WorldWideScience

Sample records for analytic shielding optimization

  1. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    Science.gov (United States)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  2. Optimization of multi-layered metallic shield

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Dubinsky, A.; Elperin, T.

    2011-01-01

    Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.

  3. Innovative analytical competence. Optimization of shielding components and lifetime activation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Boehlke, Steffen; Wortmann, Birgit; Aguilar, Arturo Lizon [STEAG Energy Services GmbH, Essen (Germany)

    2014-08-15

    Shielding and activation calculations always require a high level of engineering competence and powerful hard- and software tools. With the application of current methods often certain limits were reached in the past. The engineering work for optimization efforts regarding complex components with high shielding requirements exceeded the savings in material. With regard to activation the challenges in size of the geometric model and considered operation time rises constantly and pushes computing time beyond reasonable time frames. These challenges require the application of new and faster methodologies. The application of new and innovative methods is presented for a shielding optimization project to decrease the radiation level, to keep the dose rate limits, and to reduce the amount of used shielding material. In a second case a prediction of the activated materials with it's dose distribution in the surrounding area and classification of waste quantities in the structural materials of a nuclear reactor is presented. For the shielding project the preliminary design CAD model was imported into the software tool, several iterations were run and a significantly reduced radiation exposure together with a significant reduction in shieling material were achieved. For the activation calculations it could be demonstrated that it is possible to determine the activation, waste quantities and dose distribution for the structural materials of a nuclear reactor based on lifetime operational data within reasonable time frames.

  4. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.

    Science.gov (United States)

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-05-26

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.

  5. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  6. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  7. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  8. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  9. Semi-analytic flux formulas for shielding calculations

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1976-06-01

    A special coordinate system based on the work of H. Ono and A. Tsuro has been used to derive exact semi-analytic formulas for the flux from cylindrical, spherical, toroidal, rectangular, annular and truncated cone volume sources; from cylindrical, spherical, truncated cone, disk and rectangular surface sources; and from curved and tilted line sources. In most of the cases where the source is curved, shields of the same curvature are allowed in addition to the standard slab shields; cylindrical shields are also allowed in the rectangular volume source flux formula. An especially complete treatment of a cylindrical volume source is given, in which dose points may be arbitrarily located both within and outside the source, and a finite cylindrical shield may be considered. Detector points may also be specified as lying within spherical and annular source volumes. The integral functions encountered in these formulas require at most two-dimensional numeric integration in order to evaluate the flux values. The classic flux formulas involving only slab shields and slab, disk, line, sphere and truncated cone sources become some of the many special cases which are given in addition to the more general formulas mentioned above

  10. Shield calculations, optimization vs. paradigm

    International Nuclear Information System (INIS)

    Cornejo D, N.; Hernandez S, A.; Martinez G, A.

    2006-01-01

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of μSv.h -1 , independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  11. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  12. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  13. Daily dose and shielding optimization in work performance at 'Ukrytie' object

    International Nuclear Information System (INIS)

    Batij, V.G.; Derengovskij, V.V.; Egorov, V.V.; Kuz'menko, V.A.; Rud'ko, V.M.; Sizov, A.A.; Stoyanov, A.I.

    2000-01-01

    The procedure of daily dose and shielding optimization in work performance at 'Ukryttia' object is offered. The recommendations allowing reducing collective effective doze according to the optimization principle are submitted. The technique of shielding optimization is given at stabilization works realization. The optimum shielding calculation example for the strengthening support is given

  14. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  15. Analytic Ballistic Performance Model of Whipple Shields

    Science.gov (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2015-01-01

    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  16. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  17. The SWAN/NPSOL code system for multivariable multiconstraint shield optimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1995-01-01

    SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN's optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN's optimization capability

  18. Optimization of the National Ignition Facility primary shield design

    International Nuclear Information System (INIS)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries

  19. A study on optimization of photoneutron shielding in a medical accelerator room by using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Jeong, Kyoungkeun; Kim, Joo Young; Lee, Chang Geol; Seong, Jinsil; Choi, Sang Hyun; Kim, Chan Hyeong

    2008-01-01

    Medical linear accelerators operating above 10 MV require door shielding for neutrons in addition to photons. A criterion for choice of optimal configuration of lamination of BPE (Borated Polyethylene) and lead is not clear. Moreover, optimal configuration cannot be determined by the conventional method using an analytical formula and simple measurement. This study performs Monte Carlo simulation of radiation field in a commercial LINAC room with 15 MV X-ray sources. Considering two configuration of lamination such as 'lead-BPE' and 'lead-BPE-lead', dose equivalents are calculated by using the MCNPX code and comparative analyses are performed with each other. The obtained results show that there is no significant difference in neuron shielding between both configurations, whereas lead-BPE-lead is more effective for photon shielding. It is also noted that the absolute values of neutron doses are much greater than that of photon doses outside as well as inside the door, by three orders of magnitude. As a conclusion, the laminating of lead-BPE is suggested as the optimal configuration from the viewpoint of simplicity in fabrication and handling, even though it has no significant difference from lead-BPE-lead in terms of total dose equivalent. (author)

  20. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  1. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    Science.gov (United States)

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  2. Special concrete shield selection using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.

    1994-01-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others

  3. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    International Nuclear Information System (INIS)

    Smokowski, R.T.

    1985-01-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis

  4. Decision-making methodology of optimal shielding materials by using fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, T.; Hirao, Y.

    2000-01-01

    The main purpose of our studies are to select materials and determine the ratio of constituent materials as the first stage of optimum shielding design to suit the individual requirements of nuclear reactors, reprocessing facilities, casks for shipping spent fuel, etc. The parameters of the shield optimization are cost, space, weight and some shielding properties such as activation rates or individual irradiation and cooling time, and total dose rate for neutrons (including secondary gamma ray) and for primary gamma ray. Using conventional two-valued logic (i.e. crisp) approaches, huge combination calculations are needed to identify suitable materials for optimum shielding design. Also, re-computation is required for minor changes, as the approach does not react sensitively to the computation result. Present approach using a fuzzy linear programming method is much of the decision-making toward the satisfying solution might take place in fuzzy environment. And it can quickly and easily provide a guiding principle of optimal selection of shielding materials under the above-mentioned conditions. The possibility or reducing radiation effects by optimizing the ratio of constituent materials is investigated. (author)

  5. An analytical theory of transmission line shielding

    International Nuclear Information System (INIS)

    Pettersson, Per

    1993-01-01

    The classical electrogeometric model of shielding failure flashovers on transmission lines is investigated by analytical methods. Most of the basic elements that has appeared in the literature on the subject have been incorporated and put into a comprehensive model. These elements are: tower top geometry, structure height above ground, line insulation, lateral slope of ground, probability distribution of lightning currents, ratio of striking distances to ground wire and earth relative to conductor, and probability distribution of lightning leader approach angle to ground. Departing from a basic idealistic case, the sensitivity of the model to variations in these parameters is studied. Numerical examples are given. 8 refs, 8 figs, 1 tab

  6. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  7. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Horsfall, I.; Barton, P.; Malik, A. Q.

    2012-06-01

    Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Experiments also support this evidence.

  8. A 2D semi-analytical model for Faraday shield in ICP source

    International Nuclear Information System (INIS)

    Zhang, L.G.; Chen, D.Z.; Li, D.; Liu, K.F.; Li, X.F.; Pan, R.M.; Fan, M.W.

    2016-01-01

    Highlights: • In this paper, a 2D model of ICP with faraday shield is proposed considering the complex structure of the Faraday shield. • Analytical solution is found to evaluate the electromagnetic field in the ICP source with Faraday shield. • The collision-free motion of electrons in the source is investigated and the results show that the electrons will oscillate along the radial direction, which brings insight into how the RF power couple to the plasma. - Abstract: Faraday shield is a thin copper structure with a large number of slits which is usually used in inductive coupled plasma (ICP) sources. RF power is coupled into the plasma through these slits, therefore Faraday shield plays an important role in ICP discharge. However, due to the complex structure of the Faraday shield, the resulted electromagnetic field is quite hard to evaluate. In this paper, a 2D model is proposed on the assumption that the Faraday shield is sufficiently long and the RF coil is uniformly distributed, and the copper is considered as ideal conductor. Under these conditions, the magnetic field inside the source is uniform with only the axial component, while the electric field can be decomposed into a vortex field generated by changing magnetic field together with a gradient field generated by electric charge accumulated on the Faraday shield surface, which can be easily found by solving Laplace's equation. The motion of the electrons in the electromagnetic field is investigated and the results show that the electrons will oscillate along the radial direction when taking no account of collision. This interesting result brings insight into how the RF power couples into the plasma.

  9. Shield calculations, optimization vs. paradigm; Calculos de blindajes, optimizacion vs. paradigma

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo D, N.; Hernandez S, A.; Martinez G, A. [Centro de Proteccion e Higiene de las Radiaciones, Calle 20 No. 4113 e/41 y 47 Playa C.P. 11300 LaHabana (Cuba)]. e-mail: nestor@cphr.edu.cu

    2006-07-01

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of {mu}Sv.h{sup -1}, independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  10. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  11. Evaluation of Shielding Wall Optimization in Lead Slowing Down Spectrometer System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Young; Kim, Jeong Dong; Lee, Yong Deok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A Lead Slowing Down Spectrometer (LSDS) system is nondestructive technology for analyzing isotope fissile content in spent fuel and pyro processed material, in real time and directly. The high intensity neutron and gamma ray were generated from a nuclear material (Pyro, Spent nuclear fuel), electron beam-target reaction and fission of fissile material. Therefore, shielding analysis of LSDS system should be carried out. In this study, Borax, B{sub 4}C, Li{sub 2}Co{sub 3}, Resin were chosen for shielding analysis. The radiation dose limit (<0.1 μSv/hr) was adopted conservatively at the outer wall surface. The covering could be able to reduce the concrete wall thickness from 5cm to 15cm. The optimized shielding walls evaluation will be used as an important data for future real LSDS facility design and shielding door assessment.

  12. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  13. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  14. An optimizing design method for a compact iron shielded superconducting magnet for use in MRI

    International Nuclear Information System (INIS)

    Tang Xin; Zu Donglin; Wang Tao; Han Baohui

    2010-01-01

    A method is developed for designing a special iron shielded superconducting magnet for MRI in this paper. The shield is designed as an integral part of the cryostat and high permeability and high saturated magnetization iron material is adopted. This scheme will result in a compact iron shielded magnet. In the presented design, the finite element (FE) method is adopted to calculate the magnetic field produced by superconducting coils and nonlinear iron material. The FE method is incorporated into the simulated annealing method which is employed for corresponding optimization. Therefore, geometrical configurations of both coils and iron shield can be optimized together. This method can deal with discrete design variables which are defined to describe the cable arrangements of coil cross sections. A detailed algorithm of the present design is described and an example for designing a 1.5 T clinical iron shielded magnet for MRI is shown.

  15. Optimization of the outer support in the ITER lower cryostat thermal shield

    International Nuclear Information System (INIS)

    Noh, C.H.; Chung, W.; Lim, J.; Lee, B.C.

    2016-01-01

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  16. Optimization of the outer support in the ITER lower cryostat thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Noh, C.H., E-mail: chnoh@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Chung, W., E-mail: whchung@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Lim, J., E-mail: jongmin.lim@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Lee, B.C., E-mail: bclee@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of)

    2016-02-15

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  17. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    Science.gov (United States)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  18. Application of a simple analytical model to estimate effectiveness of radiation shielding for neutrons

    International Nuclear Information System (INIS)

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1993-01-01

    Neutron dose equivalent rates have been measured for 800-MeV proton beam spills at the Los Alamos Meson Physics Facility. Neutron detectors were used to measure the neutron dose levels at a number of locations for each beam-spill test, and neutron energy spectra were measured for several beam-spill tests. Estimates of expected levels for various detector locations were made using a simple analytical model developed for 800-MeV proton beam spills. A comparison of measurements and model estimates indicates that the model is reasonably accurate in estimating the neutron dose equivalent rate for simple shielding geometries. The model fails for more complicated shielding geometries, where indirect contributions to the dose equivalent rate can dominate

  19. Optimization of thermal neutron shield concrete mixture using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  20. Optimization of thermal neutron shield concrete mixture using artificial neural network

    International Nuclear Information System (INIS)

    Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.

    2016-01-01

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  1. Shielding calculations. Optimization vs. Paradigms

    International Nuclear Information System (INIS)

    Cornejo Diaz, Nestor; Hernandez Saiz, Alejandro; Martinez Gonzalez, Alina

    2005-01-01

    Many radiation shielding barriers in Cuba have been designed according to the criterion of Maxi-mum Projected Dose Rates. This fact has created the paradigm of low dose rates. Because of this, dose rate levels greater than units of Sv.h-1 would be considered unacceptable by many specialists, regardless of the real exposure times. Nowadays many shielding barriers are being designed using dose constraints in real exposure times. Behind the new barriers, dose rates could be notably greater than those behind the traditional ones, and it does not imply inadequate designs or constructive errors. In this work were obtained significant differences in dose rate levels and shield-ing thicknesses calculated by both methods for some typical installations. The work concludes that real exposure time approach is more adequate in order to optimise Radiation Protection, although this method should be carefully applied

  2. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Chang Je [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of)

    2015-04-15

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101{sup 2n}/cm{sup 2}·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B{sub 4}C, and Li{sub 2}CO{sub 3}] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in

  3. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    International Nuclear Information System (INIS)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok; Park, Chang Je

    2015-01-01

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101 2n /cm 2 ·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B 4 C, and Li 2 CO 3 ] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

  4. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Directory of Open Access Journals (Sweden)

    Jeong Dong Kim

    2015-04-01

    Full Text Available A lead slowing-down spectrometer (LSDS system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea is planned to utilize a high-flux (>1012 n/cm2·s neutron source comprised of a high-energy (30 MeV/high-current (∼2 A electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h, a few shielding materials [high-density polyethylene (HDPE–Borax, B4C, and Li2CO3] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near

  5. Optimal beta-ray shielding thicknesses for different therapeutic radionuclides and shielding materials

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides. (authors)

  6. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  7. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  8. Optimization of Savonius turbines using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2010-11-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design. (author)

  9. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  10. Method for optimizing side shielding in positron-emission tomographs and for comparing detector materials

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1980-01-01

    This report presents analytical formulas for the image-forming and background event rates seen by circular positron-emission tomographs with parallel side shielding. These formulas include deadtime losses, detector efficiency, coincidence resolving time, amount of activity, patient port diameter, shielding gap, and shielding depth. A figure of merit, defined in terms of these quantities, describes the signal-to-noise ratio in the reconstructed image of a 20-cm cylinder of water with uniformly dispersed activity. Results are presented for the scintillators NaI(TI), bismuth germanate (BGO), CsF, and plastic; and for Ge(Li) and wire chambers with converters. In these examples, BGO provided the best signal-to-noise for activity levels below 1000 μCi per cm, and CsF had the advantage for higher activity levels

  11. Technique for approximate analytical calculating the internuclear cascade initiated by medium-energy nucleons in accelerator shields

    International Nuclear Information System (INIS)

    Kazarnovskij, M.V.; Matushko, G.K.; Matushko, V.L.; Par'ev, Eh.Ya.; Serezhnikov, S.V.

    1981-01-01

    The problem on propagation of the internuclear cascade initiated by nucleons of 0.1-1 GeV energy in accelerator schielding is solved approximately in the analytical form. Analytical expressions for the function of spatial, angular and energy distribution of the flux density of nucleons with the energy above 20 MeV and some functionals from it are obtained. The results of the calculations obtained by the developed methods are compared with calculations obtained by the method of direct simulation. It is shown that at the atomic mass of shielding material [ru

  12. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  13. Optimal design of a composite space shield based on numerical simulations

    International Nuclear Information System (INIS)

    Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung

    2015-01-01

    In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.

  14. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ha, B.C.; Hay, M.S.; Ferrara, D.M.; Andrews, M.K.

    1993-01-01

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  15. Optimisation of the radiation shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2000-01-01

    Effective radiation shielding is imperative for safe operation of modern Medical Cyclotrons producing large activities of short-lived radioisotopes on a commercial basis. The optimal cyclotron shielding design demands a careful balance between the radiological, economical and often the sociopolitical factors. One is required to optimize the cost of radiation protection and the cost of radiological-health detriment. The cost of radiation protection depends explicitly on a) the nature of the radiation field produced by the cyclotron, b) the cyclotron operation condition, c) the cost of shielding material, d) the level of dose reduction, e) the projected net revenue from the sale of the radioisotopes, and f) the depreciation rate of the cyclotron facility. The Genetic Algorithm (GA) is used for a cost -benefit analysis of this problem. The GA is a mathematical technique that emulates the Darwinian Evolution paradigm. It is ideally suited to search for a global optimum in a large multi-dimensional solution space, having demonstrated strength compared to the classical analytical methods. Furthermore the GA method runs on a PC in a Windows environment. This paper highlights an interactive spreadsheet macro program for the cost benefit analysis of the optimize Medical Cyclotron shielding using a GA search engine. (author)

  16. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  17. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  18. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  19. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  20. Biological shield design for a 10 MeV Rhodotron

    International Nuclear Information System (INIS)

    Khalafi, H.; Ghane, A.; Safaei Arshi, S.; Tabakh, F.

    2012-01-01

    Highlights: ► We evaluate the produced radiations of the Rhodotron-TT200 and their attenuation to the permitted level. ► We apply analytical calculations to determine the shield material and thickness. ► We simulate the Rhodotron accelerator and its shielding using MCNPX code to make sure of results accuracy. -- Abstract: Radiation field of the Rhodotron-TT200 electron accelerator is determined in this study. Regarding the interactions of electron with matter, the produced radiations and their attenuation to the permitted level (i.e. 0.01 mrem/h) are evaluated and calculated. For this purpose analytical calculations are applied to determine the biological shield material and thickness. In order to make sure of results accuracy, Rhodotron accelerator and its shielding are simulated using MCNPX code and the results of analytical calculations and MCNPX code are compared with the experimental ones.

  1. Analytical method for optimization of maintenance policy based on available system failure data

    International Nuclear Information System (INIS)

    Coria, V.H.; Maximov, S.; Rivas-Dávalos, F.; Melchor, C.L.; Guardado, J.L.

    2015-01-01

    An analytical optimization method for preventive maintenance (PM) policy with minimal repair at failure, periodic maintenance, and replacement is proposed for systems with historical failure time data influenced by a current PM policy. The method includes a new imperfect PM model based on Weibull distribution and incorporates the current maintenance interval T 0 and the optimal maintenance interval T to be found. The Weibull parameters are analytically estimated using maximum likelihood estimation. Based on this model, the optimal number of PM and the optimal maintenance interval for minimizing the expected cost over an infinite time horizon are also analytically determined. A number of examples are presented involving different failure time data and current maintenance intervals to analyze how the proposed analytical optimization method for periodic PM policy performances in response to changes in the distribution of the failure data and the current maintenance interval. - Highlights: • An analytical optimization method for preventive maintenance (PM) policy is proposed. • A new imperfect PM model is developed. • The Weibull parameters are analytically estimated using maximum likelihood. • The optimal maintenance interval and number of PM are also analytically determined. • The model is validated by several numerical examples

  2. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  3. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  4. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  5. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  6. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  7. Passive magnetic cylindrical shielding at gauss-range static fields

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2009-01-01

    A study has been performed in order to find the optimal solution for the magnetic shielding of the 10 in. photomultipliers which will be used in the Double Chooz neutrino experiment under a very low magnetic field (less than 2 G). The results obtained with analytical and numerical calculations are compared with measurements made using test prototypes of several magnetic materials, with different dimensions and from different manufacturers. An exhaustive analysis of the magnetic materials was needed to understand the observed disagreement between calculations and test results obtained at low field values.

  8. Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-11-01

    Purpose: It is important to reduce fluence map complexity in rotating-shield brachytherapy (RSBT) inverse planning to improve delivery efficiency while maintaining plan quality. This study proposes an efficient and effective RSBT dose optimization method which enables to produce smooth fluence maps. Methods: Five cervical cancer patients each with a high-risk clinical-target-volume (HR-CTV) larger than 40 cm{sup 3} were considered as the test cases. The RSBT source was a partially shielded electronic brachytherapy source (Xoft Axxent™). The anchor RSBT plans generated by the asymmetric dose–volume optimization with smoothness control (ADOS) method were compared against those produced by the dose–surface optimization (DSO) method and inverse-planning with simulated annealing (IPSA). Either L{sub 1}-norm or L{sub 2}-norm was used to measure the smoothness of a fluence map in the proposed ADOS method as one weighted term of the objective function. Uniform dwell-time scaling was applied to all plans such that HR-CTV D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. The quality of the anchor plans was measured with HR-CTV D{sub 90} of the anchor plans. Single-shielded RSBT [(S-RSBT), RSBT with single, fix sized delivery window] and dynamic-sheilded RSBT [(D-RSBT), RSBT with dynamically varying sized delivery window] delivery plans generated based on the anchor plans were also measured, with delivery time constraints of 10, 20, and 30 min/fraction (fx). Results: The average HR-CTV D{sub 90} values of the anchor plans achieved by the ADOS, DSO, and IPSA methods were 111.5, 94.2, and 107.4 Gy, respectively, where the weighting parameter β used in ADOS with L{sub 2}-norm was set to be 100. By using S-RSBT sequencing and 20 min/fx delivery time, the corresponding D{sub 90} values were 88.8, 81.9, and 83.4 Gy; while using D-RSBT sequencing with 20 min/fx delivery time, the corresponding D{sub 90} values were

  9. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An analytical solution to the shielding of Co 60 teletherapy rooms based on a semiempirical equation of photon attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Hernandez, L.; Borroto, M.; Figueredo, M.

