WorldWideScience

Sample records for analytic shielding optimization

  1. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    Science.gov (United States)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  2. Innovative analytical competence. Optimization of shielding components and lifetime activation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Boehlke, Steffen; Wortmann, Birgit; Aguilar, Arturo Lizon [STEAG Energy Services GmbH, Essen (Germany)

    2014-08-15

    Shielding and activation calculations always require a high level of engineering competence and powerful hard- and software tools. With the application of current methods often certain limits were reached in the past. The engineering work for optimization efforts regarding complex components with high shielding requirements exceeded the savings in material. With regard to activation the challenges in size of the geometric model and considered operation time rises constantly and pushes computing time beyond reasonable time frames. These challenges require the application of new and faster methodologies. The application of new and innovative methods is presented for a shielding optimization project to decrease the radiation level, to keep the dose rate limits, and to reduce the amount of used shielding material. In a second case a prediction of the activated materials with it's dose distribution in the surrounding area and classification of waste quantities in the structural materials of a nuclear reactor is presented. For the shielding project the preliminary design CAD model was imported into the software tool, several iterations were run and a significantly reduced radiation exposure together with a significant reduction in shieling material were achieved. For the activation calculations it could be demonstrated that it is possible to determine the activation, waste quantities and dose distribution for the structural materials of a nuclear reactor based on lifetime operational data within reasonable time frames.

  3. Optimization of multi-layered metallic shield

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Dubinsky, A.; Elperin, T.

    2011-01-01

    Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.

  4. Shield calculations, optimization vs. paradigm

    International Nuclear Information System (INIS)

    Cornejo D, N.; Hernandez S, A.; Martinez G, A.

    2006-01-01

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of μSv.h -1 , independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  5. Analytic Ballistic Performance Model of Whipple Shields

    Science.gov (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2015-01-01

    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  6. An analytical theory of transmission line shielding

    International Nuclear Information System (INIS)

    Pettersson, Per

    1993-01-01

    The classical electrogeometric model of shielding failure flashovers on transmission lines is investigated by analytical methods. Most of the basic elements that has appeared in the literature on the subject have been incorporated and put into a comprehensive model. These elements are: tower top geometry, structure height above ground, line insulation, lateral slope of ground, probability distribution of lightning currents, ratio of striking distances to ground wire and earth relative to conductor, and probability distribution of lightning leader approach angle to ground. Departing from a basic idealistic case, the sensitivity of the model to variations in these parameters is studied. Numerical examples are given. 8 refs, 8 figs, 1 tab

  7. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  8. Shielding calculations. Optimization vs. Paradigms

    International Nuclear Information System (INIS)

    Cornejo Diaz, Nestor; Hernandez Saiz, Alejandro; Martinez Gonzalez, Alina

    2005-01-01

    Many radiation shielding barriers in Cuba have been designed according to the criterion of Maxi-mum Projected Dose Rates. This fact has created the paradigm of low dose rates. Because of this, dose rate levels greater than units of Sv.h-1 would be considered unacceptable by many specialists, regardless of the real exposure times. Nowadays many shielding barriers are being designed using dose constraints in real exposure times. Behind the new barriers, dose rates could be notably greater than those behind the traditional ones, and it does not imply inadequate designs or constructive errors. In this work were obtained significant differences in dose rate levels and shield-ing thicknesses calculated by both methods for some typical installations. The work concludes that real exposure time approach is more adequate in order to optimise Radiation Protection, although this method should be carefully applied

  9. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  10. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  11. Semi-analytic flux formulas for shielding calculations

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1976-06-01

    A special coordinate system based on the work of H. Ono and A. Tsuro has been used to derive exact semi-analytic formulas for the flux from cylindrical, spherical, toroidal, rectangular, annular and truncated cone volume sources; from cylindrical, spherical, truncated cone, disk and rectangular surface sources; and from curved and tilted line sources. In most of the cases where the source is curved, shields of the same curvature are allowed in addition to the standard slab shields; cylindrical shields are also allowed in the rectangular volume source flux formula. An especially complete treatment of a cylindrical volume source is given, in which dose points may be arbitrarily located both within and outside the source, and a finite cylindrical shield may be considered. Detector points may also be specified as lying within spherical and annular source volumes. The integral functions encountered in these formulas require at most two-dimensional numeric integration in order to evaluate the flux values. The classic flux formulas involving only slab shields and slab, disk, line, sphere and truncated cone sources become some of the many special cases which are given in addition to the more general formulas mentioned above

  12. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  13. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.

    Science.gov (United States)

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-05-26

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.

  14. Analytical methods of optimization

    CERN Document Server

    Lawden, D F

    2006-01-01

    Suitable for advanced undergraduates and graduate students, this text surveys the classical theory of the calculus of variations. It takes the approach most appropriate for applications to problems of optimizing the behavior of engineering systems. Two of these problem areas have strongly influenced this presentation: the design of the control systems and the choice of rocket trajectories to be followed by terrestrial and extraterrestrial vehicles.Topics include static systems, control systems, additional constraints, the Hamilton-Jacobi equation, and the accessory optimization problem. Prereq

  15. Special concrete shield selection using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.

    1994-01-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others

  16. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  17. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ha, B.C.; Hay, M.S.; Ferrara, D.M.; Andrews, M.K.

    1993-01-01

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  18. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  19. Optimization of the National Ignition Facility primary shield design

    International Nuclear Information System (INIS)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries

  20. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  1. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  2. Daily dose and shielding optimization in work performance at 'Ukrytie' object

    International Nuclear Information System (INIS)

    Batij, V.G.; Derengovskij, V.V.; Egorov, V.V.; Kuz'menko, V.A.; Rud'ko, V.M.; Sizov, A.A.; Stoyanov, A.I.

    2000-01-01

    The procedure of daily dose and shielding optimization in work performance at 'Ukryttia' object is offered. The recommendations allowing reducing collective effective doze according to the optimization principle are submitted. The technique of shielding optimization is given at stabilization works realization. The optimum shielding calculation example for the strengthening support is given

  3. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  4. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  5. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  6. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    International Nuclear Information System (INIS)

    Smokowski, R.T.

    1985-01-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis

  7. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  8. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  9. A 2D semi-analytical model for Faraday shield in ICP source

    International Nuclear Information System (INIS)

    Zhang, L.G.; Chen, D.Z.; Li, D.; Liu, K.F.; Li, X.F.; Pan, R.M.; Fan, M.W.

    2016-01-01

    Highlights: • In this paper, a 2D model of ICP with faraday shield is proposed considering the complex structure of the Faraday shield. • Analytical solution is found to evaluate the electromagnetic field in the ICP source with Faraday shield. • The collision-free motion of electrons in the source is investigated and the results show that the electrons will oscillate along the radial direction, which brings insight into how the RF power couple to the plasma. - Abstract: Faraday shield is a thin copper structure with a large number of slits which is usually used in inductive coupled plasma (ICP) sources. RF power is coupled into the plasma through these slits, therefore Faraday shield plays an important role in ICP discharge. However, due to the complex structure of the Faraday shield, the resulted electromagnetic field is quite hard to evaluate. In this paper, a 2D model is proposed on the assumption that the Faraday shield is sufficiently long and the RF coil is uniformly distributed, and the copper is considered as ideal conductor. Under these conditions, the magnetic field inside the source is uniform with only the axial component, while the electric field can be decomposed into a vortex field generated by changing magnetic field together with a gradient field generated by electric charge accumulated on the Faraday shield surface, which can be easily found by solving Laplace's equation. The motion of the electrons in the electromagnetic field is investigated and the results show that the electrons will oscillate along the radial direction when taking no account of collision. This interesting result brings insight into how the RF power couples into the plasma.

  10. Optimal beta-ray shielding thicknesses for different therapeutic radionuclides and shielding materials

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides. (authors)

  11. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  12. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  13. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Horsfall, I.; Barton, P.; Malik, A. Q.

    2012-06-01

    Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Experiments also support this evidence.

  14. Application of a simple analytical model to estimate effectiveness of radiation shielding for neutrons

    International Nuclear Information System (INIS)

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1993-01-01

    Neutron dose equivalent rates have been measured for 800-MeV proton beam spills at the Los Alamos Meson Physics Facility. Neutron detectors were used to measure the neutron dose levels at a number of locations for each beam-spill test, and neutron energy spectra were measured for several beam-spill tests. Estimates of expected levels for various detector locations were made using a simple analytical model developed for 800-MeV proton beam spills. A comparison of measurements and model estimates indicates that the model is reasonably accurate in estimating the neutron dose equivalent rate for simple shielding geometries. The model fails for more complicated shielding geometries, where indirect contributions to the dose equivalent rate can dominate

  15. Analytical solution for shielding in teletherapy rooms with Co60 according to semiempirical equation of attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Borroto, M.

    1996-01-01

    The paper presents the parameters for a semiempirical equation of an exponential-polynomial type for the description of the transmission data of the different qualities of the Co-60 radiation in finite means of concrete (2350 kg m -3 ) and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure, help in the development of a computerized analytical solution of the Simpkin's method for shielding calculations in Co-60 teletherapy rooms. The results were compared with the values offered in the NCRP-49 for the same conditions, obtaining an acceptable correlation. (authors). 8 refs., 2 tabs

  16. An optimizing design method for a compact iron shielded superconducting magnet for use in MRI

    International Nuclear Information System (INIS)

    Tang Xin; Zu Donglin; Wang Tao; Han Baohui

    2010-01-01

    A method is developed for designing a special iron shielded superconducting magnet for MRI in this paper. The shield is designed as an integral part of the cryostat and high permeability and high saturated magnetization iron material is adopted. This scheme will result in a compact iron shielded magnet. In the presented design, the finite element (FE) method is adopted to calculate the magnetic field produced by superconducting coils and nonlinear iron material. The FE method is incorporated into the simulated annealing method which is employed for corresponding optimization. Therefore, geometrical configurations of both coils and iron shield can be optimized together. This method can deal with discrete design variables which are defined to describe the cable arrangements of coil cross sections. A detailed algorithm of the present design is described and an example for designing a 1.5 T clinical iron shielded magnet for MRI is shown.

  17. Optimization of thermal design for nitrogen shield of JET cryopump

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1991-11-01

    The reference design of JET cryopump nitrogen shield consists of an outer section made of copper chevrons fastened to two cooling tubes and an inner stainless steel section and backing plate with two cooling tubes. These tubes are fed in a parallel flow arrangement. The inlet flow is divided into two parallel paths so that both tubes on either section are always at the same temperature. This arrangement was selected due to concern about conduction between warm and cold parts of the shield during cooldown transients. If the heat loads are unequal, such a parallel flow arrangement can result in flow starvation in the path with higher heat load. This will cause large temperature differences and, ultimately, structural failure. Hence, an analysis was undertaken to investigate the conduction effects in the shield for other flow arrangements. 4 refs., 8 figs

  18. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    Science.gov (United States)

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  19. A study on optimization of photoneutron shielding in a medical accelerator room by using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Jeong, Kyoungkeun; Kim, Joo Young; Lee, Chang Geol; Seong, Jinsil; Choi, Sang Hyun; Kim, Chan Hyeong

    2008-01-01

    Medical linear accelerators operating above 10 MV require door shielding for neutrons in addition to photons. A criterion for choice of optimal configuration of lamination of BPE (Borated Polyethylene) and lead is not clear. Moreover, optimal configuration cannot be determined by the conventional method using an analytical formula and simple measurement. This study performs Monte Carlo simulation of radiation field in a commercial LINAC room with 15 MV X-ray sources. Considering two configuration of lamination such as 'lead-BPE' and 'lead-BPE-lead', dose equivalents are calculated by using the MCNPX code and comparative analyses are performed with each other. The obtained results show that there is no significant difference in neuron shielding between both configurations, whereas lead-BPE-lead is more effective for photon shielding. It is also noted that the absolute values of neutron doses are much greater than that of photon doses outside as well as inside the door, by three orders of magnitude. As a conclusion, the laminating of lead-BPE is suggested as the optimal configuration from the viewpoint of simplicity in fabrication and handling, even though it has no significant difference from lead-BPE-lead in terms of total dose equivalent. (author)

  20. Shield calculations, optimization vs. paradigm; Calculos de blindajes, optimizacion vs. paradigma

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo D, N.; Hernandez S, A.; Martinez G, A. [Centro de Proteccion e Higiene de las Radiaciones, Calle 20 No. 4113 e/41 y 47 Playa C.P. 11300 LaHabana (Cuba)]. e-mail: nestor@cphr.edu.cu

    2006-07-01

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of {mu}Sv.h{sup -1}, independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  1. The SWAN/NPSOL code system for multivariable multiconstraint shield optimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1995-01-01

    SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN's optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN's optimization capability

  2. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  3. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  4. Evaluation of Shielding Wall Optimization in Lead Slowing Down Spectrometer System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Young; Kim, Jeong Dong; Lee, Yong Deok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A Lead Slowing Down Spectrometer (LSDS) system is nondestructive technology for analyzing isotope fissile content in spent fuel and pyro processed material, in real time and directly. The high intensity neutron and gamma ray were generated from a nuclear material (Pyro, Spent nuclear fuel), electron beam-target reaction and fission of fissile material. Therefore, shielding analysis of LSDS system should be carried out. In this study, Borax, B{sub 4}C, Li{sub 2}Co{sub 3}, Resin were chosen for shielding analysis. The radiation dose limit (<0.1 μSv/hr) was adopted conservatively at the outer wall surface. The covering could be able to reduce the concrete wall thickness from 5cm to 15cm. The optimized shielding walls evaluation will be used as an important data for future real LSDS facility design and shielding door assessment.

