, J M; Tibben, M M; Welbank, H; Schellens, J H; Beijnen, J H

    2000-02-01

    A sensitive analytical method based on flameless atomic absorption spectrometry with Zeeman correction has been validated for the quantitative determination in human plasma of platinum originating from cisplatin in a liposomal source, SPI-77. The performance of the method was acceptable over a sample concentration range of 0. 125-1.25 micromol platinum/L and the lower limit of quantification was determined to be 1.25 micromol platinum/L in undiluted clinical samples. The performance data of the assay were investigated using both a calibration curve with carboplatin in plasma ultrafiltrate and diluted human plasma samples spiked with SPI-77. The recoveries, between-day and the within-day precisions of both methods of calibration were not significantly different allowing carboplatin ultrafiltrate calibration standards to be used to quantify platinum derived from SPI-77 in human plasma. Apparently, the liposomal formulation had no significant influence on the determination of platinum. The usefulness of the presented method was demonstrated in a phase I clinical and pharmacokinetic study. In addition, in vitro experiments were carried out to determine the distribution of SPI-77 in blood. The results indicated that platinum from SPI-77 mainly concentrates in plasma and that binding to and/or endocytosis in red blood cells is negligible.

  2. Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji

    2016-11-01

    Full Text Available A sensitive and simple magnetic solid phase extraction procedure was presented for the preconcentration of lead ions in environmental water samples. In the present study, lead ions form complexes with 1-(2-pyridilazo-2-naphthol reagent (PAN in basic medium, and then are quantitatively extracted to the surface of cetyltrimethylammonium bromide (CTAB-coated magnetite nanoparticles (Fe3O4 NPs. After magnetic separation of adsorbent, the adsorbent was eluted with 0.5% (v/v HCl in methanol prior to its analysis by flame atomic absorption spectrometry (FAAS. The pH of sample, concentrations of PAN, amounts of CTAB and Fe3O4 NPs, sample volume and desorption conditions were optimized. Under optimum conditions, the calibration curve was linear in the range of 0.05–100 ng mL−1 with R2 = 0.9996. Detection and quantification limits of the proposed method were 0.005 and 0.05 ng mL−1, respectively. Enhancement factor of 1050 was achieved using this method to extract 1000 mL of different environmental water samples. Compared with conventional solid phase extraction methods, the advantages of this method still include easy preparation of sorbents, short times of sample pre-treatment, high extraction yield, and high breakthrough volume. It shows great analytical potential in preconcentration of lead from large volume water samples.

  3. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Deniz Yurtsever [Scientific and Technological Research Council of Turkey, Ankara Test and Analysis Laboratory, TUeBITAK/ATAL, Besevler, Ankara (Turkey); Tuerker, Ali Rehber [Science Faculty, Department of Chemistry, Gazi University, Ankara (Turkey)

    2012-05-15

    In this study, headspace single drop microextraction (HS-SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH{sub 3}HgH) and elemental mercury, respectively, in the presence of NaBH{sub 4} and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH{sub 4} concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2012-01-01

    Full Text Available Cloud point extraction (CPE has been used for the preconcentration and simultaneous determination of cobalt (Co and lead (Pb in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114, temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS. The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample.

  5. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box Behnken design

    Science.gov (United States)

    Maranhão, Tatiane De A.; Martendal, Edmar; Borges, Daniel L. G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-09-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L- 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  6. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination.

    Science.gov (United States)

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L(-1), with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  7. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    Science.gov (United States)

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  8. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be food samples.

  9. Preconcentration of lead, cadmium and zinc on silica gel loaded with diethyldithiocarbamate prior to their determination by flame-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rio-Segade, S. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain); Perez-Cid, B. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain); Bendicho, C. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain)

    1995-04-01

    A silica gel sorbent loaded with sodium diethyldithiocarbamate has been developed for the preconcentration of lead, cadmium and zinc prior to their determination by flame-atomic absorption spectrometry (FAAS). The sorption and desorption of the metal ions was studied under both static and dynamic conditions. The metal ions were quantitatively retained on the silica gel sorbent based on an equilibrium time of less than 1 min. In case of the batch method, the effects of pH, shaking time, amount of sorbent, and desorption time were investigated. Among the desorption agents studied, only EDTA in ammonium chloride/ammonia buffer yielded quantitative recoveries. Freundlich`s sorption isotherms determined for each metal show that sufficient sorption ability is obtained. The column method allows the preconcentration of metal ions from large sample volumes (e.g. 200 mL) using a flow rate of 5 mL min{sup -1}. The influence of foreign ions present in natural waters and saline solutions was examined. The reproducibility of the total analytical method, expressed as relative standard deviation (RSD) is 1.8, 0.5 and 0.6%, for lead, cadmium and zinc, respectively. (orig.)

  10. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  11. Determination of total Sb,Se Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos Reyes, M.N.; Cervera, M.L.; Guardia, M. de la [University of Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain)

    2009-07-15

    A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation-atomic-fluorescence spectrometry (HG-AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L{sup -1} H{sub 2}SO{sub 4} and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g{sup -1} for Sb(III), 1.0 ng g{sup -1} for Sb(V), 1.3 ng g{sup -1} for Se(IV), 1.0 ng g{sup -1} for Se(VI), 1.1 ng g{sup -1} for Te(IV), 0.5 ng g{sup -1} for Te(VI), and 0.9 ng g{sup -1} for Bi(III), in all cases expressed in terms of sample dry weight. (orig.)

  12. Ultrasound-assisted extraction technique for establishing selenium contents in breast cancer biopsies by Zeeman-electrothermal atomic absorption spectrometry using multi-injection

    Energy Technology Data Exchange (ETDEWEB)

    Lavilla, I. [Departamento de Quimica Analitica y Alimentaria, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Mosquera, A. [Departamento de Quimica Analitica y Alimentaria, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Millos, J. [Centro de Apoyo Cientifico y Tecnologico a la Investigacion, Universidad de Vigo (Spain); Cameselle, J. [Complejo Hospitalario Xeral-Cies, Pizarro 22, 36311 Vigo (Spain); Bendicho, C. [Departamento de Quimica Analitica y Alimentaria, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain)]. E-mail: bendicho@uviqo.es

    2006-04-27

    A solid-liquid extraction method is developed to establish the contents of selenium in breast cancer biopsies. The method is based on the ultrasound-assisted extraction of selenium from pretreated biopsies prior to Se determination by atomic absorption spectrometry with longitudinal-Zeeman background correction. Fifty-one breast biopsies were collected from the Cies Hospital (Vigo, Spain), 32 of which correspond to tumor tissue and 19 to normal tissue (parenchyma). Difficulties arising from the samples analyzed, i.e. small samples mass (50-100 mg), extremely low Se contents and sample texture modification including tissue hardening due to formaldehyde preservation are addressed and overcome. High intensity sonication using a probe together with addition of hydrogen peroxide succeeded in completely extracting Se from biopsies. The multiple injection technique was useful to tackle the low Se contents present in some biopsies. The detection limit was 25 ng g{sup -1} of Se and the precision, expressed as relative standard deviation, was less than 10%. Se contents ranged from 0.08 to 0.4 {mu}g g{sup -1} for parenchyma samples and from 0.09 to 0.8 {mu}g g{sup -1} for tumor samples. In general, Se levels in tumor biopsies were higher as compared with the adjacent normal tissue in 19 patients by a factor of up to 6. Analytical data confirmed Se accumulation in the breast tumors.

  13. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline.

    Science.gov (United States)

    Beltrán, Blanca G; Leal, Luz O; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1-10 μg Pb L(-1)) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L(-1).

  14. Determination of Ultratrace Amounts of Copper(Ⅱ) in Water Samples by Electrothermal Atomic Absorption Spectrometry After Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction (CPE). 1-( 2-Pyridylazo)-2-naphthol was used as the chelating reagent and Triton X-114 as the micellar-forming surfactant. CPE was conducted in a pH 8.0 medium at 40 ℃ for 10 min. After the separation of the phases by centrifugation, the surfactant-rich phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20 μL of the diluted surfactant-rich phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconcentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0ng/mL, and the relative standard deviation was found to be less than 3.1% for a sample containing 1.0 ng/mL Cu(Ⅱ). This developed method was successfully applied to the determination of ultratrace amounts of Cu in drinking water, tap water, and seawater samples.

  15. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Cvetković, J; Stafilov, T; Mihajlović, D

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 degrees C and 800 degrees C were chosen for aqueous and organic solutions, respectively; 2700 degrees C and 2100 degrees C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 degrees C and 1600 degrees C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 microg L(-1).

  16. Single and double hydrogen atom migrations in substituted alkyl benzoates: a study on the substituent effect using MIKE spectrometry

    Science.gov (United States)

    Tobita, Seiji; Tajima, Susumu; Ishihara, Yasuko; Kojima, Masahiro; Shigihara, Atsushi

    1994-03-01

    The substituent effect on the single and double hydrogen atom migrations is ionized ortho-, meta-, and para-substituted isobutyl (XC6H4COOC4H9) and isopropyl (XC6H4COOC3H7) benzoates is investigated by mass-analyzed ion kinetic energy spectrometry. The observed product ion ratios [XC6H4COOH]+/[XC6H4COOH2]+ show a general tendency: the compounds with an electron-donating substituent favour the formation of [XC6H4COOH]+ by single hydrogen atom migration (McLafferty rearrangement), while those with an electron-withdrawing substituent produce preferentially [XC6H4COOH2]+ through double hydrogen atom migration (McLaffery + 1 rearrangement). The thermochemical considerations combined with MO calculations show that the substituent effects observed are rationalized by the effects of substituent on the ionization energy (IE) and proton affinity (PA) of XC6H4COOH, i.e. the product ratios are determined by the difference of the product thermochemical stabilities which can be evaluated as IE(XC6H4COOH) + PA(XC6H4COOH).

  17. Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum

    Directory of Open Access Journals (Sweden)

    Brousseau Pauline

    2008-07-01

    Full Text Available Abstract Background A routine method for the quantification of beryllium in biological fluids is essential for the development of a chelation therapy for Chronic Beryllium Disease (CBD. We describe a procedure for the direct determination of beryllium in undigested micro quantities of human blood and serum using graphite furnace atomic absorption spectrometry. Blood and serum samples are prepared respectively by a simple 8-fold and 5-fold dilution with a Nash Reagent. Three experimental setups are compared: using no modifier, using magnesium nitrate and using palladium/citric acid as chemical modifiers. Results In serum, both modifiers did not improve the method sensitivity, the optimal pyrolysis and atomization temperatures are 1000°C and 2900°C, respectively. In blood, 6 μg of magnesium nitrate was found to improve the method sensitivity. The optimal pyrolysis and atomization temperatures were 800°C and 2800°C respectively. Conclusion In serum, the method detection limit was 2 ng l-1, the characteristic mass was 0.22 (± 0.07 pg and the accuracy ranged from 95 to 100%. In blood, the detection limit was 7 ng l-1, the characteristic mass was 0.20 (± 0.02 pg and the accuracy ranged from 99 to 101%.

  18. Ion suppression and enhancement effects of co-eluting analytes in multi-analyte approaches: systematic investigation using ultra-high-performance liquid chromatography/mass spectrometry with atmospheric-pressure chemical ionization or electrospray ionization.

    Science.gov (United States)

    Remane, Daniela; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H

    2010-11-15

    In multi-analyte procedures, sufficient separation is important to avoid interferences, particularly when using liquid chromatography/mass spectrometry (LC/MS) because of possible ion suppression or enhancement. However, even using ultra-high-performance LC, baseline separation is not always possible. For development and validation of an LC/MS/MS approach for quantification of 140 antidepressants, benzodiazepines, neuroleptics, beta-blockers, oral antidiabetics, and analytes measured in the context of brain death diagnosis in plasma, the extent of ion suppression or enhancement of co-eluting analytes within and between the drug classes was investigated using atmospheric-pressure chemical ionization (APCI) or electrospray ionization (ESI). Within the drug classes, five analytes showed ion enhancement of over 25% and six analytes ion suppression of over 25% using APCI and 16 analytes ion suppression of over 25% using ESI. Between the drug classes, two analytes showed ion suppression of over 25% using APCI. Using ESI, one analyte showed ion enhancement of over 25% and five analytes ion suppression of over 25%. These effects may influence the drug quantification using calibrators made in presence of overlapping and thus interfering analytes. Ion suppression/enhancement effects induced by co-eluting drugs of different classes present in the patient sample may also lead to false measurements using class-specific calibrators made in absence of overlapping and thus interfering analytes. In conclusion, ion suppression and enhancement tests are essential during method development and validation in LC/MS/MS multi-analyte procedures, with special regards to co-eluting analytes.