    1996-01-01

    A semiempirical equation of polynomial-exponential type is presented to describe the transmission data of Co-60 gamma radiation in finite materials of concrete and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure made easy the developing in computer of an analytical solution for shielding calculations of Co 60 teletherapy rooms, based on the procedures of the NCRP 49 and Simpkin's method. The standard error in the estimation of parameters is less than 1.7 % except for the attenuation of 150 'o' scattered radiation in concrete that resulted in 6.3 % for one of them. The shielding calculations were compared with the data in NCRP 49 for the same conditions with a correlation better than 99 %

  11. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  12. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  13. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variables that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.

  14. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  15. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  16. Gradient Optimization for Analytic conTrols - GOAT

    Science.gov (United States)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  17. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  18. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  19. Analytical solution for shielding in teletherapy rooms with Co60 according to semiempirical equation of attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Borroto, M.

    1996-01-01

    The paper presents the parameters for a semiempirical equation of an exponential-polynomial type for the description of the transmission data of the different qualities of the Co-60 radiation in finite means of concrete (2350 kg m -3 ) and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure, help in the development of a computerized analytical solution of the Simpkin's method for shielding calculations in Co-60 teletherapy rooms. The results were compared with the values offered in the NCRP-49 for the same conditions, obtaining an acceptable correlation. (authors). 8 refs., 2 tabs

  20. Shielding of the contralateral breast during tangential irradiation.

    Science.gov (United States)

    Goffman, Thomas E; Miller, Michael; Laronga, Christine; Oliver, Shelly; Wong, Ping

    2004-08-01

    The purpose of this study was to investigate both optimal and practical contralateral breast shielding during tangential irradiation in young patients. A shaped sheet of variable thickness of lead was tested on a phantom with rubber breasts, and an optimized shield was created. Testing on 18 consecutive patients 50 years or younger showed shielding consistently reduced contralateral breast dose to at least half, with small additional reduction after removal of the medial wedge. For younger patients in whom radiation exposure is of considerable concern, a simple shield of 2 mm lead thickness proved practical and effective.

  1. Magnetic shielding for coreless linear permanent magnet motors

    NARCIS (Netherlands)

    Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.

    2013-01-01

    This paper concerns the local reduction of the magnetic flux density by means of magnetic shielding. Using a spatial frequency description, a 2-D semi-analytical periodic model is obtained for a coreless single-sided linear permanent magnet motor. The magnetic shield is included in the modeling

  2. Predictive Analytics for Coordinated Optimization in Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-13

    This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.

  3. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Olson, A.P.

    1988-01-01

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  4. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  5. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  6. Shielding design of ITER pressure suppression system

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Kawasaki, Hiromitsu

    2006-01-01

    The duct shield from streaming D-T neutrons has been designed for the ITER pressure suppression system. Streaming calculations are performed with the DUCT-III code for the region from the inlet of the pressure relief line to the rupture disk. Next, the neutron permeation through the shield is studied by Monte Carlo calculations with the MCNP code. It is found that 0.15 m thick iron shield is enough to suppress the permeating component from the outside. In addition, it is suggested that the volume of the shield can be reduced by about 30% if the optimized iron shield structure having localized thickness across intense permeation paths is employed to shield the pressure suppression line. (T.I.)

  7. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  8. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  9. An analytical-numerical comprehensive method for optimizing the fringing magnetic field

    International Nuclear Information System (INIS)

    Xiao Meiqin; Mao Naifeng

    1991-01-01

    The criterion of optimizing the fringing magnetic field is discussed, and an analytical-numerical comprehensive method for realizing the optimization is introduced. The method mentioned above consists of two parts, the analytical part calculates the field of the shims, which corrects the fringing magnetic field by using uniform magnetizing method; the numerical part fulfils the whole calculation of the field distribution by solving the equation of magnetic vector potential A within the region covered by arbitrary triangular meshes with the aid of finite difference method and successive over relaxation method. On the basis of the method, the optimization of the fringing magnetic field for a large-scale electromagnetic isotope separator is finished

  10. Population-based metaheuristic optimization in neutron optics and shielding design

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D., E-mail: Douglas.DiJulio@esss.se [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Division of Nuclear Physics, Lund University, SE-221 00 Lund (Sweden); Björgvinsdóttir, H. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden); Zendler, C. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Bentley, P.M. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden)

    2016-11-01

    Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.

  11. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  12. OPTIMAL METHOD FOR PREPARATION OF SILICATE ROCK SAMPLES FOR ANALYTICAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Maja Vrkljan

    2004-12-01

    Full Text Available The purpose of this study was to determine an optimal dissolution method for silicate rock samples for further analytical purposes. Analytical FAAS method of determining cobalt, chromium, copper, nickel, lead and zinc content in gabbro sample and geochemical standard AGV-1 has been applied for verification. Dissolution in mixtures of various inorganic acids has been tested, as well as Na2CO3 fusion technique. The results obtained by different methods have been compared and dissolution in the mixture of HNO3 + HF has been recommended as optimal.

  13. Optimization of offshore wind turbine support structures using analytical gradient-based method

    OpenAIRE

    Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael

    2015-01-01

    Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...

  14. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  15. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  16. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  17. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  18. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  19. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Helen V. Hsieh

    2017-05-01

    Full Text Available Immunochromatographic or lateral flow assays (LFAs are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads, biological reagents (e.g., antibodies, blocking reagents and buffers and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.

  20. Shield nuclear design for the 5-kWe TE system

    International Nuclear Information System (INIS)

    Keshishian, V.

    1972-01-01

    The nuclear analysis of the 5-kW(e) reactor shield is presented. Calculation methods and optimization techniques used are presented. Borated stainless steel was selected for the gamma ray shield with tungsten alloy as an alternate. The total shield weight was calculated to be 355 lb. (U.S.)

  1. Shield cost minimization using SWAN

    International Nuclear Information System (INIS)

    Watkins, E.F.; Annese, C.E.; Greenspan, E.

    1993-01-01

    The common approach to the search for minimum cost shield designs is open-quotes trial-and-errorclose quotes; it proceeds as follows: 1. Based on prior experience and intuition, divide the shield into zones and assume their composition. 2. Solve the transport equation and calculate the relevant performance characteristics. 3. Change the composition or the geometry of one or a few of the zones and repeat step 2. 4. Repeat step 3 many times until the shield design appears to be optimal. 5. Select a different set of constituents and repeat steps 2,3, and 4. 6. Repeate step 5 a few or many times until the designer can point to the most cost-effective design

  2. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    Science.gov (United States)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  3. SU-F-I-72: Evaluation of the Ancillary Lead Shielding for Optimizing Radiation Protection in the Interventional Radiology Department

    Energy Technology Data Exchange (ETDEWEB)

    Tonkopi, E; Lightfoot, C [Dalhousie University, Queen Elizabeth II Health Sciences Ctr, Halifax, NS (Canada); LeBlanc, E [Queen Elizabeth II Health Sciences Ctr, Halifax, NS (Canada)

    2016-06-15

    Purpose: The rising complexity of interventional fluoroscopic procedures has resulted in an increase of occupational radiation exposures in the interventional radiology (IR) department. This study assessed the impact of ancillary shielding on optimizing radiation protection for the IR staff. Methods: Scattered radiation measurements were performed in two IR suites equipped with Axiom Artis systems (Siemens Healthcare, Erlangen, Germany) installed in 2006 and 2010. Both rooms had suspended ceiling-mounted lead-acrylic shields of 75×60 cm (Mavig, Munich, Germany) with lead equivalency of 0.5 mm, and under-table drapes of 70×116 cm and 65×70 cm in the newer and the older room respectively. The larger skirt can be wrapped around the table’s corner and in addition the newer suite had two upper shields of 25×55 cm and 25×35 cm. The patient was simulated by 30 cm of acrylic, air kerma rate (AKR) was measured with the 180cc ionization chamber (AccuPro Radcal Corporation, Monrovia, CA, USA) at different positions. The ancillary shields, x-ray tube, image detector, and table height were adjusted by the IR radiologist to simulate various clinical setups. The same exposure parameters were used for all acquisitions. AKR measurements were made at different positions relative to the operator. Results: The AKR measurements demonstrated 91–99% x-ray attenuation by the drapes in both suites. The smaller size of the under-table skirt and absence of the side-drapes in the older room resulted in a 20–50 fold increase of scattered radiation to the operator. The mobile suspended lead-acrylic shield reduced AKR by 90–94% measured at 150–170 cm height. The recommendations were made to replace the smaller under-table skirt and to use the ceiling-mounted shields for all IR procedures. Conclusion: The ancillary shielding may significantly affect radiation exposure to the IR staff. The use of suspended ceiling-mounted shields is especially important for reduction of

  4. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room

    International Nuclear Information System (INIS)

    Xiao Wei; Wang Xin; Zhang Yinping

    2009-01-01

    Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient h in and area A of the PCM panels in a lightweight passive solar room.

  5. Optimization of thermal design for nitrogen shield of JET cryopump

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1991-11-01

    The reference design of JET cryopump nitrogen shield consists of an outer section made of copper chevrons fastened to two cooling tubes and an inner stainless steel section and backing plate with two cooling tubes. These tubes are fed in a parallel flow arrangement. The inlet flow is divided into two parallel paths so that both tubes on either section are always at the same temperature. This arrangement was selected due to concern about conduction between warm and cold parts of the shield during cooldown transients. If the heat loads are unequal, such a parallel flow arrangement can result in flow starvation in the path with higher heat load. This will cause large temperature differences and, ultimately, structural failure. Hence, an analysis was undertaken to investigate the conduction effects in the shield for other flow arrangements. 4 refs., 8 figs

  6. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  7. Analytical development and optimization of a graphene–solution interface capacitance model

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2014-05-01

    Full Text Available Graphene, which as a new carbon material shows great potential for a range of applications because of its exceptional electronic and mechanical properties, becomes a matter of attention in these years. The use of graphene in nanoscale devices plays an important role in achieving more accurate and faster devices. Although there are lots of experimental studies in this area, there is a lack of analytical models. Quantum capacitance as one of the important properties of field effect transistors (FETs is in our focus. The quantum capacitance of electrolyte-gated transistors (EGFETs along with a relevant equivalent circuit is suggested in terms of Fermi velocity, carrier density, and fundamental physical quantities. The analytical model is compared with the experimental data and the mean absolute percentage error (MAPE is calculated to be 11.82. In order to decrease the error, a new function of E composed of α and β parameters is suggested. In another attempt, the ant colony optimization (ACO algorithm is implemented for optimization and development of an analytical model to obtain a more accurate capacitance model. To further confirm this viewpoint, based on the given results, the accuracy of the optimized model is more than 97% which is in an acceptable range of accuracy.

  8. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  9. Design of analytical instrumentation with D-T sealed neutron generators

    International Nuclear Information System (INIS)

    Qiao Yahua; Wu Jizong; Zheng Weiming; Liu Quanwei; Zhang Min

    2008-01-01

    Analytical instrumentation with D-T sealed neutron generators source activation, The 14 MeV D-T sealed neutron tube with 10 9 n · s -1 neutron yield is used as generator source. The optimal structure of moderator and shield was achieved by MC computing.The instrumentation's configuration is showed. The instrumentation is made up of the SMY-DT50.8-2.1 sealed neutron tube and the high-voltage power supply system, which center is the sealed neutron generators. 6 cm Pb and 20 cm polythene is chosen as moderator, Pb, polythene and 10 cm boron-PE was chosen as shield .The sample box is far the source from 9 cm, the measurement system were made up of HPGe detector and the sample transforming system. After moderator and shield, the thermal neutron fluence rate at the point of sample is 0.93 × 10 6 n · s -1 cm -2 , which is accorded with design demand, and the laboratory and surroundings reaches the safety standard of the dose levels. (authors)

  10. Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"

    Science.gov (United States)

    Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.

    2018-03-01

    In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.

  11. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  12. Development of Computer Program for Analysis of Irregular Non Homogenous Radiation Shielding

    International Nuclear Information System (INIS)

    Bang Rozali; Nina Kusumah; Hendro Tjahjono; Darlis

    2003-01-01

    A computer program for radiation shielding analysis has been developed to obtain radiation attenuation calculation in non-homogenous radiation shielding and irregular geometry. By determining radiation source strength, geometrical shape of radiation source, location, dimension and geometrical shape of radiation shielding, radiation level of a point at certain position from radiation source can be calculated. By using a computer program, calculation result of radiation distribution analysis can be obtained for some analytical points simultaneously. (author)

  13. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  14. Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Titt, U.; Dexheimer, D.; Yan, X.; Nill, S.

    2002-01-01

    The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent

  15. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    Science.gov (United States)

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  17. Optimizing multi-pinhole SPECT geometries using an analytical model

    International Nuclear Information System (INIS)

    Rentmeester, M C M; Have, F van der; Beekman, F J

    2007-01-01

    State-of-the-art multi-pinhole SPECT devices allow for sub-mm resolution imaging of radio-molecule distributions in small laboratory animals. The optimization of multi-pinhole and detector geometries using simulations based on ray-tracing or Monte Carlo algorithms is time-consuming, particularly because many system parameters need to be varied. As an efficient alternative we develop a continuous analytical model of a pinhole SPECT system with a stationary detector set-up, which we apply to focused imaging of a mouse. The model assumes that the multi-pinhole collimator and the detector both have the shape of a spherical layer, and uses analytical expressions for effective pinhole diameters, sensitivity and spatial resolution. For fixed fields-of-view, a pinhole-diameter adapting feedback loop allows for the comparison of the system resolution of different systems at equal system sensitivity, and vice versa. The model predicts that (i) for optimal resolution or sensitivity the collimator layer with pinholes should be placed as closely as possible around the animal given a fixed detector layer, (ii) with high-resolution detectors a resolution improvement up to 31% can be achieved compared to optimized systems, (iii) high-resolution detectors can be placed close to the collimator without significant resolution losses, (iv) interestingly, systems with a physical pinhole diameter of 0 mm can have an excellent resolution when high-resolution detectors are used

  18. Optimal starting conditions for the rendezvous maneuver: Analytical and computational approach

    Science.gov (United States)

    Ciarcia, Marco

    by the optimal trajectory. For the guidance trajectory, because of the replacement of the variable thrust direction of the powered subarc with a constant thrust direction, the optimal control problem degenerates into a mathematical programming problem with a relatively small number of degrees of freedom, more precisely: three for case (i) time-to-rendezvous free and two for case (ii) time-to-rendezvous given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory. In Part B, an analytical solution of the Clohessy-Wiltshire equations is presented (i) neglecting the change of the spacecraft mass due to the fuel consumption and (ii) and assuming that the thrust is finite, that is, the trajectory includes powered subarcs flown with max thrust and coasting subarc flown with zero thrust. Then, employing the found analytical solution, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. The main contribution of Part B is the development of analytical solutions for the powered subarcs, an important extension of the analytical solutions already available for the coasting subarcs. One consequence is that the entire optimal trajectory can be described analytically. Another consequence is that the optimal control problems degenerate into mathematical programming problems. A further consequence is that, vis-a-vis the optimal control formulation, the mathematical programming formulation reduces the CPU time by a factor of order 1000. Key words. Space trajectories, rendezvous, optimization, guidance, optimal control, calculus of

  19. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  20. Optimal design of nuclear mechanical dampers with analytical hierarchy process

    International Nuclear Information System (INIS)

    Zou Yuehua; Wen Bo; Xu Hongxiang; Qin Yonglie

    2000-01-01

    An optimal design with analytical hierarchy process on nuclear mechanical dampers manufactured by authors' university was described. By using fuzzy judgement matrix the coincidence was automatically satisfied without the need of coincidence test. The results obtained by this method have been put into the production practices

  1. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  2. Shielding experiments in different materials with 252Cf neutron spectra

    International Nuclear Information System (INIS)

    Sathian, Deepa; Marathe, P.K.; Pal, Rupali; Jayalakshmi, V.; Chourasiya, G.; Mayya, Y.S.

    2008-01-01

    Adequate shielding for neutron sources can be determined using analytical method or by actually measuring the attenuation for the target configuration. This paper describes the measurement of Half Value Thickness (HVT), Tenth Value Thickness (TVT), Σ values for four different shielding materials, using a standard 252 Cf neutron source and comparing with the values calculated using an empirical relationship. BF 3 based REM-counter is used for measurement of neutron dose equivalent, against different thickness of the shielding material. The experimental HVT and S values are in good agreement with the calculated values. From this study, it is concluded that, among the four materials studied, high density polyethylene (HDPE) is best suitable for the shielding of a 252 Cf neutron source. (author)

  3. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Kenny S K; Lee, Louis K Y [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chan, Anthony T C [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR (China)

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis, which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.

  4. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  5. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  6. Shielding design study for the JAERI/KEK spallation neutron source

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

    2001-01-01

    Shielding design for the JAERI/KEK spallation neutron source was studied. Bulk shielding characteristics and optimization of a beam shutter were investigated by using Monte Carlo calculation code NMTC/JAM and MCNP with LA-150 neutron cross-section library. The following remarks were derived. (1) Neutron dose outside of the concrete shield at 6.6 m from the center is ∼10 μSv/hr regardless of angles with respect to the proton beam axis. The neutron dose can be reduced more than a factor of 30 by adding natural boron of 5 wt% in the concrete. (2) When a beam shutter position just outside the void vessel and the shutter length of 2 m are assumed, a shutter made of copper (1.7 m) with polyethylene (0.3 m) is the optimum in terms of shielding performance as well as cost merit. A shutter made of tungsten is not so effective. (3) Further studies are needed for optimization of beam shutter position. (author)

  7. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  8. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  9. Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: Criterion for selecting the method of choice

    International Nuclear Information System (INIS)

    Titt, U.; Newhauser, W. D.

    2005-01-01

    Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100. (authors)

  10. Measurement of the effects of Faraday shields on ICRH antenna coupling

    International Nuclear Information System (INIS)

    Kwon, M.; Thomas, C.E. Jr.; Rettig, C.L.

    1990-01-01

    Compact loop antennas are being applied to several fusion experiments. Although individual configurations vary, all of these antennas generally comprise a current strap in a recessed box and a Faraday shield. The effect of the cross-sectional shape of the current strap on voltage and current levels was measured. In this work the coupling characteristics of cavity antennas that have current straps with the previously evaluated cross-sectional shapes re tested with several Faraday shields. Impedances and relative fields are measured for various combinations of the current strap and Faraday shield. The experiments show that the fractional reduction in the magnetic flux linkage to the plasma resulting from the addition of any particular Faraday shield i virtually independent of the shape of the current strap. This is true in spite of the fact that the same mechanism which is responsible for the reduction in flux is also responsible for a significant redistribution of the antenna current on the current strap. Thus the process of optimizing antennas is reduced to that of separately optimizing the current strap and Faraday shield

  11. Shielding calculations using computer techniques; Calculo de blindajes mediante tecnicas de computacion

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Portilla, M. I.; Marquez, J.

    2011-07-01

    Radiological protection aims to limit the ionizing radiation received by people and equipment, which in numerous occasions requires of protection shields. Although, for certain configurations, there are analytical formulas, to characterize these shields, the design setup may be very intensive in numerical calculations, therefore the most efficient from to design the shields is by means of computer programs to calculate dose and dose rates. In the present article we review the codes most frequently used to perform these calculations, and the techniques used by such codes. (Author) 13 refs.

  12. Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.

    2006-01-01

    Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.