  5. Autonomic urban traffic optimization using data analytics

    OpenAIRE

    Garriga Porqueras, Albert

    2017-01-01

    This work focuses on a smart mobility use case where real-time data analytics on traffic measures is used to improve mobility in the event of a perturbation causing congestion in a local urban area. The data monitored is analysed in order to identify patterns that are used to properly reconfigure traffic lights. The monitoring and data analytics infrastructure is based on a hierarchical distributed architecture that allows placing data analytics processes such as machine learning close to the...

  6. Decision-making methodology of optimal shielding materials by using fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, T.; Hirao, Y.

    2000-01-01

    The main purpose of our studies are to select materials and determine the ratio of constituent materials as the first stage of optimum shielding design to suit the individual requirements of nuclear reactors, reprocessing facilities, casks for shipping spent fuel, etc. The parameters of the shield optimization are cost, space, weight and some shielding properties such as activation rates or individual irradiation and cooling time, and total dose rate for neutrons (including secondary gamma ray) and for primary gamma ray. Using conventional two-valued logic (i.e. crisp) approaches, huge combination calculations are needed to identify suitable materials for optimum shielding design. Also, re-computation is required for minor changes, as the approach does not react sensitively to the computation result. Present approach using a fuzzy linear programming method is much of the decision-making toward the satisfying solution might take place in fuzzy environment. And it can quickly and easily provide a guiding principle of optimal selection of shielding materials under the above-mentioned conditions. The possibility or reducing radiation effects by optimizing the ratio of constituent materials is investigated. (author)

  7. Method for optimizing side shielding in positron-emission tomographs and for comparing detector materials

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1980-01-01

    This report presents analytical formulas for the image-forming and background event rates seen by circular positron-emission tomographs with parallel side shielding. These formulas include deadtime losses, detector efficiency, coincidence resolving time, amount of activity, patient port diameter, shielding gap, and shielding depth. A figure of merit, defined in terms of these quantities, describes the signal-to-noise ratio in the reconstructed image of a 20-cm cylinder of water with uniformly dispersed activity. Results are presented for the scintillators NaI(TI), bismuth germanate (BGO), CsF, and plastic; and for Ge(Li) and wire chambers with converters. In these examples, BGO provided the best signal-to-noise for activity levels below 1000 μCi per cm, and CsF had the advantage for higher activity levels

  8. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    International Nuclear Information System (INIS)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok; Park, Chang Je

    2015-01-01

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101 2n /cm 2 ·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B 4 C, and Li 2 CO 3 ] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

  9. Optimizing the Performance of Data Analytics Frameworks

    NARCIS (Netherlands)

    Ghit, B.I.

    2017-01-01

    Data analytics frameworks enable users to process large datasets while hiding the complexity of scaling out their computations on large clusters of thousands of machines. Such frameworks parallelize the computations, distribute the data, and tolerate server failures by deploying their own runtime

  10. Simultaneous Optimization of Tallies in Difficult Shielding Problems

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Evans, Thomas M.; Wagner, John C.

    2008-01-01

    Monte Carlo is quite useful for calculating specific quantities in complex transport problems. Many variance reduction strategies have been developed that accelerate Monte Carlo calculations for specific tallies. However, when trying to calculate multiple tallies or a mesh tally, users have had to accept different levels of relative uncertainty among the tallies or run separate calculations optimized for each individual tally. To address this limitation, an extension of the CADIS (Consistent Adjoint Driven Importance Sampling) method, which is used for difficult source/detector problems, has been developed to optimize several tallies or the cells of a mesh tally simultaneously. The basis for this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. This method utilizes the results of a forward discrete ordinates solution, which may be based on a quick, coarse-mesh calculation, to develop a forward-weighted source for the adjoint calculation. The importance map and the biased source computed from the adjoint flux are then used in the forward Monte Carlo calculation to obtain approximately uniform relative uncertainties for the desired tallies. This extension is called forward-weighted CADIS, or FW-CADIS

  11. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  12. Technique for approximate analytical calculating the internuclear cascade initiated by medium-energy nucleons in accelerator shields

    International Nuclear Information System (INIS)

    Kazarnovskij, M.V.; Matushko, G.K.; Matushko, V.L.; Par'ev, Eh.Ya.; Serezhnikov, S.V.

    1981-01-01

    The problem on propagation of the internuclear cascade initiated by nucleons of 0.1-1 GeV energy in accelerator schielding is solved approximately in the analytical form. Analytical expressions for the function of spatial, angular and energy distribution of the flux density of nucleons with the energy above 20 MeV and some functionals from it are obtained. The results of the calculations obtained by the developed methods are compared with calculations obtained by the method of direct simulation. It is shown that at the atomic mass of shielding material [ru

  13. Optimization of thermal neutron shield concrete mixture using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  14. Optimization of thermal neutron shield concrete mixture using artificial neural network

    International Nuclear Information System (INIS)

    Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.

    2016-01-01

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  15. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  16. Optimization of Savonius turbines using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2010-11-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design. (author)

  17. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Directory of Open Access Journals (Sweden)

    Jeong Dong Kim

    2015-04-01

    Full Text Available A lead slowing-down spectrometer (LSDS system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea is planned to utilize a high-flux (>1012 n/cm2·s neutron source comprised of a high-energy (30 MeV/high-current (∼2 A electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h, a few shielding materials [high-density polyethylene (HDPE–Borax, B4C, and Li2CO3] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near

  18. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Chang Je [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of)

    2015-04-15

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101{sup 2n}/cm{sup 2}·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B{sub 4}C, and Li{sub 2}CO{sub 3}] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in

  19. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  20. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  1. Optimization of the outer support in the ITER lower cryostat thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Noh, C.H., E-mail: chnoh@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Chung, W., E-mail: whchung@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Lim, J., E-mail: jongmin.lim@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Lee, B.C., E-mail: bclee@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of)

    2016-02-15

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  2. Optimization of the outer support in the ITER lower cryostat thermal shield

    International Nuclear Information System (INIS)

    Noh, C.H.; Chung, W.; Lim, J.; Lee, B.C.

    2016-01-01

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  3. An analytical solution to the shielding of Co 60 teletherapy rooms based on a semiempirical equation of photon attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Hernandez, L.; Borroto, M.; Figueredo, M.

    1996-01-01

    A semiempirical equation of polynomial-exponential type is presented to describe the transmission data of Co-60 gamma radiation in finite materials of concrete and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure made easy the developing in computer of an analytical solution for shielding calculations of Co 60 teletherapy rooms, based on the procedures of the NCRP 49 and Simpkin's method. The standard error in the estimation of parameters is less than 1.7 % except for the attenuation of 150 'o' scattered radiation in concrete that resulted in 6.3 % for one of them. The shielding calculations were compared with the data in NCRP 49 for the same conditions with a correlation better than 99 %

  4. Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.

    2006-01-01

    Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.

  5. Predictive Analytics for Coordinated Optimization in Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-13

    This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.

  6. Gradient Optimization for Analytic conTrols - GOAT

    Science.gov (United States)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  7. Optimal design of nuclear mechanical dampers with analytical hierarchy process

    International Nuclear Information System (INIS)

    Zou Yuehua; Wen Bo; Xu Hongxiang; Qin Yonglie

    2000-01-01

    An optimal design with analytical hierarchy process on nuclear mechanical dampers manufactured by authors' university was described. By using fuzzy judgement matrix the coincidence was automatically satisfied without the need of coincidence test. The results obtained by this method have been put into the production practices

  8. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  9. Optimal design of a composite space shield based on numerical simulations

    International Nuclear Information System (INIS)

    Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung

    2015-01-01

    In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.

  10. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  11. Strengthening the composite protective shield of light-weight ship against ballistic impacts: analytical and experimental

    Directory of Open Access Journals (Sweden)

    I. Jalili

    Full Text Available Light and medium protection for small naval vessels guarantees their high performance and safety during the guard duties. In this study, a protective shield fabricated from Dyneema HB25 fibers has been utilized as an add-on layer on the coast guard boat hull. Finite element analyses have been conducted using Chocron's model. Two standards of gun-fire were employed and various thicknesses of the composite layers were examined by ballistic impacts. Afterward, numerical simulations results compared with experiments and revealed a good consistency. Finally, some graphs have been presented to help designers for choosing more convenient shield based on protection and weight characteristics after judgment of vessel requirements.

  12. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  13. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  14. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    Science.gov (United States)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  15. Experimental and analytical study for demonstration program on shielding of casks for high-level wastes

    International Nuclear Information System (INIS)

    Ueki, K.; Nakazawa, M.; Hattorl, S.; Ozaki, S.; Tamaki, H.; Kadotani, H.; Ishizuka, T.; Ishikawa, S.

    1993-01-01

    The following remarks were obtained from the experiment and the DOT 3.5 and the MCNP analyses on the gamma ray and the neutron dose equivalent rates in the cask of interest. 1. The cask has thinner neutron shielding parts around the trunnions. Significant neutrons streaming around the trunnion parts was observed which was also cleared by the MCNP analysis for the 252 Cf source experiment. Accordingly, detailed neutron streaming calculations are required to evaluate the dose levels around the trunnions when loading the vitrified high-level wastes. 2. The room-scattered obstructive neutrons, mainly originating from the neutrons penetrating around the trunnions, at the top and the bottom of the cask are reduced significantly by preparing the water tank at the top and the water layer at the bottom. Therefore, a more accurate experiment is to be carried out in the future shielding experiment especially for neutrons. However, because the water tank and the layer do not exist in the actual high-level wastes transport cask, the experiment without the water tank and layer are not dispensable to demonstrate the transport conditions of the actual cask, too. 3. The gamma-ray and the neutron dose equivalent rate distributions obtained from the DOT 3.5 and the MCNP calculations, respectively, agreed closely with the measured values in the cask areas of interest. Accordingly, the DOT 3.5 code and the MCNP code with the NESX estimator can be employed not only for the shielding analysis of the future experiments, but also for making a safety analysis report of high-level wastes transport casks. (J.P.N.)

  16. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  17. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  18. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  19. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  20. Optimization of turning process through the analytic flank wear modelling

    Science.gov (United States)

    Del Prete, A.; Franchi, R.; De Lorenzis, D.

    2018-05-01

    In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.

  1. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  2. Population-based metaheuristic optimization in neutron optics and shielding design

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D., E-mail: Douglas.DiJulio@esss.se [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Division of Nuclear Physics, Lund University, SE-221 00 Lund (Sweden); Björgvinsdóttir, H. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden); Zendler, C. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Bentley, P.M. [European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden)

    2016-11-01

    Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.

  3. Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-11-01

    Purpose: It is important to reduce fluence map complexity in rotating-shield brachytherapy (RSBT) inverse planning to improve delivery efficiency while maintaining plan quality. This study proposes an efficient and effective RSBT dose optimization method which enables to produce smooth fluence maps. Methods: Five cervical cancer patients each with a high-risk clinical-target-volume (HR-CTV) larger than 40 cm{sup 3} were considered as the test cases. The RSBT source was a partially shielded electronic brachytherapy source (Xoft Axxent™). The anchor RSBT plans generated by the asymmetric dose–volume optimization with smoothness control (ADOS) method were compared against those produced by the dose–surface optimization (DSO) method and inverse-planning with simulated annealing (IPSA). Either L{sub 1}-norm or L{sub 2}-norm was used to measure the smoothness of a fluence map in the proposed ADOS method as one weighted term of the objective function. Uniform dwell-time scaling was applied to all plans such that HR-CTV D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. The quality of the anchor plans was measured with HR-CTV D{sub 90} of the anchor plans. Single-shielded RSBT [(S-RSBT), RSBT with single, fix sized delivery window] and dynamic-sheilded RSBT [(D-RSBT), RSBT with dynamically varying sized delivery window] delivery plans generated based on the anchor plans were also measured, with delivery time constraints of 10, 20, and 30 min/fraction (fx). Results: The average HR-CTV D{sub 90} values of the anchor plans achieved by the ADOS, DSO, and IPSA methods were 111.5, 94.2, and 107.4 Gy, respectively, where the weighting parameter β used in ADOS with L{sub 2}-norm was set to be 100. By using S-RSBT sequencing and 20 min/fx delivery time, the corresponding D{sub 90} values were 88.8, 81.9, and 83.4 Gy; while using D-RSBT sequencing with 20 min/fx delivery time, the corresponding D{sub 90} values were

  4. Optimizing multi-pinhole SPECT geometries using an analytical model

    International Nuclear Information System (INIS)

    Rentmeester, M C M; Have, F van der; Beekman, F J

    2007-01-01

    State-of-the-art multi-pinhole SPECT devices allow for sub-mm resolution imaging of radio-molecule distributions in small laboratory animals. The optimization of multi-pinhole and detector geometries using simulations based on ray-tracing or Monte Carlo algorithms is time-consuming, particularly because many system parameters need to be varied. As an efficient alternative we develop a continuous analytical model of a pinhole SPECT system with a stationary detector set-up, which we apply to focused imaging of a mouse. The model assumes that the multi-pinhole collimator and the detector both have the shape of a spherical layer, and uses analytical expressions for effective pinhole diameters, sensitivity and spatial resolution. For fixed fields-of-view, a pinhole-diameter adapting feedback loop allows for the comparison of the system resolution of different systems at equal system sensitivity, and vice versa. The model predicts that (i) for optimal resolution or sensitivity the collimator layer with pinholes should be placed as closely as possible around the animal given a fixed detector layer, (ii) with high-resolution detectors a resolution improvement up to 31% can be achieved compared to optimized systems, (iii) high-resolution detectors can be placed close to the collimator without significant resolution losses, (iv) interestingly, systems with a physical pinhole diameter of 0 mm can have an excellent resolution when high-resolution detectors are used

  5. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Helen V. Hsieh

    2017-05-01

    Full Text Available Immunochromatographic or lateral flow assays (LFAs are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads, biological reagents (e.g., antibodies, blocking reagents and buffers and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.