  19. 原子荧光光谱法测定土壤中的砷含量%Determination of Arsenic in Soil by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    刘燕芬

    2015-01-01

    通过结合具体的试验对运用原子荧光光谱法测定土壤中的砷含量进行了探讨,以期能为有关方面的需要提供有益的参考和借鉴。%In order to provide a useful reference for the relevant aspects of the arsenic content in soil by atomic fluorescence spectrometry, the method of atomic fluorescence spectrometry was used to determine the arsenic content in soil.

  20. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, A.P.S. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil); Firmino, M.A. [Departamento de Engenharia de Materiais, Escola de Engenharia, Universidade Presbiteriana Mackenzie, Rua da Consolacao, 930, 01302-970 Sao Paulo (Brazil); Nomura, C.S. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil); Rocha, F.R.P.; Oliveira, P.V. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 Sao Paulo (Brazil); Gaubeur, I. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170 Santo Andre (Brazil)], E-mail: ivanise.gaubeur@ufabc.edu.br

    2009-03-23

    The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L{sup -1} HNO{sub 3}. The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 {mu}g L{sup -1}, with a detection limit estimated as 3 {mu}g L{sup -1} at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level.

  1. Determination of cadmium and lead in urine samples after dispersive solid-liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M.; Herrero Latorre, C.

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L- 1, respectively, and for Pb these limits were 0.13 and 0.43 μg L- 1. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96-102% obtained for Cd and 97-101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE-SS-ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained.

  2. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation.

  3. Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Beiraghi, Assadollah [Faculty of Chemistry, Tarbiat Moallem University, Mofatteh Avenue, No. 49, P.O. Box 15614, Tehran (Iran, Islamic Republic of)], E-mail: Beiraghi@Saba.tmu.ac.ir; Babaee, Saeed [Faculty of Chemistry, Tarbiat Moallem University, Mofatteh Avenue, No. 49, P.O. Box 15614, Tehran (Iran, Islamic Republic of)

    2008-01-28

    In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4 mL of a 60:40 methanol-water mixture containing 0.03 mL HNO{sub 3}. Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 x 10{sup -4} mol L{sup -1} 1,8-dihydroxyanthrone, 1.2 x 10{sup -4} mol L{sup -1} CPC, 0.15% (v/v) Triton X-114, 50 deg. C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ng mL{sup -1} with detection limit of 0.001 ng mL{sup -1} and the precision (R.S.D.%) for five replicate determinations at 18 ng mL{sup -1} of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.

  4. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Energy Technology Data Exchange (ETDEWEB)

    Grijalba, Alexander Castro; Martinis, Estefanía M. [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Lascalea, Gustavo E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina)

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L{sup −1} and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L{sup −1} of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS.

  5. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Science.gov (United States)

    Grijalba, Alexander Castro; Martinis, Estefanía M.; Lascalea, Gustavo E.; Wuilloud, Rodolfo G.

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L- 1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L- 1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea.

  6. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brombach, Christoph-Cornelius [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Chen, Bin; Corns, Warren T. [PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP (United Kingdom); Feldmann, Jörg [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Krupp, Eva M., E-mail: e.krupp@abdn.ac.uk [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation.

  7. Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Beiraghi, Assadollah; Babaee, Saeed

    2008-01-28

    In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4mL of a 60:40 methanol-water mixture containing 0.03 mL HNO(3). Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 x 10(-4) molL(-1) 1,8-dihydroxyanthrone, 1.2 x 10(-4) molL(-1) CPC, 0.15% (v/v) Triton X-114, 50 degrees C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ngmL(-1) with detection limit of 0.001 ngmL(-1) and the precision (R.S.D.%) for five replicate determinations at 18 ngmL(-1) of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.

  8. Coprecipitation of trace amounts of silicon with aluminum hydroxide and the determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2014-01-01

    Full Text Available A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1. The preconcentration factor is 100 for (200 mL solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

  9. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  10. Development of a comprehensive analytical method for phosphate metabolites in plants by ion chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Sekiguchi, Yoko; Mitsuhashi, Naoto; Kokaji, Tetsuo; Miyakoda, Hidekazu; Mimura, Tetsuro

    2005-08-26

    This paper describes the development of a practical method for the analysis of phosphorus compounds with a focus on sugar phosphates from the model higher plant Arabidopsis thaliana by ion chromatography coupled to electrospray ionization tandem mass spectrometry (IC-ESI-MS-MS). After the analytical separation, the potassium hydroxide eluent was converted to water with an anion suppressor allowing the effluent from the IC to be connected to the mass spectrometer directly. In the optimized method, 17 phosphorous compounds (adenosine diphosphate (ADP), fructose 1,6-bisphosphate, fructose 2,6-bisphosphate, fructose 6-phosphate, galactose 1-phosphate, glucose 1-phosphate, glucose 1,6-bisphosphate, glucose 6-phosphate, mannose 6-phosphate, phosphoenol pyrvate, 3-phosphoglyceric acid, ribulose 1,5-bisphosphate, ribulose 5-phosphate, ribose 5-phosphate, sucrose 6-phosophate and uridine 5'-diphosphate-glucose (UDPG)) were determined. The linearity of response for these phosphorous compounds over the concentration range of 0 and 10 microM was better than 0.9993 in all cases. The minimum detection limit was between 0.01 and 2.50 microM for a 25 microL injection, and recovery rates for standard addition to the sample were within the range from 93% to 110%.

  11. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes.

    Science.gov (United States)

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-11-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.

  12. Absolute isotopic composition and atomic weight of neodymium using thermal ionization mass spectrometry.

    Science.gov (United States)

    Zhao, Motian; Zhou, Tao; Wang, Jun; Lu, Hai; Fang, Xiang; Guo, Chunhua; Li, Qiuli; Li, Chaofeng

    2005-01-01

    Synthetic mixtures prepared gravimetrically from highly enriched isotopes of neodymium in the form of oxides of well-defined purity were used to calibrate a thermal ionization mass spectrometer. A new error analysis was applied to calculate the final uncertainty of the atomic weight value. Measurements on natural neodymium samples yielded an absolute isotopic composition of 27.153(19) atomic percent (at.%) 142Nd, 12.173(18) at.% 143Nd, 23.798(12) at.% 144Nd, 8.293(7) at.% 145Nd, 17.189(17) at.% 146Nd, 5.756(8) at.% 148Nd, and 5.638(9) at.% 150Nd, and the atomic weight of neodymium as 144.2415(13), with uncertainties given on the basis of 95% confidence limits. No isotopic fractionation was found in terrestrial neodymium materials.

  13. Feasibility guidelines for kaonic atom experiments with ultra-high-resolution X-ray spectrometry

    Science.gov (United States)

    Friedman, E.; Okada, S.

    2013-10-01

    Recent studies of strong-interaction effects in kaonic atoms suggest that analysing so-called 'lower' and 'upper' levels in the same atom could separate one-nucleon absorption from multinucleon processes. The present work examines the feasibility of direct measurements of upper level widths in addition to lower level widths in future experiments, using superconducting microcalorimeter detectors. About ten elements are identified as possible candidates for such experiments, all of medium-weight and heavy nuclei. New experiments focused on achieving good accuracy for widths of such pairs of levels could contribute significantly to our knowledge of the K--nucleon interaction in the nuclear medium.

  14. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  15. Evaluation of arsenic and selenium in Brazilian soluble coffee by inductively coupled plasma atomic emission spectrometry with hydride generation

    Directory of Open Access Journals (Sweden)

    Santos Éder José dos

    2001-01-01

    Full Text Available A method for the evaluation of arsenic and selenium in soluble coffee by inductively coupled plasma atomic emission spectrometry with continuous hydride generation to attend the Brazilian food legislation is described. Samples were digested with nitric acid and hydrogen peroxide in a focused microwave system. Slow heating eliminated nitric acid and selenium (VI was reduced to selenium (IV by addition of 6 mol/L hydrochloric acid and heating at 90° C under a reflux system. The influence of sample acidity on sensitivity was investigated. Hydrochloric acid 6 mol/L was the most suitable reaction medium. Practical detection limits of 2.0mug/L for As and 1.0mu g/L for Se were achieved and attended the Brazilian food legislation. The results of recoveries on spiked samples demonstrate the reliability and accuracy of the procedure.

  16. The application of solid sorbents for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bulska, E; Pyrzyńska, K

    1996-06-01

    Various microcolumns with solid sorbents (ion exchange resins, functionalised cellulose sorbents, chelating resins) have been tested with respect to their ability for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry. The purification of NaNO(3), Mg(NO(3))(2), K(2)SO(4) and (NH(4))(2)HPO(4) has been the most effective with an almost 100% efficiency, when Spheron-Oxine was used as chelating resin. The sorption of aluminum from KOH solution has been found to be very high (around 90%) for all investigated sorbents. However, the best results have been obtained with anion-exchange resins. It has been difficult to purify concentrated mineral acids (HCl, H(2)SO(4)). A retention of aluminum above 80% has been achieved only when Cellex P, Chelex 100 or Amberlite XAD-2 have been used.

  17. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  18. Analytical framework of 'atoms for sustainable development'

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Joon [Nuclear Policy Division, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2010-07-01

    The term of 'Atoms for Sustainable Development' constantly pursues the increasing contribution of nuclear energy to the sustainable development which is providing an external kindling to the so-called nuclear renaissance. This paper explores a conceptual framework and a set of its elemental proxies to analyse the sustainable competitiveness of the nuclear energy system with a classification of the economic, environmental and social dimensions. (authors)

  19. Analytic variationally optimized internally orthogonalized modified Laguerre orbitals in accurate atomic configuration interaction calculation

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhuang; Bacalis N C

    2006-01-01

    An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the ls2s 1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eckart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.

  20. Exact Analytical Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; LI Biao; ZHENG Yu

    2007-01-01

    In the paper, the generalized Riccati equation rational expansion method is presented. Making use of the method and symbolic computation, we present three families of exact analytical solutions of Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Then the dynamics of two anlytical solutions are demonstrated by computer simulations under some selectable parameters including the Feshbach-managed nonlinear coefficient and the hyperbolic secant function coefficient.

  1. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Queirolo, F. (Universidad Catolica del Norte, Antofagasta (Chile). Dept. of Chemistry Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Ostapczuk, P. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Valenta, P.; Stegen, S. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Marin, C.; Vinagre, F.; Sanchez, A. (Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry)

    1991-05-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF).

  2. [Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry].

    Science.gov (United States)

    Fan, Guang-yu; Jiang, Xiao-ming; Zheng, Cheng-bin; Hou, Xian-deng; Xu, Kai-lai

    2011-07-01

    A simple method has been developed for the determination of silver in environmental water samples using solid phase extraction with tungsten-coil electrothermal atomic absorption spectrometry. Silica gel was used as an adsorbent and packed into a syringe barrel for solid phase extraction of silver prior to its determination by using a portable tungsten-coil electrothermal atomic absorption spectrometer. Optimum conditions for adsorption and desorption of silver ion, as well as interferences from co-existing ions, were investigated. A sample pH value of 6.0, a sample loading flow rate of 4.0 mL x min(-1), and the mixture of 4% (m/v) thiourea and 2% (phi) nitrate acid with the eluent flow rate of 0.5 mL x min(-1) for desorption were selected for further studies. Under optimal conditions, a linear range of 0.20-4.00 ng x mL(-1), a limit of detection (3sigma) of 0.03 ng x mL(-1) and a preconcentration factor of 94 were achieved. The proposed method was validated by testing three environmental water samples with satisfactory results.