  13. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  14. Shielding design study of the demonstration fast breeder reactor. 2. Shielding design on the basis of the JASPER analysis

    International Nuclear Information System (INIS)

    Suzuoki, Zenro; Tabayashi, Masao; Handa, Hiroyuki; Iida, Masaaki; Takemura, Morio

    2000-01-01

    Conceptual shielding design has been performed for the Demonstration Fast Breeder Reactor (DFBR) to achieve further optimization and reduction of the plant construction cost. The design took into account its implications in overall plant configuration such as reduction of shields in the core, adoption of fission gas plenum in the lower portion of fuel assemblies, and adoption of gas expansion modules. Shielding criteria applied for the design are to secure fast neutron fluence on in-vessel structures as well as responses of the nuclear instrumentation system and to restrict secondary sodium activation. The design utilized the cross sections and the one- and two-dimensional discrete ordinates transport codes, whose verification had been performed by the JASPER experiment analysis. Correction factors yielded by the JASPER analysis were applied to the design calculations to obtain design values with improved accuracy. Design margins, which are defined by the ratios of the design criteria to the design values, were more than two for all shielding issues of interest, showing the adequacy of the shielding design of the DFBR. (author)

  15. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  16. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  17. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems

    International Nuclear Information System (INIS)

    Olcan, Ceyda

    2015-01-01

    Highlights: • An analytical optimal sizing model is proposed for PV water pumping systems. • The objectives are chosen as deficiency of power supply and life-cycle costs. • The crop water requirements are estimated for a citrus tree yard in Antalya. • The optimal tilt angles are calculated for fixed, seasonal and monthly changes. • The sizing results showed the validity of the proposed analytical model. - Abstract: Stand-alone photovoltaic (PV) water pumping systems effectively use solar energy for irrigation purposes in remote areas. However the random variability and unpredictability of solar energy makes difficult the penetration of PV implementations and complicate the system design. An optimal sizing of these systems proves to be essential. This paper recommends a techno-economic optimization model to determine optimally the capacity of the components of PV water pumping system using a water storage tank. The proposed model is developed regarding the reliability and cost indicators, which are the deficiency of power supply probability and life-cycle costs, respectively. The novelty is that the proposed optimization model is analytically defined for two-objectives and it is able to find a compromise solution. The sizing of a stand-alone PV water pumping system comprises a detailed analysis of crop water requirements and optimal tilt angles. Besides the necessity of long solar radiation and temperature time series, the accurate forecasts of water supply needs have to be determined. The calculation of the optimal tilt angle for yearly, seasonally and monthly frequencies results in higher system efficiency. It is, therefore, suggested to change regularly the tilt angle in order to maximize solar energy output. The proposed optimal sizing model incorporates all these improvements and can accomplish a comprehensive optimization of PV water pumping systems. A case study is conducted considering the irrigation of citrus trees yard located in Antalya, Turkey

  18. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  19. SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP

    Directory of Open Access Journals (Sweden)

    V. S. Grinchenko

    2015-04-01

    Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.

  20. Detector Background Reduction by Passive and Active Shielding

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Slivka, J.; Todorovic, N.

    2013-01-01

    The operational problems of the gamma ray spectrometer shielded passively with 12 cm of lead and actively by five 0.5 m × 0.5 m × 0.05 m plastic veto shields are described. The active shielding effect from both environmental gamma ray, cosmic muons and neutrons was investigated. For anticoincidence gating wide range of scintillator pulses, corresponding to the energy range of 150 keV-75 MeV, were used. With the optimal set up the integral background, for the energy region of 50 - 3000 keV, of 0.31 c/s was achieved. The detector mass related background was 0.345 c/(kg s). The 511 keV annihilation line was reduced by the factor of 7 by the anticoincidence gate. It is shown that the plastic shields increase the neutron capture gamma line intensities due to neutron termalization.(author)

  1. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    Science.gov (United States)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  2. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  3. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  4. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  5. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  6. Analytical design of proportional-integral controllers for the optimal control of first-order processes with operational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Hien Cao Thi; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)

    2013-12-15

    A novel analytical design method of industrial proportional-integral (PI) controllers was developed for the optimal control of first-order processes with operational constraints. The control objective was to minimize a weighted sum of the controlled variable error and the rate of change in the manipulated variable under the maximum allowable limits in the controlled variable, manipulated variable and the rate of change in the manipulated variable. The constrained optimal servo control problem was converted to an unconstrained optimization to obtain an analytical tuning formula. A practical shortcut procedure for obtaining optimal PI parameters was provided based on graphical analysis of global optimality. The proposed PI controller was found to guarantee global optimum and deal explicitly with the three important operational constraints.

  7. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  8. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2015-01-01

    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  9. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  10. Analytical results of variance reduction characteristics of biased Monte Carlo for deep-penetration problems

    International Nuclear Information System (INIS)

    Murthy, K.P.N.; Indira, R.

    1986-01-01

    An analytical formulation is presented for calculating the mean and variance of transmission for a model deep-penetration problem. With this formulation, the variance reduction characteristics of two biased Monte Carlo schemes are studied. The first is the usual exponential biasing wherein it is shown that the optimal biasing parameter depends sensitively on the scattering properties of the shielding medium. The second is a scheme that couples exponential biasing to the scattering angle biasing proposed recently. It is demonstrated that the coupled scheme performs better than exponential biasing

  11. The analytical approach to optimization of active region structure of quantum dot laser

    International Nuclear Information System (INIS)

    Korenev, V V; Savelyev, A V; Zhukov, A E; Omelchenko, A V; Maximov, M V

    2014-01-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value

  12. The analytical approach to optimization of active region structure of quantum dot laser

    Science.gov (United States)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  13. Optimized shielding calculation to the transport of 131I employed in nuclear medicine

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.

    1996-01-01

    The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs

  14. MicroShield/ISOCS gamma modeling comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  15. Optimization of turning process through the analytic flank wear modelling

    Science.gov (United States)

    Del Prete, A.; Franchi, R.; De Lorenzis, D.

    2018-05-01

    In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.

  16. Rapid emission angle selection for rotating-shield brachytherapy

    International Nuclear Information System (INIS)

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing; Yang Wenjun; Wu Xiaodong

    2013-01-01

    Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft Axxent TM electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90°, 180°, and 270°. The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D 90 was maximized without violating the D 2cc tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D 90 to 85–100 Gy 10 , the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5–25 and 10–30 min/fx, respectively, for two the cases, the D 90 contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D 90 and the delivery time within acceptable limits. Conclusions: The REAS method enables efficient RSBT

  17. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.

    1977-11-01

    The ORNL lithium hydroxide fire and impact shield was designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B and large quantities of radioactive material and limited quantities of fissionable material. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield is in compliance with the applicable regulations

  18. Optimization of hot water transport and distribution networks by analytical method: OPTAL program

    International Nuclear Information System (INIS)

    Barreau, Alain; Caizergues, Robert; Moret-Bailly, Jean

    1977-06-01

    This report presents optimization studies of hot water transport and distribution network by minimizing operating cost. Analytical optimization is used: Lagrange's method of undetermined multipliers. Optimum diameter of each pipe is calculated for minimum network operating cost. The characteristics of the computer program used for calculations, OPTAL, are given in this report. An example of network is calculated and described: 52 branches and 27 customers. Results are discussed [fr

  19. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    Science.gov (United States)

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  20. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  1. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  2. Radiation shielding activities at IDOM

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora, E-mail: cesar.hueso@idom.com [IDOM, Consulting, Engineering and Architecture, S.A.U, Vizcaya (Spain)

    2017-07-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  3. Radiation shielding activities at IDOM

    International Nuclear Information System (INIS)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora

    2017-01-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  4. Experimental Studies on Shadow Shields for Thermal Protection of Cryogenic Tanks in Space

    National Research Council Canada - National Science Library

    Knoll, Richard

    1968-01-01

    ... (high-emissivity coatings on annular rings of shields) on thermal performance. The experimental data, in general, agreed closely with an analytical model which assumed diffuse surfaces with nonuniform radiosity...

  5. Simplified Analytical Method for Optimized Initial Shape Analysis of Self-Anchored Suspension Bridges and Its Verification

    Directory of Open Access Journals (Sweden)

    Myung-Rag Jung

    2015-01-01

    Full Text Available A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.

  6. DEVELOPMENT OF EXTREMELY LOW FREQUENCY PASSIVE SHIELDING APPLICATION USING MAGNETIC AQUEOUS SUBSTRATE

    Directory of Open Access Journals (Sweden)

    NOOR ASHIKIN MOHD RASHID

    2016-04-01

    Full Text Available Public concerns on Extremely Low Frequency (ELF Electromagnetic Field (EMF exposure have been elongated since the last few decades. Electrical substations and high tension rooms in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A magnetic aqueous substrate, Manganese Zinc Ferrite was used as shielding material. The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELFEMF exposure, as to mitigate its exposure.

  7. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.

    Science.gov (United States)

    Boyle, Christopher; Kim, Il Yong

    2011-06-03

    Since the late 1980s, computational analysis of total hip arthroplasty (THA) prosthesis components has been completed using macro-level bone remodeling algorithms. The utilization of macro-sized elements requires apparent bone densities to predict cancellous bone strength, thereby, preventing visualization and analysis of realistic trabecular architecture. In this study, we utilized a recently developed structural optimization algorithm, design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur pre- and post-THA. The computational simulation facilitated direct performance comparison between two commercially available prosthetic implant stems from Zimmer Inc.: the Alloclassic and the Mayo conservative. The novel micro-level approach allowed the unique ability to visualize the trabecular bone adaption post-operation and to quantify the changes in bone mineral content by region. Stress-shielding and strain energy distribution were also quantified for the immediate post-operation and the stably fixated, post-remodeling conditions. Stress-shielding was highest in the proximal region and remained unchanged post-remodeling; conversely, the mid and distal portions show large increases in stress, suggesting a distal shift in the loadpath. The Mayo design conserves bone mass, while simultaneously reducing the incidence of stress-shielding compared to the Alloclassic, revealing a key benefit of the distinctive geometry. Several important factors for stable fixation, determined in clinical evaluations from the literature, were evident in both designs: high levels of proximal bone loss and distal bone densification. The results suggest this novel computational framework can be utilized for comparative hip prosthesis shape, uniquely considering the post-operation bone remodeling as a design criterion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Analytic model for ultrasound energy receivers and their optimal electric loads

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-08-01

    In this paper, we present an analytic model for thickness resonating plate ultrasound energy receivers, which we have derived from the piezoelectric and the wave equations and, in which we have included dielectric, viscosity and acoustic attenuation losses. Afterwards, we explore the optimal electric load predictions by the zero reflection and power maximization approaches present in the literature with different acoustic boundary conditions, and discuss their limitations. To validate our model, we compared our expressions with the KLM model solved numerically with very good agreement. Finally, we discuss the differences between the zero reflection and power maximization optimal electric loads, which start to differ as losses in the receiver increase.

  9. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  10. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.; Schaich, R.W.

    1984-07-01

    The ORNL Lithium Hydroxide Fire and Impact Shield and its packaging were designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B quantities of radioactive material and limited quantities of fissionable material. The shield and its packaging were evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield and its packaging are in compliance with the applicable regulations. 16 references, 8 figures, 5 tables

  11. Cost benefit analysis of the radiological shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2001-01-01

    Adequate radiation shielding is vital to the safe operation of modern commercial medical cyclotrons producing large yields of short-lived radioisotopes. The radiological shielding constitutes a significant capital investment for any new cyclotron-based radioisotope production facility; hence, the shielding design requires an accurate cost-benefit analysis often based on a complex multi-variant optimization technique. This paper demonstrates the application of a Genetic Algorithm (GA) for the optimum design of the high yield target cave of a Medical Cyclotron radioisotope production facility based in Sydney, Australia. The GA is a novel optimization technique that mimics the Darwinian Evolution paradigm and is ideally suited to search for global optima in a large multi-dimensional solution space

  12. Experience with Dismantling of the Analytic Cell in the JRTF Decommissioning Program

    International Nuclear Information System (INIS)

    Annoh, Akio; Nemoto, Koichi; Tajiri, Hideo; Saito, Keiichiro; Miyajima, Kazutoshi; Myodo, Masato

    2003-01-01

    The analytic cell was mainly used for process control analysis of the reprocessing process and for the measurement of fuel burn up ratio in JAERI's Reprocessing Test Facility (JRTF). The analytic cell was a heavy shielded one and equipped with a conveyor. The cell was alpha and beta(gamma)contaminated. For dismantling of analytic cells, it is very important to establish a method to remove the heavy shield safely and reduce the exposure. At first, a green house was set up to prevent the spread out of contamination, and next, the analytic cell was dismantled. Depending on the contamination condition, the workers wore protective suits such as air ventilated-suits for prevention of internal exposure and vinyl chloride aprons, lead aprons in order to reduce external exposure. From the work carried out, various data such as needed manpower for the activities, the collective dose of workers by external exposure, the amount of radioactive wastes and the relation between the weight of the shield and its dismantling efficiency were obtained and input for the database. The method of dismantling and the experience with the dismantling of the analytic cell in the JRTF, carried out during 2001 and 2002, are described in this paper

  13. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  14. Material shielding of power frequency magnetic fields: Research and testing results from the EPRI Power Delivery Center-Lenox. Final report

    International Nuclear Information System (INIS)

    Anderson, C.B.

    1998-06-01

    Extensive investigations of a variety of material shielding methods have been performed at the EPRI Power Delivery Center--Lenox, Massachusetts. This work is part of a larger shielding investigation being done for EPRI by Electric Research and Management, Inc. (ERM) as part of the Magnetic Field Management Target in the EPRI Environment Group. Part of this work, involving cylinders of material, is to be included in a shielding handbook being prepared by ERM. Material shielding tests, not included in the handbook, as well as additional material shielding research, including testing, analyses, and computer simulations performed at the EPRI Power Delivery Center--Lenox are documented here. One of the major complications of using materials to shield magnetic fields is the mathematical complexity of the phenomenon involved. The result is that analytical solutions exist only for a very small number of simple geometries such as spheres, infinitely long cylinders, and infinite sheets. In practice, the materials typically come in the form of sheets. At present, there are no analytical methods for directly determining the shielding effectiveness of finite sheets of material, however, EPRI is sponsoring work in this area. There are some methods based on conformal mapping which can provide a solution for simple two-dimensional sheets. While such methods are useful in gaining insight into the mechanisms of shielding, they are not realistic enough to provide accurate shielding estimates. Empirical techniques are still required to determine the shielding effectiveness of material sheets. The material shielding tests and computer simulations are described in the report. The results of these tests and simulations have been used to develop a number of material shielding design rules for use in practical applications

  15. Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm

    Science.gov (United States)

    Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal

    2017-08-01

    To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.

  16. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  17. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  18. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  19. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    International Nuclear Information System (INIS)

    Gu, C.; Alamgir, A.K.M.; Qu, T.M.; Han, Z.

    2008-01-01

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I c increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account

  20. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: guchen@tsinghua.edu.cn; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya, ku, Yokohama (Japan); Qu, T.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2008-09-15

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I{sub c} increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account.

  1. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  2. The application of the analytic hierarchy process (AHP) in uranium mine mining method of the optimal selection

    International Nuclear Information System (INIS)

    Tan Zhongyin; Kuang Zhengping; Qiu Huiyuan

    2014-01-01

    Analytic hierarchy process, AHP, is a combination of qualitative and quantitative, systematic and hierarchical analysis method. Basic decision theory of analytic hierarchy process is applied in this article, with a project example in north Guangdong region as the research object, the in-situ mining method optimization choose hierarchical analysis model is established and the analysis method, The results show that, the AHP model for mining method selecting model was reliable, optimization results were conformity with the actual use of the in-situ mining method, and it has better practicability. (authors)

  3. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  4. Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides

    International Nuclear Information System (INIS)

    Handapangoda, Dayan; Rukhlenko, Ivan D; Premaratne, Malin

    2013-01-01

    We theoretically analyze guided modes in optically active and passive double-slot plasmonic waveguides. We show that for one of the two different mode symmetries supported by the waveguide, a most productive guiding condition can be realized by adjusting the thicknesses of the layers to optimal values. We also derive approximate analytic expressions to calculate the optimal geometrical parameters of the waveguide. Interestingly, our analysis shows that the propagation losses associated with the inverse mode symmetry of the double-slot waveguide are comparatively low, regardless of the dimensions of the waveguide. We further show that the propagation losses become the smallest in the limiting case of a single-slot (metal–dielectric–metal (MDM)) waveguide. For both double- and single-slot waveguides, we show that the gain required to overcome the losses can be reduced by choosing a dielectric with a low refractive index. We also derive accurate analytical expressions to readily estimate the critical gain and modal gain of the waveguides. (paper)

  5. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  6. SPADA: a project to study the effectiveness of shielding materials in space

    International Nuclear Information System (INIS)

    Pugliese, M.; Casolino, M.; Cerciello, V.

    2008-01-01

    The SPADA (SPAce Dosimetry for Astronauts) project is a part of an extensive teamwork that aims to optimize shielding solutions against space radiation. Shielding is indeed all irreplaceable tool to reduce, exposure of crews of future Moon and Mars missions. We concentrated our studies on two flexible materials, Kevlar (R) and Nextel (R), because of their ability to protect space infrastructure from micro meteoroids measured radiation hardness of these shielding materials and compared to polyethylene, generally acknowledged as the most effective space radiation shield with practical applications in spacecraft. Both flight test (on the International Space Station and on the Russian FOTON M3 rocket), with passive dosimeters and accelerator-based experiments have been performed. Accelerator tests using high-energy Fe ions have demonstrated that Kevlar is almost as effective as polyethylene in shielding heavy ions, while Nextel is a poor shield against, high-charge and -energy particles. Preliminary results from spaceflight, however, show that for the radiation environment ill low-Earth orbit. dominated by trapped protons, thin shields of Kevlar and Nextel provide limited reduction.

  7. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  8. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A., E-mail: a.ferrari@hzdr.de [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Amato, E. [Department of Radiological Sciences, Messina University (Italy); Margarone, D. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); PALS Centre, Za Slovankou, 18200 Prague (Czech Republic); Cowan, T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Korn, G. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 10{sup 9}–10{sup 10} for the electron beams and 10{sup 10}–10{sup 12} for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the “source terms” in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  9. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

  10. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  11. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  12. Analysis of ferromagnetic shielding of the ITER NBI

    International Nuclear Information System (INIS)

    Roccella, M.; Lucca, F.; Roccella, R.; Cocilovo, V.; Ramogida, G.; Portone, A.; Tanga, A.; Formisano, A.; Martone, R.

    2006-01-01

    thickness, the coil shapes and the NBI geometry, without completely remaking the FEM model, a complete parametric modeling approach has been used. These features of the component together with the box length, height and width and the number of elements inside the ferromagnetic layer, can be changed, by simply changing a parameter value. This possibility has been used to optimize the shielding thickness and to face geometrical minor changes of the various NBI design options. At the end, the currents in the active shield coils have been optimized to achieve an overall shielding effectiveness compatible with the NBI requirements. (author)

  13. Theoretical evaluation of self-shielding factors due to scattering resonances in foils

    International Nuclear Information System (INIS)

    Selander, W.N.

    1960-06-01

    A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)

  14. Optimization Model for Uncertain Statistics Based on an Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yongchao Hou

    2014-01-01

    Full Text Available Uncertain statistics is a methodology for collecting and interpreting the expert’s experimental data by uncertainty theory. In order to estimate uncertainty distributions, an optimization model based on analytic hierarchy process (AHP and interpolation method is proposed in this paper. In addition, the principle of least squares method is presented to estimate uncertainty distributions with known functional form. Finally, the effectiveness of this method is illustrated by an example.

  15. Optimizing Hadoop Performance for Big Data Analytics in Smart Grid

    Directory of Open Access Journals (Sweden)

    Mukhtaj Khan

    2017-01-01

    Full Text Available The rapid deployment of Phasor Measurement Units (PMUs in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.

  16. A practical look at Monte Carlo variance reduction methods in radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Olsher, Richard H. [Los Alamos National Laboratory, Los Alamos (United States)

    2006-04-15

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission.

  17. A practical look at Monte Carlo variance reduction methods in radiation shielding

    International Nuclear Information System (INIS)

    Olsher, Richard H.

    2006-01-01

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission

  18. About the Scythian Shields

    Directory of Open Access Journals (Sweden)

    About the Scythian Shields

    2017-10-01

    Full Text Available Shields played major role in the armament system of the Scythians. Made from organic materials, they are poorly traced on the materials of archaeological excavations. Besides, scaly surface of shields was often perceived in practice as the remnants of the scaly armor. E. V. Chernenko was able to discern the difference between shields’ scaly plates and armor scales. The top edge of the scales was bent inwards, and shield plates had a wire fixation. These observations let significantly increase the number of shields, found in the burial complexes of the Scythians. The comparison of archaeological materials and the images of Scythian warriors allow distinguishing the main forms of Scythian shields. All shields are divided into fencing shields and cover shields. The fencing shields include round wooden shields, reinforced with bronze sheet, and round moon-shaped shields with a notch at the top, with a metal scaly surface. They came to the Scythians under the Greek influence and are known in the monuments of the 4th century BC. Oval shields with scaly surface (back cover shields were used by the Scythian cavalry. They protected the rider in case of frontal attack, and moved back in case of maneuver or closein fighting. Scythian battle tactics were based on rapid approaching the enemy and throwing spears and further rapid withdrawal. Spears stuck in the shields of enemies, forcing them to drop the shields, uncover, and in this stage of the battle the archers attacked the disorganized ranks of the enemy. That was followed by the stage of close fight. Oval form of a wooden shield with leather covering was used by the Scythian infantry and spearmen. Rectangular shields, including wooden shields and the shields pleached from rods, represented a special category. The top of such shield was made of wood, and a pleached pad on leather basis was attached to it. This shield could be a reliable protection from arrows, but it could not protect against javelins

  19. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  20. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  1. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  2. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  3. Implementation of Associated Hermite FDTD Method in Handling INBCs for Shielding Analysis

    Directory of Open Access Journals (Sweden)

    Lihua Shi

    2016-01-01

    Full Text Available For modeling of electrically thin conductive shields, the unconditionally stable Associated Hermite (AH FDTD scheme is combined with the impedance network boundary conditions (INBCs in this paper. The two-port network equations of INBCs in frequency domain are transformed into AH domain to represent the relationship of tangential components of the electric and magnetic fields at faces of the shield. The established AH-INBCs shielding boundaries are incorporated into a set of implicit equations to calculate the expansion coefficients vectors of electromagnetic fields in the computational domain. The method is free of CFL condition and no convolution integral operation for solving the conventional INBCs-FDTD is involved. Numerical example shows that, compared with analytical solutions and conventional FDTD method, the proposed algorithm is efficient and accurate.