  6. Optimizing Hadoop Performance for Big Data Analytics in Smart Grid

    Directory of Open Access Journals (Sweden)

    Mukhtaj Khan

    2017-01-01

    Full Text Available The rapid deployment of Phasor Measurement Units (PMUs in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.

  7. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  8. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  9. Optimized shielding calculation to the transport of 131I employed in nuclear medicine

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.

    1996-01-01

    The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs

  10. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  11. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  12. Optimizing an immersion ESL curriculum using analytic hierarchy process.

    Science.gov (United States)

    Tang, Hui-Wen Vivian

    2011-11-01

    The main purpose of this study is to fill a substantial knowledge gap regarding reaching a uniform group decision in English curriculum design and planning. A comprehensive content-based course criterion model extracted from existing literature and expert opinions was developed. Analytical hierarchy process (AHP) was used to identify the relative importance of course criteria for the purpose of tailoring an optimal one-week immersion English as a second language (ESL) curriculum for elementary school students in a suburban county of Taiwan. The hierarchy model and AHP analysis utilized in the present study will be useful for resolving several important multi-criteria decision-making issues in planning and evaluating ESL programs. This study also offers valuable insights and provides a basis for further research in customizing ESL curriculum models for different student populations with distinct learning needs, goals, and socioeconomic backgrounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Analytical insights into optimality and resonance in fish swimming

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  14. An analytic approach to optimize tidal turbine fields

    Science.gov (United States)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  15. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    Science.gov (United States)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  16. SU-F-I-72: Evaluation of the Ancillary Lead Shielding for Optimizing Radiation Protection in the Interventional Radiology Department

    Energy Technology Data Exchange (ETDEWEB)

    Tonkopi, E; Lightfoot, C [Dalhousie University, Queen Elizabeth II Health Sciences Ctr, Halifax, NS (Canada); LeBlanc, E [Queen Elizabeth II Health Sciences Ctr, Halifax, NS (Canada)

    2016-06-15

    Purpose: The rising complexity of interventional fluoroscopic procedures has resulted in an increase of occupational radiation exposures in the interventional radiology (IR) department. This study assessed the impact of ancillary shielding on optimizing radiation protection for the IR staff. Methods: Scattered radiation measurements were performed in two IR suites equipped with Axiom Artis systems (Siemens Healthcare, Erlangen, Germany) installed in 2006 and 2010. Both rooms had suspended ceiling-mounted lead-acrylic shields of 75×60 cm (Mavig, Munich, Germany) with lead equivalency of 0.5 mm, and under-table drapes of 70×116 cm and 65×70 cm in the newer and the older room respectively. The larger skirt can be wrapped around the table’s corner and in addition the newer suite had two upper shields of 25×55 cm and 25×35 cm. The patient was simulated by 30 cm of acrylic, air kerma rate (AKR) was measured with the 180cc ionization chamber (AccuPro Radcal Corporation, Monrovia, CA, USA) at different positions. The ancillary shields, x-ray tube, image detector, and table height were adjusted by the IR radiologist to simulate various clinical setups. The same exposure parameters were used for all acquisitions. AKR measurements were made at different positions relative to the operator. Results: The AKR measurements demonstrated 91–99% x-ray attenuation by the drapes in both suites. The smaller size of the under-table skirt and absence of the side-drapes in the older room resulted in a 20–50 fold increase of scattered radiation to the operator. The mobile suspended lead-acrylic shield reduced AKR by 90–94% measured at 150–170 cm height. The recommendations were made to replace the smaller under-table skirt and to use the ceiling-mounted shields for all IR procedures. Conclusion: The ancillary shielding may significantly affect radiation exposure to the IR staff. The use of suspended ceiling-mounted shields is especially important for reduction of

  17. Statistical and optimal learning with applications in business analytics

    Science.gov (United States)

    Han, Bin

    Statistical learning is widely used in business analytics to discover structure or exploit patterns from historical data, and build models that capture relationships between an outcome of interest and a set of variables. Optimal learning on the other hand, solves the operational side of the problem, by iterating between decision making and data acquisition/learning. All too often the two problems go hand-in-hand, which exhibit a feedback loop between statistics and optimization. We apply this statistical/optimal learning concept on a context of fundraising marketing campaign problem arising in many non-profit organizations. Many such organizations use direct-mail marketing to cultivate one-time donors and convert them into recurring contributors. Cultivated donors generate much more revenue than new donors, but also lapse with time, making it important to steadily draw in new cultivations. The direct-mail budget is limited, but better-designed mailings can improve success rates without increasing costs. We first apply statistical learning to analyze the effectiveness of several design approaches used in practice, based on a massive dataset covering 8.6 million direct-mail communications with donors to the American Red Cross during 2009-2011. We find evidence that mailed appeals are more effective when they emphasize disaster preparedness and training efforts over post-disaster cleanup. Including small cards that affirm donors' identity as Red Cross supporters is an effective strategy, while including gift items such as address labels is not. Finally, very recent acquisitions are more likely to respond to appeals that ask them to contribute an amount similar to their most recent donation, but this approach has an adverse effect on donors with a longer history. We show via simulation that a simple design strategy based on these insights has potential to improve success rates from 5.4% to 8.1%. Given these findings, when new scenario arises, however, new data need to

  18. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  19. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  20. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  1. Laser: a Tool for Optimization and Enhancement of Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Jan [Iowa State Univ., Ames, IA (United States)

    1997-01-01

    In this work, we use lasers to enhance possibilities of laser desorption methods and to optimize coating procedure for capillary electrophoresis (CE). We use several different instrumental arrangements to characterize matrix-assisted laser desorption (MALD) at atmospheric pressure and in vacuum. In imaging mode, 488-nm argon-ion laser beam is deflected by two acousto-optic deflectors to scan plumes desorbed at atmospheric pressure via absorption. All absorbing species, including neutral molecules, are monitored. Interesting features, e.g. differences between the initial plume and subsequent plumes desorbed from the same spot, or the formation of two plumes from one laser shot are observed. Total plume absorbance can be correlated with the acoustic signal generated by the desorption event. A model equation for the plume velocity as a function of time is proposed. Alternatively, the use of a static laser beam for observation enables reliable determination of plume velocities even when they are very high. Static scattering detection reveals negative influence of particle spallation on MS signal. Ion formation during MALD was monitored using 193-nm light to photodissociate a portion of insulin ion plume. These results define the optimal conditions for desorbing analytes from matrices, as opposed to achieving a compromise between efficient desorption and efficient ionization as is practiced in mass spectrometry. In CE experiment, we examined changes in a poly(ethylene oxide) (PEO) coating by continuously monitoring the electroosmotic flow (EOF) in a fused-silica capillary during electrophoresis. An imaging CCD camera was used to follow the motion of a fluorescent neutral marker zone along the length of the capillary excited by 488-nm Ar-ion laser. The PEO coating was shown to reduce the velocity of EOF by more than an order of magnitude compared to a bare capillary at pH 7.0. The coating protocol was important, especially at an intermediate pH of 7.7. The increase of p

  2. Optimizing RDF Data Cubes for Efficient Processing of Analytical Queries

    DEFF Research Database (Denmark)

    Jakobsen, Kim Ahlstrøm; Andersen, Alex B.; Hose, Katja

    2015-01-01

    data warehouses and data cubes. Today, external data sources are essential for analytics and, as the Semantic Web gains popularity, more and more external sources are available in native RDF. With the recent SPARQL 1.1 standard, performing analytical queries over RDF data sources has finally become...

  3. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  4. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    Science.gov (United States)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  5. Using predictive analytics and big data to optimize pharmaceutical outcomes.

    Science.gov (United States)

    Hernandez, Inmaculada; Zhang, Yuting

    2017-09-15

    The steps involved, the resources needed, and the challenges associated with applying predictive analytics in healthcare are described, with a review of successful applications of predictive analytics in implementing population health management interventions that target medication-related patient outcomes. In healthcare, the term big data typically refers to large quantities of electronic health record, administrative claims, and clinical trial data as well as data collected from smartphone applications, wearable devices, social media, and personal genomics services; predictive analytics refers to innovative methods of analysis developed to overcome challenges associated with big data, including a variety of statistical techniques ranging from predictive modeling to machine learning to data mining. Predictive analytics using big data have been applied successfully in several areas of medication management, such as in the identification of complex patients or those at highest risk for medication noncompliance or adverse effects. Because predictive analytics can be used in predicting different outcomes, they can provide pharmacists with a better understanding of the risks for specific medication-related problems that each patient faces. This information will enable pharmacists to deliver interventions tailored to patients' needs. In order to take full advantage of these benefits, however, clinicians will have to understand the basics of big data and predictive analytics. Predictive analytics that leverage big data will become an indispensable tool for clinicians in mapping interventions and improving patient outcomes. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. Optimized design of shields for diagnostic X rays with NCRP 147 technique

    International Nuclear Information System (INIS)

    Gama T, G.

    2006-01-01

    A comparison among the design techniques of shielding for X-ray diagnostic rooms with the NCRP 49 (1976) report technique, AAPM 39 (1993) Y the one of the NCRP 147 (2005) technique. The designs correspond to a room of conventional X-rays, one of fluoroscopy, one of tomography Y one of mammography. In all the cases it demonstrates that the NCRP 49 technique overestimate the shieldings. The causes of the overestimation of the NCRP 49 can be attributed to: a) high values of the work charge that don't consider the spectral fluence of the photons that are present in each room, b) to the differences in the values of the kerma in air without attenuation for the dispersed primary radiation Y of leakage among both reports. (Author)

  7. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  8. Analytical method for optimization of maintenance policy based on available system failure data

    International Nuclear Information System (INIS)

    Coria, V.H.; Maximov, S.; Rivas-Dávalos, F.; Melchor, C.L.; Guardado, J.L.

    2015-01-01

    An analytical optimization method for preventive maintenance (PM) policy with minimal repair at failure, periodic maintenance, and replacement is proposed for systems with historical failure time data influenced by a current PM policy. The method includes a new imperfect PM model based on Weibull distribution and incorporates the current maintenance interval T 0 and the optimal maintenance interval T to be found. The Weibull parameters are analytically estimated using maximum likelihood estimation. Based on this model, the optimal number of PM and the optimal maintenance interval for minimizing the expected cost over an infinite time horizon are also analytically determined. A number of examples are presented involving different failure time data and current maintenance intervals to analyze how the proposed analytical optimization method for periodic PM policy performances in response to changes in the distribution of the failure data and the current maintenance interval. - Highlights: • An analytical optimization method for preventive maintenance (PM) policy is proposed. • A new imperfect PM model is developed. • The Weibull parameters are analytically estimated using maximum likelihood. • The optimal maintenance interval and number of PM are also analytically determined. • The model is validated by several numerical examples

  9. Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: Criterion for selecting the method of choice

    International Nuclear Information System (INIS)

    Titt, U.; Newhauser, W. D.

    2005-01-01

    Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100. (authors)

  10. Optimizing an Immersion ESL Curriculum Using Analytic Hierarchy Process

    Science.gov (United States)

    Tang, Hui-Wen Vivian

    2011-01-01

    The main purpose of this study is to fill a substantial knowledge gap regarding reaching a uniform group decision in English curriculum design and planning. A comprehensive content-based course criterion model extracted from existing literature and expert opinions was developed. Analytical hierarchy process (AHP) was used to identify the relative…

  11. Optimization of offshore wind turbine support structures using analytical gradient-based method

    OpenAIRE

    Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael

    2015-01-01

    Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...

  12. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    Science.gov (United States)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  13. Query optimization for graph analytics on linked data using SPARQL

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokyong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Seung -Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sukumar, Sreenivas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vatsavai, Ranga Raju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performance of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.

  14. Shielding and neutronic optimization of the National Spallation Neutron Source (NSNS)

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1997-05-01

    Studies are now underway to establish initial design characteristics for the pulsed neutron source NSNS facility and to optimize the design. In this paper the methodology of calculation is presented together with the calculated facility characteristics. Optimization studies are discussed and initial results shown. This paper addresses the target station of the NSNS.

  15. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  17. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    Science.gov (United States)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  18. Analytical studies on optimization of containment design pressure

    International Nuclear Information System (INIS)

    Haware, S.K.; Ghosh, A.K.; Kushwaha, H.S.

    2005-01-01

    optimizing on the size of BOP in order to optimize the containment design pressure. The results of the optimization studies are presented and discussed in the paper. (authors)

  19. Cost Optimization of Product Families using Analytic Cost Models

    DEFF Research Database (Denmark)

    Brunø, Thomas Ditlev; Nielsen, Peter

    2012-01-01

    This paper presents a new method for analysing the cost structure of a mass customized product family. The method uses linear regression and backwards selection to reduce the complexity of a data set describing a number of historical product configurations and incurred costs. By reducing the data...... set, the configuration variables which best describe the variation in product costs are identified. The method is tested using data from a Danish manufacturing company and the results indicate that the method is able to identify the most critical configuration variables. The method can be applied...... in product family redesign projects focusing on cost reduction to identify which modules contribute the most to cost variation and should thus be optimized....