  3. Determination of vanadium in urine by electrothermal atomic absorption spectrometry using hot injection and preconcentration into the graphite tube

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kelly G.; Nobrega, Joaquim A. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Nogueira, Ana Rita A. [Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)]. E-mail: anarita@cppse.embrapa.br; Gomes Neto, Jose A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2004-10-01

    In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 {mu}L volumes were sequentially injected into the atomizer preheated to a temperature of 110 deg C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L{sup -1}), and a surfactant, Triton X-100 (0.3% v v{sup -1}), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 {mu} s{sup -1}. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 {mu}g L{sup -1} with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 {mu}g L{sup -1} V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample. (author)

  4. Analytically reduced form of multicenter integrals from Gaussian transforms. [in atomic and molecular physics

    Science.gov (United States)

    Straton, Jack C.

    1989-01-01

    The four-dimensional Fourier-Feynman transformations previously used in analytically reducing the general class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves, are replaced by the one-dimensional Gaussian transformation. This reduces the previously required double-diagonalization of the quadratic form of the multicenter integrals to only one diagonalization, yielding a simpler reduced form of the integral. The present work also extends the result to include all s states and pairs of states with l not equal to zero summed over the m quantum number.

  5. Further development and application of a mobile multiple-reflection time-of-flight mass spectrometer for analytical high-resolution tandem mass spectrometry

    OpenAIRE

    Lippert, Wayne

    2016-01-01

    In this work, a mobile multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) for analytical mass spectrometry was enhanced in many important aspects. Technical as well as software-based improvements have been added to the instrument, thus greatly increasing its performance and applicability. Changes have been applied to the whole beam preparation system of the MR-TOF-MS. In this context, the electronic setup was completely overhauled and a quadrupole mass filter was commissioned. C...

  6. Determination of trace elements in heroin by inductively coupled plasma atomic emission spectrometry using ultrasonic nebulization

    Science.gov (United States)

    Budič, Bojan; Klemenc, Sonja

    2000-06-01

    A method for the determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Sr and Zn in heroin samples by ICP-AES using ultrasonic nebulization is described. The samples were microwave digested with HNO 3. To improve the detection limits and minimise the matrix interferences the experimental parameters were optimised by variation of the operating power, carrier gas flow rate and observation height above the load coil. Optimum operating conditions for most of the analytes were at operating power 1550 W, carrier gas flow rate between 0.8 and 1.0 l min -1 and observation height between 10 and 12 mm above load coil. The limits of detection were below 0.5 μg g -1 (dry mass) for most of the elements investigated. The analytical recoveries of spiked samples were in the range between 94 and 103% and precision was on average better than 6%. The analysis of heroin samples shows that the method is simple, rapid and capable of providing accurate results for all the analytes investigated with the exception of nickel which was below the limit of detection in the analyzed samples.

  7. Sensitive method for detection of cocaine and associated analytes by liquid chromatography-tandem mass spectrometry in urine.

    Science.gov (United States)

    Langman, Loralie J; Bjergum, Matthew W; Williamson, Christopher L; Crow, Frank W

    2009-10-01

    Cocaine (COC) is a potent CNS stimulant that is metabolized to benzoylecgonine (BE) and further metabolized to minor metabolites such as m-hydroxybenzoylecgonine (m-HOBE). COC is also metabolized to norcocaine (NC). Cocaethylene (CE) is formed when cocaine and ethyl alcohol are used simultaneously. Anhydroecgonine methyl ester (AEME) is a unique marker following smoked cocaine, and anhydroecgonine ethyl ester (AEEE) is found in cocaine smokers who also use ethyl alcohol. We developed a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the detection and quantitation of COC, BE, NC, CE, m-HOBE, AEME, and AEEE in urine. Two hundred samples previously analyzed by gas chromatography (GC) coupled with MS were extracted using solid-phase extraction. Chromatographic separation was achieved using a gradient consisting of mobile phase A [20 mM ammonium formate (pH 2.7)] and mobile phase B (methanol/acetonitrile, 50:50), an XDB-C(8) (50 x 2.1 mm, 1.8 microm) column and a flow rate of 270 microL/min. Concentrations were calculated by comparing the peak-area with the internal standard and plotted against a standard curve. The assay displayed linearity from 1.0 to 100 ng/mL. Within- and between-run coefficients of variation were < 10% throughout the linear range. A method comparison between GC-MS and LC-MS-MS showed good correlation for COC (r(2) = 0.982) and BE (r(2) = 0.955). We report here on a sensitive method to identify clinically and forensically relevant cocaine and associated analytes at concentrations as low as 1.0 ng/mL.

  8. Determination of cadmium and lead in urine samples after dispersive solid–liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.; Herrero Latorre, C., E-mail: carlos.herrero@usc.es

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L{sup −1}, respectively, and for Pb these limits were 0.13 and 0.43 μg L{sup −1}. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96–102% obtained for Cd and 97–101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE–SS–ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained. - Highlights: • Cd and Pb determination based on the combination of DSP, SS and ETAAS • Urine matrix was eliminated using DSPE based on multiwalled carbon nanotubes. • Slurry sampling technique permitted the direct injection of sample into the ETAAS atomizer.

  9. 原子吸收光谱法测定重金属时的干扰因素及消除方法%Interference factors in testing heavy metal applied with atomic absorption spectrometry determination and eliminating methods

    Institute of Scientific and Technical Information of China (English)

    刘桂英

    2013-01-01

    The content of heavy metals in water is tested applied with the principle of atomic absorption spectrometry. The standard curve method is commonly used in flame atomic absorption spectrometry, which is a quantitative method and is the foundation for other analytical methods. So choosing the best environmental conditions as well as eliminating interference factors is very important for improving the accuracy of testing the heavy metal content. Interference factors in testing heavy metal applied with the calibration curve method and the eliminating methods are discussed.%水质中的重金属是基于原子吸收光谱分析的原理来测定的。常用的是火焰原子吸收光谱法中的标准曲线法,它是最基本的定量方法,也是其他分析方法的基础。所以选择分析环境的最佳条件,消除测定试样时的干扰因素,对提高测试试样中重金属含量的准确度至关重要。重点讨论原子吸收光谱分析中校准曲线法测定重金属时的干扰因素及消除方法。

  10. Consistent Analytic Embedded Atom Potential for Face-Centered Cubic Metals and Alloys

    Institute of Scientific and Technical Information of China (English)

    Iyad A. Hijazi; Young Ho Park

    2009-01-01

    A consistent empirical embedded-atom potential that includes a long range force was developed for fcc (face-centered cubic) metals and alloys. The proposed potential for pure metals does not require modification of the initial function form when being applied to alloy systems. The potential parameters of this model were determined by fitting lattice constant, three elastic constants, cohesive energy, and vacancy formation energies of the pure metals and the heats of solution of the binary alloys via an optimization technique. Parameters for Ag, Al, Au, Cu, Ni, Pd and Pt were obtained. The obtained parameters were used to calculate the bulk modulus, divacancy formation energy, crystal stability, stacking fault energy, vacancy migration energy, and melting point for each pure metal and the heats of formation and lattice constants for binary alloys. The predicted values were in good agreement with experimental results.

  11. Regime transition in electromechanical fluid atomization and implications to analyte ionization for mass spectrometric analysis.

    Science.gov (United States)

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2010-11-01

    The physical processes governing the transition from purely mechanical ejection to electromechanical ejection to electrospraying are investigated through complementary scaling analysis and optical visualization. Experimental characterization and visualization are performed with the ultrasonically-driven array of micromachined ultrasonic electrospray (AMUSE) ion source to decouple the electrical and mechanical fields. A new dimensionless parameter, the Fenn number, is introduced to define a transition between the spray regimes, in terms of its dependence on the characteristic Strouhal number for the ejection process. A fundamental relationship between the Fenn and Strouhal numbers is theoretically derived and confirmed experimentally in spraying liquid electrolytes of different ionic strength subjected to a varying magnitude electric field. This relationship and the basic understanding of the charged droplet generation physics have direct implications on the optimal ionization efficiency and mass spectrometric response for different types of analytes.

  12. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    Science.gov (United States)

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  13. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  14. Simulation of UV atomic radiation for application in exhaust plume spectrometry

    Science.gov (United States)

    Wallace, T. L.; Powers, W. T.; Cooper, A. E.

    1993-06-01

    Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.

  15. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    Science.gov (United States)

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  16. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids.

    Science.gov (United States)

    Bulska, Ewa; Gorczyca, Damian; Zalewska, Izabela; Pokrywka, Andrzej; Kwiatkowska, Dorota

    2015-03-15

    The contamination of commonly used supplements by unknown steroids as well as their metabolites (parent compounds) become a challenge for the analytical laboratories. Although the determination of steroids profile is not trivial because of the complex matrix and low concentration of single compound, one of the most difficult current problem is to distinguish, during analytical procedure, endogenous androgens such as testosterone, dehydrotestosterone or dehydroepiandrosterone from their synthetic equivalents. The aim of this work was to develop and validate an analytical procedure for determination of the steroid profile in human urine by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) toward distinguishing between endogenous and exogenous steroids. Beside the optimization of the experimental parameters for gas chromatography separation and mass spectrometry, attention was focused on urine sample preparation. Using an optimized sample preparation protocol it was possible to achieve better chromatographic resolutions and better sensitivity enabling the determination of 5 steroids, androsterone, etiocholanolone, testosterone, 5-androstandiol, 11-hydroxyandrdostane, pregnandiol, with the expanded uncertainty (k=2) below 1‰. This enable to evaluate the significant shift of the δ(13)C/(12)C [‰] values for each of examined steroids (excluding ERC). The analytical protocol described in this work was successfully used for the confirmation of positive founding urine by evaluation T/E ratio after GC/C/IRMS analysis.

  17. [Analytical figures of merit of Hildebrand grid and ultrasonic nebulizations in inductively coupled plasma atomic emission].

    Science.gov (United States)

    Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong

    2012-05-01

    Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.

  18. Determination of mercury in estuarine sediments by flow injection-cold vapour atomic absorption spectrometry after microwave extraction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, M.L.; Carlosena, A.; Lopez-Mahia, P.; Muniategui, S.; Prada, D. [University of La Coruna (Spain). Dept. Analytical Chemistry

    1999-01-01

    A flow injection-cold vapour atomic absorption spectrometric (CVAAS) method was developed for the determination of mercury at trace level in estuarine sediments using sodium tetra-hydro-borate (III) as reductant. The mercury was solubilized with nitric acid in closed vessels nd microwave oven heating. Instrumental and operational conditions (volume and concentration of reagents, reaction time, etc.) were optimized. The effect of several ions on the analytical signal was also studied; no interferences were recorded excepting for copper and nickel which caused a serious depressing effect. The detection limit obtained was 0.01 {mu}g g{sup -1}. The validation of the method was performed analyzing a certified reference sediment, BCR CRM 277 Estuarine Sediment. Good recovery (c.a. 98 %) and precision (< 3 %, RSD) were achieved. The proposed method was successfully applied to the determination of mercury in sediment samples from Ares-Betanzos Estuary (Galicia, NW Spain). (authors) 19 refs.

  19. Evaluation of Bi as internal standard to minimize matrix effects on the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru permanent modifier with co-injection of Pd/Mg(NO 3) 2

    Science.gov (United States)

    de Oliveira, Silvana Ruella; Neto, José Anchieta Gomes

    2007-09-01

    Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO 3) 2. The correlation coefficient of the graph plotted from the normalized absorbance signals of Bi versus Pb was r = 0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve obtained from reference solutions prepared in 0.2% (v/v) HNO 3 and analytical curves obtained from Pb additions in red and white wine vinegar samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analytical curves without. Analytical curves in the 2.5-15 μg L - 1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analyte concentration, and typical linear correlations of r = 0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 μg L - 1 . Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 μg L - 1 and the relative standard deviation was ≤ 3.8% and ≤ 8.3% ( n = 12) for a sample containing 10 μg L - 1 Pb with and without internal standard, respectively.