  4. Strengthening the composite protective shield of light-weight ship against ballistic impacts: analytical and experimental

    Directory of Open Access Journals (Sweden)

    I. Jalili

    Full Text Available Light and medium protection for small naval vessels guarantees their high performance and safety during the guard duties. In this study, a protective shield fabricated from Dyneema HB25 fibers has been utilized as an add-on layer on the coast guard boat hull. Finite element analyses have been conducted using Chocron's model. Two standards of gun-fire were employed and various thicknesses of the composite layers were examined by ballistic impacts. Afterward, numerical simulations results compared with experiments and revealed a good consistency. Finally, some graphs have been presented to help designers for choosing more convenient shield based on protection and weight characteristics after judgment of vessel requirements.

  5. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction

    International Nuclear Information System (INIS)

    Raissaki, Maria; Perisinakis, Kostas; Damilakis, John; Gourtsoyiannis, Nicholas

    2010-01-01

    CT scans of the brain, sinuses and petrous bones performed as the initial imaging test for a variety of indications have the potential to expose the eye-lens, considered among the most radiosensitive human tissues, to a radiation dose. There are several studies in adults discussing the reduction of orbital dose resulting from the use of commercially available bismuth-impregnated latex shields during CT examinations of the head. To evaluate bismuth shielding-induced artefacts and to provide suggestions for optimal eye-lens shielding in paediatric head CT. A bismuth shield was placed over the eyelids of 60 consecutive children undergoing head CT. Images were assessed for the presence and severity of artefacts with regard to eye-shield distance and shield wrinkling. An anthropomorphic paediatric phantom and thermoluminescence dosimeters (TLDs) were used to study the effect of eye lens-to-shield distance on shielding efficiency. Shields were tolerated by 56/60 children. Artefacts were absent in 45% of scans. Artefacts on orbits, not affecting and affecting orbit evaluation were noted in 39% and 14% of scans, respectively. Diagnostically insignificant artefacts on intracranial structures were noted in 1 case (2%) with shield misplacement. Mean eye-lens-to-shield distance was 8.8 mm in scans without artefacts, and 4.3 mm and 2.2 mm in scans with unimportant and diagnostically important artefacts, respectively. Artefacts occurred in 8 out of 9 cases with shield wrinkling. Dose reduction remained unchanged for different shield-to-eye distances. Bismuth shielding-related artefacts occurring in paediatric head CT are frequent, superficial and diagnostically insignificant when brain pathology is assessed. Shields should be placed 1 cm above the eyes when orbital pathology is addressed. Shield wrinkling should be avoided. (orig.)

  6. ICRS1, Proceedings of the First Radiation Shielding Symposium, Cambridge, UK 1958

    International Nuclear Information System (INIS)

    Goebelbecker, Hans-Juergen

    2008-01-01

    Description: The papers of the European Atomic Energy Society Symposium VI-58 on radiation shielding (ICRS1) held at Caius College, Cambridge England from 26 to 29 August 1958 are collected here for the first time in electronic form. This symposium was organised in connection with the Second Atoms for Peace Conference held in Geneva Held in Geneva from 1 to 13 September 1958. The Topics discussed covered gamma rays and neutron radiation; the Methods discussed were analytical approaches, semi-empirical Methods, simple computer codes, Monte Carlo method. Little quality nuclear data for shielding calculations was available and the presentations would concentrate on removal cross-sections and build-up factors. Experimental techniques in support to estimate the effective shielding properties of materials were discussed such as general experimental shielding techniques and experiments on neutron attenuation in different materials and on concrete as shield. Foil detectors for spectra measurements and determination of dose rates were mainly used. The typical issues addressed were gamma-heating, gamma spectra, neutron induced gammas, fission products gamma spectra, skyshine radiation and neutron ducts - streaming. Most participants were researchers from the naval and aeronautics sector

  7. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  8. Radiation shielding design for DECY-13 cyclotron using Monte Carlo method

    International Nuclear Information System (INIS)

    Rasito T; Bunawas; Taufik; Sunardi; Hari Suryanto

    2016-01-01

    DECY-13 is a 13 MeV proton cyclotron with target H_2"1"8O. The bombarding of 13 MeV protons on target H_2"1"8O produce large amounts of neutrons and gamma radiation. It needs the efficient radiation shielding to reduce the level of neutrons and gamma rays to ensure safety for workers and public. Modeling and calculations have been carried out using Monte Carlo method with MCNPX code to optimize the thickness for the radiation shielding. The calculations were done for radiation shielding of rectangular space room type with the size of 5.5 m x 5 m x 3 m and thickness of 170 cm made from lightweight concrete types of portland. It was shown that with this shielding the dose rate outside the wall was reduced to 1 μSv/h. (author)

  9. Application of Advanced Radiation Shielding Materials to Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  10. Gonad shielding in paediatric pelvic radiography: Effectiveness and practice

    International Nuclear Information System (INIS)

    Warlow, Thomas; Walker-Birch, Peter; Cosson, Philip

    2014-01-01

    The use of Gonad Shields (GS) has been advocated during pelvic radiography since the 1950's, particularly in children where the risks from radiation are higher. Previous literature reports that GS are often omitted and rarely used correctly. Objectives: Presentation of findings concerning use of GS in the context of previous data in the literature, and recommend any appropriate actions. Method: A retrospective analysis of images from an existing DICOM Digital Teaching Library (DTL) was conducted. Images of the pelvis from paediatric patients were reviewed and scored on whether a GS was present and (if present) whether the shield was considered to adequately protect the gonads. Results: 130 images were reviewed. 70 male and 60 female. The gonads were deemed to be protected by a shield in 22 images (17%), inadequately protected when a shield was used in 44 images (34%) with the remaining 64 images (49%) having no shield at all. A lack of adequate protection for the gonads was found, with females more likely to be inadequately protected than males (χ 2  = 19.009, df = 1, p < 0.001). These findings become more clinically significant when reports of ovaries lying outside of the pelvic basin (in paediatric patients) are considered. Conclusions: The current practice of gonad shielding is neither effective nor beneficial for female paediatric patients, incorrect shield placement can often require repeat exposures. This finding is commensurate with previous literature. Therefore, gonad shielding is no longer an appropriate optimization tool for female paediatric patients during conventional radiography of the pelvis, and should be abandoned

  11. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  12. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  13. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  14. Shielding chalculations in x-rays installations for medical diagnosis. description of the method and computational solution

    International Nuclear Information System (INIS)

    Borroto Valdes, M.; Saez, D.G.

    1992-01-01

    Shielding requirements for x-rays diagnostic installations are investigated. The description of an entirely analytical method for calculation of thickness, based in the papers of Simpkin and NCRP49, is presented. Considerations described in specialized method to solving this problem. A program for microcomputer IBM and compatibles ones is available for estimation of minimum shielding requirements in lead, concrete and steel. Similar results were obtained from comparing with others authors

  15. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  16. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  17. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  18. Optimized design of shields for diagnostic X rays with NCRP 147 technique

    International Nuclear Information System (INIS)

    Gama T, G.

    2006-01-01

    A comparison among the design techniques of shielding for X-ray diagnostic rooms with the NCRP 49 (1976) report technique, AAPM 39 (1993) Y the one of the NCRP 147 (2005) technique. The designs correspond to a room of conventional X-rays, one of fluoroscopy, one of tomography Y one of mammography. In all the cases it demonstrates that the NCRP 49 technique overestimate the shieldings. The causes of the overestimation of the NCRP 49 can be attributed to: a) high values of the work charge that don't consider the spectral fluence of the photons that are present in each room, b) to the differences in the values of the kerma in air without attenuation for the dispersed primary radiation Y of leakage among both reports. (Author)

  19. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  20. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  1. Shielding member for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori

    1997-06-30

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  2. Effectiveness of shield materials in the design of the PFBR irradiated fuel subassembly shipping cask

    International Nuclear Information System (INIS)

    Radhakrishnan, G.

    2003-01-01

    Fuel subassemblies are irradiated inside the reactor core till they achieve the required burn up and after that they are cooled to permissible decay power level in in-vessel and ex-vessel storage places. Subsequently they are transported to reprocessing plants by means of shipping casks. Shield for the shipping cask has to be designed such a way that it has to comply with the ICRP recommended dose levels of less than 2 mSv/h on contact at the outer surface of the cask and less than 100 mSv/h at 1 m distance from the outer surface of the cask. In this paper, shield design of a typical PFBR irradiated fuel subassembly, which can transport three subassemblies at a time, is narrated. Considering the neutron and fission product and induced gamma rays emitted by typical PFBR irradiated core central subassembly subjected to a maximum burn up, as the source term shield design optimizations have been done. One-dimensional discrete ordinates transport theory computer code ANISN and point kernel computer code QAD-CGGP have been used in complement to carry out the shield design optimizations. Cast-iron, carbon steel, stainless steel 304 and lead and permali have been considered for shield materials. Shield requirements on top, bottom and along the axial height of the shipping cask have also been estimated. (author)

  3. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  4. Effective factors on optimizing banks’ balance sheet using fuzzy analytical hierarchy process

    Directory of Open Access Journals (Sweden)

    Shoja Rezaei

    2013-11-01

    Full Text Available Every bank seeks methods to optimize its assets and liabilities, thus the main subject is managing assets-liabilities in the balance sheet and the main question is by which factor banks will be enabled to have an optimized combination of assets and liabilities in a common level of risk to get the most return. This case study is dedicated to Refah bank and is an applicable study. The data has collected from the headquarter by a questionnaire and finally effective factors weight on optimizing bank balance sheet determined by using Fuzzy analytical hierarchy process. Results showed that revenue has more effect on optimizing for %39.5 and also loan to deposit ratio for %.74, regarding revenue as a symbol of efficiency in banks, it seems to be the most important factor and goal in banking industry. Furthermore banks need to have some liquidity to respond customers demand to cover one of the most important risks of banking. This factor importance determined to be %18 in Refah Bank by using model and experts view.

  5. Analytical study on the criticality of the stochastic optimal velocity model

    International Nuclear Information System (INIS)

    Kanai, Masahiro; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2006-01-01

    In recent works, we have proposed a stochastic cellular automaton model of traffic flow connecting two exactly solvable stochastic processes, i.e., the asymmetric simple exclusion process and the zero range process, with an additional parameter. It is also regarded as an extended version of the optimal velocity model, and moreover it shows particularly notable properties. In this paper, we report that when taking optimal velocity function to be a step function, all of the flux-density graph (i.e. the fundamental diagram) can be estimated. We first find that the fundamental diagram consists of two line segments resembling an inversed-λ form, and next identify their end-points from a microscopic behaviour of vehicles. It is notable that by using a microscopic parameter which indicates a driver's sensitivity to the traffic situation, we give an explicit formula for the critical point at which a traffic jam phase arises. We also compare these analytical results with those of the optimal velocity model, and point out the crucial differences between them

  6. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    International Nuclear Information System (INIS)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García; Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D.; Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz

    2015-01-01

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs

  7. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García [Instituto de Astronomía Teórica y Experimental, CONICET-UNC, Laprida 854, X5000BGR, Córdoba (Argentina); Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D. [Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz, E-mail: andresnicolas@oac.uncor.edu [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.

  8. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  9. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  10. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  11. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  12. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  13. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  14. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  15. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    Science.gov (United States)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  16. Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Eversole, R.E.

    1977-10-01

    The ORNL radioactive gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations

  17. Helical tomotherapy shielding calculation for an existing LINAC treatment room: sample calculation and cautions

    International Nuclear Information System (INIS)

    Wu Chuan; Guo Fanqing; Purdy, James A

    2006-01-01

    This paper reports a step-by-step shielding calculation recipe for a helical tomotherapy unit (TomoTherapy Inc., Madison, WI, USA), recently installed in an existing Varian 600C treatment room. Both primary and secondary radiations (leakage and scatter) are explicitly considered. A typical patient load is assumed. Use factor is calculated based on an analytical formula derived from the tomotherapy rotational beam delivery geometry. Leakage and scatter are included in the calculation based on corresponding measurement data as documented by TomoTherapy Inc. Our calculation result shows that, except for a small area by the therapists' console, most of the existing Varian 600C shielding is sufficient for the new tomotherapy unit. This work cautions other institutions facing the similar situation, where an HT unit is considered for an existing LINAC treatment room, more secondary shielding might be considered at some locations, due to the significantly increased secondary shielding requirement by HT. (note)

  18. Research on Dynamic Models and Performances of Shield Tunnel Boring Machine Cutterhead Driving System

    Directory of Open Access Journals (Sweden)

    Xianhong Li

    2013-01-01

    Full Text Available A general nonlinear time-varying (NLTV dynamic model and linear time-varying (LTV dynamic model are presented for shield tunnel boring machine (TBM cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR and optimal transmission ratio (OTR are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.

  19. Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.

    Science.gov (United States)

    Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas

    2013-01-01

    We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles.

    Science.gov (United States)

    Calvano, C D; Aresta, A; Iacovone, M; De Benedetto, G E; Zambonin, C G; Battaglia, M; Ditonno, P; Rutigliano, M; Bettocchi, C

    2010-03-11

    Protein analysis in biological fluids, such as urine, by means of mass spectrometry (MS) still suffers for insufficient standardization in protocols for sample collection, storage and preparation. In this work, the influence of these variables on healthy donors human urine protein profiling performed by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was studied. A screening of various urine sample pre-treatment procedures and different sample deposition approaches on the MALDI target was performed. The influence of urine samples storage time and temperature on spectral profiles was evaluated by means of principal component analysis (PCA). The whole optimized procedure was eventually applied to the MALDI-TOF-MS analysis of human urine samples taken from prostate cancer patients. The best results in terms of detected ions number and abundance in the MS spectra were obtained by using home-made microcolumns packed with hydrophilic-lipophilic balance (HLB) resin as sample pre-treatment method; this procedure was also less expensive and suitable for high throughput analyses. Afterwards, the spin coating approach for sample deposition on the MALDI target plate was optimized, obtaining homogenous and reproducible spots. Then, PCA indicated that low storage temperatures of acidified and centrifuged samples, together with short handling time, allowed to obtain reproducible profiles without artifacts contribution due to experimental conditions. Finally, interesting differences were found by comparing the MALDI-TOF-MS protein profiles of pooled urine samples of healthy donors and prostate cancer patients. The results showed that analytical and pre-analytical variables are crucial for the success of urine analysis, to obtain meaningful and reproducible data, even if the intra-patient variability is very difficult to avoid. It has been proven how pooled urine samples can be an interesting way to make easier the comparison between

  1. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  2. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Science.gov (United States)

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  3. Homogenized blocked arcs for multicriteria optimization of radiotherapy: Analytical and numerical solutions

    International Nuclear Information System (INIS)

    Fenwick, John D.; Pardo-Montero, Juan

    2010-01-01

    Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is

  4. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  5. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    Science.gov (United States)

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  7. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  8. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  9. Building a Model for Optimization of Informational-Analytical Ensuring of Cost Management of Industrial Enterprise

    Directory of Open Access Journals (Sweden)

    Lisovskyi Ihor V

    2015-09-01

    Full Text Available The article examines peculiarities of building a model of informational-analytical optimization of cost management. The main sources of information together with approaches to cost management of industrial enterprises have been identified. In order to ensure the successful operation of enterprise in the conditions of growing manifestations of crisis, a continuous improving of the system for enterprise management along with the most important elements, which are necessary for its normal functioning, should be carried out. One of these so important elements are costs of enterprise. Accordingly, for an effective cost management, the most appropriate management approaches and tools must be used, based on a proper informational-analytical support of all processes. The article proposes an optimization model of informationalanalytical ensuring of cost management of industrial enterprises, which will serve as a ground for more informed and economically feasible solutions. A combination of best practices and tools to improve the efficiency of enterprise management has been proposed

  10. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  11. Methods for calculating radiation attenuation in shields

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J; Bueneman, D; Etemad, A; Lafore, P; Moncassoli, A M; Penkuhn, H; Shindo, M; Stoces, B

    1964-10-01

    In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In

  12. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  13. A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Sarfaraz Nawaz

    2017-07-01

    Full Text Available In this paper, a novel analytical technique is proposed to determine the optimal size and location of shunt capacitor units in radial distribution systems. An objective function is formulated to reduce real power loss, to improve the voltage profile and to increase annual cost savings. A new constant, the Loss Sensitivity Constant (LSC, is proposed here. The value of LSC decides the location and size of candidate buses. The technique is demonstrated on an IEEE-33 bus system at different load levels and the 130-bus distribution system of Jamawa Ramgarh village, Jaipur city. The obtained results are compared with the latest optimization techniques to show the effectiveness and robustness of the proposed technique.

  14. Neutron streaming analysis for shield design of FMIT Facility

    International Nuclear Information System (INIS)

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe

  15. SINEX: SCALE shielding analysis GUI for X-Windows

    International Nuclear Information System (INIS)

    Browman, S.M.; Barnett, D.L.

    1997-12-01

    SINEX (SCALE Interface Environment for X-windows) is an X-Windows graphical user interface (GUI), that is being developed for performing SCALE radiation shielding analyses. SINEX enables the user to generate input for the SAS4/MORSE and QADS/QAD-CGGP shielding analysis sequences in SCALE. The code features will facilitate the use of both analytical sequences with a minimum of additional user input. Included in SINEX is the capability to check the geometry model by generating two-dimensional (2-D) color plots of the geometry model using a new version of the SCALE module, PICTURE. The most sophisticated feature, however, is the 2-D visualization display that provides a graphical representation on screen as the user builds a geometry model. This capability to interactively build a model will significantly increase user productivity and reduce user errors. SINEX will perform extensive error checking and will allow users to execute SCALE directly from the GUI. The interface will also provide direct on-line access to the SCALE manual

  16. An analytic approach to optimize tidal turbine fields

    Science.gov (United States)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  17. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E

    2014-01-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  18. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  19. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  20. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  1. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  2. Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Eversole, R.E.; Mouring, R.W.

    1983-04-01

    The ORNL gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and the results are reported herein. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations

  3. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    Science.gov (United States)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  4. Monte Carlo simulations of a D-T neutron generator shielding for landmine detection

    International Nuclear Information System (INIS)

    Reda, A.M.

    2011-01-01

    Shielding for a D-T sealed neutron generator has been designed using the MCNP5 Monte Carlo radiation transport code. The neutron generator will be used in field for the detection of explosives, landmines, drugs and other 'threat' materials. The optimization of the detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. - Highlights: → A landmine detection system based on neutron fast/slow analysis has been designed. → Shielding for a D-T sealed neutron generator tube has been designed using Monte Carlo radiation transport code. → Detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. → The signal-to-background ratio optimized at one position for all depths.

  5. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  6. Experimental and analytical study for demonstration program on shielding of casks for high-level wastes

    International Nuclear Information System (INIS)

    Ueki, K.; Nakazawa, M.; Hattorl, S.; Ozaki, S.; Tamaki, H.; Kadotani, H.; Ishizuka, T.; Ishikawa, S.

    1993-01-01

    The following remarks were obtained from the experiment and the DOT 3.5 and the MCNP analyses on the gamma ray and the neutron dose equivalent rates in the cask of interest. 1. The cask has thinner neutron shielding parts around the trunnions. Significant neutrons streaming around the trunnion parts was observed which was also cleared by the MCNP analysis for the 252 Cf source experiment. Accordingly, detailed neutron streaming calculations are required to evaluate the dose levels around the trunnions when loading the vitrified high-level wastes. 2. The room-scattered obstructive neutrons, mainly originating from the neutrons penetrating around the trunnions, at the top and the bottom of the cask are reduced significantly by preparing the water tank at the top and the water layer at the bottom. Therefore, a more accurate experiment is to be carried out in the future shielding experiment especially for neutrons. However, because the water tank and the layer do not exist in the actual high-level wastes transport cask, the experiment without the water tank and layer are not dispensable to demonstrate the transport conditions of the actual cask, too. 3. The gamma-ray and the neutron dose equivalent rate distributions obtained from the DOT 3.5 and the MCNP calculations, respectively, agreed closely with the measured values in the cask areas of interest. Accordingly, the DOT 3.5 code and the MCNP code with the NESX estimator can be employed not only for the shielding analysis of the future experiments, but also for making a safety analysis report of high-level wastes transport casks. (J.P.N.)

  7. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    Science.gov (United States)

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  8. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  9. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  10. Analysis of crack-formation in the shielding concrete of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Linsbauer, H.; Maydl, P.

    1978-01-01

    Within a short time after the start-up of the reactor several cracks appeared at the concrete surface and the number and width of the cracks had grown till now. Experimental and theoretical analysis were made in order to investigate the origin of the cracks and to prevent further crack increase. Crack movement was measured by inductive gages and simultaneously the temperature of the cooling water in the reactor tank at the top and at the bottom as well as the air and the concrete temperature were recorded. The calculations of the thermal stresses were made in two independent ways: 1. Analytically, simulating the shielding concrete as an infinite hollow cylinder of constant thickness and 2. Using the Finite Element method, for a better description of the geometry. It was concluded that the cracks of the shielding concrete are exclusively caused by the thermal stresses. The thermal insulation at the lower part of the shielding is not effective. The structural system of the shielding concrete as a monolithic block without joints produces automatically tensile stresses

  11. Influence of collective nonideal shielding on fusion reaction in partially ionized classical nonideal plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.