  20. Analytical investigation of the thermal optimization of biogas plants

    International Nuclear Information System (INIS)

    Knauer, Thomas; Scholwin, Frank; Nelles, Michael

    2015-01-01

    The economic efficiency of biogas plants is more difficult to display with recent legal regulations than with bonus tariff systems of previous EEG amendments. To enhance efficiency there are different options, often linked with further investments. Direct technical innovations with fast economic yields need exact evaluation of limiting conditions. Within this article the heat sector of agricultural biogas plants is studied. So far scarcely considered, especially the improvement of on-site thermal energy consumption promises a high optimisation. Data basis are feeding protocols and temperature measurements of input substrates, biogas, environment etc., also documentations of on-site thermal consumption over 10 years. Analyzing first results of measurements and primary equilibrations shows, that maintenance of biogas process temperature consumes most thermal energy and therefore has the greatest potential of improvement. Passive and active insulation of feed systems and heat recovery from secondary fermenter liquids are identified as first optimization measures. Depending on amount and temperature raise of input substrates, saving potentials of more than hundred megawatt hours per year were calculated.

  1. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    Science.gov (United States)

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  3. OPTIMAL METHOD FOR PREPARATION OF SILICATE ROCK SAMPLES FOR ANALYTICAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Maja Vrkljan

    2004-12-01

    Full Text Available The purpose of this study was to determine an optimal dissolution method for silicate rock samples for further analytical purposes. Analytical FAAS method of determining cobalt, chromium, copper, nickel, lead and zinc content in gabbro sample and geochemical standard AGV-1 has been applied for verification. Dissolution in mixtures of various inorganic acids has been tested, as well as Na2CO3 fusion technique. The results obtained by different methods have been compared and dissolution in the mixture of HNO3 + HF has been recommended as optimal.

  4. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Kenny S K; Lee, Louis K Y [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chan, Anthony T C [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR (China)

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis, which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.

  5. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  6. Optimization of hot water transport and distribution networks by analytical method: OPTAL program

    International Nuclear Information System (INIS)

    Barreau, Alain; Caizergues, Robert; Moret-Bailly, Jean

    1977-06-01

    This report presents optimization studies of hot water transport and distribution network by minimizing operating cost. Analytical optimization is used: Lagrange's method of undetermined multipliers. Optimum diameter of each pipe is calculated for minimum network operating cost. The characteristics of the computer program used for calculations, OPTAL, are given in this report. An example of network is calculated and described: 52 branches and 27 customers. Results are discussed [fr

  7. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room

    International Nuclear Information System (INIS)

    Xiao Wei; Wang Xin; Zhang Yinping

    2009-01-01

    Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient h in and area A of the PCM panels in a lightweight passive solar room.

  8. The analytical approach to optimization of active region structure of quantum dot laser

    International Nuclear Information System (INIS)

    Korenev, V V; Savelyev, A V; Zhukov, A E; Omelchenko, A V; Maximov, M V

    2014-01-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value

  9. The analytical approach to optimization of active region structure of quantum dot laser

    Science.gov (United States)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  10. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  11. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  12. An analytical-numerical comprehensive method for optimizing the fringing magnetic field

    International Nuclear Information System (INIS)

    Xiao Meiqin; Mao Naifeng

    1991-01-01

    The criterion of optimizing the fringing magnetic field is discussed, and an analytical-numerical comprehensive method for realizing the optimization is introduced. The method mentioned above consists of two parts, the analytical part calculates the field of the shims, which corrects the fringing magnetic field by using uniform magnetizing method; the numerical part fulfils the whole calculation of the field distribution by solving the equation of magnetic vector potential A within the region covered by arbitrary triangular meshes with the aid of finite difference method and successive over relaxation method. On the basis of the method, the optimization of the fringing magnetic field for a large-scale electromagnetic isotope separator is finished

  13. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles.

    Science.gov (United States)

    Calvano, C D; Aresta, A; Iacovone, M; De Benedetto, G E; Zambonin, C G; Battaglia, M; Ditonno, P; Rutigliano, M; Bettocchi, C

    2010-03-11

    Protein analysis in biological fluids, such as urine, by means of mass spectrometry (MS) still suffers for insufficient standardization in protocols for sample collection, storage and preparation. In this work, the influence of these variables on healthy donors human urine protein profiling performed by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was studied. A screening of various urine sample pre-treatment procedures and different sample deposition approaches on the MALDI target was performed. The influence of urine samples storage time and temperature on spectral profiles was evaluated by means of principal component analysis (PCA). The whole optimized procedure was eventually applied to the MALDI-TOF-MS analysis of human urine samples taken from prostate cancer patients. The best results in terms of detected ions number and abundance in the MS spectra were obtained by using home-made microcolumns packed with hydrophilic-lipophilic balance (HLB) resin as sample pre-treatment method; this procedure was also less expensive and suitable for high throughput analyses. Afterwards, the spin coating approach for sample deposition on the MALDI target plate was optimized, obtaining homogenous and reproducible spots. Then, PCA indicated that low storage temperatures of acidified and centrifuged samples, together with short handling time, allowed to obtain reproducible profiles without artifacts contribution due to experimental conditions. Finally, interesting differences were found by comparing the MALDI-TOF-MS protein profiles of pooled urine samples of healthy donors and prostate cancer patients. The results showed that analytical and pre-analytical variables are crucial for the success of urine analysis, to obtain meaningful and reproducible data, even if the intra-patient variability is very difficult to avoid. It has been proven how pooled urine samples can be an interesting way to make easier the comparison between

  14. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variables that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.

  15. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  16. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  17. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  18. Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"

    Science.gov (United States)

    Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.

    2018-03-01

    In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.

  19. Building a Model for Optimization of Informational-Analytical Ensuring of Cost Management of Industrial Enterprise

    Directory of Open Access Journals (Sweden)

    Lisovskyi Ihor V

    2015-09-01

    Full Text Available The article examines peculiarities of building a model of informational-analytical optimization of cost management. The main sources of information together with approaches to cost management of industrial enterprises have been identified. In order to ensure the successful operation of enterprise in the conditions of growing manifestations of crisis, a continuous improving of the system for enterprise management along with the most important elements, which are necessary for its normal functioning, should be carried out. One of these so important elements are costs of enterprise. Accordingly, for an effective cost management, the most appropriate management approaches and tools must be used, based on a proper informational-analytical support of all processes. The article proposes an optimization model of informationalanalytical ensuring of cost management of industrial enterprises, which will serve as a ground for more informed and economically feasible solutions. A combination of best practices and tools to improve the efficiency of enterprise management has been proposed

  20. Analytic model for ultrasound energy receivers and their optimal electric loads

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-08-01

    In this paper, we present an analytic model for thickness resonating plate ultrasound energy receivers, which we have derived from the piezoelectric and the wave equations and, in which we have included dielectric, viscosity and acoustic attenuation losses. Afterwards, we explore the optimal electric load predictions by the zero reflection and power maximization approaches present in the literature with different acoustic boundary conditions, and discuss their limitations. To validate our model, we compared our expressions with the KLM model solved numerically with very good agreement. Finally, we discuss the differences between the zero reflection and power maximization optimal electric loads, which start to differ as losses in the receiver increase.

  1. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems

    International Nuclear Information System (INIS)

    Olcan, Ceyda

    2015-01-01

    Highlights: • An analytical optimal sizing model is proposed for PV water pumping systems. • The objectives are chosen as deficiency of power supply and life-cycle costs. • The crop water requirements are estimated for a citrus tree yard in Antalya. • The optimal tilt angles are calculated for fixed, seasonal and monthly changes. • The sizing results showed the validity of the proposed analytical model. - Abstract: Stand-alone photovoltaic (PV) water pumping systems effectively use solar energy for irrigation purposes in remote areas. However the random variability and unpredictability of solar energy makes difficult the penetration of PV implementations and complicate the system design. An optimal sizing of these systems proves to be essential. This paper recommends a techno-economic optimization model to determine optimally the capacity of the components of PV water pumping system using a water storage tank. The proposed model is developed regarding the reliability and cost indicators, which are the deficiency of power supply probability and life-cycle costs, respectively. The novelty is that the proposed optimization model is analytically defined for two-objectives and it is able to find a compromise solution. The sizing of a stand-alone PV water pumping system comprises a detailed analysis of crop water requirements and optimal tilt angles. Besides the necessity of long solar radiation and temperature time series, the accurate forecasts of water supply needs have to be determined. The calculation of the optimal tilt angle for yearly, seasonally and monthly frequencies results in higher system efficiency. It is, therefore, suggested to change regularly the tilt angle in order to maximize solar energy output. The proposed optimal sizing model incorporates all these improvements and can accomplish a comprehensive optimization of PV water pumping systems. A case study is conducted considering the irrigation of citrus trees yard located in Antalya, Turkey

  2. Optimization Model for Uncertain Statistics Based on an Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yongchao Hou

    2014-01-01

    Full Text Available Uncertain statistics is a methodology for collecting and interpreting the expert’s experimental data by uncertainty theory. In order to estimate uncertainty distributions, an optimization model based on analytic hierarchy process (AHP and interpolation method is proposed in this paper. In addition, the principle of least squares method is presented to estimate uncertainty distributions with known functional form. Finally, the effectiveness of this method is illustrated by an example.

  3. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  4. Analytical development and optimization of a graphene–solution interface capacitance model

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2014-05-01

    Full Text Available Graphene, which as a new carbon material shows great potential for a range of applications because of its exceptional electronic and mechanical properties, becomes a matter of attention in these years. The use of graphene in nanoscale devices plays an important role in achieving more accurate and faster devices. Although there are lots of experimental studies in this area, there is a lack of analytical models. Quantum capacitance as one of the important properties of field effect transistors (FETs is in our focus. The quantum capacitance of electrolyte-gated transistors (EGFETs along with a relevant equivalent circuit is suggested in terms of Fermi velocity, carrier density, and fundamental physical quantities. The analytical model is compared with the experimental data and the mean absolute percentage error (MAPE is calculated to be 11.82. In order to decrease the error, a new function of E composed of α and β parameters is suggested. In another attempt, the ant colony optimization (ACO algorithm is implemented for optimization and development of an analytical model to obtain a more accurate capacitance model. To further confirm this viewpoint, based on the given results, the accuracy of the optimized model is more than 97% which is in an acceptable range of accuracy.

  5. Optimal starting conditions for the rendezvous maneuver: Analytical and computational approach

    Science.gov (United States)

    Ciarcia, Marco

    by the optimal trajectory. For the guidance trajectory, because of the replacement of the variable thrust direction of the powered subarc with a constant thrust direction, the optimal control problem degenerates into a mathematical programming problem with a relatively small number of degrees of freedom, more precisely: three for case (i) time-to-rendezvous free and two for case (ii) time-to-rendezvous given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory. In Part B, an analytical solution of the Clohessy-Wiltshire equations is presented (i) neglecting the change of the spacecraft mass due to the fuel consumption and (ii) and assuming that the thrust is finite, that is, the trajectory includes powered subarcs flown with max thrust and coasting subarc flown with zero thrust. Then, employing the found analytical solution, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. The main contribution of Part B is the development of analytical solutions for the powered subarcs, an important extension of the analytical solutions already available for the coasting subarcs. One consequence is that the entire optimal trajectory can be described analytically. Another consequence is that the optimal control problems degenerate into mathematical programming problems. A further consequence is that, vis-a-vis the optimal control formulation, the mathematical programming formulation reduces the CPU time by a factor of order 1000. Key words. Space trajectories, rendezvous, optimization, guidance, optimal control, calculus of

  6. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  7. Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler

    Directory of Open Access Journals (Sweden)

    Zhenhao Tang

    2017-01-01

    Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.

  8. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    Science.gov (United States)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  9. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  10. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  11. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-05-17

    An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

  12. Commissioning of the laboratory of Atucha II NPP. Implementation and optimization of analytical techniques, quality aspects

    International Nuclear Information System (INIS)

    Schoenbrod, Betina; Quispe, Benjamin; Cattaneo, Alberto; Rodriguez, Ivanna; Chocron, Mauricio; Farias, Silvia

    2012-09-01

    Atucha II NPP is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 740 MWe designed by SIEMENSKWU. After some years of delay, this NPP is in advanced construction state, being the beginning of commercial operation expected for 2013. Nucleoelectrica Argentina (N.A.S.A.) is the company in charge of the finalization of this project and the future operation of the plant. The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the stations. The Commissioning Chemistry Division of CNAII is in charge of the commissioning of the demineralization water plant and the organization of the chemical laboratory. The water plant started operating successfully in July 2010 and is providing the plant with nuclear grade purity water. Currently, in the conventional ('cold') laboratory several activities are taking place. On one hand, analytical techniques for the future operation of the plant are being tested and optimized. On the other hand, the laboratory is participating in the cleaning and conservation of the different components of the plant, providing technical support and the necessary analysis. To define the analytical techniques for the normal operation of the plant, the parameters to be measured and their range were established in the Chemistry Manual. The necessary equipment and reagents were bought. In this work, a summary of the analytical techniques that are being implemented and optimized is presented. Common anions (chloride, sulfate, fluoride, bromide and nitrate) are analyzed by ion chromatography. Cations, mainly sodium, are determined by absorption spectrometry. A UV-Vis spectrometer is used to determine silicates, iron, ammonia, DQO, total solids, true color and turbidity. TOC measurements are performed with a TOC analyzer. To optimize the methods, several parameters are evaluated: linearity, detection and quantification limits, precision and

  13. Homogenized blocked arcs for multicriteria optimization of radiotherapy: Analytical and numerical solutions

    International Nuclear Information System (INIS)

    Fenwick, John D.; Pardo-Montero, Juan

    2010-01-01

    Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is

  14. Determination of Optimal Opening Scheme for Electromagnetic Loop Networks Based on Fuzzy Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-01-01

    Full Text Available Studying optimization and decision for opening electromagnetic loop networks plays an important role in planning and operation of power grids. First, the basic principle of fuzzy analytic hierarchy process (FAHP is introduced, and then an improved FAHP-based scheme evaluation method is proposed for decoupling electromagnetic loop networks based on a set of indicators reflecting the performance of the candidate schemes. The proposed method combines the advantages of analytic hierarchy process (AHP and fuzzy comprehensive evaluation. On the one hand, AHP effectively combines qualitative and quantitative analysis to ensure the rationality of the evaluation model; on the other hand, the judgment matrix and qualitative indicators are expressed with trapezoidal fuzzy numbers to make decision-making more realistic. The effectiveness of the proposed method is validated by the application results on the real power system of Liaoning province of China.