  20. Determination of lead, cadmium, copper, and nickel in the tonghui river of beijing, china, by cloud point extraction-high resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Ren, Ting; Zhao, Li-Jiao; Sun, Bo-Si; Zhong, Ru-Gang

    2013-11-01

    Heavy metal contamination of water has become an important problem in recent years. Most hazardous heavy metals exist in environmental water in trace or ultra-trace amounts, which requires establishing highly sensitive analytical methods. In this research, quantitative analyses were performed using high-resolution continuum source graphite furnace atomic absorption spectrometry combined with cloud point extraction (CPE) to determine Pb, Cd, Cu, and Ni levels in environmental surface water. By optimizing the CPE conditions, the enrichment factors were 29 for Pb, Cd, and Cu and 25 for Ni. The limits of detection (LOD) were 0.080, 0.010, 0.035, and 0.014 μg L for Pb, Cd, Cu, and Ni, respectively. The sensitivity of the method is comparable with those reported in previous investigations using various methods and improves outcome by 2 to 3 orders of magnitude compared with the LODs of the current national standard methods of China. Our method was used to determine Pb, Cd, Cu, and Ni in 55 water samples collected from the Tonghui River, which is the principal river in the urban area of Beijing, China. The results indicated that the distributions of the four heavy metals in the Tonghui River were related with the environments. The levels of Pb and Ni exhibit increasing trends along the river from upstream to downstream possibly due to the existence of some chemical factories in the downstream area. Lead, Cd, Cu, and Ni averaged 13.9, 0.8, 46.8, and 38.5%, respectively, of the total amount of the determined heavy metals. The levels of the four heavy metals conformed to the Environmental Quality Standards for Surface Water (Grade I) of China. This work provides a reliable quantitative method to determine trace-amount heavy metals in water, which lays a foundation for establishing standards and regulations for environmental water protection.

  1. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    Science.gov (United States)

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results.

  2. Preconcentration and determination of trace silver ion using benzothiazole calix[4]arene modified silica by flow injection flame atomic absorption spectrometry.

    Science.gov (United States)

    Waluvanaruk, Jitwilai; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai; Ngamukot, Passapol

    2014-01-01

    The silica gel modified with benzothiazole calix[4]arene (APS-L1) via Schiff's base reaction was applied as a sorbent in an online system for preconcentration and determination of silver ion by flame atomic absorption spectrometry (FAAS). APS-L1 was used as an effective sorbent for solid phase extraction (SPE) of silver(I) ion in both batch and column methods. The optimum experimental parameters such as pH, eluent type, sample flow rate, eluent volume and eluent flow rate including the effect of interfering ions were investigated. Silver(I) ion was determined at pH 6-7. The capacity of APS-L1 sorbent was found to be 12.2 mg/g of sorbent. The high affinity was obtained without interference from the interfering ions. The optimum conditions of the online flow injection preconcentration coupled with the FAAS (FI-FAAS system) were evaluated. The sample flow rate was 3.0 mL min(-1) using sample volume of 5-10 mL. Elution was performed with 250 μL of 0.1 mol L(-1) thiosulfate at the flow rate of 1.5 mL min(-1). The analytical characteristics and performance of the FI-FAAS system were studied under optimum conditions using a solution spiked with standard silver(I) ion at 20 and 50 μg L(-1). The detection limit of 0.44 μg L(-1) was obtained. The accuracy of the proposed method was evaluated and percentages of recovery at 20 and 50 μg L(-1) were 100.2 and 99.5%, respectively. The percent relative standard deviations (%RSD) at 20 and 50 μg L(-1) were 6.1 and 3.3%, respectively. The developed method was successfully applied to determine trace silver(I) ion in drinking and tap water samples.

  3. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry.

    Science.gov (United States)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Jamshed Bashir; Afridi, Hassan Imran; Kazi, Atif Gul; Nasreen, Syeda; Brahman, Kapil Dev

    2014-10-01

    Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n = 95) and pharyngeal (n = 84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n = 150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p = 0.012-0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p < 0.01).

  4. Ultrasound bath-assisted enzymatic hydrolysis procedures as sample pretreatment for the multielement determination in mussels by inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Peña-Farfal, Carlos; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar; Pinochet-Cancino, Hugo; de Gregori-Henríquez, Ida

    2004-07-01

    Ultrasound energy has been applied to speed up enzymatic hydrolysis processes of mussel tissue in order to determine trace and ultratrace elements (As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn). The element releases, by action of three proteases (pepsin, pancreatin, trypsin), lipase, and alpha-amylase, have been evaluated by inductively coupled plasma atomic emission spectrometry. Different variables such as pH, sonication temperature, ionic strength, hydrolysis time, ultrasound frequency, extracting volume, and enzyme mass were simultaneously studied by applying an experimental design approach (Plackett-Burman design and central composite design). Results showed that the hydrolysis time was statistically nonsignificant (confidence interval of 95%) for most of the elements and enzymes, meaning that the hydrolysis procedure can be finished within a 30-60-min range. These hydrolysis times are far shorter than those obtained when using thermostatic cameras, between 12 and 24 h. Statistically significant factors were the ultrasound frequency (the highest metals releasing at high-ultrasound frequency), pH, sonication temperature, and ionic strength. All metals can be extracted using the same operating conditions (pH of 1.0 and sodium chloride at 1.0% for pepsin; pH of 7.5, temperature at 37 degrees C, and 0.4 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for amylase; pH of 8.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for pancreatin; pH of 5.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for lipase; pH of 8.0 and 0.2 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for trypsin). Analytical performances, such as limits of detection and quantification, repeatability of the overall procedure, and accuracy, by analyzing DORM-1, DORM-2, and TORT-1 certified reference materials, were finally assessed for each enzyme.

  5. Fast determination of trace elements in organic fertilizers using a cup-horn reactor for ultrasound-assisted extraction and fast sequential flame atomic absorption spectrometry.

    Science.gov (United States)

    Teixeira, Leonel Silva; Vieira, Heulla Pereira; Windmöller, Cláudia Carvalhinho; Nascentes, Clésia Cristina

    2014-02-01

    A fast and accurate method based on ultrasound-assisted extraction in a cup-horn sonoreactor was developed to determine the total content of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in organic fertilizers by fast sequential flame atomic absorption spectrometry (FS FAAS). Multivariate optimization was used to establish the optimal conditions for the extraction procedure. An aliquot containing approximately 120 mg of the sample was added to a 500 µL volume of an acid mixture (HNO3/HCl/HF, 5:3:3, v/v/v). After a few minutes, 500 µL of deionized water was added and eight samples were simultaneously sonicated for 10 min at 50% amplitude, allowing a sample throughput of 32 extractions per hour. The performance of the method was evaluated with a certified reference material of sewage sludge (CRM 029). The precision, expressed as the relative standard deviation, ranged from 0.58% to 5.6%. The recoveries of analytes were found to 100%, 109%, 96%, 92%, 101%, 104% and 102% for Cd, Cr, Cu, Mn, Ni, Pb and Zn, respectively. The linearity, limit of detection and limit of quantification were calculated and the values obtained were adequate for the quality control of organic fertilizers. The method was applied to the analysis of several commercial organic fertilizers and organic wastes used as fertilizers, and the results were compared with those obtained using the microwave digestion procedure. A good agreement was found between the results obtained by microwave and ultrasound procedures with recoveries ranging from 80.4% to 117%. Two organic waste samples were not in accordance with the Brazilian legislation regarding the acceptable levels of contaminants.

  6. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  7. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    Science.gov (United States)

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  8. Development of an automated sequential injection on-line solvent extraction-back extraction procedure as demonstrated for the determination of cadmium with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium...... pyrrolidinedithiocarbamate (APDC) in citrate buffer and the chelate is extracted into isobutyl methyl ketone (IBMK), which is separated from the aqueous phase by means of a newly designed dual-conical gravitational phase separator. A metered amount of the organic eluate is aspirated and stored in the PTFE holding coil (HC......) of the SI-system. Afterwards, it is dispensed and mixed with an aqueous back extractant of dilute nitric acid containing Hg(II) ions as stripping agent, thereby facilitating a rapid metal-exchange reaction with the APDC ligand and transfer of the Cd into the aqueous phase. The aqueous phase is separated...

  9. Rapid determination of {sup 135}Cs and precise {sup 135}Cs/{sup 137}Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guosheng [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049 (China); Tazoe, Hirofumi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Yamada, Masatoshi, E-mail: myamada@hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan)

    2016-02-18

    For source identification, measurement of {sup 135}Cs/{sup 137}Cs atomic ratio not only provides information apart from the detection of {sup 134}Cs and {sup 137}Cs, but it can also overcome the application limit that measurement of the {sup 134}Cs/{sup 137}Cs ratio has due to the short half-life of {sup 134}Cs (2.06 y). With the recent advancement of ICP-MS, it is necessary to improve the corresponding separation method for rapid and precise {sup 135}Cs/{sup 137}Cs atomic ratio analysis. A novel separation and purification technique was developed for the new generation of triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The simple chemical separation, incorporating ammonium molybdophosphate selective adsorption of Cs and subsequent single cation-exchange chromatography, removes the majority of isobaric and polyatomic interference elements. Subsequently, the ICP-MS/MS removes residual interference elements and eliminates the peak tailing effect of stable {sup 133}Cs, at m/z 134, 135, and 137. The developed analytical method was successfully applied to measure {sup 135}Cs/{sup 137}Cs atomic ratios and {sup 135}Cs activities in environmental samples (soil and sediment) for radiocesium source identification. - Highlights: • A simple {sup 135}Cs/{sup 137}Cs analytical method was developed. • The separation procedure was based on AMP adsorption and one column chromatography. • {sup 135}Cs/{sup 137}Cs was measured by ICP-MS/MS. • Decontamination factors for Ba, Mo, Sb, and Sn were improved. • {sup 135}Cs/{sup 137}Cs atomic ratios of 0.341–0.351 were found in Japanese soil samples.

  10. Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

    Directory of Open Access Journals (Sweden)

    Christa Schimpel

    2015-07-01

    Full Text Available The small intestine is a complex system that carries out various functions. The main function of enterocytes is absorption of nutrients, whereas membranous cells (M cells are responsible for delivering antigens/foreign substances to the mucosal lymphoid tissues. However, to get a fundamental understanding of how cellular structures contribute to physiological processes, precise knowledge about surface morphologies, cytoskeleton organizations and biomechanical properties is necessary. Atomic force microscopy (AFM was used here as a powerful tool to study surface topographies of Caco-2 cells and M cells. Furthermore, cell elasticity (i.e., the mechanical response of a cell on a tip indentation, was elucidated by force curve measurements. Besides elasticity, adhesion was evaluated by recording the attraction and repulsion forces between the tip and the cell surface. Organization of F-actin networks were investigated via phalloidin labeling and visualization was performed with confocal laser scanning fluorescence microscopy (CLSM and scanning electron microscopy (SEM. The results of these various experimental techniques revealed significant differences in the cytoskeleton/microvilli arrangements and F-actin organization. Caco-2 cells displayed densely packed F-actin bundles covering the entire cell surface, indicating the formation of a well-differentiated brush border. In contrast, in M cells actins were arranged as short and/or truncated thin villi, only available at the cell edge. The elasticity of M cells was 1.7-fold higher compared to Caco-2 cells and increased significantly from the cell periphery to the nuclear region. Since elasticity can be directly linked to cell adhesion, M cells showed higher adhesion forces than Caco-2 cells. The combination of distinct experimental techniques shows that morphological differences between Caco-2 cells and M cells correlate with mechanical cell properties and provide useful information to understand

  11. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    Science.gov (United States)

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  12. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry.

    Science.gov (United States)

    Elçi, Latif; Arslan, Zikri; Tyson, Julian F

    2009-03-15

    A method for direct determination of lead in wine and rum samples was developed, using a flow injection hydride generation system coupled to an atomic absorption spectrometer with flame-quartz atomizer (FI-HG-AAS). Lead hyride (PbH(4)) was generated using potassium ferricyanide (K(3)Fe(CN)(6)), as oxidant and sodium tetrahydroborate (NaBH(4)) as reductant. Samples were acidified to 0.40% (v/v) HCl for wine and to 0.30% (v/v) HCl for rum, which were then mixed on-line with 3% (m/v) K(3)Fe(CN)(6) solution in 0.03% (v/v) HCl prior to reaction with 0.2% (m/v) alkaline NaBH(4) solution. Lead contents of a rum and two different red wine samples were determined by FI-HG-AAS agreed with those obtained by ICP-MS. The analytical figures of merit of method developed were determined. The calibration curve was linear up to 8.0 microg L(-1) Pb with a regression coefficient of 0.998. The relative error was lower than 4.58%. The relative standard deviation (n=7) was better than 12%. A detection limit of 0.16 microg L(-1) was achieved for a sample volume of 170 microL.