  12. Analytical insights into optimality and resonance in fish swimming

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  13. Autonomic urban traffic optimization using data analytics

    OpenAIRE

    Garriga Porqueras, Albert

    2017-01-01

    This work focuses on a smart mobility use case where real-time data analytics on traffic measures is used to improve mobility in the event of a perturbation causing congestion in a local urban area. The data monitored is analysed in order to identify patterns that are used to properly reconfigure traffic lights. The monitoring and data analytics infrastructure is based on a hierarchical distributed architecture that allows placing data analytics processes such as machine learning close to the...

  14. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  15. Criticality safety and shielding design issues in the development of a high-capacity cask for truck transport

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks In 1992. The GA-4 and GA-9 Casks are high-capacity legal weight truck casks designed to transport light water reactor spent fuel assemblies. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for initial enrichments over 3.0 wt% U-235. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA has performed burnup credit analysis which is included in the Safety Analysis Report for Packaging (SARP). The GA-9 Cask can meet the criticality safety requirements using the ''fresh fuel'' assumption. Our approach to shielding design is to optimize the GA-4 and GA-9 Cask shielding configurations for minimum weights and maximum payloads. This optimization involves the use of the most effective shielding material, square cross-section geometry with rounded corners and tapered neutron shielding sections in the non-fuel regions

  16. Analytical methods of optimization

    CERN Document Server

    Lawden, D F

    2006-01-01

    Suitable for advanced undergraduates and graduate students, this text surveys the classical theory of the calculus of variations. It takes the approach most appropriate for applications to problems of optimizing the behavior of engineering systems. Two of these problem areas have strongly influenced this presentation: the design of the control systems and the choice of rocket trajectories to be followed by terrestrial and extraterrestrial vehicles.Topics include static systems, control systems, additional constraints, the Hamilton-Jacobi equation, and the accessory optimization problem. Prereq

  17. Analytic Approximation to Radiation Fields from Line Source Geometry

    International Nuclear Information System (INIS)

    Michieli, I.

    2000-01-01

    Line sources with slab shields represent typical source-shield configuration in gamma-ray attenuation problems. Such shielding problems often lead to the generalized Secant integrals of the specific form. Besides numerical integration approach, various expansions and rational approximations with limited applicability are in use for computing the value of such integral functions. Lately, the author developed rapidly convergent infinite series representation of generalized Secant Integrals involving incomplete Gamma functions. Validity of such representation was established for zero and positive values of integral parameter a (a=0). In this paper recurrence relations for generalized Secant Integrals are derived allowing us simple approximate analytic calculation of the integral for arbitrary a values. It is demonstrated how truncated series representation can be used, as the basis for such calculations, when possibly negative a values are encountered. (author)

  18. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  19. Status of shielding analysis methods for transport packages

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Brady, M.C.

    1991-01-01

    Shielding analysis methods for transport packages are becoming more important to the cask designer because optimized cask designs with higher payloads can yield doses near the limits set by regulatory authorities. Uncertainty arising from generation of radiation sources, selection of cross-section data, and the radiation transport methodology must be considered. Recent comparison studies using popular US codes illustrate calculational discrepancies arising from each of these areas

  20. Mathematical modeling of the radiation dose received from photons passing over and through shielding walls in a PET/CT suite

    DEFF Research Database (Denmark)

    Fog, Lotte S; Cormack, John

    2010-01-01

    Given that the financial cost of shielding PET/CT suites can be substantial, it has become increasingly important to be able to accurately assess the thickness of shielding required for barriers and whether it is necessary to extend such shielding all the way to the ceiling. The overall shielding...... requirement for a PET/CT installation must take into account both 511 keV gamma ray emissions from PET scans and lower energy x-ray scatter from CT scans. This paper deals with the overall impact of emissions from both modalities. Radiation exposure from both scatter over shielding barriers as well...... as transmission through these barriers is taken into account. A series of simulations of the dose received by a person positioned behind a shielding barrier in a typical PET/CT scanning suite were carried out using both Monte Carlo and analytical models. The transmission through lead barriers was found to be very...

  1. Criticality safety and shielding analysis of WWER-440 fuel configurations

    International Nuclear Information System (INIS)

    Christoskov, I.

    2008-01-01

    An overview is made of some studies performed on the criticality safety and radiation shielding analysis of irradiated WWER-440 fuel storage and handling configurations. The analytical tools are based on the SCALE 4.4a code system, in combination with the TORT discrete ordinates transport code and the BUGLE-96 cross-sections library. The accuracy of some important results is assessed through comparison with independent evaluations and with measurement data. (author)

  2. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  3. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  4. Evaluation of the shielding integrity of end-shields in PHWR type NPPs

    International Nuclear Information System (INIS)

    Sah, B.M.L.; Ramamirtham, B.; Kutty, B.S.

    1996-01-01

    In the new plants (Narora Atomic Power Plants (NAPP) onwards) relatively higher radiation fields exist on the north and south fuelling machine (FM) vault walls of the E1 100m accessible area passages. These fields were first noticed at NAPS-1 and subsequently at NAPS-2 and KAPS-1. Such surveys done at RAPS have indicated that the fields on these walls would come out to be quite low (only 1-2 mR/h) from sources other than that arising from 41 Ar contamination. RAPS/MAPS experience pointed to adequacy of shielding of the FM vault walls and sufficient overall shielding thickness of the end-shields. Further, radiometry tests of end-shields carried out at Kaiga and RAPP 3 and 4 indicated fairly satisfactory and uniform filling of balls. Hence, incomplete filling of water column of the end-shields due to any venting problem was suspected to be one possible reason for the observed high fields in NAPS and Kakrapar Atomic Power Station (KAPS). Since the presence of high radiation fields, both neutron and gamma, is of long-term concern, a special study/measurement of radiation levels on reactor face during high power operation was undertaken. In order to compare the shielding integrity of the older (RAPS/MAPS solid plate type shielding) and newer (NAPS/KAPS steel ball-filled type) end shields, these experiments were done at MAPS-2 and NAPS-2. (author). 2 refs., 2 tabs

  5. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  6. Improvement of top shield analysis technology for CANDU 6 reactor

    International Nuclear Information System (INIS)

    Kim, Kyo Yoon; Jin, Young Kwon; Lee, Sung Hee; Moon, Bok Ja; Kim, Yong Il

    1996-07-01

    As for Wolsung NPP unit 1, radiation shielding analysis was performed by using neutron diffusion codes, one-dimensional discrete ordinates code ANISN, and analytical methods. But for Wolsung NPP unit 2, 3, and 4, two-dimensional discrete ordinates code DOT substituted for neutron diffusion codes. In other words, the method of analysis and computer codes used for radiation shielding of CANDU 6 type reactor have been improved. Recently Monte Carlo MCNP code has been widely utilized in the field of radiation physics and other radiation related areas because it can describe an object sophisticately by use of three-dimensional modelling and can adopt continuous energy cross-section library. Nowadays Monte Carlo method has been reported to be competitive to discrete ordinate method in the field of radiation shielding and the former has been known to be superior to the latter for complex geometry problem. However, Monte Carlo method had not been used for radiation streaming calculation in the shielding design of CANDU type reactor. Neutron and gamma radiations are expected to be streamed from calandria through the penetrations to reactivity mechanism deck (R/M deck) because many reactivity control units which are established on R/M deck extend from R/M deck to calandria within penetrations, which are provided by guide tube extensions. More precise estimation of radiation streaming is required because R/M deck is classified as an accessible area where atomic worker can access when necessary. Therefore neutron and gamma dose rates were estimated using MCNP code on the R/M deck in the top shield system of CANDU 6 reactor. 9 tabs., 17 figs., 21 refs. (Author)

  7. System optimization for continuous on-stream elemental analysis using low-output isotopic neutron sources

    International Nuclear Information System (INIS)

    Rizk, R.A.M.

    1989-01-01

    In continuous on-stream neutron activation analysis, the material to be analyzed may be continuously recirculated in a closed loop system between an activation source and a shielded detector. In this paper an analytical formulation of the detector response for such a system is presented. This formulation should be useful in optimizing the system design parameters for specific applications. A study has been made of all parameters that influence the detector response during on-stream analysis. Feasibility applications of the method to solutions of manganese and vanadium using a 5 μg 252 Cf neutron source are demonstrated. (author)

  8. A DGTD Scheme for Modeling the Radiated Emission From DUTs in Shielding Enclosures Using Near Electric Field Only

    KAUST Repository

    Li, Ping

    2016-01-13

    To meet the electromagnetic interference regulation, the radiated emission from device under test such as electronic devices must be carefully manipulated and accurately characterized. Instead of resorting to the direct far-field measurement, in this paper, a novel approach is proposed to model the radiated emission from electronic devices placed in shielding enclosures by using the near electric field only. Based on the Schelkkunoff’s equivalence principle and Raleigh–Carson reciprocity theorem, only the tangential components of the electric field over the ventilation slots and apertures of the shielding enclosure are sufficient to obtain the radiated emissions outside the shielding box if the inside of the shielding enclosure was filled with perfectly electric conductor (PEC). In order to efficiently model wideband emission, the time-domain sampling scheme is employed. Due to the lack of analytical Green’s function for arbitrary PEC boxes, the radiated emission must be obtained via the full-wave numerical methods by considering the total radiated emission as the superposition between the direct radiation from the equivalent magnetic currents in free space and the scattered field generated by the PEC shielding box. In this study, the state-of-the-art discontinuous Galerkin time-domain (DGTD) method is utilized, which has the flexibility to model irregular geometries, keep high-order accuracy, and more importantly involves only local operations. For open-region problems, a hybridized DGTD and time-domain boundary integration method applied to rigorously truncate the computational domain. To validate the proposed approach, several representative examples are presented and compared with both analytical and numerical results.

  9. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  10. IMRT treatment of anal cancer with a scrotal shield

    International Nuclear Information System (INIS)

    Hood, Rodney C.; Wu, Q. Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.

  11. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  12. Simulation of ferromagnetic shielding to the critical current of Bi2223/Ag tape under external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Alamgir, A K M [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya-ku, Yokohama (Japan); Qu Timing [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2007-03-15

    Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I{sub c}(B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I{sub c} behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work.

  13. Simulation of ferromagnetic shielding to the critical current of Bi2223/Ag tape under external fields

    International Nuclear Information System (INIS)

    Gu Chen; Alamgir, A K M; Qu Timing; Han, Z

    2007-01-01

    Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I c (B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I c behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work

  14. Optimizing an immersion ESL curriculum using analytic hierarchy process.

    Science.gov (United States)

    Tang, Hui-Wen Vivian

    2011-11-01

    The main purpose of this study is to fill a substantial knowledge gap regarding reaching a uniform group decision in English curriculum design and planning. A comprehensive content-based course criterion model extracted from existing literature and expert opinions was developed. Analytical hierarchy process (AHP) was used to identify the relative importance of course criteria for the purpose of tailoring an optimal one-week immersion English as a second language (ESL) curriculum for elementary school students in a suburban county of Taiwan. The hierarchy model and AHP analysis utilized in the present study will be useful for resolving several important multi-criteria decision-making issues in planning and evaluating ESL programs. This study also offers valuable insights and provides a basis for further research in customizing ESL curriculum models for different student populations with distinct learning needs, goals, and socioeconomic backgrounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. CASKCODES, Program CAPSIZE Scope KWIKDOSE for Shipping Cask Shielding

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of program or function: CAPSIZE is an interactive program to rapidly determine the likely impact that proposed design objectives might have on the size and capacity of spent fuel casks designed to meet those objectives. 2 - Method of solution: Given the burnup of the spent fuel, its cooling time, the thickness of the internal basket walls, the desired external dose rate, and the nominal weight limit of the load cask, the CAPSIZE program will determine the maximum number of PWR fuel assemblies that may be shipped in a lead-, steel-, or uranium- shielded cask meeting those objectives. Using optimal packing arrangements and shielding requirements input by the user, SCOPE will design a cask to carry a single fuel assembly and then continue incrementing the number of assemblies until one or more of the design limits can no longer be met. KWIKDOSE queries the user for the number of PWR fuel assemblies in a cask, the type of cask and thickness of the shield. Upon getting the necessary input, KWIKDOSE prints out the total dose rate, 10 feet from the centerline of the cask, as a function of the burnup and cooling time of the spent fuel. 3 - Restrictions on the complexity of the problem: The restrictions are subject to the shielding requirements of the shipping cask

  16. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  17. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  18. Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler

    Directory of Open Access Journals (Sweden)

    Zhenhao Tang

    2017-01-01

    Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.

  19. Commissioning of the laboratory of Atucha II NPP. Implementation and optimization of analytical techniques, quality aspects

    International Nuclear Information System (INIS)

    Schoenbrod, Betina; Quispe, Benjamin; Cattaneo, Alberto; Rodriguez, Ivanna; Chocron, Mauricio; Farias, Silvia

    2012-09-01

    Atucha II NPP is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 740 MWe designed by SIEMENSKWU. After some years of delay, this NPP is in advanced construction state, being the beginning of commercial operation expected for 2013. Nucleoelectrica Argentina (N.A.S.A.) is the company in charge of the finalization of this project and the future operation of the plant. The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the stations. The Commissioning Chemistry Division of CNAII is in charge of the commissioning of the demineralization water plant and the organization of the chemical laboratory. The water plant started operating successfully in July 2010 and is providing the plant with nuclear grade purity water. Currently, in the conventional ('cold') laboratory several activities are taking place. On one hand, analytical techniques for the future operation of the plant are being tested and optimized. On the other hand, the laboratory is participating in the cleaning and conservation of the different components of the plant, providing technical support and the necessary analysis. To define the analytical techniques for the normal operation of the plant, the parameters to be measured and their range were established in the Chemistry Manual. The necessary equipment and reagents were bought. In this work, a summary of the analytical techniques that are being implemented and optimized is presented. Common anions (chloride, sulfate, fluoride, bromide and nitrate) are analyzed by ion chromatography. Cations, mainly sodium, are determined by absorption spectrometry. A UV-Vis spectrometer is used to determine silicates, iron, ammonia, DQO, total solids, true color and turbidity. TOC measurements are performed with a TOC analyzer. To optimize the methods, several parameters are evaluated: linearity, detection and quantification limits, precision and

  20. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    Science.gov (United States)

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  1. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  2. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  3. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Akiba, Masato

    2002-07-01

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  4. High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Sviatoslavsky, I.N.

    1987-01-01

    The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m 2 neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10 19 n/cm 2 . In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H 2 O/LiNO 3 layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is 0 C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of ∼2 were found at the hot spots. 2 refs., 6 figs., 2 tabs

  5. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    Science.gov (United States)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass

  6. Integrated evaluation of the geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riograndense Shield, southernmost Brazil.

    Science.gov (United States)

    Hartmann, Léo A; Lopes, William R; Savian, Jairo F

    2016-03-01

    An integrated evaluation of geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riogran-dense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembó terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Canguçu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Caçapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aerogammaspectrometry or aeromagnetometry.

  7. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  8. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  9. Multi-shock Shield Performance at 16.5 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Davis, B. A.

    2014-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multi-shock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multi-shock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multi-shock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multi-shock system will be discussed along with considerations for deployment and improvement.

  10. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  11. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-01-01

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A 3 )], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR 192 Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192 Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A 3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  12. IMRT treatment of anal cancer with a scrotal shield.

    Science.gov (United States)

    Hood, Rodney C; Wu, Q Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Current status on detail design and fabrication techniques development of ITER blanket shield block in Korea

    International Nuclear Information System (INIS)

    Kim, Duck Hoi; Cho, Seungyon; Ahn, Mu-Young; Lee, Eun-Seok; Jung, Ki Jung

    2007-01-01

    The allocation of components and systems to be delivered to ITER on an in-kind basis, was agreed between the ITER Parties. Among parties, Korea agreed to procure inboard blanket modules 1, 2 and 6, which consists of FW and shield block. Regarding shield block the detail design and Fabrication techniques development have been undertaken in Korea. Especially manufacturing feasibility study on shield block had been performed and some technical issues for the fabrication were selected. Based on these results, fabrication techniques using EB welding are being developed. Meanwhile, the detail design of inboard standard module has been carried out. The optimization of flow driver design to improve the cooling performance was executed. And, thermo-hydraulic analysis on half block of inboard standard module was performed. In this study, current status and some results from Fabrication techniques development on ITER blanket shield block are described. The detail design activity and results on shield block are also introduced herein. (orig.)

  14. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  15. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  16. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-05-17

    An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

  17. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  18. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  19. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  20. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  1. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  2. Application of an analytical method for the field calculation in superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.

    1983-01-01

    Superconducting magnets are taking on ever-growing importance due to their increasing prospects of utilization in electrical machines, nuclear fusion, MHD conversion and high-energy physics. These magnets are generally composed of cylindrical or saddle coils, while a ferromagnetic shield is generally situated outside them. This paper uses an analytical method for calculating the magnetic field at every point in a superconducting magnet composed of cylindrical or saddle coils. The method takes into account the real lengths and finite thickness of the coils as well as their radial and axial ferromagnetic shields, if present. The values and distribution of the flux density for some superconducting magnets of high dimensions and high magnetic field, composed of cylindrical or saddle coils, are also given. The results obtained with analytical method are compared with those obtained using numerical methods

  3. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  4. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  5. Self-similar regimes of fast ionization waves in shielded discharge tubes

    International Nuclear Information System (INIS)

    Gerasimov, D.N.; Sinkevich, O.A.

    1999-01-01

    An analytical self-similar solution to the problem of the propagation of a fast ionization wave (FIW) in a long shielded tube is constructed. An expression determining the influence of the device parameters on the FIW velocity is obtained; the velocity is found to be the nonmonotonic function of the working-gas pressure. The theoretical predictions are compared with the results of experiments carried out with helium and nitrogen. The calculation and experimental results agree within experimental errors

  6. Preparation of polymers suitable for radiation shielding and studying its properties (polyester composites with heavy metals salts)

    International Nuclear Information System (INIS)

    Kharita, M. H.; Al-Ajji, Z.; Yousef, S.

    2010-12-01

    Four composites were prepared in this work, based on polyester and heavy metals oxides and salts. The attenuation properties, as well as mechanical properties were studied, and the chemical stability was evaluated. It has been shown, that these composites can be used in radiation shielding for X-rays successfully, and the exact composition of these composites can be optimized according to the radiation energy to prepare the lightest possible shield. (author)

  7. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  8. Problems related to the definition of the shielding of a large fast power reactor

    International Nuclear Information System (INIS)

    Moreau, J.

    Solutions for the shielding of a 1000 MW(e) power plant in the same technological line as Phenix are given. They have been evaluated with a monodimensional transport code. The choice is based on the comparison of their efficiency towards neutrons and on the consequences of their characteristics on the conception of the reactor tank. A few economical considerations give an idea of the influence of the choice in shielding on the cost of the power plant. At last the problem of the optimization possibilities is approached from the designer's point of view

  9. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  10. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  11. CSI-EPT in Presence of RF-Shield for MR-Coils.

    Science.gov (United States)

    Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano

    2017-07-01

    Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.

  12. Technical and economic considerations of using actively shielded superconducting magnets for MR imaging

    International Nuclear Information System (INIS)

    McDougall, L.; Hawksworth, D.

    1986-01-01

    Air-cored superconducting magnets provide uniform fields for MR imaging over large volumes at the lowest cost per gauss of available technologies. Traditional solenoidal designs have an air flux return path and contaminate the clinical environment. Actively shielded magnets comprising one magnet inside another provide the maximum possible fringe field reduction per unit cost. The use of iron to reduce fringe field is more costly than active shielding and much less flexible. Solutions to providing fringe field cancellation are possible using industry standard cryostat dimensions. Costs of materials are minimized by designing with coil optimization routines that include stress parameters

  13. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  14. Passive magnetic shielding in MRI-Linac systems

    Science.gov (United States)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  15. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  16. Optimized debris stoppers for Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Gondarenko, N A; Pereira, N R [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A pulse power generator discharging through an array of wires or a gas cylinder creates a pulse of useful soft x-rays, which is usually followed by deleterious byproducts such as plasma, hot gases and droplets of metal from evaporated electrodes. Separating the extraneous material from the x-rays is done with a debris shield. Optimization of such shields is discussed. (author). 3 figs., 3 refs.