  15. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Science.gov (United States)

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  16. Approximate analytical solution of diffusion equation with fractional time derivative using optimal homotopy analysis method

    Directory of Open Access Journals (Sweden)

    S. Das

    2013-12-01

    Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.

  17. Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology.

    Science.gov (United States)

    Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Scarponi, Giuseppe

    2014-05-01

    The study compares official spectrophotometric methods for the determination of proline content in honey - those of the International Honey Commission (IHC) and the Association of Official Analytical Chemists (AOAC) - with the original Ough method. Results show that the extra time-consuming treatment stages added by the IHC method with respect to the Ough method are pointless. We demonstrate that the AOACs method proves to be the best in terms of accuracy and time saving. The optimized waiting time for the absorbance recording is set at 35min from the removal of reaction tubes from the boiling bath used in the sample treatment. The optimized method was validated in the matrix: linearity up to 1800mgL(-1), limit of detection 20mgL(-1), limit of quantification 61mgL(-1). The method was applied to 43 unifloral honey samples from the Marche region, Italy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Sarfaraz Nawaz

    2017-07-01

    Full Text Available In this paper, a novel analytical technique is proposed to determine the optimal size and location of shunt capacitor units in radial distribution systems. An objective function is formulated to reduce real power loss, to improve the voltage profile and to increase annual cost savings. A new constant, the Loss Sensitivity Constant (LSC, is proposed here. The value of LSC decides the location and size of candidate buses. The technique is demonstrated on an IEEE-33 bus system at different load levels and the 130-bus distribution system of Jamawa Ramgarh village, Jaipur city. The obtained results are compared with the latest optimization techniques to show the effectiveness and robustness of the proposed technique.

  19. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  20. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.

    Science.gov (United States)

    Boyle, Christopher; Kim, Il Yong

    2011-06-03

    Since the late 1980s, computational analysis of total hip arthroplasty (THA) prosthesis components has been completed using macro-level bone remodeling algorithms. The utilization of macro-sized elements requires apparent bone densities to predict cancellous bone strength, thereby, preventing visualization and analysis of realistic trabecular architecture. In this study, we utilized a recently developed structural optimization algorithm, design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur pre- and post-THA. The computational simulation facilitated direct performance comparison between two commercially available prosthetic implant stems from Zimmer Inc.: the Alloclassic and the Mayo conservative. The novel micro-level approach allowed the unique ability to visualize the trabecular bone adaption post-operation and to quantify the changes in bone mineral content by region. Stress-shielding and strain energy distribution were also quantified for the immediate post-operation and the stably fixated, post-remodeling conditions. Stress-shielding was highest in the proximal region and remained unchanged post-remodeling; conversely, the mid and distal portions show large increases in stress, suggesting a distal shift in the loadpath. The Mayo design conserves bone mass, while simultaneously reducing the incidence of stress-shielding compared to the Alloclassic, revealing a key benefit of the distinctive geometry. Several important factors for stable fixation, determined in clinical evaluations from the literature, were evident in both designs: high levels of proximal bone loss and distal bone densification. The results suggest this novel computational framework can be utilized for comparative hip prosthesis shape, uniquely considering the post-operation bone remodeling as a design criterion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effective factors on optimizing banks’ balance sheet using fuzzy analytical hierarchy process

    Directory of Open Access Journals (Sweden)

    Shoja Rezaei

    2013-11-01

    Full Text Available Every bank seeks methods to optimize its assets and liabilities, thus the main subject is managing assets-liabilities in the balance sheet and the main question is by which factor banks will be enabled to have an optimized combination of assets and liabilities in a common level of risk to get the most return. This case study is dedicated to Refah bank and is an applicable study. The data has collected from the headquarter by a questionnaire and finally effective factors weight on optimizing bank balance sheet determined by using Fuzzy analytical hierarchy process. Results showed that revenue has more effect on optimizing for %39.5 and also loan to deposit ratio for %.74, regarding revenue as a symbol of efficiency in banks, it seems to be the most important factor and goal in banking industry. Furthermore banks need to have some liquidity to respond customers demand to cover one of the most important risks of banking. This factor importance determined to be %18 in Refah Bank by using model and experts view.

  2. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  3. Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides

    International Nuclear Information System (INIS)

    Handapangoda, Dayan; Rukhlenko, Ivan D; Premaratne, Malin

    2013-01-01

    We theoretically analyze guided modes in optically active and passive double-slot plasmonic waveguides. We show that for one of the two different mode symmetries supported by the waveguide, a most productive guiding condition can be realized by adjusting the thicknesses of the layers to optimal values. We also derive approximate analytic expressions to calculate the optimal geometrical parameters of the waveguide. Interestingly, our analysis shows that the propagation losses associated with the inverse mode symmetry of the double-slot waveguide are comparatively low, regardless of the dimensions of the waveguide. We further show that the propagation losses become the smallest in the limiting case of a single-slot (metal–dielectric–metal (MDM)) waveguide. For both double- and single-slot waveguides, we show that the gain required to overcome the losses can be reduced by choosing a dielectric with a low refractive index. We also derive accurate analytical expressions to readily estimate the critical gain and modal gain of the waveguides. (paper)

  4. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    International Nuclear Information System (INIS)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García; Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D.; Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz

    2015-01-01

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs

  5. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García [Instituto de Astronomía Teórica y Experimental, CONICET-UNC, Laprida 854, X5000BGR, Córdoba (Argentina); Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D. [Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz, E-mail: andresnicolas@oac.uncor.edu [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.

  6. A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Sudarshan, K.; Tripathi, R.; Nair, A.G.C.; Acharya, R.; Reddy, A.V.R.; Goswami, A.

    2005-01-01

    A simple method using an internal standard is proposed to correct for the self-shielding effect of B, Cd and Gd in a matrix. This would increase the linear dynamic range of PGNAA in analyzing samples containing these elements. The method is validated by analyzing synthetic samples containing large amounts of B, Cd, Hg and Gd, the elements having high neutron absorption cross-section, in aqueous solutions and solid forms. A simple Monte-Carlo simulation to find the extent of self-shielding in the matrix is presented. The method is applied to the analysis of titanium boride alloy containing large amount of boron. The satisfactory results obtained showed the efficacy of the method of correcting for the self-shielding effects in the sample

  7. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  8. Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-level Λ system

    International Nuclear Information System (INIS)

    Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin

    2004-01-01

    We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of ρ, rather than ρ itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level Λ system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a 'greedy' strategy, in which the purity is increased maximally at each instant

  9. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  10. Analytical study on the criticality of the stochastic optimal velocity model

    International Nuclear Information System (INIS)

    Kanai, Masahiro; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2006-01-01

    In recent works, we have proposed a stochastic cellular automaton model of traffic flow connecting two exactly solvable stochastic processes, i.e., the asymmetric simple exclusion process and the zero range process, with an additional parameter. It is also regarded as an extended version of the optimal velocity model, and moreover it shows particularly notable properties. In this paper, we report that when taking optimal velocity function to be a step function, all of the flux-density graph (i.e. the fundamental diagram) can be estimated. We first find that the fundamental diagram consists of two line segments resembling an inversed-λ form, and next identify their end-points from a microscopic behaviour of vehicles. It is notable that by using a microscopic parameter which indicates a driver's sensitivity to the traffic situation, we give an explicit formula for the critical point at which a traffic jam phase arises. We also compare these analytical results with those of the optimal velocity model, and point out the crucial differences between them

  11. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  12. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  13. Nuclear shields

    International Nuclear Information System (INIS)

    Linares, R.C.; Nienart, L.F.; Toelcke, G.A.

    1976-01-01

    A process is described for preparing melt-processable nuclear shielding compositions from chloro-fluoro substituted ethylene polymers, particularly PCTFE and E-CTFE, containing 1 to 75 percent by weight of a gadolinium compound. 13 claims, no drawings

  14. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  15. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2015-01-01

    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  16. The application of analytical methods to the study of Pareto - optimal control systems

    Directory of Open Access Journals (Sweden)

    I. K. Romanova

    2014-01-01

    Full Text Available The subject of research articles - - methods of multicriteria optimization and their application for parametric synthesis of double-circuit control systems in conditions of inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of a multi-criteria choice - the principle of the Edgeworth - Pareto. Getting Pareto - optimal variants due to inconsistency of individual criteria does not mean reaching a final decision. Set these options only offers the designer (DM.An important issue when using traditional numerical methods is their computational cost. An example is the use of methods of sounding the parameter space, including with use of uniform grids and uniformly distributed sequences. Very complex computational task is the application of computer methods of approximation bounds of Pareto.The purpose of this work is the development of a fairly simple search methods of Pareto - optimal solutions for the case of the criteria set out in the analytical form.The proposed solution is based on the study of the properties of the analytical dependences of criteria. The case is not covered so far in the literature, namely, the topology of the task, in which no touch of indifference curves (lines level. It is shown that for such tasks may be earmarked for compromise solutions. Prepositional use of the angular position of antigradient to the indifference curves in the parameter space relative to the coordinate axes. Formulated propositions on the characteristics of comonotonicity and contramonotonicity and angular characteristics of antigradient to determine Pareto optimal solutions. Considers the General algorithm of calculation: determine the scope of permissible values of parameters; investigates properties comonotonicity and contraventanas; to build an equal level (indifference curves; determined touch type: single sided (task is not strictly multicriteria or bilateral (objective relates to the Pareto

  17. Multiobjective Optimization in Combinatorial Wind Farms System Integration and Resistive SFCL Using Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Moghadasi, Amirhasan; Sarwat, Arif; Guerrero, Josep M.

    2016-01-01

    This paper presents a positive approach for low voltage ride-through (LVRT) improvement of the permanent magnet synchronous generator (PMSG) based on a large wind power plant (WPP) of 50MW. The proposed method utilizes the conventional current control strategy to provide a reactive power...... requirement and retain the active power production during and after the fault for the grid codes compliance. Besides that, a resistive superconducting fault current limiter (RSFCL) as an additional self-healing support is applied outside the WPP to further increase the rated active power of the installation...... on the extreme load reduction is effectively demonstrated. A large WPP has a complicated structure using several components, and the inclusion of RSFCL composes this layout more problematic for optimal performance of the system. Hence, the most-widely decision-making technique based on the analytic hierarchy...

  18. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  19. Optimized radiation of pelvic volumes in the clinical setting by using a novel bellyboard with integrated gonadal shielding

    International Nuclear Information System (INIS)

    Hollenhorst, Helmut; Schaffer, Moshe; Romano, Mario; Reiner, Michael; Siefert, Axel; Schaffer, Pamela; Quanz, Anton; Duehmke, Eckhart

    2004-01-01

    The purpose of this study was to determine the feasibility of a custom-made, modified bellyboard to reduce radiotherapy side effects on small bowel, bladder, skin, and male gonads. Two groups of 10 consecutive patients each were treated from January 2003 through April 2003 with neoadjuvant (45 Gy) or adjuvant (54 Gy) radio(chemo)therapy in single fractions of 5 days a week 1.8 Gy for rectal carcinoma, using a photon energy of 15 MV. One group was positioned in a prone position without an immobilization device, the other group was positioned on our bellyboard. Treatment planning was calculated by using a 4- and a 3-field box technique. Differences in the dose of organs of risk were calculated. For 1 male patient, a gonadal shielding was developed and integrated. All patients examined with the bellyboard demonstrated an anterior and cranial dislocation of the small bowel. Using a 4-field box, the mean dose to the small bowel of patients treated on our bellyboard was 56.5% as compared to 63.1% when treated without the bellyboard. When a 3-field box was used, the mean dose to the small bowel was 52.4% when the bellyboard was used, as compared to a mean dose of 63.1% without the bellyboard. Regarding the dose volume effects to the bladder, the mean dose for patients treated with a 4-field box was about 14.5% higher as compared to patients treated with a 3-field box. The mean dose to the hip joints and skin also depended on the radiation technique. The patient who received gonadal shielding received a maximal total gonadal dose of about 75.0 cGy in single fractions of maximal 3.0 cGy (TL-dosimeters). Daily setup variations evaluated by a beam's-eye view were similar in both groups and ranged from 0.5 cm 1.0 cm. For daily use, our bellyboard appears to be an ideal compromise due to effectiveness, its easy handling, and reproductive positioning; moreover, it can also be used in combination with gonadal shielding

  20. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Olson, A.P.