  13. Pre-analytical and analytical variation of drug determination in segmented hair using ultra-performance liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian

    2014-01-01

    Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis...... pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography...... variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two...

  14. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Frine [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Benzo, Zully [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Quintal, Manuelita [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Garaboto, Angel [Laboratorio de Quimica Analitica, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Albornoz, Alberto [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela); Brito, Joaquin L. [Laboratorio de Fisicoquimica de Superficies, Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado Postal 21827, Caracas 1020-A (Venezuela)]. E-mail: joabrito@ivic.ve

    2006-10-15

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo{sup 6+} and Mo{sup 2+}) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO{sub 3}. Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo{sup 6+} and Mo{sup 5+}) and carbide (Mo{sup 2+}) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar{sup +} ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform.

  15. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chappuy, M. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Caudron, E., E-mail: eric.caudron@eps.aphp.fr [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Groupe de Chimie Analytique de Paris-Sud, EA 4041, IFR 141, School of Pharmacy, Univ Paris-Sud, 92296 Chatenay-Malabry (France); Bellanger, A. [Department of Pharmacy, Pitie-Salpetriere Hospital (Paris Public Hospital Authority), 47 boulevard de l' hopital, 75013 Paris (France); Pradeau, D. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France)

    2010-04-15

    A simple and sensitive method is described for the determination of platinum surface contamination originating from cisplatin, carboplatin and oxaliplatin. Following extraction from swabs and preconcentration with the cloud point extraction (CPE) method, detection was by graphite furnace atomic absorption spectrometry (GFAAS). After desorption of platinum compounds from the swab, CPE involved on preconcentration of platinum in aqueous solution with diethyldithiocarbamate (DDTC) as chelating agent and Triton X-114 as extraction medium. DDTC is not only a chelating agent, but may also be a good candidate for the inactivation of platinum compounds. DDTC is recommended by the Word Health Organization (WHO) for the destruction of platinum-based anticancer drugs. The main factors affecting CPE efficiency, pH of the sample solution, concentrations of DDTC and Triton X-114, equilibration temperature and incubation time, were evaluated in order to enhance sensitivity of the method. The desorption of platinum compounds from the swab was investigated in parallel. Since platinum is bound to DDTC, it must exchange with copper in order to enhance platinum atomizing by GFAAS. A preconcentration factor of 29 was obtained for 10 mL of a platinum solution at 10 {mu}g mL{sup -1}. In optimal conditions, the limit of detection was 0.2 ng mL{sup -1}, corresponding to 2.0 ng of platinum metal on the swab. Absorbance was linear between 0.7 and 15 ng mL{sup -1}. The proposed method was applied for the determination of surface contamination by platinum compounds with correct results.

  16. Silicic acid (Si(OH)(4)) is a significant influence upon the atomic absorption signal of aluminium measured by graphite furnace atomic absorption spectrometry (GFAAS).

    Science.gov (United States)

    Schneider, C; Exley, C

    2001-11-01

    We have identified silicic acid (Si(OH)(4)) as an important modifier of the absorbance signal of aluminium measured by graphite furnace atomic absorption spectrometry (GFAAS). The presence of Si(OH)(4) enhanced the signal by as much as 50%. The extent of the enhancement was dependent upon both [Al] and [Si(OH)(4)] and was maximal when [Al] or =0.50 mmol dm(-3). The enhancement of the Al absorbance signal was not linearly related to [Si(OH)(4)] and the effect was, generally, saturated, for all [Al] tested, at [Si(OH)(4)]> or =0.50 mmol dm(-3). Si(OH)(4) was significantly more effective in enhancing the Al absorbance signal than Mg(NO(3))(2). However, the co-occurrence of 10 mmol dm(-3) Mg(NO(3))(2) and 2 mmol dm(-3) Si(OH)(4) in samples abolished the enhancement due to Si(OH)(4). The presence of Si(OH)(4) in samples could result in an overestimation of the Al content of those samples by as much as 50%. Errors in the measurement of Al in samples containing Si(OH)(4) could be prevented using matrix-matched calibration standards. Our observation could have serious implications for the determination of Al in aqueous samples of both geochemical and biological interest. It may also point towards the application of Si(OH)(4) as a novel and effective matrix modifier in the determination of Al by GFAAS since the inclusion of Si(OH)(4) in standards and samples improved the limit of detection of Al from ca 8 nmol dm(-3) to 3 nmol dm(-3).

  17. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  18. A mass spectrometry primer for mass spectrometry imaging.

    Science.gov (United States)

    Rubakhin, Stanislav S; Sweedler, Jonathan V

    2010-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins, and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols.

  19. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali, E-mail: dmendil@gop.edu.tr [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluoezlue, Ozguer Dogan; Tuezen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-06-15

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 {mu}g/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 {mu}g/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  20. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    Science.gov (United States)

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil.

  1. Determination of micro yttrium in an ytterbium matrix by inductively coupled plasma atomic emission spectrometry and wavelet transform

    Institute of Scientific and Technical Information of China (English)

    MA Xiaoguo

    2005-01-01

    In the determination of trace yttrium (Y) in an ytterbium (Yb) matrix by inductively coupled plasma atomic emission spectrometry (ICP-AES), the most prominent line of yttrium, Y 371.030 nm line, suffers from strong interference due to an emission line of ytterbium. In this work, a method based on wavelet transform was proposed for the spectral interference correction. Haar wavelet was selected as the mother wavelet. The discrete detail after the third decomposition, D3,was chosen for quantitative analysis based on the consideration of both separation degree and peak height. The linear correlation coefficient between the height of the left positive peak in D3 and the concentration of Y was calculated to be 0.9926.Six synthetic samples were analyzed, and the recovery for yttrium varied from 96.3% to 110.0%. The amounts of yttrium in three ytterbium metal samples were determined by the proposed approach with an average relative standard deviation (RSD)of 2.5%, and the detection limit for yttrium was 0.016%. This novel correction technique is fast and convenient, since neither complicated model assumption nor time-consuming iteration is required. Furthermore, it is not affected by the wavelength drift inherent in monochromators that will severely reduce the accuracy of results obtained by some chemometric methods.

  2. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Science.gov (United States)

    Coelho, Luciana Melo; Arruda, Marco Aurélio Zezzi

    2005-06-01

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l- 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0 20 min), Triton X114 concentration (0.043 0.87% w/v) and complexing agent concentration (0.01 0.1 mol l- 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5 5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l- 1 and 2.9 μg l- 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l- 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).

  3. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  4. Cloud point extraction-flame atomic absorption spectrometry method for preconcentration and determination of trace cadmium in water samples.

    Science.gov (United States)

    Ning, Jinyan; Jiao, Yang; Zhao, Jiao; Meng, Lifen; Yang, Yaling

    2014-01-01

    A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium (Cd) as a prior step to its determination by flame atomic absorption spectrometry has been developed. Cadmium reacted with 8-hydroxyquinoline to form hydrophobic chelates, which were extracted into the micelles of nonionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) in an alkaline medium. Octanol was used to depress the cloud point of Genapol X-080 in the extraction process. The chemical variables that affect the CPE, such as pH of complexation reaction, amount of chelating agent, Genapol X-080 and octanol were evaluated and optimized. Under optimized conditions, linearity was obeyed in the range of 10-500 μg/L, with the correlation coefficient of 0.9993. For 5 mL of sample solution, the enhancement factor was about 20. The limit of detection and limit of quantification of the method were 0.21 and 0.63 μg/L, respectively. The relative standard deviations (n = 6) was 3.2% for a solution containing 100 μg/L of Cd. The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. Recoveries of spiked samples varied in the range of 94.1-103.8%.

  5. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Li, Shan; Wang, Mei; Zhong, Yizhou; Zhang, Zehua; Yang, Bingyi

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea-ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries.

  6. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhimei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Department of Chemistry and Biology, Huainan Normal University, Huainan 232001 (China); Liang Pei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)]. E-mail: liangpei@mail.ccnu.edu.cn; Ding Qiong [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Cao Jing [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2006-09-21

    A new method based on the cloud point extraction (CPE) preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of trace nickel in water samples. When the micelle solution temperature is higher than the cloud point of surfactant p-octylpolyethyleneglycolphenyether (Triton X-100), the complex of Ni{sup 2+} with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) could enter surfactant-rich phase and be concentrated, then determined by GFAAS. The main factors affecting the cloud point extraction were investigated in detail. An enrichment factor of 27 was obtained for the preconcentration of Ni{sup 2+} with 10 mL solution. Under the optimal conditions, the detection limit of Ni{sup 2+} is 0.12 ng mL{sup -1} with R.S.D. of 4.3% (n = 10, c = 100 ng mL{sup -1}). The proposed method was applied to determination of trace nickel in water samples with satisfactory results.

  7. The determination of wear metals in used lubricating oils by flame atomic absorption spectrometry using sulphanilic acid as ashing agent.

    Science.gov (United States)

    Ekanem, E J; Lori, J A; Thomas, S A

    1997-11-01

    A simple and reliable ashing procedure is proposed for the preparation of used lubricating oil samples for the determination of calcium, magnesium, zinc, iron, chromium and nickel by flame atomic absorption spectrometry. Sulphanilic acid was added to oil samples and the mixture coked and the coke ashed at 550 degrees C. The solutions of the ash were analysed by flame AAS for the metals. The release of calcium, zinc, iron and chromium was improved by the addition of sulphanilic acid to samples. The relative standard deviations of metal concentration results in the initial oil samples were 1.5% for Ca (1500 mg l(-1) level), 0.3% for Mg (100 mg l(-1) level), 3.1% for Zn (1500 mg l(-1) level), 0.7% for Fe (500 mg l(-1) level), 0.02% for Cr (50 mg l(-1) level) and 0.002% for Ni (10 mg l(-1) level). The optimum sample size for efficient metal release was 20 g while the optimum sulphanilic acid to oil ratio was 0.05 g per gram of oil for Zn and Cr and 0.10 g for Ca and Fe. Results obtained by this procedure were highly reproducible and comparable with those obtained for the same samples using standard procedures.

  8. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry.

    Science.gov (United States)

    Geng, Wenhua; Furuzono, Takuya; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2010-04-15

    A simple and sensitive procedure for the determination of total arsenic in coal and wood was conducted by use of oxygen flask combustion (OFC) followed by hydride generation atomic absorption spectrometry (HGAAS). The effect of various items (composition of absorbent, standing time between the combustion and filtration, particle size and mass of sample) was investigated. Under the optimized conditions of the OFC method, nine certified reference materials were analyzed, and the values of arsenic concentration obtained by this method were in good accordance with the certified values. The limit of detection (LOD) and relative standard deviation (RSD) of the method were 0.29 microg g(-1) and less than 8%, respectively. In addition, eight kinds of coals and four chromated copper arsenate (CCA)-treated wood wastes were analyzed by the present method, and the data were compared to those from the microwave-acid digestion (MW-AD) method. The determination of arsenic in solid samples was discussed in terms of applicable scope and concentration range of arsenic.

  9. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  10. Comparison of selenium determination in liver samples by atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Miksa, Irina Rudik; Buckley, Carol L; Carpenter, Nancy P; Poppenga, Robert H

    2005-07-01

    Selenium (Se) is an essential trace element that is often deficient in the natural diets of domestic animal species. The measurement of Se in whole blood or liver is the most accurate way to assess Se status for diagnostic purposes. This study was conducted to compare hydride generation atomic absorption spectroscopy (HG-AAS) with inductively coupled plasma-mass spectrometry (ICP-MS) for the detection and quantification of Se in liver samples. Sample digestion was accomplished with magnesium nitrate and nitric acid for HG-AAS and ICP-MS, respectively. The ICP-MS detection was optimized for 82Se with yttrium used as the internal standard and resulted in a method detection limit of 0.12 microg/g. Selenium was quantified by both methods in 310 samples from a variety of species that were submitted to the Toxicology Laboratory at New Bolton Center (Kennett Square, PA) for routine diagnostic testing. Paired measurements for each sample were evaluated by a mean difference plot method. Limits of agreement were used to describe the maximum differences likely to occur between the 2 methods. Results suggest that under the specified conditions ICP-MS can be reliably used in place of AAS for quantitation of tissue Se at or below 2 microg/g to differentiate between adequate and deficient liver Se concentrations.