  17. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gong, Yongdeuk; Choi, Daewoong; Han, Bo-Young; Yoo, Jonghyun; Han, Song-Hee; Lee, Yonghoon

    2014-01-01

    Highlights: • Remote LIBS analysis of cerium in the samples located behind a shielding window. • Effects of a shielding window on the remote LIBS analysis were investigated. • Multivariate analysis improves the calibration quality. - Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) has been considered in many applications in nuclear industry. LIBS can be an ideal technique for analyzing the inaccessible nuclear materials typically located behind a shielding window. We report the effect of optical transmittance of the shielding window on the analytical performances of stand-off LIBS for the preliminary surrogate sample of demonstration pyrochemical process, a mixture of cerium oxide (CeO 2 ) and potassium chloride (KCl). A pulsed laser beam was focused on the surface of the sample located 1.45 m away from the stand-off LIBS device. The laser-induced plasma emission was collected through a Schmidt–Cassegrain telescope. LIBS spectra were obtained in an open path and through the shielding window. Univariate calibration curves were obtained using the integrated area of partially resolved Ce I and II lines. The limits of detection (LOD) for Ce were estimated to be 0.046 and 0.061 wt.% for the open-path and through-window analysis, respectively. We found that the through-window LOD is mainly influenced by the optical transmittance of the shielding window and therefore, the through-window LOD can be predicted from the open-path LOD and the optical transmittance of the shielding window. Also, multivariate calibration using partial least squares regression was successfully applied. The quality of calibration could be improved by the multivariate analysis

  18. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongdeuk [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Choi, Daewoong [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Korea Atomic Energy Research Institute, P.O. Box 255, Yuseong, Daejeon 305-353 (Korea, Republic of); Han, Bo-Young, E-mail: byhan@kaeri.re.kr [Korea Atomic Energy Research Institute, P.O. Box 255, Yuseong, Daejeon 305-353 (Korea, Republic of); Yoo, Jonghyun [Applied Spectra, 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of)

    2014-10-15

    Highlights: • Remote LIBS analysis of cerium in the samples located behind a shielding window. • Effects of a shielding window on the remote LIBS analysis were investigated. • Multivariate analysis improves the calibration quality. - Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) has been considered in many applications in nuclear industry. LIBS can be an ideal technique for analyzing the inaccessible nuclear materials typically located behind a shielding window. We report the effect of optical transmittance of the shielding window on the analytical performances of stand-off LIBS for the preliminary surrogate sample of demonstration pyrochemical process, a mixture of cerium oxide (CeO{sub 2}) and potassium chloride (KCl). A pulsed laser beam was focused on the surface of the sample located 1.45 m away from the stand-off LIBS device. The laser-induced plasma emission was collected through a Schmidt–Cassegrain telescope. LIBS spectra were obtained in an open path and through the shielding window. Univariate calibration curves were obtained using the integrated area of partially resolved Ce I and II lines. The limits of detection (LOD) for Ce were estimated to be 0.046 and 0.061 wt.% for the open-path and through-window analysis, respectively. We found that the through-window LOD is mainly influenced by the optical transmittance of the shielding window and therefore, the through-window LOD can be predicted from the open-path LOD and the optical transmittance of the shielding window. Also, multivariate calibration using partial least squares regression was successfully applied. The quality of calibration could be improved by the multivariate analysis.

  19. EBT-P gamma-ray-shielding analysis

    International Nuclear Information System (INIS)

    Gohar, Y.

    1983-01-01

    First, a one-dimensional scoping study was performed for the gamma-ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose-equivalent results are analyzed as a function of the radiation-shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma-ray sources. Also, a detailed biological-dose survey was performed which included: (a) the dose equivalent inside and outside the building, (b) the dose equivalent from the two mazes of the building, and (c) the skyshine contribution to the dose equivalent

  20. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  1. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  2. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  3. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  4. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  5. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  6. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  7. Shielding of the GERDA experiment against external gamma background

    International Nuclear Information System (INIS)

    Barabanov, I.; Bezrukov, L.; Demidova, E.; Gurentsov, V.; Kianovsky, S.; Knoepfle, K.T.; Kornouhkov, V.; Schwingenheuer, B.; Vasenko, A.

    2009-01-01

    The GERmanium Detector Array (GERDA) experiment will search for neutrinoless double beta decay of 76 Ge and is currently under construction at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The basic design of GERDA is the use of cryogenic liquid and water of high purity as a superior shield against the hitherto dominant background from external gamma radiation. In this paper we show by Monte Carlo simulations and analytical calculations how GERDA was designed to suppress this background at Q ββ ( 76 Ge)=2039keV to a level of about 10 -4 cts/(keVkgy).

  8. Design and Characterization of a Gradient-Transparent RF Copper Shield for PET Detector Modules in Hybrid MR-PET Imaging

    Science.gov (United States)

    Berneking, Arne; Trinchero, Riccardo; Ha, YongHyun; Finster, Felix; Cerello, Piergiorgio; Lerche, Christoph; Shah, Nadim Jon

    2017-05-01

    This paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1-fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.

  9. Calculation of the neutrons shielding in cyclotron accelerator

    International Nuclear Information System (INIS)

    Ribeiro, Martha S.; Sanches, Matias P.; Rodrigues, Demerval L.

    2000-01-01

    The objective of radioprotection in cyclotron facilities is to reduce the dose levels in the workplaces to classify them like supervised areas. In this way, the radiation dose rates in areas occupied by workers during cyclotron operations should not exceed 7,5 μSv/h. In controlled areas these levels are not observed and some rigorous controls must be exerted by administrative procedures or protection mechanisms. The Cyclotron Laboratory at IPEN-CNEN/SP has a cyclotron model Cyclone 30, 30 MeV, used for research and it is also used for radioisotopes production for medical diagnosis and therapeutical applications. Among them, 123 I, 67 Ga and 18 F can be pointed. When accelerator is operating, failures in perforations and paths that conduce to room accelerator can be occur and thus, the dose levels are higher than that established by law. For this reason, a review for shielding structure was necessary in order to optimize radiation dose. The purpose of this work was to determine the shielding thickness and adequate material to diminish the dose rates in workplaces to a value below 7,5 μSv/h. It was used a method to employ the equivalent dose value in the facility areas for neutrons fluency rate for the principal reactions in target irradiation processes. The purposed shielding for the vault doors ensures dose levels lower than established limits to supervised areas. (author)

  10. Optimal Background Attenuation for Fielded Radiation Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  11. SHIELD verification and validation report

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation

  12. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  13. Optimized Analytical Method to Determine Gallic and Picric Acids in Pyrotechnic Samples by Using HPLC/UV (Reverse Phase)

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.

    2013-01-01

    A study on the optimization and development of a chromatographic method for the determination of gallic and picric acids in pyrotechnic samples is presented. In order to achieve this, both analytical conditions by HPLC with diode detection and extraction step of a selected sample were studied. (Author)

  14. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  15. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  16. Handout on shielding calculation

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.

    1991-01-01

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  17. Quality control, mean glandular dose estimate and room shielding calculation in mammography

    International Nuclear Information System (INIS)

    Rakotomalala, H.M.

    2014-01-01

    This study focuses in the importance of Radiation Protection in mammography. A good control of the radiological risk depends on the dose optimization, room shielding calculation and the quality of equipment. The work was carried out in the three private medical centers called A, B, and C. Dosimetry estimates were made on the equipment of the three centers. Values has been compared with the Diagnostic Reference Levels established by the International Atomic Energy Agency (IAEA). Conformity control of the radiological devices has also been done with the Mammographic Quality Control Kit of the INSTN-Madagascar. Verifications of shields of the room containing the mammography equipment were done by theoretical calculations using the method provided by NCRP 147. [fr

  18. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  19. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  20. An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident

    International Nuclear Information System (INIS)

    El-Genk, M.; Cronenberg, A.W.

    1978-01-01

    An important problem related to the assessment of the recriticality potential for an LMFBR following a core disruptive accident is an understanding of the freezing phenomena of molten fuel on a cold structure which may prevent fuel dispersal and sunsequent shutdown. Transient analytical freezing and drainage calculations have been applied to molten UO 2 travel through the rather cold lower shield plug of the Clinch River Breeder Reactor (CRBR). The successive approximation technique is used to obtain a solution of the non-linear freezing problem, where such effects as heat generation, viscous heat dissipation, temperature dependent thermophysical properties and a convective boundary condition at the solidification front have been incorporated into the present analytical formulation. Results indicate that previous steady-state analysis overestimate the rate of frozen layer build-up by about a factor of two. However, of primary importance is the driving force for drainage and the diameter of the shield plug flow channel. (Auth.)

  1. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  2. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  3. Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Sic; Park, Ju Kyeong; Lee, Seung Hun; Kim, Yang Su; Lee, Sun Young; Cha, Seok Yong [Dept. of Radiation Oncology, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-12-15

    To reduce the radiation dose to the thyroid that is affected to scattered radiation, the shield was used. And we evaluated the shielding effect for the thyroid during whole brain radiation therapy. To measure the dose of the thyroid, 300cGy were delivered to the phantom using a linear accelerator(Clinac iX VARIAN, USA.)in the way of the 6MV X-ray in bilateral. To measure the entrance surface dose of the thyroid, five glass dosimeters were placed in the 10th slice's surface of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. In the same location, to measure the depth dose of the thyroid, five glass dosimeters were placed in the 10th slice by 2.5 cm depth of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. Entrance surface dose of the thyroid were respectively 44.89 mGy at the unshield, 36.03 mGy at the bismuth shield, 31.03 mGy at the 0.5 mmPb shield and 23.21 mGy at a self-made 1.0 mmPb shield. In addition, the depth dose of the thyroid were respectively 36.10 mGy at the unshield, 34.52 mGy at the bismuth shield, 32.28 mGy at the 0.5 mmPb shield and 25.50 mGy at a self-made 1.0 mmPb shield. The thyroid was affected by the secondary scattering dose and leakage dose outside of the radiation field during whole brain radiation therapy. When using a shield in the thyroid, the depth dose of thyroid showed 11-30% reduction effect and the surface dose of thyroid showed 20-48% reduction effect. Therefore, by using the thyroid shield, it is considered to effectively protect the thyroid and can perform the treatment.

  4. Fabrication of paper-based analytical devices optimized by central composite design.

    Science.gov (United States)

    Hamedpour, Vahid; Leardi, Riccardo; Suzuki, Koji; Citterio, Daniel

    2018-04-30

    In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described. For this purpose, a central composite design was used for evaluation of the effect of device geometry and amount of assay reagents on the efficiency of the proposed device. The factors of interest were printed length, width, and sampling volume as factors related to device geometry, and amounts of the assay reagents polyvinyl alcohol (PVA), NH4OH, and AgNO3. Deposition of the assay reagents was performed by a thermal inkjet printer. The colorimetric assay mechanism of this device is based on the chemical interaction of isoniazid, ammonium hydroxide, and PVA with silver ions to induce the formation of yellow silver nanoparticles (AgNPs). The in situ-formed AgNPs can be easily detected by the naked eye or with a simple flat-bed scanner. Under optimal conditions, the calibration curve was linear in the isoniazid concentration range 0.03-10 mmol L-1 with a relative standard deviation of 3.4% (n = 5 for determination of 1.0 mmol L-1). Finally, the application of the proposed device for isoniazid determination in pharmaceutical preparations produced satisfactory results.

  5. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    Science.gov (United States)

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  6. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  7. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  8. Statistical and optimal learning with applications in business analytics

    Science.gov (United States)

    Han, Bin

    Statistical learning is widely used in business analytics to discover structure or exploit patterns from historical data, and build models that capture relationships between an outcome of interest and a set of variables. Optimal learning on the other hand, solves the operational side of the problem, by iterating between decision making and data acquisition/learning. All too often the two problems go hand-in-hand, which exhibit a feedback loop between statistics and optimization. We apply this statistical/optimal learning concept on a context of fundraising marketing campaign problem arising in many non-profit organizations. Many such organizations use direct-mail marketing to cultivate one-time donors and convert them into recurring contributors. Cultivated donors generate much more revenue than new donors, but also lapse with time, making it important to steadily draw in new cultivations. The direct-mail budget is limited, but better-designed mailings can improve success rates without increasing costs. We first apply statistical learning to analyze the effectiveness of several design approaches used in practice, based on a massive dataset covering 8.6 million direct-mail communications with donors to the American Red Cross during 2009-2011. We find evidence that mailed appeals are more effective when they emphasize disaster preparedness and training efforts over post-disaster cleanup. Including small cards that affirm donors' identity as Red Cross supporters is an effective strategy, while including gift items such as address labels is not. Finally, very recent acquisitions are more likely to respond to appeals that ask them to contribute an amount similar to their most recent donation, but this approach has an adverse effect on donors with a longer history. We show via simulation that a simple design strategy based on these insights has potential to improve success rates from 5.4% to 8.1%. Given these findings, when new scenario arises, however, new data need to

  9. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  10. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  11. Determination of Optimal Opening Scheme for Electromagnetic Loop Networks Based on Fuzzy Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-01-01

    Full Text Available Studying optimization and decision for opening electromagnetic loop networks plays an important role in planning and operation of power grids. First, the basic principle of fuzzy analytic hierarchy process (FAHP is introduced, and then an improved FAHP-based scheme evaluation method is proposed for decoupling electromagnetic loop networks based on a set of indicators reflecting the performance of the candidate schemes. The proposed method combines the advantages of analytic hierarchy process (AHP and fuzzy comprehensive evaluation. On the one hand, AHP effectively combines qualitative and quantitative analysis to ensure the rationality of the evaluation model; on the other hand, the judgment matrix and qualitative indicators are expressed with trapezoidal fuzzy numbers to make decision-making more realistic. The effectiveness of the proposed method is validated by the application results on the real power system of Liaoning province of China.

  12. Radiation shielding

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    Shields for equipment in which ionising radiation is associated with high electrical gradients, for example X-ray tubes and particle accelerators, incorporate a radiation-absorbing metal, as such or as a compound, and are electrically non-conducting and can be placed in the high electrical gradient region of the equipment. Substances disclosed include dispersions of lead, tungsten, uranium or oxides of these in acrylics polyesters, PVC, ABS, polyamides, PTFE, epoxy resins, glass or ceramics. The material used may constitute an evacuable enclosure of the equipment or may be an external shield thereof. (U.K.)

  13. Seismic and cask drop excitation evaluation of the tower shielding reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations. 6 figs

  14. Seismic and cask drop excitation evaluation of the Tower Shielding Reactor

    International Nuclear Information System (INIS)

    Stover, R.L.; Harris, S.P.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations

  15. Computed tomography shielding methods: a literature review.

    Science.gov (United States)

    Curtis, Jessica Ryann

    2010-01-01

    To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning. Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield's effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice. Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose. Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.

  16. Radiation shielding cloth

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Tamura, Shoji.

    1989-01-01

    Radiation shielding cloth having radiation shielding layers comprising a composition of inorganic powder of high specific gravity and rubber are excellentin flexibility and comfortable to put on. However, since they are heavy in the weight, operators are tired upon putting them for a long time. In view of the above, the radiation ray shielding layers are prepared by calendering sheets obtained by preliminary molding of the composition to set the variation of the thickness within a range of +15% to -0% of prescribed thickness. Since the composition of inorganic powder at high specific gravity and rubber used for radiation ray shielding comprises a great amount of inorganic powder at high specific gravity blended therein, it is generally poor in fabricability. Therefor, it is difficult to attain fine control for the sheet thickness by merely molding a composition block at once. Then, the composition is at first preliminarily molded into a sheet-like shape which is somewhat thickener than the final thickness and then finished by calendering, by which the thickness can be reduced in average as compared with conventional products while keeping the prescribed thickness and reducing the weight reduce by so much. (N.H.)

  17. Radiation shielding glass

    International Nuclear Information System (INIS)

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  18. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sayenko, S.Yu.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2015-07-15

    Highlights: • It incorporates all suggestions by the reviewers. • Explanation to each new term is provided and suitable references are given. • Sample identities have been streamlined by revising the text and the tables. • Some figures have been redrawn. - Abstract: Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  19. Shielding modification design of the N.S. Mutsu

    International Nuclear Information System (INIS)

    Yamaji, A.; Miyakoshi, J.; Kageyama, T.; Futamura, Y.

    1983-01-01

    Shielding modification design of the N.S. Mutsu was performed for reducing the radiation doses outside the primary and the secondary shields by providing shields for neutrons streaming through the air gap between the pressure vessel and the primary shield. This was accomplished by replacing parts of the shields and adding new shields in the upper and lower sections of both primary and secondary shields, and also replacing the thermal insulator in the gap. The shielding design calculations were made using one- and two-dimensional discrete ordinates codes and also a point kernel code. Special attention was paid to the calculations of, (1) the neutrons streaming through the gap between the pressure vessel and the primary shield, (2) the radiations transmitted through the radial shield of the core in the primary shield, (3) the radiations transmitted through the upper and lower sections of the secondary shield, and (4) the dose rate equivalent in the accommodation area. Their calculational accuracies were estimated by analyzing various experiments. To support the modification, a variety of experiments and tests were carried out, which were material tests, cooling test of the primary shield, mechanical strength test of the double bottom, trial fabrication tests of new shields, performance degradation test of heavy concrete and duct streaming experiment in the secondary shield. (author)

  20. Radiation shielding curtain

    International Nuclear Information System (INIS)

    Winkler, N.T.

    1976-01-01

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  1. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  2. A Complete First-Order Analytical Solution for Optimal Low-Thrust Limited-Power Transfers Between Coplanar Orbits with Small Eccentricities

    Science.gov (United States)

    Da Silva Fernandes, Sandro; Das Chagas Carvalho, Francisco; Vilhena de Moraes, Rodolpho

    The purpose of this work is to present a complete first order analytical solution, which includes short periodic terms, for the problem of optimal low-thrust limited power trajectories with large amplitude transfers (no rendezvous) between coplanar orbits with small eccentricities in Newtonian central gravity field. The study of these transfers is particularly interesting because the orbits found in practice often have a small eccentricity and the problem of transferring a vehicle from a low earth orbit to a high earth orbit is frequently found. Besides, the analysis has been motivated by the renewed interest in the use of low-thrust propulsion systems in space missions verified in the last two decades. Several researchers have obtained numerical and sometimes analytical solutions for a number of specific initial orbits and specific thrust profiles. Averaging methods are also used in such researches. Firstly, the optimization problem associated to the space transfer problem is formulated as a Mayer problem of optimal control with Cartesian elements - position and velocity vectors - as state variables. After applying the Pontryagin Maximum Principle, successive Mathieu transformations are performed and suitable sets of orbital elements are introduced. The short periodic terms are eliminated from the maximum Hamiltonian function through an infinitesimal canonical transformation built through Hori method - a perturbation canonical method based on Lie series. The new Hamiltonian function, which results from the infinitesimal canonical transformation, describes the extremal trajectories for long duration maneuvers. Closed-form analytical solutions are obtained for the new canonical system by solving the Hamilton-Jacobi equation through the separation of variables technique. By applying the transformation equations of the algorithm of Hori method, a first order analytical solution for the problem is obtained in non-singular orbital elements. For long duration maneuvers

  3. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  4. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  5. Several problems in accelerator shielding study

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Hirayama, Hideo; Ban, Shuichi.

    1980-01-01

    Recently, the utilization of accelerators has increased rapidly, and the increase of accelerating energy and beam intensity is also remarkable. The studies on accelerator shielding have become important, because the amount of radiation emitted from accelerators increased, the regulation of the dose of environmental radiation was tightened, and the cost of constructing shielding rose. As the plans of constructing large accelerators have been made successively, the survey on the present state and the problems of the studies on accelerator shielding was carried out. Accelerators are classified into electron accelerators and proton accelerators in view of the studies on shielding. In order to start the studies on accelerator shielding, first, the preparation of the cross section data is indispensable. The cross sections for generating Bremsstrahlung, photonuclear reactions generating neutrons, generation of neutrons by hadrons, nuclear reaction of neutrons and generation of gamma-ray by hadrons are described. The generation of neutrons and gamma-ray as the problems of thick targets is explained. The shielding problems are complex and diversified, but in this paper, the studies on the shielding, by which basic data are obtainable, are taken up, such as beam damping and side wall shielding. As for residual radioactivity, main nuclides and the difference of residual radioactivity according to substances have been studied. (J.P.N.)

  6. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  7. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  8. Comparison of radiation shielding requirements for HDR brachytherapy using 169Yb and 192Ir sources

    International Nuclear Information System (INIS)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Georgiou, E.; Hourdakis, C. J.; Baltas, D.

    2006-01-01

    169 Yb has received a renewed focus lately as an alternative to 192 Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169 Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169 Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192 Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169 Yb and 192 Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169 Yb and 192 Ir HDR sources. The barrier thickness required for 169 Yb is lower than that for 192 Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169 Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results

  9. Gonadal Shielding in Radiography: A Best Practice?

    Science.gov (United States)

    Fauber, Terri L

    2016-11-01

    To investigate radiation dose to phantom testes with and without shielding. A male anthropomorphic pelvis phantom was imaged with thermoluminescent dosimeters (TLDs) placed in the right and left detector holes corresponding to the testes. Ten exposures were made of the pelvis with and without shielding. The exposed TLDs were packaged securely and mailed to the University of Wisconsin Calibration Laboratory for reading and analysis. A t test was calculated for the 2 exposure groups (no shield and shielded) and found to be significant, F = 8.306, P shield was used during pelvic imaging. Using a flat contact shield during imaging of the adult male pelvis significantly reduces radiation dose to the testes. Regardless of the contradictions in the literature on gonadal shielding, the routine practice of shielding adult male gonads during radiographic imaging of the pelvis is a best practice. © 2016 American Society of Radiologic Technologists.