    1988-01-01

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  1. Analytical design of proportional-integral controllers for the optimal control of first-order processes with operational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Hien Cao Thi; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)

    2013-12-15

    A novel analytical design method of industrial proportional-integral (PI) controllers was developed for the optimal control of first-order processes with operational constraints. The control objective was to minimize a weighted sum of the controlled variable error and the rate of change in the manipulated variable under the maximum allowable limits in the controlled variable, manipulated variable and the rate of change in the manipulated variable. The constrained optimal servo control problem was converted to an unconstrained optimization to obtain an analytical tuning formula. A practical shortcut procedure for obtaining optimal PI parameters was provided based on graphical analysis of global optimality. The proposed PI controller was found to guarantee global optimum and deal explicitly with the three important operational constraints.

  2. Ultrasonographic localization of the thyroid gland for its optimal shielding prior to lateral cephalometric radiography: a pilot study

    Science.gov (United States)

    Hurmerinta, Kirsti; Rice, David; Suomalainen, Anni

    2016-01-01

    Objectives: Lateral cephalometric radiography is a common radiographic examination technique in children. The exclusion of the thyroid gland from the primary X-ray beam is important especially with children. However, patient treatment might require displaying the four most cranial cervical vertebrae (C1–C4) for the assessment of cervical vertebral maturation. Our aim was to present a safe way to display C1–C4 and exclude the thyroid gland from the X-ray beam during lateral cephalometric radiography. Methods: The thyroid glands of 25, 7- to 12-year-old patients were localized by ultrasound examination and shielded prior to lateral cephalometric radiography. A roentgen-positive mark was taped on the patient's skin at the level of most cranial level of the thyroid gland in the midsagittal plane. After exposure, each lateral cephalometric radiograph (LCR) was analyzed for the visibility of the cervical vertebrae. The distance between the ear post and the highest edge of the thyroid shield (TS) at the lateral part of the neck was measured and compared with the distance between the centre of the radiological external auditory meatus, and a roentgen-positive mark was made on the LCR. Results: 68% of the LCRs displayed C1–C4, and the rest of them displayed C1–C3. In all of the patients, the highest edge of the TS in the lateral parts of the neck was located in a higher position than the actual most cranial level of the thyroid gland. Conclusions: Despite localizing the thyroid gland prior to lateral cephalometric radiography, simultaneous visualization of C1–C4 and exclusion of the thyroid gland from the primary X-ray beam during lateral cephalometric radiography might not be completely possible in children because of the design and poor fitness of the TS. PMID:26764584

  3. Simplified Analytical Method for Optimized Initial Shape Analysis of Self-Anchored Suspension Bridges and Its Verification

    Directory of Open Access Journals (Sweden)

    Myung-Rag Jung

    2015-01-01

    Full Text Available A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.

  4. Optimization of the Water Volume in the Buckets of Pico Hydro Overshot Waterwheel by Analytical Method

    Science.gov (United States)

    Budiarso; Adanta, Dendy; Warjito; Siswantara, A. I.; Saputra, Pradhana; Dianofitra, Reza

    2018-03-01

    Rapid economic and population growth in Indonesia lead to increased energy consumption, including electricity needs. Pico hydro is considered as the right solution because the cost of investment and operational cost are fairly low. Additionally, Indonesia has many remote areas with high hydro-energy potential. The overshot waterwheel is one of technology that is suitable to be applied in remote areas due to ease of operation and maintenance. This study attempts to optimize bucket dimensions with the available conditions. In addition, the optimization also has a good impact on the amount of generated power because all available energy is utilized maximally. Analytical method is used to evaluate the volume of water contained in bucket overshot waterwheel. In general, there are two stages performed. First, calculation of the volume of water contained in each active bucket is done. If the amount total of water contained is less than the available discharge in active bucket, recalculation at the width of the wheel is done. Second, calculation of the torque of each active bucket is done to determine the power output. As the result, the mechanical power generated from the waterwheel is 305 Watts with the efficiency value of 28%.

  5. Analytical optimization of active bandwidth and quality factor for TOCSY experiments in NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Coote, Paul, E-mail: paul-coote@hms.harvard.edu [Harvard Medical School (United States); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard; Arthanari, Haribabu, E-mail: hari@hms.harvard.edu [Harvard Medical School (United States)

    2016-09-15

    Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50 % of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum. They can therefore be used to design mixing sequences that will function favorably in experiments. Here, we develop optimization methods tailored to these two metrics, including precise control of off-diagonal cross peak buildup rates. These methods produce square shaped transfer efficiency profiles, directly matching the desirable properties that the metrics are intended to measure. The optimization methods are analytical, rather than numerical. The two resultant shaped pulses have significantly higher active bandwidth and quality factor, respectively, than all other known sequences. They are therefore highly suitable for use in NMR spectroscopy. We include experimental verification of these improved waveforms on small molecule and protein samples.

  6. Fabrication of paper-based analytical devices optimized by central composite design.

    Science.gov (United States)

    Hamedpour, Vahid; Leardi, Riccardo; Suzuki, Koji; Citterio, Daniel

    2018-04-30

    In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described. For this purpose, a central composite design was used for evaluation of the effect of device geometry and amount of assay reagents on the efficiency of the proposed device. The factors of interest were printed length, width, and sampling volume as factors related to device geometry, and amounts of the assay reagents polyvinyl alcohol (PVA), NH4OH, and AgNO3. Deposition of the assay reagents was performed by a thermal inkjet printer. The colorimetric assay mechanism of this device is based on the chemical interaction of isoniazid, ammonium hydroxide, and PVA with silver ions to induce the formation of yellow silver nanoparticles (AgNPs). The in situ-formed AgNPs can be easily detected by the naked eye or with a simple flat-bed scanner. Under optimal conditions, the calibration curve was linear in the isoniazid concentration range 0.03-10 mmol L-1 with a relative standard deviation of 3.4% (n = 5 for determination of 1.0 mmol L-1). Finally, the application of the proposed device for isoniazid determination in pharmaceutical preparations produced satisfactory results.

  7. A Comprehensive Optimization Strategy for Real-time Spatial Feature Sharing and Visual Analytics in Cyberinfrastructure

    Science.gov (United States)

    Li, W.; Shao, H.

    2017-12-01

    For geospatial cyberinfrastructure enabled web services, the ability of rapidly transmitting and sharing spatial data over the Internet plays a critical role to meet the demands of real-time change detection, response and decision-making. Especially for the vector datasets which serve as irreplaceable and concrete material in data-driven geospatial applications, their rich geometry and property information facilitates the development of interactive, efficient and intelligent data analysis and visualization applications. However, the big-data issues of vector datasets have hindered their wide adoption in web services. In this research, we propose a comprehensive optimization strategy to enhance the performance of vector data transmitting and processing. This strategy combines: 1) pre- and on-the-fly generalization, which automatically determines proper simplification level through the introduction of appropriate distance tolerance (ADT) to meet various visualization requirements, and at the same time speed up simplification efficiency; 2) a progressive attribute transmission method to reduce data size and therefore the service response time; 3) compressed data transmission and dynamic adoption of a compression method to maximize the service efficiency under different computing and network environments. A cyberinfrastructure web portal was developed for implementing the proposed technologies. After applying our optimization strategies, substantial performance enhancement is achieved. We expect this work to widen the use of web service providing vector data to support real-time spatial feature sharing, visual analytics and decision-making.

  8. Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Sato, S.; Hatano, T.; Kuroda, T.; Furuya, K.; Hara, S.; Enoeda, M.; Takatsu, H.

    1998-01-01

    Optimum bonding conditions were studied on the hot isostatic pressing (HIP) bonded joints of type 316L austenitic stainless steel and dispersion strengthened copper alloy (DSCu) for application to the ITER shielding blanket / first wall. HIP bonded joints were fabricated at temperatures in a 980-1050 C range, and a series of mechanical tests and metallurgical observations were conducted on the joints. Also, bondability of two grades of DSCu (Glidcop Al-25 trademark and Al-15 trademark ) with SS316L was examined in terms of mechanical properties of the HIP bonded joints. From those studies it was concluded that the HIP temperature of 1050 C was an optimal condition for obtaining higher ductility, impact values and fatigue strength. Also, SS316L/Al-15 joints showed better results in terms of ductility and impact values compared with SS316L/Al-25 joints. (orig.)

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  10. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    Roč. 109, JUL (2015), s. 16-23 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : hydride generation * arsenic * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  11. The application of the analytic hierarchy process (AHP) in uranium mine mining method of the optimal selection

    International Nuclear Information System (INIS)

    Tan Zhongyin; Kuang Zhengping; Qiu Huiyuan

    2014-01-01

    Analytic hierarchy process, AHP, is a combination of qualitative and quantitative, systematic and hierarchical analysis method. Basic decision theory of analytic hierarchy process is applied in this article, with a project example in north Guangdong region as the research object, the in-situ mining method optimization choose hierarchical analysis model is established and the analysis method, The results show that, the AHP model for mining method selecting model was reliable, optimization results were conformity with the actual use of the in-situ mining method, and it has better practicability. (authors)

  12. Radiation shielding

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    Shields for equipment in which ionising radiation is associated with high electrical gradients, for example X-ray tubes and particle accelerators, incorporate a radiation-absorbing metal, as such or as a compound, and are electrically non-conducting and can be placed in the high electrical gradient region of the equipment. Substances disclosed include dispersions of lead, tungsten, uranium or oxides of these in acrylics polyesters, PVC, ABS, polyamides, PTFE, epoxy resins, glass or ceramics. The material used may constitute an evacuable enclosure of the equipment or may be an external shield thereof. (U.K.)

  13. Gonadal shield.

    Science.gov (United States)

    Purdy, J A; Stiteler, R D; Glasgow, G P; Mill, W B

    1975-10-01

    A secondary gonadal shield for use in the pelvic irradiation of males was designed and built using material and apparatus available with the Cerrobend blocking system. The gonadal dose was reduced to approximately 1.5 to 2.5% of the given dose.

  14. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation

    Science.gov (United States)

    Bergeron, Dominic; Tremblay, A.-M. S.

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ2 with respect to α , and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  15. A Two-Step Approach for Analytical Optimal Hedging with Two Triggers

    Directory of Open Access Journals (Sweden)

    Tiesong Hu

    2016-02-01

    Full Text Available Hedging is widely used to mitigate severe water shortages in the operation of reservoirs during droughts. Rationing is usually instituted with one hedging policy, which is based only on one trigger, i.e., initial storage level or current water availability. It may perform poorly in balancing the benefits of a release during the current period versus those of carryover storage during future droughts. This study proposes a novel hedging rule to improve the efficiency of a reservoir operated to supply water, in which, based on two triggers, hedging is initiated with three different hedging sub-rules through a two-step approach. In the first step, the sub-rule is triggered based on the relationship between the initial reservoir storage level and the level of the target rule curve or the firm rule curve at the end of the current period. This step is mainly concerned with increasing the water level or not in the current period. Hedging is then triggered under the sub-rule based on current water availability in the second step, in which the trigger implicitly considers both initial and ending reservoir storage levels in the current period. Moreover, the amount of hedging is analytically derived based on the Karush–Kuhn–Tucker (KKT conditions. In addition, the hedging parameters are optimized using the improved particle swarm optimization (IPSO algorithm coupled with a rule-based simulation. A single water-supply reservoir located in Hubei Province in central China is selected as a case study. The operation results show that the proposed rule is reasonable and significantly improves the reservoir operation performance for both long-term and critical periods relative to other operation policies, such as the standard operating policy (SOP and the most commonly used hedging rules.

  16. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    Science.gov (United States)

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  17. Analytical approach to cross-layer protocol optimization in wireless sensor networks

    Science.gov (United States)

    Hortos, William S.

    2008-04-01

    In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in

  18. Optimized Analytical Method to Determine Gallic and Picric Acids in Pyrotechnic Samples by Using HPLC/UV (Reverse Phase)

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.

    2013-01-01

    A study on the optimization and development of a chromatographic method for the determination of gallic and picric acids in pyrotechnic samples is presented. In order to achieve this, both analytical conditions by HPLC with diode detection and extraction step of a selected sample were studied. (Author)

  19. Multicriteria optimization in a fuzzy environment: The fuzzy analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Gardašević-Filipović Milanka

    2010-01-01

    Full Text Available In the paper the fuzzy extension of the Analytic Hierarchy Process (AHP based on fuzzy numbers, and its application in solving a practical problem, are considered. The paper advocates the use of contradictory test to check the fuzzy user preferences during fuzzy AHP decision-making process. We also propose consistency check and deriving priorities from inconsistent fuzzy judgment matrices to be included in the process, in order to check if the fuzzy approach can be applied in the AHP for the problem considered. An aggregation of local priorities obtained at different levels into composite global priorities for the alternatives based on weighted-sum method is also discussed. The contradictory fuzzy judgment matrix is analyzed. Our theoretical consideration has been verified by an application of commercially available Super Decisions program (developed for solving multi-criteria optimization problems using AHP approach on the problem previously treated in the literature. The obtained results are compared with those from the literature. The conclusions are given and the possibilities for further work in the field are pointed out.