  11. Determination of Trace Amounts of Nickel (Ⅱ) by Graphite Furnace Atomic Absorption Spectrometry Coupled with Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    SHAH Syed Mazhar; WANG Hao-nan; SU Xing-guang

    2011-01-01

    A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ)and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed,8-hydroxyquinoline and Triton X-100 were usedl as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hydrophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction,such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95% 103%.

  12. Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Olsina, Roberto A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)], E-mail: rwuilloud@mendoza-conicet.gov.ar

    2008-10-17

    A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 {mu}L of 0.5 mol L{sup -1} nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L{sup -1} and the relative standard deviation (R.S.D.) for 10 replicates at 1 {mu}g L{sup -1} Cd{sup 2+} concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 {mu}g L{sup -1}. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.

  13. Metabolism of cycloate in radish leaf: metabolite identification by packed capillary flow fast atom bombardment tandem mass spectrometry.

    Science.gov (United States)

    Onisko, B C; Barnes, J P; Staub, R E; Walker, F H; Kerlinger, N

    1994-10-01

    The metabolism of cycloate, a thiocarbamate herbicide, was investigated in mature radish leaf. Twelve new metabolites were identified by liquid chromatographic/mass spectrometric analysis using fast atom bombardment and packed capillary liquid chromatography columns. Full-scan and tandem mass spectrometric methods were employed. Application of the on-column focusing technique resulted in identifications with injections of as little as 15 ng of metabolite (20 ppb in radish). This injection technique allows the practical use of packed capillary liquid chromatography/mass spectrometry in sample-limited applications. Cycloate is oxidized to several ring-hydroxylated isomers that are subsequently glucosylated and esterified with malonic acid. Cycloate is also conjugated with glutathione. Metabolic hydrolysis of the glutathione conjugate formed a cysteine conjugate that is further metabolized by amidation with either malonic or acetic acid. Transamination of the cysteine conjugate gave a thiolactic acid derivative. Metabolites were also identified that were the result of both ring-hydroxylation and conjugation with glutathione. One of these, an N-acetylcysteine conjugate, is the first report of a mercapturic acid in plants. The structures of two of the new metabolites were confirmed by chemical synthesis.

  14. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiang, E-mail: zhouqx@cup.edu.cn [School of Chemistry and Environmental Sciences, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007 (China); State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Zhao, Na [State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Xie, Guohong [College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003 (China)

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL{sup -1} (r{sup 2} = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L{sup -1}. Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%.

  15. Analysis of trace element in intervertebral disc by Atomic Absorption Spectrometry techniques in degenerative disc disease in the Polish population

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2015-05-01

    Full Text Available Objective. Although trace elements are regarded crucial and their content has been determined in number of tissue there are only few papers addressing this problem in intervertebral disc in humans. Most of the trace elements are important substrates of enzymes influencing metabolism and senescence process. Others are markers of environmental pollution. Therefore the aim of the research was to analyzed of the trace element content in the intervertebral disc, which may be a vital argument recognizing the background of degenerative changes to be the effect of the environment or metabolic factors. Materials and methods. Material consist of 18 intervertebral disc from 15 patients, acquired in surgical procedure of due to the degenerative disease with Atomic Absorption Spectrometry content of Al, Cd, Co, Pb, Cu, Ni, Mo, Mg, Zn was evaluated. Results. Only 4 of the trace elements were detected in all samples. The correlation analysis showed significant positive age correlation with Al and negative in case of Co. Among elements significant positive correlation was observed between Al/Pb, Co/Mo, Al/Mg, Al/Zn Pb/Zn and Mg/Zn. Negative correlation was observed in Al/Co, Cd/Mg, Co/Mg, Mo/Mg, Co/Zn and Mo/Zn. Conclusions. This study is the first to our knowledge that profiles the elements in intervertebral disc in patients with degenerative changes. We have confirmed significant differences between the trace element contents in intervertebral disc and other tissue. It can be ground for further investigation.

  16. The use of a sequential extraction procedure for heavy metal analysis of house dusts by atomic absorption spectrometry.

    Science.gov (United States)

    Altundag, Huseyin; Dundar, Mustafa Sahin; Doganci, Secil; Celik, Muhammed; Tuzen, Mustafa

    2013-01-01

    In general, dust is considered as house or street dust. Indoor dust, as a contamination source, has been studied for many years. In this work, the original Community Bureau of Reference of the European Commission (BCR) three-stage sequential extraction procedure was applied to the fractionation of Cr, Cu, Fe, Mn, Pb, and Zn in 20 house dust samples from five different areas of Sakarya, Turkey. Acetic acid, hydroxylammonium chloride, and hydrogen peroxide plus ammonium acetate were used for the first, second, and third steps of the BCR method, respectively. The extracts were analyzed for the studied heavy metals using flame atomic absorption spectrometry. Validation of the results was performed by using a standard reference material (BCR 701 Sediment) to certify the experimental results obtained and to evaluate the reliability of the method used. The elemental loadings typically increased in magnitude according to the area order: Izmit Caddesi>Ankara Caddesi >Erenler>Karaman>Korucuk. The results were in agreement with values reported in the literature.

  17. Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, Jenny A.; Fialho, Lucimar L.; Nóbrega, Joaquim A., E-mail: djan@terra.com.br

    2013-08-01

    A fast and sensitive procedure for extraction and preconcentration of molybdenum in plant samples based on solidified floating organic drop microextraction combined with flame atomic absorption spectrometry and discrete nebulization was developed. 8-Hydroxyquinoline (8-HQ) was used as complexing agent. The experimental conditions established were: 0.5% m v{sup −1} of 8-HQ, 60 μL of 1-undecanol as the extractant phase, 2 min vortex extraction time, centrifugation for 2 min at 2000 rpm, 10 min into an ice bath and discrete nebulization by introducing 200 μL of solution. The calibration curve was linear from 0.02 to 4.0 mg L{sup −1} with a limit of detection of 4.9 μg L{sup −1} and an enhancement factor of 67. The relative standard deviations for ten replicate measurements of 0.05 and 1.0 mg L{sup −1} Mo were 6.0 and 14.5%, respectively. The developed procedure was applied for determining molybdenum in corn samples and accuracy was proved using certified reference materials. - Highlights: ► Molybdenum was determined in plants by flame AAS. ► Flame AAS sensitivity was improved using microextraction and discrete nebulization. ► The developed procedure can be easily implemented in routine analysis. ► Green chemistry principles are followed.

  18. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Potin-Gautier, M. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Pannier, F. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France)]. E-mail: Florence.pannier@univ-pau.fr; Quiroz, W. [Laboratoire de Chimie Analytique, BioInorganique et Environnement LCABIE (UMR CNRS 3054), Universite de Pau et des pays de l' Adour, 64000 Pau (France); Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Pinochet, H. [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile); Gregori, I. de [Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Pontificia Universidad catolica de Valparaiso (Chile)

    2005-11-30

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g{sup -1} for Sb(III) and TMSbCl2 and 40 ng g{sup -1} for Sb(V) in sediment samples.

  19. Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Yukun Wang

    2016-09-01

    Full Text Available A new sensitive and simple method was developed for the preconcentration of trace amounts of cobalt (Co using 1-(2-pyridylazo-2-naphthol (PAN as chelating reagent prior to its determination by flame atomic absorption spectrometry. The proposed method is based on the utilization of a column packed with graphene as sorbent. Several effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 5.0–240.0 μg L−1 with a detection limit of 0.36 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 100.0 μg L−1 of Co were 3.45 and 3.18%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Co. The proposed method was successfully applied in the analysis of four real environmental water samples. Good spiked recoveries over the range of 95.8–102.6% were obtained.

  20. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq-INCT de Energia e Ambiente, Universidade Federal de Bahia, Salvador, BA (Brazil); Becker, Emilene M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Lequeux, Celine [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Universite de Rennes 1, Rennes (France); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq-INCT de Energia e Ambiente, Universidade Federal de Bahia, Salvador, BA (Brazil); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq-INCT de Energia e Ambiente, Universidade Federal de Bahia, Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, Salvador, Bahia 40170-290 (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq-INCT de Energia e Ambiente, Universidade Federal de Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2011-07-15

    The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 {mu}g Pd + 6 {mu}g Mg in solution and 400 {mu}g of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 {sup o}C and 1600 {sup o}C for the Pd-Mg modifier, and 500 deg. C and 1600 deg. C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 {+-} 1.3 {mu}g g{sup -1} and 16.4 {+-} 0.75 {mu}g g{sup -1} for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 {+-} 0.2 {mu}g g{sup -1} on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R{sup 2}) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g{sup -1}, and the limits of quantification were 25 and 27 ng g{sup -1} for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 {mu}g g{sup -1} Cd, and hence below the maximum value of 20 {mu}g g{sup -1} Cd permitted by Brazilian legislation.

  1. Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos; Silva, Erik G.P. da; Fernandes, Marcelo S.; Araujo, Rennan G.O.; Costa, Anto' ' enio C.S.; Ferreira, Sergio L.C. [Nucleo de Excelencia em Quimica Analitica da Bahia, Universidade Federal da Bahia, Instituto de Quimica, Salvador, Bahia (Brazil); Vale, M.G.R. [Instituto de Quimica, Universidade Federal da Bahia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil)

    2005-06-01

    Chocolate is a complex sample with a high content of organic compounds and its analysis generally involves digestion procedures that might include the risk of losses and/or contamination. The determination of copper in chocolate is important because copper compounds are extensively used as fungicides in the farming of cocoa. In this paper, a slurry-sampling flame atomic-absorption spectrometric method is proposed for determination of copper in powdered chocolate samples. Optimization was carried out using univariate methodology involving the variables nature and concentration of the acid solution for slurry preparation, sonication time, and sample mass. The recommended conditions include a sample mass of 0.2 g, 2.0 mol L{sup -1} hydrochloric acid solution, and a sonication time of 15 min. The calibration curve was prepared using aqueous copper standards in 2.0 mol L{sup -1} hydrochloric acid. This method allowed determination of copper in chocolate with a detection limit of 0.4 {mu}g g{sup -1} and precision, expressed as relative standard deviation (RSD), of 2.5% (n=10) for a copper content of approximately 30 {mu}g g{sup -1}, using a chocolate mass of 0.2 g. The accuracy was confirmed by analyzing the certified reference materials NIST SRM 1568a rice flour and NIES CRM 10-b rice flour. The proposed method was used for determination of copper in three powdered chocolate samples, the copper content of which varied between 26.6 and 31.5 {mu}g g{sup -1}. The results showed no significant differences with those obtained after complete digestion, using a t-test for comparison. (orig.)

  2. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: binhu@whu.edu.cn; Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-08-25

    A new method for the determination of inorganic Sb species by on-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) is presented and evaluated. The method is based on the complexation of Sb(III) with pyrrolidine dithiocarbamate (PDC) which form an hydrophobic complex at pH 5.5 and subsequently enter surfactant-rich phase at pH 5.5, whereas Sb(V) remained in aqueous solutions. The preconcentration step is mediated by micelles of the non-ionic surfactant Triton X-114 with ammonium pyrrolidine dithiocarbamate (APDC). The micellar system containing the complex was loaded into the FIA manifold at a flow rate of 2.5 mL min{sup -1}, and the surfactant-rich phase was retained in a microcolumn packed with absorbent cotton, at pH 5.5. After the surfactant-rich phase was eluted with 100 {mu}L acetonitrile, it was determined by ETV-ICP-AES. Sb(V) is reduced to Sb(III) by L-cysteine prior to determined total Sb, and its assay is based on subtracting Sb(III) from total antimony. The main factors affecting separation/preconcentration and the vaporization behavior of analyte in graphite tube were investigated in detail. Under the optimized conditions, the precision relative standard deviation (R.S.D.) for eight replicate measurements of 0.2 {mu}g mL{sup -1} Sb(III) was 4.3%. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETV-ICP-AES detection and in the initial solution, was 872 for Sb(III). The limit of detection (LOD) for Sb(III) was 0.09 {mu}g L{sup -1}. The proposed method was successfully applied for the speciation of inorganic antimony in different water samples and urine sample with satisfactory results.