  10. Estimating ISABELLE shielding requirements

    International Nuclear Information System (INIS)

    Stevens, A.J.; Thorndike, A.M.

    1976-01-01

    Estimates were made of the shielding thicknesses required at various points around the ISABELLE ring. Both hadron and muon requirements are considered. Radiation levels at the outside of the shield and at the BNL site boundary are kept at or below 1000 mrem per year and 5 mrem/year respectively. Muon requirements are based on the Wang formula for pion spectra, and the hadron requirements on the hadron cascade program CYLKAZ of Ranft. A muon shield thickness of 77 meters of sand is indicated outside the ring in one area, and hadron shields equivalent to from 2.7 to 5.6 meters in thickness of sand above the ring. The suggested safety allowance would increase these values to 86 meters and 4.0 to 7.2 meters respectively. There are many uncertainties in such estimates, but these last figures are considered to be rather conservative

  11. Selective shielding device for scintiphotography

    International Nuclear Information System (INIS)

    Harper, J.W.; Kay, T.D.

    1976-01-01

    A selective shielding device to be used in combination with a scintillation camera is described. The shielding device is a substantially oval-shaped configuration removably secured to the scintillation camera. As a result of this combination scanning of preselected areas of a patient can be rapidly and accurately performed without the requirement of mounting any type of shielding paraphernalia on the patient. 1 claim, 2 drawing figures

  12. Radiation shielding material

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Isobe, Eiji.

    1976-01-01

    Purpose: To increase the shielding capacity of the radiation shielding material having an abundant flexibility. Constitution: A mat consisting of a lead or lead alloy fibrous material is covered with a cloth, and the two are made integral by sewing in a kilted fashion by using a yarn. Thereafter, the system is covered with a gas-tight film or sheet. The shielding material obtained in this way has, in addition to the above merits, advantages in that (1) it is free from restoration due to elasticity so that it can readily seal contaminants, (2) it can be used in a state consisting of a number of overlapped layers, (3) it fits the shoulder well and is readily portable and (4) it permits attachment of fasteners or the like. (Ikeda, J.)

  13. Radiation shielding in dental radiography

    International Nuclear Information System (INIS)

    Stenstroem, B.; Rehnmark-Larsson, S.; Julin, P.; Richter, S.

    1983-01-01

    The protective effect in the thyroid region from different types of radiation shieldings at intraoral radiography has been studied as well as the reduction of the absorbed dose to the sternal and the gonadal regions. The shieldings tested were five different types of leaded aprons, of which three had an attached leaded collar and the other two were used in combination with separate soft leaded collars. Furthermore one of the soft leaded collars and an unflexible horizontal leaded shield were tested separately. Two dental x-ray machines of 60 and 65 kVp with rectangular and circular tube collimators were used. The exposure time corresponded to speed group E film. The absorbed doses were measured with two ionization chambers. No significant difference in the protective effect in the thyroid gland could be found between the different types of radiation shieldings. There was a dose reduction by approximately a factor of 2 to the thyroid region down to 0.08 mGy per full survey using parallelling technique, and below 0.001 mGy per single bitewing exposure. The shieldings reduced the thyroid dose using bisecting-angle technique by a factor of 5 down to 0.15 mGy per full survey (20 exposures). In the sternal region the combinations of apron and collar reduced the absorbed dose from a full survey to below 2 μGy compared with 18 μGy (parallelling) and 31 μGy (biscting-angle) without any shielding. With the horizontal leaded shield a reduction by a factor of 6 was obtained but no significant sternal dose reduction could be detected from the soft collar alone. The gonadal dose could be reduced by a factor of 10 with the horizontal leaded shield, parallelling technique and circular collimator. Using leaded aprons the gonadal dose was approximately one per cent of the dose without any shielding, i.e. below 0.01 μGy per single intraoral exposure. (Authors)

  14. Integrated evaluation of the geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield, southernmost Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Leo A.; Savian, Jairo F., E-mail: leo.hartmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Lopes, William R. [Servico Geologico do Brasil (CPRM), Porto Alegre, RS (Brazil). Gerencia de Geologia e Mineracao

    2016-03-15

    An integrated evaluation of geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembo terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Cangucu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Cacapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aero gamma spectrometry or aero magnetometry. (author)

  15. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  16. Shielding effectiveness of superconductive particles in plastics

    International Nuclear Information System (INIS)

    Pienkowski, T.; Kincaid, J.; Lanagan, M.T.; Poeppel, R.B.; Dusek, J.T.; Shi, D.; Goretta, K.C.

    1988-09-01

    The ability to cool superconductors with liquid nitrogen instead of liquid helium has opened the door to a wide range of research. The well known Meissner effect, which states superconductors are perfectly diamagnetic, suggests shielding applications. One of the drawbacks to the new ceramic superconductors is the brittleness of the finished material. Because of this drawback, any application which required flexibility (e.g., wire and cable) would be impractical. Therefore, this paper presents the results of a preliminary investigation into the shielding effectiveness of YBa 2 Cu 3 O/sub 7-x/ both as a composite and as a monolithic material. Shielding effectiveness was measured using two separate test methods. One tested the magnetic (near field) shielding, and the other tested the electromagnetic (far field) shielding. No shielding was seen in the near field measurements on the composite samples, and only one heavily loaded sample showed some shielding in the far field. The monolithic samples showed a large amount of magnetic shielding. 5 refs., 5 figs

  17. Optimization of instrumental neutron activation analysis method by means of 2k experimental design technique aiming the validation of analytical procedures

    International Nuclear Information System (INIS)

    Petroni, Robson; Moreira, Edson G.

    2013-01-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2 k experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  18. The application of analytical methods to the study of Pareto - optimal control systems

    Directory of Open Access Journals (Sweden)

    I. K. Romanova

    2014-01-01

    Full Text Available The subject of research articles - - methods of multicriteria optimization and their application for parametric synthesis of double-circuit control systems in conditions of inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of a multi-criteria choice - the principle of the Edgeworth - Pareto. Getting Pareto - optimal variants due to inconsistency of individual criteria does not mean reaching a final decision. Set these options only offers the designer (DM.An important issue when using traditional numerical methods is their computational cost. An example is the use of methods of sounding the parameter space, including with use of uniform grids and uniformly distributed sequences. Very complex computational task is the application of computer methods of approximation bounds of Pareto.The purpose of this work is the development of a fairly simple search methods of Pareto - optimal solutions for the case of the criteria set out in the analytical form.The proposed solution is based on the study of the properties of the analytical dependences of criteria. The case is not covered so far in the literature, namely, the topology of the task, in which no touch of indifference curves (lines level. It is shown that for such tasks may be earmarked for compromise solutions. Prepositional use of the angular position of antigradient to the indifference curves in the parameter space relative to the coordinate axes. Formulated propositions on the characteristics of comonotonicity and contramonotonicity and angular characteristics of antigradient to determine Pareto optimal solutions. Considers the General algorithm of calculation: determine the scope of permissible values of parameters; investigates properties comonotonicity and contraventanas; to build an equal level (indifference curves; determined touch type: single sided (task is not strictly multicriteria or bilateral (objective relates to the Pareto

  19. Shielding and grounding in large detectors

    International Nuclear Information System (INIS)

    Radeka, V.

    1998-09-01

    Prevention of electromagnetic interference (EMI), or ''noise pickup,'' is an important design aspect in large detectors in accelerator environments. Shielding effectiveness as a function of shield thickness and conductivity vs the type and frequency of the interference field is described. Noise induced in transmission lines by ground loop driven currents in the shield is evaluated and the importance of low shield resistance is emphasized. Some measures for prevention of ground loops and isolation of detector-readout systems are discussed

  20. Tax Shield, Insolvenz und Zinsschranke

    OpenAIRE

    Arnold, Sven; Lahmann, Alexander; Schwetzler, Bernhard

    2010-01-01

    Dieser Beitrag analysiert den Wertbeitrag fremdfinanzierungsbedingter Steuervorteile (Tax Shield) unter realistischen Bedingungen (keine Negativsteuer; mögliche Insolvenz) für unterschiedliche Finanzierungspolitiken. Zusätzlich wird der Effekt der sogenannten Zinsschranke auf den Wert des Tax Shield ermittelt. Die Bewertung des Tax Shield mit und ohne Zinsschranke findet im einperiodigen Fall auf der Basis von Optionspreismodellen und im mehrperiodigen Fall auf der Basis von Monte Carlo Simul...

  1. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  2. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    Science.gov (United States)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  3. Effect of bedside shielding on air-kerma rates around gynecologic intracavitary brachytherapy patients containing 226Ra or 137Cs

    International Nuclear Information System (INIS)

    Papin, P.J.; Ramsey, M.J.; LaFontaine, R.L.; LePage, R.P.

    1990-01-01

    An anthropomorphic phantom was implanted with 226Ra or 137Cs gynecologic intracavitary brachytherapy sources. Air-kerma rate measurements were taken at 10-cm increments along a horizontal plane from the side of the bed at 50 cm, 87 cm, and 136 cm heights above the floor. Five portable lead shields were placed at the head, at the foot and along one side of the bed and readings were taken again at the corresponding heights above, below and behind the shields. The readings were normalized to 100-mg Ra equivalence, and air-kerma rate curves were drawn allowing for the comparison of 226Ra and 137Cs with and without lead shields. The data demonstrated that the air-kerma rates for 137Cs were reduced more than those for 226Ra with the use of the portable lead shields. There was four times the transmission with 226Ra than with 137Cs. The optimal placement was with the lateral bedside shields proximal to the head and foot closest to the bed, with the middle shield overlapping in back. The shields at the head and foot should extend out and overlap the bedside shields. The level of the sources should be positioned near the bottom of the shields. This information will provide the medical health physicist with an estimate of air-kerma rates for both 226Ra and 137Cs with and without shielding for evaluating personnel exposures as well as the effectiveness of current shielding in relation to radiation protection requirements in adjacent rooms or hallways

  4. Heavy concrete shieldings made of recycled radio-active steel

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Sappok, M.; Heim, H.

    1998-01-01

    Maintenance and decommissioning of nuclear installations will generate increasing quantities of radioactively contaminated metallic residues. For many years, Siempelkamp has been melting low-level radioactive scrap in order to re-use it for containers of nuclear industry. Another new recycling path has recently been developed by producing steel granules from the melt. These granules are used as replacement for hematite (iron ore) in the production of heavy concrete shieldings. In the CARLA plant (central plant for the recycling of low-level radioactive waste) of Siempelkamp Nuklear- und Umwelttechnik GmbH and Co., the scrap is melted in a medium frequency induction furnace. The liquid iron is poured into a cooling basin through a water jet, which splits the iron into granules. The shape of these granules is determined by various factors, such as water jet speed, pouring rate of the liquid iron and different additives to the melt. In this process, massive spheres with diameters ranging from 1 to 8 mm can be produced which add to the density of heavy concrete elements for optimum shielding. In close cooperation with Boschert, which indeed is an expert for the production of concrete shieldings, a new technology for manufacturing heavy concrete shieldings, containing low-level radioactive steel granules, has been developed. The portion of steel granules in the concrete is approx. 50 weight-%. A concrete density between 2.4 kg/dm 3 and 4.0 kg/dm 3 is available. The compressive strength for the concrete reaches values up to 65 MPa. Different types of Granulate Shielding Casks (GSC) are offered by Siempelkamp. The most famous one is the GSC 200 for 200 1 drums, which has already been qualified for final storage of radioactive wastes at the German Morsleben final repository (ERAM). This newly developed recycling process further increases the quantities of low-level radioactive metallic wastes available for recycling. Expensive storage area can thus be saved respectively

  5. Gonad shielding in computerized tomography

    International Nuclear Information System (INIS)

    Rockstroh, G.

    1984-01-01

    The reduction of gonadal dose by shielding of the gonads was investigated for a Somatom 2 using an anthropomorphic phantom. For small distances from the slice examined the gonadal dose results from intracorporal secondary radiation and is only insignificantly reduced by shielding. For greater distances shielding is relatively more effective, the gonadal dose however is small because of the approximately exponential decay. Shielding of the gonads therefore does not seem adequate for the reduction of gonadal dose. From dose measurements in cylinder phantoms of several diameters it appears that no different results would be obtained for children and young adults. An effective reduction of gonadal dose is only possible with lead capsules for males. (author)

  6. Safety analysis report for packaging: the ORNL tungsten-shielded cask

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Just, R.A.

    1977-10-01

    The ORNL tungsten-shielded cask was designed and fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B and large quantity nonfissile isotopes. The container was evaluated analytically to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported. Computational methods were employed in a determination of the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and to the standards for the hypothetical accident conditions. The results of these evaluations demonstrate that the container is in compliance with the applicable regulations

  7. Survivor shielding. Part A. Nagasaki factory worker shielding

    International Nuclear Information System (INIS)

    Santoro, Robert T.; Barnes, John M.; Azmy, Yousry Y.; Kerr, George D.; Egbert, Stephen D.; Cullings, Harry M.

    2005-01-01

    Recent investigations based on conventional chromosome aberration data by the RERF suggest that the DS86 doses received by many Nagasaki factory workers may have been overestimated by as much as 40% relative to those for other survivors in Japanese-type houses and other shielding configurations (Kodama et al. 2001). Since the factory workers represent about 25% of the Nagasaki survivors with DS86 doses in excess of 0.5 Gy (50 rad), systematic errors in their dose estimates can have a major impact on the risk coefficients from RERF studies. The factory worker doses may have been overestimated for a number of reasons. The calculation techniques, including the factory building modeling, weapon source spectra and cross-section data used in the DS86 shielding calculations were not detailed enough to replicate actual conditions. The models used did not take into account local shielding provided by machinery, tools, and the internal structure in the buildings. In addition, changes in the disposition of shielding following collapse of the building by the blast wave were not considered. The location of large factory complexes may be uncertain, causing large numbers of factory survivors, correctly located relative to each other, to be uniformly too close to the hypocenter. Any or all of these reasons are sufficient to result in an overestimate of the factory worker doses. During the DS02 studies, factory worker doses have been reassessed by more carefully modeling the factory buildings, incorporating improved radiation transport methods and cross-section data and using the most recent bomb leakage spectra (Chapter 2). Two-dimensional discrete ordinates calculations were carried out initially to estimate the effects of workbenches and tools on worker doses to determine if the inclusion of these components would, in fact, reduce the dose by amounts consistent with the RERF observations (Kodama et al. 2001). (author)

  8. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  9. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Mannudeep K.; Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo Anne O. [Massachusetts General Hospital, Boston (United States)

    2009-04-15

    To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The 'shielded' phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. In-plane shields are associated with greater image noise, artificially increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield.

  10. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    Science.gov (United States)

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  11. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection

  12. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection.

  13. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  14. Improving the shielding effectiveness of a board-level shield by bonding it with the waveguide-below-cutoff principle

    OpenAIRE

    Degraeve, Andy; Pissoort, Davy; Armstrong, Keith

    2015-01-01

    This paper discusses the shielding performance or shielding effectiveness of a board-level shield in function of its bonding method. Improved shielding performance at board-level in order to harden integrated circuits against unintentional and intentional electromagnetic interference, and this under harsh environmental conditions, is getting more and more important to achieve the desired levels of functional performance and operational reliability despite an ever more aggressive electromagnet...

  15. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  16. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1992-01-01

    The design of structures and engineering systems has always been an iterative process whose complexity was dependent upon the boundary conditions, constraints and available analytical tools. Transportation packaging design is no exception with structural, thermal and radiation shielding constraints based on regulatory hypothetical accident conditions. Transportation packaging design is often accomplished by a group of specialists, each designing a single component based on one or more simple criteria, pooling results with the group, evaluating the open-quotes pooledclose quotes design, and then reiterating the entire process until a satisfactory design is reached. The manual iterative methods used by the designer/analyst can be summarized in the following steps: design the part, analyze the part, interpret the analysis results, modify the part, and re-analyze the part. The inefficiency of this design practice and the frequently conservative result suggests the need for a more structured design methodology, which can simultaneously consider all of the design constraints. Numerical optimization is a structured design methodology whose maturity in development has allowed it to become a primary design tool in many industries. The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  17. Models for the analytic estimation of low energy photon albedo

    International Nuclear Information System (INIS)

    Simovic, R.; Markovic, S.; Ljubenov, V.

    2005-01-01

    This paper shows some monoenergetic models for estimation of photon reflection in the energy range from 20 keV to 80 keV. Using the DP0 approximation of the H-function we have derived the analytic expressions of the η and R functions in purpose to facilitate photon reflection analyses as well as the radiation shield designee. (author) [sr

  18. Superconducting magnetic shields production. Realisation d'ecrans magnetiques supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lainee, F; Kormann, R [Thomson-CSF, Domaine de Corbeville, 91 - Orsay (FR); Lainee, F [Ecole des Mines de Paris, 91 - Evry (FR)

    1992-02-01

    Low fields and low frequency shielding properties of YBCO magnetic shields are measured at 77 K. They compare favourably with shielding properties of mumetal shields. Therefore high-T{sub c} superconducting magnetic shields can already be used to shield small volumes. The case of magnetic shields for large volumes is also discussed. 3 refs; 6 figs; 4 tabs.

  19. Neutron shielding for a 252 Cf source

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Eduardo Gallego, Alfredo Lorente

    2006-01-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source. During calculations a detailed model for the 252 Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare 252 Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  20. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    Energy Technology Data Exchange (ETDEWEB)

    Magistris, Matteo [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: matteo.magistris@cern.ch; Silari, Marco [CERN, CH-1211 Geneva 23 (Switzerland)

    2006-06-23

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  1. Radiation shielding application of lead glass

    International Nuclear Information System (INIS)

    Nathuram, R.

    2017-01-01

    Nuclear medicine and radiotherapy centers equipped with high intensity X-ray or teletherapy sources use lead glasses as viewing windows to protect personal from radiation exposure. Lead is the main component of glass which is responsible for shielding against photons. It is therefore essential to check the shielding efficiency before they are put in use. This can be done by studying photon transmission through the lead glasses. The study of photon transmission in shielding materials has been an important subject in medical physics and is potential useful in the development of radiation shielding materials

  2. Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-off Study

    Science.gov (United States)

    Fioretti, V.; Malaguti, G.; Bulgarelli, A.; Palumbo, G. G. C.; Ferri, A.; Attinà, P.

    2009-05-01

    The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.

  3. Optimization and decision-making radiation protection in gamma radiography facilities 192 Ir - with roof bunker

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2001-01-01

    To determine optimized dose limits for workers, a study was undertaken of radiation protection optimization in gamma radiography facilities, using the Multi-Attribute Utility Analysis technique. A total of 66 protection options, distributed in 6 irradiation configurations in a closed installation, with roof, type 'bunker', were analyzed. In the determination of the optimized dose limit, the following attributes were considered: cost of the protection, cost of the detriment for different alpha values, cost of the isolation area, individual equivalent doses and collective dose. The variables considered in the evaluation included: effective work load, type and activity of the radiation sources, source-operator distance, and type and thickness of the material used in the protection shielding. Other parameters analyzed included the quality of the radiographic image and the technical procedures employed. The optimal analytic solutions obtained that resulted in the optimized dose limit were determined by means of a sensitivity analysis and by direct and logical evaluations. Thus, independent of the values of the monetary coefficient attributed to the detriment, the annual interests applied to the protection cost, and the type of installation studied, it was concluded that the primary limit of annual dose for workers, 50 mSv, can be easily reduced to an optimized annual dose limit of 5 mSv. (author)

  4. Contribution of 210Pb bremsstrahlung to the background of lead shielded gamma spectrometers

    International Nuclear Information System (INIS)

    Mrda, D.; Bikit, I.; Veskovic, M.; Forkapic, S.

    2007-01-01

    Lead, which is often used as a shielding material, contains 210 Pb (T 1/2 =22.3 y). The 46.54 keV γ-intensity of 210 Pb can be easily reduced by an inner lining, but the bremsstrahlung caused by the β-decay of its daughter, 210 Bi, with a maximal electron energy of 1.16 MeV, will contribute to the gamma detector background. The spectrum of this bremsstrahlung is calculated by numerically fitting the β-spectrum and integrating the Koch-Motz formula. The absorption of the bremsstrahlung in the lead and detection efficiencies for the HPGe detector are calculated by the effective solid angle algorithm, using corrections for the photopeak/Compton ratio of cross-sections in Ge. By comparison with the measured background spectrum, it is shown that, for the lead with 25 Bq/kg of 210 Pb up to 500 keV of gamma spectrum, the bremsstrahlung contribution to the background is about 20% for our surface-based detector system. Also, we compared our calculations with a Monte Carlo simulation of another detector system with a shield containing 1 Bq/kg of 210 Pb and found that our analytical method gives a value of roughly two times higher than the Monte Carlo one for the total bremsstrahlung contribution. The quality of the analytical semi-empirical method is proved by the reasonable agreement with the experimental results published

  5. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  6. Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Sato, S.; Hatano, T.; Kuroda, T.; Furuya, K.; Hara, S.; Enoeda, M.; Takatsu, H.