  20. Analytical optimization of demand management strategies across all urban water use sectors

    Science.gov (United States)

    Friedman, Kenneth; Heaney, James P.; Morales, Miguel; Palenchar, John

    2014-07-01

    An effective urban water demand management program can greatly influence both peak and average demand and therefore long-term water supply and infrastructure planning. Although a theoretical framework for evaluating residential indoor demand management has been well established, little has been done to evaluate other water use sectors such as residential irrigation in a compatible manner for integrating these results into an overall solution. This paper presents a systematic procedure to evaluate the optimal blend of single family residential irrigation demand management strategies to achieve a specified goal based on performance functions derived from parcel level tax assessor's data linked to customer level monthly water billing data. This framework is then generalized to apply to any urban water sector, as exponential functions can be fit to all resulting cumulative water savings functions. Two alternative formulations are presented: maximize net benefits, or minimize total costs subject to satisfying a target water savings. Explicit analytical solutions are presented for both formulations based on appropriate exponential best fits of performance functions. A direct result of this solution is the dual variable which represents the marginal cost of water saved at a specified target water savings goal. A case study of 16,303 single family irrigators in Gainesville Regional Utilities utilizing high quality tax assessor and monthly billing data along with parcel level GIS data provide an illustrative example of these techniques. Spatial clustering of targeted homes can be easily performed in GIS to identify priority demand management areas.

  1. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  2. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process

    International Nuclear Information System (INIS)

    Ho, Chao Chung

    2011-01-01

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.

  3. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  4. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  5. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  6. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  7. Radiation shielding

    International Nuclear Information System (INIS)

    Yue, D.D.

    1979-01-01

    Details are given of a cylindrical electric penetration assembly for carrying instrumentation leads, used in monitoring the performance of a nuclear reactor, through the containment wall of the reactor. Effective yet economical shielding protection against both fast neutron and high-energy gamma radiation is provided. Adequate spacing within the assembly allows excessive heat to be efficiently dissipated and means of monitoring all potential radiation and gas leakage paths are provided. (UK)

  8. Shielded container

    International Nuclear Information System (INIS)

    Fries, B.A.

    1978-01-01

    A shielded container for transportation of radioactive materials is disclosed in which leakage from the container is minimized due to constructional features including, inter alia, forming the container of a series of telescoping members having sliding fits between adjacent side walls and having at least two of the members including machine sealed lids and at least two of the elements including hand-tightenable caps

  9. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  10. Developing optimal search strategies for detecting clinically sound prognostic studies in MEDLINE: an analytic survey

    Directory of Open Access Journals (Sweden)

    Haynes R Brian

    2004-06-01

    Full Text Available Abstract Background Clinical end users of MEDLINE have a difficult time retrieving articles that are both scientifically sound and directly relevant to clinical practice. Search filters have been developed to assist end users in increasing the success of their searches. Many filters have been developed for the literature on therapy and reviews but little has been done in the area of prognosis. The objective of this study is to determine how well various methodologic textwords, Medical Subject Headings, and their Boolean combinations retrieve methodologically sound literature on the prognosis of health disorders in MEDLINE. Methods An analytic survey was conducted, comparing hand searches of journals with retrievals from MEDLINE for candidate search terms and combinations. Six research assistants read all issues of 161 journals for the publishing year 2000. All articles were rated using purpose and quality indicators and categorized into clinically relevant original studies, review articles, general papers, or case reports. The original and review articles were then categorized as 'pass' or 'fail' for methodologic rigor in the areas of prognosis and other clinical topics. Candidate search strategies were developed for prognosis and run in MEDLINE – the retrievals being compared with the hand search data. The sensitivity, specificity, precision, and accuracy of the search strategies were calculated. Results 12% of studies classified as prognosis met basic criteria for scientific merit for testing clinical applications. Combinations of terms reached peak sensitivities of 90%. Compared with the best single term, multiple terms increased sensitivity for sound studies by 25.2% (absolute increase, and increased specificity, but by a much smaller amount (1.1% when sensitivity was maximized. Combining terms to optimize both sensitivity and specificity achieved sensitivities and specificities of approximately 83% for each. Conclusion Empirically derived

  11. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    International Nuclear Information System (INIS)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-01-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions

  12. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  13. An analytical study of photoacoustic and thermoacoustic generation efficiency towards contrast agent and film design optimization

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2017-09-01

    Full Text Available Photoacoustic (PA and thermoacoustic (TA effects have been explored in many applications, such as bio-imaging, laser-induced ultrasound generator, and sensitive electromagnetic (EM wave film sensor. In this paper, we propose a compact analytical PA/TA generation model to incorporate EM, thermal and mechanical parameters, etc. From the derived analytical model, both intuitive predictions and quantitative simulations are performed. It shows that beyond the EM absorption improvement, there are many other physical parameters that deserve careful consideration when designing contrast agents or film composites, followed by simulation study. Lastly, several sets of experimental results are presented to prove the feasibility of the proposed analytical model. Overall, the proposed compact model could work as a clear guidance and predication for improved PA/TA contrast agents and film generator/sensor designs in the domain area.

  14. Passive magnetic cylindrical shielding at gauss-range static fields

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2009-01-01

    A study has been performed in order to find the optimal solution for the magnetic shielding of the 10 in. photomultipliers which will be used in the Double Chooz neutrino experiment under a very low magnetic field (less than 2 G). The results obtained with analytical and numerical calculations are compared with measurements made using test prototypes of several magnetic materials, with different dimensions and from different manufacturers. An exhaustive analysis of the magnetic materials was needed to understand the observed disagreement between calculations and test results obtained at low field values.

  15. A Coflow-based Co-optimization Framework for High-performance Data Analytics

    NARCIS (Netherlands)

    Cheng, Long; Wang, Ying; Pei, Yulong; Epema, D.H.J.

    2017-01-01

    Efficient execution of distributed database operators such as joining and aggregating is critical for the performance of big data analytics. With the increase of the compute speedup of modern CPUs, reducing the network
    communication time of these operators in large systems is becoming

  16. A coflow-based co-optimization framework for high-performance data analytics

    NARCIS (Netherlands)

    Cheng, L.; Wang, Y.; Pei, Y.; Epema, D.H.J.

    2017-01-01

    Efficient execution of distributed database operators such as joining and aggregating is critical for the performance of big data analytics. With the increase of the compute speedup of modern CPUs, reducing the network communication time of these operators in large systems is becoming increasingly

  17. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    Science.gov (United States)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  18. Shielding design of ITER pressure suppression system

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Kawasaki, Hiromitsu

    2006-01-01

    The duct shield from streaming D-T neutrons has been designed for the ITER pressure suppression system. Streaming calculations are performed with the DUCT-III code for the region from the inlet of the pressure relief line to the rupture disk. Next, the neutron permeation through the shield is studied by Monte Carlo calculations with the MCNP code. It is found that 0.15 m thick iron shield is enough to suppress the permeating component from the outside. In addition, it is suggested that the volume of the shield can be reduced by about 30% if the optimized iron shield structure having localized thickness across intense permeation paths is employed to shield the pressure suppression line. (T.I.)

  19. Analytical Investigation of Beam Deformation Equation using Perturbation, Homotopy Perturbation, Variational Iteration and Optimal Homotopy Asymptotic Methods

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Mowlaee, P.; Barari, Amin

    2011-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified...... Method (OHAM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate to systems of non-linear differential equation......., and this process produces noise in the obtained answers. This paper deals with solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Optimal Homotopy Asymptotic...

  20. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  1. About the Scythian Shields

    Directory of Open Access Journals (Sweden)

    About the Scythian Shields

    2017-10-01

    Full Text Available Shields played major role in the armament system of the Scythians. Made from organic materials, they are poorly traced on the materials of archaeological excavations. Besides, scaly surface of shields was often perceived in practice as the remnants of the scaly armor. E. V. Chernenko was able to discern the difference between shields’ scaly plates and armor scales. The top edge of the scales was bent inwards, and shield plates had a wire fixation. These observations let significantly increase the number of shields, found in the burial complexes of the Scythians. The comparison of archaeological materials and the images of Scythian warriors allow distinguishing the main forms of Scythian shields. All shields are divided into fencing shields and cover shields. The fencing shields include round wooden shields, reinforced with bronze sheet, and round moon-shaped shields with a notch at the top, with a metal scaly surface. They came to the Scythians under the Greek influence and are known in the monuments of the 4th century BC. Oval shields with scaly surface (back cover shields were used by the Scythian cavalry. They protected the rider in case of frontal attack, and moved back in case of maneuver or closein fighting. Scythian battle tactics were based on rapid approaching the enemy and throwing spears and further rapid withdrawal. Spears stuck in the shields of enemies, forcing them to drop the shields, uncover, and in this stage of the battle the archers attacked the disorganized ranks of the enemy. That was followed by the stage of close fight. Oval form of a wooden shield with leather covering was used by the Scythian infantry and spearmen. Rectangular shields, including wooden shields and the shields pleached from rods, represented a special category. The top of such shield was made of wood, and a pleached pad on leather basis was attached to it. This shield could be a reliable protection from arrows, but it could not protect against javelins

  2. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogotá (Colombia); Arango, C. A., E-mail: caarango@icesi.edu.co [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, A., E-mail: areyesv@unal.edu.co [Department of Chemistry, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-21

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  3. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  4. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  5. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    Science.gov (United States)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  6. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    Science.gov (United States)

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  7. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine

    Science.gov (United States)

    Bascetin, A.

    2007-04-01

    The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.

  8. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  9. Influence of the faces relative arrangement on the optimal reloading station location and analytical determination of its coordinates

    Directory of Open Access Journals (Sweden)

    V.К. Slobodyanyuk

    2017-04-01

    Full Text Available The purpose of this study is to develop a methodology of the optimal rock mass run-of-mine (RoM stock point determination and research of the influence of faces spatial arrangement on this point. The research represents an overview of current researches, where algorithms of the Fermat-Torricelli-Steiner point are used in order to minimize the logistic processes. The methods of mathematical optimization and analytical geometry were applied. Formulae for the optimal point coordinates determination for a 4 faces were established using the latter methods. Mining technology with use of reloading stations is rather common at the deep iron ore pits. In most cases, when deciding on location of RoM stock, its high-altitude position in space of the pit is primarily taken into account. However, the location of the reloading station in a layout also has a significant influence on technical and economic parameters of open-pit mining operations. The traditional approach, which considers a point of the center of gravity as an optimal point for RoM stock location, does not guarantee the minimum haulage. In mathematics, the Fermat-Torricelli point that provides a minimum distance to the vertices of the triangle is known. It is shown that the minimum haulage is provided when the point of RoM stock location and Fermat-Torricelli point coincide. In terms of open pit mining operations, the development of a method that will determine an optimal point of RoM stock location for a working area with respect to the known coordinates of distinguished points on the basis of new weight factors is of particular practical importance. A two-stage solution to the problem of determining the rational point of RoM stock location (with a minimal transport work for any number of faces is proposed. Such optimal point for RoM stock location reduces the transport work by 10–20 %.

  10. Optimization of solar assisted heat pump systems via a simple analytic approach

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W

    1980-01-01

    An analytic method for calculating the optimum operating temperature of the collector/storage subsystem in a solar assisted heat pump is presented. A tradeoff exists between rising heat pump coefficient of performance and falling collector efficiency as this temperature is increased, resulting in an optimum temperature whose value increases with increasing efficiency of the auxiliary energy source. Electric resistance is shown to be a poor backup to such systems. A number of options for thermally coupling the system to the ground are analyzed and compared.

  11. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  12. Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications

    Science.gov (United States)

    Trombetti, Tomaso

    This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral

  13. Shield cost minimization using SWAN

    International Nuclear Information System (INIS)

    Watkins, E.F.; Annese, C.E.; Greenspan, E.

    1993-01-01

    The common approach to the search for minimum cost shield designs is open-quotes trial-and-errorclose quotes; it proceeds as follows: 1. Based on prior experience and intuition, divide the shield into zones and assume their composition. 2. Solve the transport equation and calculate the relevant performance characteristics. 3. Change the composition or the geometry of one or a few of the zones and repeat step 2. 4. Repeat step 3 many times until the shield design appears to be optimal. 5. Select a different set of constituents and repeat steps 2,3, and 4. 6. Repeate step 5 a few or many times until the designer can point to the most cost-effective design

  14. An analytical method to determine the optimal size of a photovoltaic plant

    Energy Technology Data Exchange (ETDEWEB)

    Barra, L; Catalanotti, S; Fontana, F; Lavorante, F

    1984-01-01

    In this paper, a simplified method for the optimal sizing of a photovoltaic system is presented. The results have been obtained for Italian meteorological data, but the methodology can be applied to any geographical area. The system studied is composed of a photovoltaic array, power tracker, battery storage, inverter and load. Computer simulation was used to obtain the performance of this system for many values of field area, battery storage value, solar flux and load by keeping constant the efficiencies. A simple fit was used to achieve a formula relating the system variables to the performance. Finally, the formulae for the optimal values of the field area and the battery storage value are shown.

  15. Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling

    Directory of Open Access Journals (Sweden)

    Noor Faizah Z.A.

    2016-01-01

    Full Text Available This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2 as dielectric and Tungsten Silicide (WSi2 and Titanium Silicide (TiSi2 as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively.

  16. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    Science.gov (United States)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  17. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    Science.gov (United States)

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. On the selection of optimized carbon nano tube synthesis method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Besharati, M. K.; Afaghi Khatibi, A.; Akbari, M.