  3. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bramanti, Emilia [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy)]. E-mail: emilia@ipcf.cnr.it; D' Ulivo, Lucia [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Lomonte, Cristina [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Ambiente s.c.r.l., Via Frassina 21, 54033, Carrrara, Massa (Italy); Onor, Massimo [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); Zamboni, Roberto [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Raspi, Giorgio [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy); D' Ulivo, Alessandro [Italian National Research Council, CNR-Istituto per i Processi Chimico-Fisici, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H{sub 2}S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C{sub 6}H{sub 4}-COO{sup -} (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C{sub 18} reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB){sub 2}CH{sub 3}S-PHMB, C{sub 2}H{sub 5}S-PHMB and C{sub 3}H{sub 7}S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 deg. C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 {mu}g L{sup -1} for H{sub 2}S, 13.7 {mu}g L{sup -1} for CH{sub 3}SH, 17.7 {mu}g L{sup -1} for C{sub 2}H{sub 5}SH and 21.7 {mu}g L{sup -1} for C{sub 3}H{sub 7}SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 {mu}g L{sup -1}. Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H{sub 2}S determination by a certified gas permeation tube as a source of 3.071 {+-} 0.154 {mu}g min{sup -1} of H{sub 2}S, giving a recovery of 99.8 {+-} 7% and it has been applied to the determination of

  4. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry.

    Science.gov (United States)

    Bramanti, Emilia; D'Ulivo, Lucia; Lomonte, Cristina; Onor, Massimo; Zamboni, Roberto; Raspi, Giorgio; D'Ulivo, Alessandro

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H2S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C6H4-COO- (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C18 reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB)2CH3S-PHMB, C2H5S-PHMB and C3H7S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 degrees C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 microg L(-1) for H2S, 13.7 microg L(-1) for CH(3)SH, 17.7 microg L(-1) for C2H5SH and 21.7 microg L(-1) for C3H7SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 microg L(-1). Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H2S determination by a certified gas permeation tube as a source of 3.071+/-0.154 microg min(-1) of H2S, giving a recovery of 99.8+/-7% and it has been applied to the determination of sulfur compounds in real gas samples (biogas and the air of a plant for fractional distillation of crude oil).

  5. Determination of Pb(Ⅱ) and Cu(Ⅱ) by Electrothermal Atomic Absorption Spectrometry after Preconcentration by a Schiff Base Adsorbed on Surfactant Coated Alumina

    Institute of Scientific and Technical Information of China (English)

    SABER TEHRANI Mohammad; RASTEGAR Faramarz; PARCHEHBAF Ayob; KHATAMIAN Masoomeh

    2006-01-01

    1,2-Bis(salicylidenamino)ethane loaded onto sodium dodecyl sulfate-coated alumina was used as a new chelating sorbent for the preconcentration of traces of Pb(Ⅱ) and Cu(Ⅱ) prior to atomic absorption spectrometric determination. The influence of pH, flow rates of sample and eluent solutions, and foreign ions on the recovery of Pb(Ⅱ)by electrothermal atomic absorption spectrometry (ETAAS). The data of limit of detection (3σ) for Pb(Ⅱ) and Cu(Ⅱ)posed method was successfully applied to determination of lead and copper in different water samples.

  6. Determination of trace selenium in high purity tellurium by hydride generation atomic fluorescence spectrometry after solid phase extraction of a diaminobenzidine-selenium chelate

    Science.gov (United States)

    Tong, Wang; Ying, Zeng; Jinyong, Xu

    2016-09-01

    Macroporous adsorption resin was used as the sorbent for solid phase extraction and determination of the trace Se content in high purity tellurium prior to hydride generation atomic fluorescence spectrometry analysis. Selenium was converted into an organic Se chelate using 3,3‧-diaminobenzidine and was separated from the tellurium matrix by solid phase extraction. The resin was packed as a column for solid phase extraction. Under optimum conditions, trace Se can be quantitatively extracted and the tellurium matrix can be removed. The Se in the eluate was determined by hydride generation atomic fluorescence spectrometry. The limit of detection (3σ) of this method was 0.22 ng g- 1 and the relative standard deviation (RSD, n = 5) ranged from 2.0 to 2.5% for the three investigated tellurium samples. The proposed method was successfully applied for the determination of the trace Se content in high purity tellurium samples.

  7. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    Science.gov (United States)

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Analytic expressions for the initial Cooperative Decay Rate and Cooperative Lamb Shift for a spherical sample of two-level atoms

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, Richard [Physics Department, Columbia University, New York, NY 10027 (United States); Manassah, Jamal T., E-mail: jmanassah@gmail.co [HMS Consultants, Inc., P.O. Box 592, New York, NY 10028 (United States)

    2010-04-05

    We give the analytic expressions for the initial Cooperative Decay Rate and Cooperative Lamb Shift for a spherical cloud of two-level atoms for the cases of uniform and Gaussian number density distributions. We derive these expressions in both scalar and vector models for the cases when the system's initial polarization is uniform and when it is coherently phased.

  9. Volatile organo-selenium speciation in biological matter by solid phase microextraction–moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    OpenAIRE

    Dietz, Christian; Sanz Landaluze, Jon; Ximenez Embun, Pilar; Madrid Albarrán, Yolanda; Cámara, Carmen

    2004-01-01

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MCcolumn were in-house developed and multicapillary column was operated at moderate temperatures (30–100 ◦C). The method was...

  10. Preconcentration of Copper Using 1,5-Diphenyl Carbazide as the Complexing Agent via Dispersive Liquid-Liquid Microextraction and Determination by Flame Atomic Absorption Spectrometry

    OpenAIRE

    Reyhaneh Rahnama; Elaheh Shafiei; Mohammad Reza Jamali

    2013-01-01

    We report a simple and sensitive microextraction system for the preconcentration and determination of Cu (II) by flame atomic absorption spectrometry (FAAS). Dispersive liquid-liquid microextraction is a modified solvent extraction method and its acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the proposed approach, 1,5-diphenyl carbazide (DPC) was used as a copper ion selective complexing agent. Several variables such as the extraction and dispersive solvent ...

  11. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  12. Application of atomic absorption spectrometry with continuous light source to analyze selected metals important for human health in different parts of oranges

    Directory of Open Access Journals (Sweden)

    Szwerc Wojciech

    2014-09-01

    Full Text Available The publication describes the application of high-resolution continuum source atomic absorption spectrometry (H-R CS AAS to determine some physiologically essential and toxic elements occurring in citrus fruits of different origins. Before analysis, the samples were mineralized using a mixture of deionized water and 69% nitric acid 3:1 (v/v in high pressure microwave digestion at 188°C during one hour.

  13. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  14. Separation of seven arsenic compounds by high-performance liquid chromatography with on-line detection by hydrogen–argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, E. H.; Pritzl, G.

    1992-01-01

    Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting...... the HPLC column to the nebulizer of the atomic absorption spectrometer. Arsenite, arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) were separated from each other and from the co-injected cationic arsenic compounds, arsenobetaine (AsB), arsenocholine (AsC) and the tetramethylarsonium ion (TMAs......-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3 injections...

  15. Separation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, Erik Huusfeldt; Pritzl, G.

    1992-01-01

    Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting...... the HPLC column to the nebulizer of the atomic absorption spectrometer. Arsenite, arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) were separated from each other and from the co-injected cationic arsenic compounds, arsenobetaine (AsB), arsenocholine (AsC) and the tetramethylarsonium ion (TMAs......-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3 injections...

  16. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.

  17. Method development for the redox speciation analysis of iron by ion chromatography-inductively coupled plasma mass spectrometry and carryover assessment using isotopically labeled analyte analogues.

    Science.gov (United States)

    Wolle, Mesay Mulugeta; Fahrenholz, Timothy; Rahman, G M Mizanur; Pamuku, Matt; Kingston, H M 'Skip'; Browne, Damien

    2014-06-20

    An ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) method was developed for the redox speciation analysis of iron (Fe) based on in-column complexation of Fe(2+) and Fe(3+) by dipicolinic acid (DPA). The effects of column type, mobile phase composition and molecular ion interference were studied in the method optimization. The carryover of the target species in the IC-ICP-MS method was uniquely and effectively evaluated using isotopically enriched analogues of the analytes ((54)Fe(2+) and (57)Fe(3+)). Standard solutions of the enriched standards were injected into the system following analysis of a sample, and the ratios of the isotopes of iron in the enriched standards were calculated based on the chromatographic peak areas. The concentrations of the analytes carried over from the sample to the enriched standards were determined using the quantitative relationship in isotope dilution mass spectrometry (IDMS). In contrast to the routine way of evaluating carryover effect by injecting a blank solution after sample analysis, the use of isotopically enriched standards identified significant analyte carryover in the present method. Extensive experiments were carried out to systematically identify the source of the carryover and to eliminate the problem; the separation column was found to be the exclusive source. More than 95% of the analyte carryover was eliminated by reducing the length of the column. The detection limit of the IC-ICP-MS method (MDL) for the iron species was 2ngg(-1). The method was used to determine Fe(2+) and Fe(3+) in synthetic aqueous standard solutions and a beverage sample.

  18. Trace element determination-I Use of 2,9-dimethyl-1,10-phenanthroline in determination of copper in heavy matrices by carbon furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Battistoni, P; Bruni, P; Cardellini, L; Fava, G; Gobbi, G

    1980-08-01

    A method for the determination of copper in complex matrices by electrothermal atomic-absorption spectrometry has been developed. It uses neocuproine as complexing agent. The detection limit is 0.2 ng/ml, and interferences are minimized.

  19. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Melo Coelho, Luciana [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil); Arruda, Marco Aurelio Zezzi [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil)]. E-mail: zezzi@iqm.unicamp.br

    2005-06-30

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l{sup -} {sup 1} HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 {mu}l) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0-20 min), Triton X114 concentration (0.043-0.87% w/v) and complexing agent concentration (0.01-0.1 mol l{sup -} {sup 1}), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 deg. C), and the electrolyte concentration (0.5-5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 {mu}g l{sup -} {sup 1} and 2.9 {mu}g l{sup -} {sup 1} Cd, respectively, and a linear calibration range from 3 to 400 {mu}g l{sup -} {sup 1} Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco)

  20. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  1. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shan, E-mail: ls_tuzi@163.com; Wang, Mei, E-mail: wmei02@163.com; Zhong, Yizhou, E-mail: yizhz@21cn.com; Zhang, Zehua, E-mail: kazuki.0101@aliyun.com; Yang, Bingyi, E-mail: e_yby@163.com

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed.

  2. Evidence for aluminum-binding erythropoietin by size-exclusion chromatography coupled to electrothermal absorption atomic spectrometry.

    Science.gov (United States)

    Veiga, Marlei; Bohrer, Denise; Noremberg, Simone; do Nascimento, Paulo C; de Carvalho, Leandro M

    2011-11-01

    Erythropoietin (EPO) is a glycoprotein that stimulates erythropoiesis and is clinically used for treating anemia during chronic renal failure and for anemia in preterm infants. EPO formulations usually have elevated rates of contamination due to aluminum (Al), which is toxic to both types of patients. Size-exclusion chromatography (SEC) coupled with graphite furnace atomic absorption spectrometry (GF AAS) was employed to separate proteins and to quantify the amount of aluminum present in the elution volume corresponding to EPO and, therefore, to evaluate possible binding. Because EPO formulations contain human serum albumin (HSA), a chromatographic method was optimized for the separation of these proteins. Subsequent to the chromatographic separation, 1-mL fractions of the column effluent were collected, and the Al content in these aliquots was measured by GF AAS. EPO and HSA samples were incubated with Al for 4h at 4°C and 37°C as well as for 16 h at 4°C and 37°C. Afterwards, they were injected into the chromatographic system. These samples were also submitted to ultrafiltration (10 and 50 kDa membranes), and Al was measured in the ultrafiltrates. The results showed that Al was present in the eluent volume corresponding to the EPO peak but not in the HSA peak in the chromatograms. Temperature strengthened the interaction because the Al present in the EPO fraction was 3 times higher at 37°C compared to 4°C. Thirty-eight percent of the Al present in a 2.4 μg/mL EPO standard solution, and approximately 50% of the Al in formulation samples containing approximately 11 μg/mL EPO and either citrate or phosphate, were non-ultrafiltrable, which suggests that EPO is an effective Al acceptor in vitro.