    1998-01-01

    Optimum bonding conditions were studied on the hot isostatic pressing (HIP) bonded joints of type 316L austenitic stainless steel and dispersion strengthened copper alloy (DSCu) for application to the ITER shielding blanket / first wall. HIP bonded joints were fabricated at temperatures in a 980-1050 C range, and a series of mechanical tests and metallurgical observations were conducted on the joints. Also, bondability of two grades of DSCu (Glidcop Al-25 trademark and Al-15 trademark ) with SS316L was examined in terms of mechanical properties of the HIP bonded joints. From those studies it was concluded that the HIP temperature of 1050 C was an optimal condition for obtaining higher ductility, impact values and fatigue strength. Also, SS316L/Al-15 joints showed better results in terms of ductility and impact values compared with SS316L/Al-25 joints. (orig.)

  7. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  8. Practical radiation shielding for biomedical research

    International Nuclear Information System (INIS)

    Klein, R.C.; Reginatto, M.; Party, E.; Gershey, E.L.

    1990-01-01

    This paper reports on calculations which exist for estimating shielding required for radioactivity; however, they are often not applicable for the radionuclides and activities common in biomedical research. A variety of commercially available Lucite shields are being marketed to the biomedical community. Their advertisements may lead laboratory workers to expect better radiation protection than these shields can provide or to assume erroneously that very weak beta emitters require extensive shielding. The authors have conducted a series of shielding experiments designed to simulate exposures from the amounts of 32 P, 51 Cr and 125 I typically used in biomedical laboratories. For most routine work, ≥0.64 cm of Lucite covered with various thicknesses of lead will reduce whole-body occupational exposure rates of < 1mR/hr at the point of contact

  9. BRH Gonad Shielding Program: where it has led

    International Nuclear Information System (INIS)

    Arcarese, J.S.

    1975-01-01

    Some topics discussed are: Bureau of Radiological Health guidelines; types of gonad shields; specific area shielding; gonad shielding guidelines; and publication of pamphlet on types of shields and circumstances under which they should be used

  10. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  11. The effect of some organic and non-organic additions on the shielding and mechanical properties of radiation shielding concrete

    International Nuclear Information System (INIS)

    Kharita, M. H.; Yousef, S.; Al-Nassar, M.

    2011-04-01

    Few studies on the effect of some additives on the shielding properties of concrete have been carried out in this research. These studies included the effect of carbon powder, boron compounds, and waste polyethylene. The effect of water to cement ratio has been studied too. The research results showed that carbon powder and some boron compounds could be used to improve shielding concrete properties, and the possibility to add waste polyethylene in shielding concrete without effects on shielding properties. No significant effect for water to cement ratio on shielding properties of concrete. (author)

  12. Technical products for radiation shielding. Shield assembled from lead blocks for radiation protection. General technical requirements

    International Nuclear Information System (INIS)

    1981-01-01

    The object of this standard description is the general technological requirements of 50 and 100 mm thick radiation protection shields assembled from lead blocks. The standard contains the definitions, types, parameters and dimensions of shields, their technical and acceptance criteria with testing methods, tagging, packaging, transportation and storage requirements, producer's liability. Some illustrated assembling examples, preferred parameters and dosimetry methods for shield inspection are given. (R.P.)

  13. Shield support frame. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, K.

    1981-09-17

    A powered shield support frame for coal sheds is described comprising of two bottom sliding shoes, a large area gob shield and a larg area roof assembly, all joined movable together. The sliding shoes and the gob shield are joined by a lemniscate guide. Two hydraulic props are arranged at the face-side at one third of the length of the sliding shoes and at the goaf-side at one third of the length of the roof assembly. A nearly horizontal lying pushing prop unit joins the bottom wall sliding shoes to the goaf-side lemniscate guide. This assembly can be applied to seams with a thickness down to 45 cm. (OGR).

  14. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.

    1992-01-01

    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  15. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  16. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  17. Optimization of instrumental neutron activation analysis method by means of 2{sup k} experimental design technique aiming the validation of analytical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Robson; Moreira, Edson G., E-mail: rpetroni@ipen.br, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2{sup k} experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  18. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  19. A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Sudarshan, K.; Tripathi, R.; Nair, A.G.C.; Acharya, R.; Reddy, A.V.R.; Goswami, A.

    2005-01-01

    A simple method using an internal standard is proposed to correct for the self-shielding effect of B, Cd and Gd in a matrix. This would increase the linear dynamic range of PGNAA in analyzing samples containing these elements. The method is validated by analyzing synthetic samples containing large amounts of B, Cd, Hg and Gd, the elements having high neutron absorption cross-section, in aqueous solutions and solid forms. A simple Monte-Carlo simulation to find the extent of self-shielding in the matrix is presented. The method is applied to the analysis of titanium boride alloy containing large amount of boron. The satisfactory results obtained showed the efficacy of the method of correcting for the self-shielding effects in the sample

  20. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    Zeb, J.; Arshed, W.; Ahmad, S.S.

    2007-06-01

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  1. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  2. SP-100 shield design automation process using expert system and heuristic search techniques

    International Nuclear Information System (INIS)

    Marcille, T.F.; Protsik, R.; Deane, N.A.; Hoover, D.G.

    1993-01-01

    The SP-100 shield subsystem design process has been modified to utilize the GE Corporate Reserch and Development program, ENGINEOUS (Tong 1990). ENGINEOUS is a software system that automates the use of Computer Aided Engineering (CAE) analysis programs in the engineering design process. The shield subsystem design process incorporates a nuclear subsystems design and performance code, a two-dimensional neutral particle transport code, several input processors and two general purpose neutronic output processors. Coupling these programs within ENGINEOUS provides automatic transition paths between applications, with no source code modifications. ENGINEOUS captures human design knowledge, as well as information about the specific CAE applications and stores this information in knowledge base files. The knowledge base information is used by the ENGINEOUS expert system to drive knowledge directed and knowledge supplemented search modules to find an optimum shield design for a given reactor definition, ensuring that specified constraints are satisfied. Alternate designs, not accommodated in the optimization design rules, can readily be explored through the use of a parametric study capability

  3. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  4. JULIA: calculation projection software for primary barriers shielding to X-Rays using barite

    International Nuclear Information System (INIS)

    Silva, Júlia R.A.S. da; Vieira, José W.; Lima, Fernando R. A.

    2017-01-01

    The objective was to program a software to calculate the required thicknesses to attenuate X-rays in kilovoltage of 60 kV, 80 kV, 110 kV and 150 kV. The conventional methodological parameters for structural shield calculations established by the NCRP (National Council on Radiation Protection and Measurements) were presented. The descriptive and exploratory methods allowed the construction of the JULIA. In this sense and based on the result obtained, the tool presented is useful for professionals who wish to design structural shielding in radiodiagnostic and/or therapy. The development of calculations in the computational tool corresponds to the accessibility, optimization of time and estimation close to the real. Such heuristic exercise represents improvement of calculations for the estimation of primary barriers with barite

  5. Final report of Shield System Trade Study. Volume II. WANL support activities for shielding trade study

    International Nuclear Information System (INIS)

    1970-07-01

    Based on the trades made within this study BATH (mixture of B 4 C, aluminum and TiH 1 . 8 ) was selected as the internal shield material. Borated titanium hydride can also meet the criteria with a competitive weight but was rejected because of schedular constraints. A baseline internal shield design was accomplished. This design resulted in a single internal shield weighing about 3300 lb for both manned and unmanned missions. WANL checks on ANSC calculations are generally in agreement, but with some difference in the prediction of the effectiveness of the Boral liner. All of the alternate NSS concepts in the system weight reduction program were rejected. While some did save shield weight, they complicated the NSS design to an unacceptable degree. Studies were made of the feasibility of manual maintenance of NSS components outside of the pressure vessel. The requirements of the NSS components located forward of the internal shield were considered from a thermal and radiation damage standpoint. (auth)

  6. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  7. The effect of patient shield position on gonad dose during lumbar spine radiography

    International Nuclear Information System (INIS)

    Clancy, Conor L.; O'Reilly, Geraldine; Brennan, Patrick C.; McEntee, Mark F.

    2010-01-01

    Background: In an effort to standardise radiological practices in the Republic of Ireland, current legislation states that 'written protocols for every type of standard radiological practice shall be established'. In order to fulfil this requirement the Irish Medical Council recommends the protocols issued by the Commission of European Communitees (CEC) for adoption in the country. Whilst this document does provide good guidance with regard to various radiographic factors, patient shielding instructions are notably ambiguous. The aim of this study was to remove some of this ambiguity by defining the optimal method of positioning patient shielding in antero-posterior (AP) and lateral lumbar spine radiographic examinations. These projections were chosen on the basis of their area of coverage being in close to and in some cases including the reproductive organs. They also represent the highest source of collective population dose of any conventional radiographic examination carried out in the UK. Method: A dosimetry study was devised to establish organ dose to the male testes and female ovaries using various clinically advocated methodologies for positioning patient shielding these included: no apron; tube-side apron; receptor-side apron and a wrap-around apron. The study was carried out using a direct digital radiography unit, an anthropomorphic phantom, various lead aprons and lithium thermoluminescent dosimeters (TLD). Results: For the AP projection, a statistically significant testes dose reduction of 42% (p ≤ 0.01) was observed when a tube-sided apron was used. No testes dose reductions were noted for the lateral projection. Ovary dose savings were not observed for any of the shielding methods investigated. Conclusion: This study found that the testes dose in AP examinations was reduced by 42% when patient shielding was positioned inferior to the imaged field and on the tube-side of the patient. This result validates the shielding methods used at the majority

  8. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  9. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  10. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    Science.gov (United States)

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  11. Radiation shielding bricks

    International Nuclear Information System (INIS)

    Crowe, G.J.W.

    1983-01-01

    A radiation shielding brick for use in building dry walls to form radiation proof enclosures and other structures is described. It is square in shape and comprises a sandwich of an inner layer of lead or similar shielding material between outer layers of plastics material, for structural stability. The ability to mechanically interlock adjacent bricks is provided by shaping the edges as cooperating external and internal V-sections. Relatively leak-free joints are ensured by enlarging the width of the inner layer in the edge region. (author)

  12. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina Chow

    2016-11-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  13. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  14. A study of gamma shielding

    International Nuclear Information System (INIS)

    Roogtanakait, N.

    1981-01-01

    Gamma rays have high penetration power and its attenuation depends upon the thickness and the attenuation coefficient of the shield, so it is necessary to use the high density shield to attenuate the gamma rays. Heavy concrete is considered to be used for high radiation laboratory and the testing of the shielding ability and compressibility of various types of heavy concrete composed of baryte, hematite, ilmenite and galena is carried out. The results of this study show that baryte-ilmenite concrete is the most suitable for high radiation laboratory in Thailand

  15. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  16. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  17. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  18. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  19. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  20. Neutron shielding studies on an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    Merk, Bruno; Konheiser, Jörg

    2014-01-01

    Highlights: • Material damage due to irradiation has already been discovered at the MSRE. • Neutronic analysis of MSFR with curved blanket wall geometry. • Neutron fluence limit at the wall of the outer vessel can be kept for 80 years. • Shielded MSFR core will be of same dimension than a SFR core. - Abstract: The molten salt reactor technology has gained some new interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner reactor vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all internal structures. Based on this new geometry a model for neutron physics calculation is presented. The major steps are: the modeling of the curved geometry in the unstructured mesh neutron transport code HELIOS and the determination of the real neutron flux and power distribution for this new geometry. The developed model is then used for the determination of the neutron fluence distribution in the inner and outer wall of the system. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system will be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem

  1. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  2. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    Science.gov (United States)

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  3. New applications and developments in the neutron shielding

    Directory of Open Access Journals (Sweden)

    Uğur Fatma Aysun

    2017-01-01

    Full Text Available Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  4. New applications and developments in the neutron shielding

    Science.gov (United States)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  5. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Gallegoc, E.; Lorentec, A.; Hernandez-Davila, V.M.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (M.C.N.P. code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  6. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  7. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  8. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  9. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  10. Development of HANARO ST3 shield

    International Nuclear Information System (INIS)

    Park, K. N.; Lee, J. S.; Shim, H. S.

    2004-12-01

    This report contains the design, fabrication and accurate installation of ST3 shield, which would be installed at ST3 beam port of HANARO. At first, we designed and fabricated ST3 shield casemate composed of 14 blocks. We filled it with heavy concrete, lead ingot and polyethylene that mixed B 4 C powder and epoxy. The average filling density of total shield casemate was 4.7g/cm 3 . The developed ST3 shield was installed at the ST3 beam port and the accuracy of installation for each beam path and channel was evaluated. We found that the extraction of neutron beam to meet the requirement of neutron spectrometer is possible. Also, we developed ancillary equipment such as BGU, quick shutter and exterior shield door for the effective opening and closing of neutron beam. As a result of this study, it was found that neutron spectrometer such as neutron reflectometer and high intensity powder diffractomater can be installed at the ST3 beam port

  11. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  12. Cage for shield-type support. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Harryers, W; Blumenthal, G; Irresberger, H

    1981-08-13

    A cage for shield-type support containing a fracture shield supported by a hydraulic stamp and a projecting roof bar was constructed in such a way that no cellular shirt is needed to timber the caved room. The roof bar which is linked at a joint axis at the face-side end of the fracture shield is formed at the face side as a multiply foldable bar. (HGOE).

  13. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock [Div. of Advanced Nuclear Engineering, POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the {sup nat}Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction.

  14. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    International Nuclear Information System (INIS)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock

    2014-01-01

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the nat Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction

  15. Mathematical modeling of the radiation dose received from photons passing over and through shielding walls in a PET/CT suite

    DEFF Research Database (Denmark)

    Fog, Lotte S; Cormack, John

    2010-01-01

    as transmission through these barriers is taken into account. A series of simulations of the dose received by a person positioned behind a shielding barrier in a typical PET/CT scanning suite were carried out using both Monte Carlo and analytical models. The transmission through lead barriers was found to be very...

  16. Revised neutral gas shielding model for pellet ablation - combined neutral and plasma shielding

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Schuresko, D.D.; Attenberger, S.E.

    1986-01-01

    The ablation and penetration of pellets in early ORMAK and ISX-A experiments were reliably predicted by the neutral gas shielding model of Milora and Foster. These experiments demonstrated that the principle components of the model - a self-generated shield which reduces the heat flux at the plasma surface - were correct. In more recent experiments with higher temperature plasmas, this model consistently predicts greater penetration than observed in the experiments. Upgarding known limitations of the original model brings the predicted and observed penetration values into agreement. These improvements include: (1) treating the incident electrons as having distribution in energy rather than being monoenergetic; (2) including the shielding effects of cold, dense plasma extending along the magnetic field outside the neutral shield; and (3) modifying the finite plasma, self-limiting incident heat flux so that it represents a collisionless plasma limit rather than a collisional limit. Comparisons are made between the models for a selection of ISX-B Alcator-C, and TFTR shots. The net effect of the changes in the model is an increase in pellet ablation rates and decrease in penetration for current and future experiments

  17. Shielding calculation for bremsstrahlung from β-emitters

    International Nuclear Information System (INIS)

    Ichimiya, Tsutomu

    1990-01-01

    Accompanying the revision of radiation injury prevention law, the shielding calculation method for photon corresponding to the dose equivalent was shown. However, regarding the electron from β decay nuclide and bremsstrahlung caused by shielding material, the shielding calculation method corresponding to the 1 cm dose equivalent has not been reported, hence, in this report, the spectrum of β-ray is calculated and the 1 cm dose equivalent transmission rate of the bremsstrahlung was calculated for three kinds of shielding materials (iron, lead, concrete). As the result of consideration, it is sufficient to think about the bremsstrahlung due to negative electron emission accompanying β-decay. In β-decay, electrons which constitute the continuous spectrum with maximum energy are emitted. The shape of the spectrum differs with nuclides. The maximum energy of β-ray of generally used nuclides is mostly below 3MeV and, besides, the electron ray itself is easily shielded, while the strength of bremsstrahlung depends on the atomic number of shielding materials and its generating mechanism is complicated. In this report, the actual shielding calculation method for bremsstrahlung is shown with regard to the most frequently used β-decay nuclides. (M.T.)

  18. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  19. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  20. Using predictive analytics and big data to optimize pharmaceutical outcomes.

    Science.gov (United States)

    Hernandez, Inmaculada; Zhang, Yuting

    2017-09-15

    The steps involved, the resources needed, and the challenges associated with applying predictive analytics in healthcare are described, with a review of successful applications of predictive analytics in implementing population health management interventions that target medication-related patient outcomes. In healthcare, the term big data typically refers to large quantities of electronic health record, administrative claims, and clinical trial data as well as data collected from smartphone applications, wearable devices, social media, and personal genomics services; predictive analytics refers to innovative methods of analysis developed to overcome challenges associated with big data, including a variety of statistical techniques ranging from predictive modeling to machine learning to data mining. Predictive analytics using big data have been applied successfully in several areas of medication management, such as in the identification of complex patients or those at highest risk for medication noncompliance or adverse effects. Because predictive analytics can be used in predicting different outcomes, they can provide pharmacists with a better understanding of the risks for specific medication-related problems that each patient faces. This information will enable pharmacists to deliver interventions tailored to patients' needs. In order to take full advantage of these benefits, however, clinicians will have to understand the basics of big data and predictive analytics. Predictive analytics that leverage big data will become an indispensable tool for clinicians in mapping interventions and improving patient outcomes. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.

    Science.gov (United States)

    Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano

    2017-08-01

    Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Approximate analytical solution of diffusion equation with fractional time derivative using optimal homotopy analysis method

    Directory of Open Access Journals (Sweden)

    S. Das

    2013-12-01

    Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.

  3. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    Science.gov (United States)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  4. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    1975-06-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. This pamphlet will provide physicians and radiologic technologists with information which will aid their appropriate use of gonad shielding

  5. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    International Nuclear Information System (INIS)

    Joshi, S; Vanderhoek, M

    2016-01-01

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  6. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S; Vanderhoek, M [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  7. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  8. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  9. Optimal Background Attenuation for Fielded Spectroscopic Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.; Siciliano, Edward R.

    2007-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background gamma radiation. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to radiation from the surrounding area. Reducing this source of background can improve gross-count detection capabilities in the current generation of non-spectroscopic RPM's as well as source identification capabilities in the next generation of spectroscopic RPM's. To provide guidance for designing such systems, the problem of shielding a general spectroscopic-capable RPM system from terrestrial gamma radiation is considered. This analysis is carried out by template matching algorithms, to determine and isolate a set of non-threat isotopes typically present in the commerce stream. Various model detector and shielding scenarios are calculated using the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to increase the probability of detection for an ensemble of illicit sources are given. Common shielding solutions such as steel plating are evaluated based on the probability of detection for 3 particular illicit sources of interest, and the benefits are weighed against the incremental cost of shielding. Previous work has provided optimal shielding scenarios for RPMs based on gross-counting measurements, and those same solutions (shielding the internal detector cavity, direct shielding of the ground between the detectors, and the addition of collimators) are examined with respect to their utility to improving spectroscopic detection

  10. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  11. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  12. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  13. PC based temporary shielding administrative procedure (TSAP)

    International Nuclear Information System (INIS)

    Olsen, D.E.; Pederson, G.E.; Hamby, P.N.

    1995-01-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison's six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative procedure and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met

  14. PC based temporary shielding administrative procedure (TSAP)

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.E.; Pederson, G.E. [Sargent & Lundy, Chicago, IL (United States); Hamby, P.N. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison`s six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative procedure and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met.

  15. Mechanical design of the TIBER breeding shield

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, J.; Deutsch, L. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-04-01

    TIBER features a segmented shield assembly that provides the nuclear shielding for the superconducting toroidal field coils. In addition to its primary function, the shield also provides tritium breeding through the use of water coolant that contains 16 wt% dissolved lithium nitrate. Because the TIBER reactor need not provide electrical power, the coolant is maintained at low pressure (0.2 MPa) and low temperature (75/sup 0/C). The shield is made in several segments to facilitate assembly and allow for replacement of high heat flux components (divertor blades). The segments are designated as inboard, outboard, upper, lower, and divertor modules. In total, there are 96 separate modules in the machine, consisting of six different types. The design features of the different modules vary primarily depending on the thickness of the shield in a given location. The very thick outboard shield has a breeding zone in the inboard portion of the module, with a shielding zone behind it. The breeding zone consists of a stainless steel casing filled with beryllium spheres. The shielding zone consists of the same casing filled with steel spheres. Both of these zones have lithiated water circulated throughout to provide cooling and breeding. In zones with minimal thickness, tungsten alloys are used to achieve the required shielding. These alloys are incoprorated in subassemblies utilizing stainless steel casings surrounding blocks of tungsten heavy metal alloy. These are infiltrated with lead on final assembly to form a thermally continuous panel. Several of these panels are then assembled into an outer stainless steel case to form an inboard module. These modules also use the lithiated coolant. The details of the design are presented and discussed. (orig.).

  16. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  17. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  18. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  19. Optimizing the Performance of Data Analytics Frameworks

    NARCIS (Netherlands)

    Ghit, B.I.

    2017-01-01

    Data analytics frameworks enable users to process large datasets while hiding the complexity of scaling out their computations on large clusters of thousands of machines. Such frameworks parallelize the computations, distribute the data, and tolerate server failures by deploying their own runtime

  20. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.