  3. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mirzaei, Mohammad [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L{sup -1} Na{sub 2}S{sub 2}O{sub 3}. The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL{sup -1} to 10.0 {mu}g mL{sup -1}, the detection limit was 0.1 ng mL{sup -1} and the preconcentration factor was 105. Also, the relative standard deviation was {+-}2.3% (n = 8 and C = 2.0 {mu}g mL{sup -1}) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  4. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  5. The determination of low lead levels in the bone of lead-depleted mice by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Iavicoli, I.; Carelli, G.; Castellino, N. [Univ. Cattolica del Sacro Cuore, Roma (Italy). Inst. of Occupational Health; Schlemmer, G. [Bodenseewerk Perkin-Elmer und Co. GmbH, Ueberlingen (Germany)

    2001-08-01

    Low lead levels in the femurs of mice fed with a lead-depleted diet have been determined by use of electrothermal atomic absorption spectrometry with Zeeman-effect background correction. The method is based on the use of Mg(NO{sub 3}){sub 2}/Pd as matrix modifier which enables significant reduction of the spectral interferences prevalent if chemical modifiers based on NH{sub 4}H{sub 2}PO{sub 4} with either Ca or Mg are used for samples rich in Ca{sub 3}(PO{sub 4}){sub 2} matrix. The method was developed and validated by use of the NIST standard reference material 1486 bone. Bones were decomposed in a pressurized microwave-heated system using 70% nitric acid. Forty-three mice femurs, with a mass of 74.62 {+-} 12.54 mg, were dissolved in concentrated nitric acid. The lead results found in SRM 1486 (1.25 {+-} 0.15 {mu}g g{sup -1}, n = 9) were in good agreement with the certificate (1.335 {+-} 0.014 {mu}g g{sup -1}). Recoveries of 200 ng lead added to the SRM before or after digestion were 99.0 {+-} 1.4% and 98.5 {+-} 1.6%, respectively. The lead detection limit in bone samples is 0.06 {mu}g g{sup -1} dry mass. This method is, therefore, suitable for the determination of very low lead levels (0.06-0.20 {mu}g Pb kg{sup -1} bone) in the femurs of mice fed a diet with lead level of < 20 {mu}g kg{sup -1}. (orig.)

  6. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Hagarová, Ingrid; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb-dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l- 1 HNO3. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l- 1, quantification limit of 0.38 μg l- 1, relative standard deviation of 4.2% (for 2 μg l- 1 of Pb; n = 26), linearity of the calibration graph in the range of 0.5-4.0 μg l- 1 (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91-96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters.

  7. Determination of some heavy metal levels in soft drinks on the Ghanaian market using atomic absorption spectrometry method.

    Science.gov (United States)

    Ackah, Michael; Anim, Alfred Kwablah; Zakaria, Nafisatu; Osei, Juliet; Saah-Nyarko, Esther; Gyamfi, Eva Tabuaa; Tulasi, Delali; Enti-Brown, Sheriff; Hanson, John; Bentil, Nash Owusu

    2014-12-01

    Twenty-three soft drink samples (i.e., four pineapple-based fruit drinks, eight citrus-based fruit juices, one soya-based drink, three cola carbonated drinks, one apple-based fruit drink, and six cocktail fruit drinks) were randomly purchased from retail outlets in an urban market in Accra and analyzed for the concentrations of iron, cobalt, cadmium, zinc, lead, and copper using flame atomic absorption spectrometry. The mean concentration of iron and cadmium were 0.723 ± 0.448 mg/L and 0.032 ± 0.012 mg/L, respectively. The mean cobalt concentration was 0.071 ± 0.049 mg/L, while the mean Zn concentration in the samples was 0.060 ± 0.097 mg/L. The mean concentrations of Pb and Cu in the fruit juice samples were 0.178 ± 0.091 mg/L and 0.053 ± 0.063 mg/L respectively. About 78 % of the samples exceeded the United States Environmental Protection Agency (USEPA) maximum contaminant level of 0.3 mg/L prescribed for iron, whereas all the samples exceeded the USEPA maximum contaminant level of 0.005 mg/L prescribed for cadmium. About 91 % of the samples exceeded the EU maximum contaminant level prescribed for lead insoft drinks.

  8. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana Suvarapu

    2015-01-01

    Full Text Available This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed.

  9. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).

    Science.gov (United States)

    Keller, Nicole S; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified.

  10. Application of near-infrared reflectance spectrometry to the analytical control of pharmaceuticals: ranitidine hydrochloride tablet production.

    Science.gov (United States)

    Dreassi, E; Ceramelli, G; Corti, P; Perruccio, P L; Lonardi, S

    1996-02-01

    The possibility of applying near-infrared reflectance spectrometry to the control of the production cycle of ranitidine hydrochloride tablets was investigated. The results were good for the identification of ranitidine hydrochloride drug substance, mixtures for tablets, cores and coated tablets. The determination of the compound and of its water content also gave satisfactory results.

  11. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    Science.gov (United States)

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  12. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    Science.gov (United States)

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  13. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  14. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  15. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Acar, O.

    2012-07-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD) for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 {mu}g L{sup -}1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM) and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values. (Author) 48 refs.

  16. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    Science.gov (United States)

    de Quadros, Daiane P. C.; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Borges, Daniel L. G.; D'Ulivo, Alessandro

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography-atomic fluorescence spectrometry (HPLC-AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg2 + to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L- 1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation-atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system.

  17. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform.

    Science.gov (United States)

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J; Kertesz, Vilmos

    2016-03-01

    In this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup, operation, and image correlation procedures are discussed, and the multimodal imaging capability and utility are demonstrated using a phase separated poly(2-vinylpyridine)/poly(methyl methacrylate) polymer thin film. The topography and both the infrared and mass spectral chemical images showed that the valley regions of the thin film surface were comprised primarily of poly(2-vinylpyridine) and hill or plateau regions were primarily poly(methyl methacrylate). The spatial resolution of the mass spectral chemical images was estimated to be 1.6 μm based on the ability to distinguish surface features in those images that were also observed in the topography and infrared images of the same surface.

  18. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples.

    Science.gov (United States)

    Peng, Guilong; Lu, Ying; He, Qiang; Mmereki, Daniel; Tang, Xiaohui; Zhong, Zhihui; Zhao, Xiaolong

    2016-01-01

    A novel vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet (VSLLME-SFO) was developed for the fast, simple and efficient determination of cadmium (Cd) in water samples followed by flame atomic absorption spectrometry (FAAS). In the VSLLME-SFO process, the addition of surfactant (as an emulsifier), could enhance the mass transfer from the aqueous solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous phase under vigorous shaking with the vortex. In this paper, we investigated the influences of analytical parameters, including pH, extraction solvent type and its volume, surfactant type and its volume, concentration of chelating agent, salt effect and vortex time, on the extraction efficiency of Cd. Under the optimized conditions, the limit of detection was 0.16 μg/L. The analyte enrichment factor was 37.68. The relative standard deviation was 3.2% (10 μg/L, n = 10) and the calibration graph was linear, ranging from 0.5 to 30 μg/L. The proposed method was successfully applied for the analysis of ultra-trace Cd in river water and wastewater samples.

  19. Espectrometria de absorção atômica com atomização eletrotérmica em filamento de tungstênio: uma re-visão crítica Electrothermal atomic absorption spectrometry with tungsten coil: a critical re-view

    Directory of Open Access Journals (Sweden)

    Anderson Schwingel Ribeiro

    2002-05-01

    Full Text Available In this review it is presented some aspects of electrothermal atomic absorption spectrometry with tungsten coil (ETAW-AAS since its beginning until the present days as well as the perspectives for this technique. Some aspects concerning its development and theoretical concepts are discussed. The analytical figures of merit such as limit of detection (LD, characteristic mass (m0, relative standard deviation (RSD, accuracy and precision are evaluated, compared and discussed considering published works. It is also evaluated its advantages, applications, limitations and instrumental development. The use of diode laser as radiation source and its perspectives to ETAW are also discussed.

  20. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  1. Effect of magnesium acetylacetonate on the signal of organic forms of vanadium in graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Kowalewska, Zofia; Welz, Bernhard; Castilho, Ivan N B; Carasek, Eduardo

    2013-01-15

    The aim of this work was to investigate the influence of magnesium acetylacetonate (MgA) on the signal of organic forms of vanadium in xylene solution by graphite furnace atomic absorption spectrometry. MgA alone or mixed with palladium acetylacetonate (PdA) was considered as a chemical modifier. It has been found that MgA does not improve, but decreases significantly the integrated absorbance of V in the form of alkyl-aryl sulfonates, acetylacetonates, porphyrins and in lubricating oils, while its effect is negligible in the case of "dark products" from petroleum distillation, i.e., heavy oil fractions and residues. The decrease is also observed in the presence of Pd. The MgA (or MgA+PdA) effect on the integrated absorbance of V has been studied using the following variants: different ways of modifier application, various pyrolysis temperature, additional application of air ashing, preliminary pretreatment with iodine and methyltrioctylammonium chloride, application of various graphite furnace heating systems (longitudinal or transverse) and various optical and background correction systems (medium-resolution line source spectrometer with deuterium background correction or high-resolution continuum source spectrometer). The experiments indicate formation of more refractory compounds as a possible reason for the decrease of the integrated absorbance for some forms of V in the presence of MgA. The application of MgA as a chemical modifier in V determination is not recommended. Results of this work have general importance as, apart from the intentional use of MgA as a modifier, organic Mg compounds, present in petroleum products for other reason (e.g. as an additive), can influence the signal of V compounds and hence the accuracy in V determination. Generally, petroleum products with known amount of V are recommended as standards; however, lubricating oils can be inadequate for "dark products" from petroleum distillation. In the case of unknown samples it is

  2. Lead and cadmium in human teeth from Jordan by atomic absorption spectrometry: Some factors influencing their concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alomary, A. [Department of Chemistry, Yarmouk University, Irbid (Jordan)]. E-mail: ahmedalomary1000@hotmail.com; Al-Momani, I.F. [Department of Chemistry, Yarmouk University, Irbid (Jordan); Massadeh, A.M. [Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid (Jordan)

    2006-10-01

    The aim of this study was to measure the concentrations of lead (Pb) and cadmium (Cd) in human teeth and to investigate the affecting factors. Teeth samples (n = 268) were collected from people living in different cities in Jordan including Amman, Zarqa, Al-Mafraq and Irbid and analyzed for Pb and Cd using atomic absorption spectrometry (AAS). A questionnaire was used to gather information on each person, such as age, sex, place where the patient lives, smoking, presence of amalgam fillings inside the mouth, and whether the patient uses toothpaste or not. The mean concentrations of Pb and Cd were 28.91 {mu}g/g and 0.44 {mu}g/g, respectively. The results indicate that there is a clear relation between Pb and Cd concentrations and the presence of amalgam fillings, smoking, and place of living. Pb was sex-dependent, whereas Cd was not. Our results show that Pb and Cd concentrations in samples obtained from Al-Mafraq and Irbid are higher than those obtained from Amman and Zarqa. Pb was highest in Mafraq, whereas Cd was highest in Irbid. The Pb and Cd concentrations in teeth from smokers (means: Pb = 31.89 {mu}g/g, Cd = 0.49 {mu}g/g) were significantly higher than those from nonsmokers (means: Pb = 24.07 {mu}g/g, Cd = 0.37 {mu}g/g). Pb and Cd concentrations in teeth of patients with amalgam fillings (means: Pb = 31.02 {mu}g/g and Cd = 0.52 {mu}g/g) were significantly higher than those from patients without amalgam fillings (means: Pb = 26.87 {mu}g/g and Cd = 0.41 {mu}g/g). Our results show that brushing the teeth daily with toothpaste does not