    2008-01-01

    Evidence from the early and late industrializes shows that technology, as the commercial application of scientific knowledge, has been a major driver of industrial and economic development. International technology transfer is now being recognized as having played an important role in the development of the most successful late industrializes of the second half of the twentieth Century. Our society stands to be significantly influenced by carbon nano tubes, shaped by nano tube applications in every aspect, just as silicon-based technology still shapes society today. Nano tubes can be formed in various structures using several different processing methods. In this paper, the synthesis methods used to produce nano tubes in industrial or laboratory scales are discussed and a comparison is made. A technical feasibility study is conducted by using the multi criteria decision-making model, namely Analytic Hierarchy Process. The article ends with a discussion of selecting the best method of Technology Transferring of Carbon Nano tubes to Iran

  19. PLS2 regression as a tool for selection of optimal analytical modality

    DEFF Research Database (Denmark)

    Madsen, Michael; Esbensen, Kim

    Intelligent use of modern process analysers allows process technicians and engineers to look deep into the dynamic behaviour of production systems. This opens up for a plurality of new possibilities with respect to process optimisation. Oftentimes, several instruments representing different...... technologies and price classes are able to decipher relevant process information simultaneously. The question then is: how to choose between available technologies without compromising the quality and usability of the data. We apply PLS2 modelling to quantify the relative merits of competing, or complementing......, analytical modalities. We here present results from a feasibility study, where Fourier Transform Near InfraRed (FT-NIR), Fourier Transform Mid InfraRed (FT-MIR), and Raman laser spectroscopy were applied on the same set of samples obtained from a pilot-scale beer brewing process. Quantitative PLS1 models...

  20. Analytical Diagnostics of Non-Optimal Use of Pesticides and Health Hazards for Vegetable Pickers

    International Nuclear Information System (INIS)

    Zafar, M.; Mehmood, T.; Baig, I. A.; Saboor, A.; Sadiq, S.; Mahmood, K.

    2016-01-01

    Economically pesticides are meant to control pests in the fields. Up to certain optimal use of a typical pesticide, it enhances the yield of crops and vegetables. But, eventually amplified use of pesticides results in contamination of environment (water, soil, and air) and increase the health cost of vegetable pickers. The purpose of this study is to estimate the excessive use of pesticides and economic cost of health hazards for the vegetable pickers in district Vehari. Data from 90 respondents were collected and analyzed. The most common health problems identified during the survey were headache, eye irritation, skin infection, cough and shortness of breath. Health cost consists of costs related to precautionary measure, medication, traveling, the opportunity cost of attended persons and productivity loss. The mean health cost of vegetable pickers in the study area was about Rs. 385 per picker per year. Health cost model was used to measure the health cost of vegetable pickers. The regression results showed that pesticides were being applied non-optimally in the study area i.e., number of pesticide applications for vegetables (7-31) were substantially higher than the recommended dose. Health cost function was significantly different from zero as indicated by F-stat (32.18) and it is also supported by R/sup 2/ that about 70 percent variation in health cost is explained by medication accompanied by productivity loss (Rs. 223), precautionary measure (Rs. 134), attended person cost (Rs. 14) and traveling expenditures (Rs. 16). Hence, strict legislation is required to overcome the availability of hazardous pesticides and to keep the vegetable pickers aware of the optimal use of pesticides through appropriate extension services. (author)

  1. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    Science.gov (United States)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass

  2. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  3. Optimisation of the radiation shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2000-01-01

    Effective radiation shielding is imperative for safe operation of modern Medical Cyclotrons producing large activities of short-lived radioisotopes on a commercial basis. The optimal cyclotron shielding design demands a careful balance between the radiological, economical and often the sociopolitical factors. One is required to optimize the cost of radiation protection and the cost of radiological-health detriment. The cost of radiation protection depends explicitly on a) the nature of the radiation field produced by the cyclotron, b) the cyclotron operation condition, c) the cost of shielding material, d) the level of dose reduction, e) the projected net revenue from the sale of the radioisotopes, and f) the depreciation rate of the cyclotron facility. The Genetic Algorithm (GA) is used for a cost -benefit analysis of this problem. The GA is a mathematical technique that emulates the Darwinian Evolution paradigm. It is ideally suited to search for a global optimum in a large multi-dimensional solution space, having demonstrated strength compared to the classical analytical methods. Furthermore the GA method runs on a PC in a Windows environment. This paper highlights an interactive spreadsheet macro program for the cost benefit analysis of the optimize Medical Cyclotron shielding using a GA search engine. (author)

  4. Optimization of an analytical electron microscope for x-ray microanalysis: instrumental problems

    International Nuclear Information System (INIS)

    Bentley, J.; Zaluzec, N.J.; Kenik, E.A.; Carpenter, R.W.

    1979-01-01

    The addition of an energy dispersive x-ray spectrometer to a modern transmission or scanning transmission electron microscope can provide a powerful tool in the characterization of the materials. Unfortunately this seemingly simple modification can lead to a host of instrumental problems with respect to the accuracy, validity, and quality of the recorded information. This tutorial reviews the complications which can arise in performing x-ray microanalysis in current analytical electron microscopes. The first topic treated in depth is fluorescence by uncollimated radiation. The source, distinguishing characteristics, effects on quantitative analysis and schemes for elimination or minimization as applicable to TEM/STEMs, D-STEMs and HVEMs are discussed. The local specimen environment is considered in the second major section where again detrimental effects on quantitative analysis and remedial procedures, particularly the use of low-background specimen holers, are highlighted. Finally, the detrimental aspects of specimen contamination, insofar as they affect x-ray microanalysis, are discussed. It is concluded that if the described preventive measures are implemented, reliable quantitative analysis is possible

  5. Semi-Analytical Solution of Optimization on Moon-Pool Shaped WEC

    Directory of Open Access Journals (Sweden)

    Zhang W.C.

    2016-10-01

    Full Text Available In order to effectively extract and maximize the energy from ocean waves, a new kind of oscillating-body WEC (wave energy converter with moon pool has been put forward. The main emphasis in this paper is placed on inserting the damping into the equation of heaving motion applied for a complex wave energy converter and expressions for velocity potential added mass, damping coefficients associated with exciting forces were derived by using eigenfunction expansion matching method. By using surface-wave hydrodynamics, the exact theoretical conditions were solved to allow the maximum energy to be absorbed from regular waves. To optimize the ability of the wave energy conversion, oscillating system models under different radius-ratios are calculated and comparatively analyzed. Numerical calculations indicated that the capture width reaches the maximum in the vicinity of the natural frequency and the new kind of oscillating-body WEC has a positive ability of wave energy conversion.

  6. Optimized design of shields for diagnostic X rays with NCRP 147 technique; Diseno optimizado de blindajes para rayos X diagnostico con tecnica NCRP 147

    Energy Technology Data Exchange (ETDEWEB)

    Gama T, G. [Calidad XXI SA de CV, Zacatecas 67-007 Col. Roma, 06700 Mexico D.F. (Mexico)]. e-mail: cxxi@prodigy.net.mx

    2006-07-01

    A comparison among the design techniques of shielding for X-ray diagnostic rooms with the NCRP 49 (1976) report technique, AAPM 39 (1993) Y the one of the NCRP 147 (2005) technique. The designs correspond to a room of conventional X-rays, one of fluoroscopy, one of tomography Y one of mammography. In all the cases it demonstrates that the NCRP 49 technique overestimate the shieldings. The causes of the overestimation of the NCRP 49 can be attributed to: a) high values of the work charge that don't consider the spectral fluence of the photons that are present in each room, b) to the differences in the values of the kerma in air without attenuation for the dispersed primary radiation Y of leakage among both reports. (Author)

  7. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  8. Handout on shielding calculation

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.

    1991-01-01

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  9. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  10. Analytical investigation of the thermal optimization of biogas plants; Analytische Untersuchung der thermischen Optimierung von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, Thomas [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Ing. Buero Energietechnik, Niebuell (Germany); Scholwin, Frank [Institut fuer Biogas, Kreislaufwirtschaft und Energie, Weimar (Germany); Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2015-07-01

    The economic efficiency of biogas plants is more difficult to display with recent legal regulations than with bonus tariff systems of previous EEG amendments. To enhance efficiency there are different options, often linked with further investments. Direct technical innovations with fast economic yields need exact evaluation of limiting conditions. Within this article the heat sector of agricultural biogas plants is studied. So far scarcely considered, especially the improvement of on-site thermal energy consumption promises a high optimisation. Data basis are feeding protocols and temperature measurements of input substrates, biogas, environment etc., also documentations of on-site thermal consumption over 10 years. Analyzing first results of measurements and primary equilibrations shows, that maintenance of biogas process temperature consumes most thermal energy and therefore has the greatest potential of improvement. Passive and active insulation of feed systems and heat recovery from secondary fermenter liquids are identified as first optimization measures. Depending on amount and temperature raise of input substrates, saving potentials of more than hundred megawatt hours per year were calculated.

  11. Design of aseismic class components: measurement of frequency parameters and optimization of analytical models

    International Nuclear Information System (INIS)

    Panet, M.; Delmas, J.; Ballester, J.L.

    1993-04-01

    In each plant unit, there are about 250 earthquake-qualified safety related valves. Justifying their aseismic capacity has proved complex. The structures are so diversified that it is not easy for designers to determine a generic model. Generally speaking, the models tend to overestimate the resonance frequencies. An approach more representative of the actual structure of the component was consequently sought, on which qualification of technological options with respect to the safety authorities would be based, thereby optimizing vibrating table qualification test schedules. The paper describes application of the approximate spectral identification method from the OPTDIM system, which determines basic structure modal data to forecast the approximate eigenfrequencies of a sub-domain, materialized by the component. It is used for a posteriori justification of topworks in operating equipment (900 MWe series), with respect to the 33 Hz ≤ f condition, which guarantees zero amplification of seismic induced internal loads. In the seismic design context and supplementing the preliminary eigenfrequency studies, inverse method solution techniques are used to define the most representative model of the modal behaviour of an electrically controlled motor-operated valve. (authors). 6 figs., 6 tabs., 11 refs

  12. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  13. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  14. Brackish groundwater membrane system design for sustainable irrigation: Optimal configuration selection using analytic hierarchy process and multi-dimension scaling

    Directory of Open Access Journals (Sweden)

    Beni eLew

    2014-12-01

    Full Text Available The recent high demands for reuse of salty water for irrigation affected membrane producers to assess new potential technologies for undesirable physical, chemical and biological contaminants removal. This paper studies the assembly options by the analytic hierarchy process (AHP model and the multi-dimension scaling (MDS techniques. A specialized form of MDS (CoPlot software enables presentation of the AHP outcomes in a two dimensional space and the optimal model can be visualized clearly. Four types of 8 membranes were selected: (i Nanofiltration low rejection and high flux (ESNA1-LF-LD, 86% rejection, 10,500gpd; (ii Nanofiltration medium rejection and medium flux (ESNA1-LF2-LD, 91% rejection, 8,200gpd; (iii Reverse Osmosis high rejection and high flux (CPA5-MAX, 99.7 rejection, 12,000gpd ; and (iv Reverse Osmosis medium rejection and extreme high flux (ESPA4-MAX, 99.2 rejection, 13,200gpd. The results indicate that: (i Nanofiltration membrane (High flux and Low rejection can produce water for irrigation with valuable levels of nutrient ions and a reduction in the sodium absorption ratio (SAR, minimizing soil salinity; this is an attractive option for agricultural irrigation and is the optimal solution; and (ii implementing the MDS approach with reference to the variables is consequently useful to characterize membrane system design.

  15. Analytical structural optimization and experimental verifications for traveling wave generation in self-assembling swimming smart boxes

    International Nuclear Information System (INIS)

    Bani-Hani, M A; Karami, M A

    2015-01-01

    This paper presents vibration analysis and structural optimization of a swimming–morphing structure. The swimming of the structure is achieved by utilization of piezoelectric patches to generate traveling waves. The third mode shape of the structure in the longitudinal direction resembles the body waveform of a swimming eel. After swimming to its destination, the morphing structure changes shape from an open box to a cube using shape memory alloys (SMAs). The SMAs used for the configuration change of the box robot cannot be used for swimming since they fail to operate at high frequencies. Piezoelectric patches are actuated at the third natural frequency of the structure. We optimize the thickness of the panels and the stiffness of the springs at the joints to generate swimming waveforms that most closely resemble the body waveform of an eel. The traveling wave is generated using two piezoelectric sets of patches bonded to the first and last segments of the beams in the longitudinal direction. Excitation of the piezoelectric results in coupled system dynamics equations that can be translated into the generation of waves. Theoretical analysis based on the distributed parameter model is conducted in this paper. A scalar measure of the traveling to standing wave ratio is introduced using a 2-dimensional Fourier transform (2D-FFT) of the body deformation waveform. An optimization algorithm based on tuning the flexural transverse wave is established to obtain a higher traveling to standing wave ratio. The results are then compared to common methods in the literature for assessment of standing to traveling wave ratios. The analytical models are verified by the close agreement between the traveling waves predicted by the model and those measured in the experiments. (paper)

  16. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  17. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  18. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  19. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  20. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    Science.gov (United States)

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Magnetic shielding for coreless linear permanent magnet motors

    NARCIS (Netherlands)

    Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.

    2013-01-01

    This paper concerns the local reduction of the magnetic flux density by means of magnetic shielding. Using a spatial frequency description, a 2-D semi-analytical periodic model is obtained for a coreless single-sided linear permanent magnet motor. The magnetic shield is included in the modeling

  2. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES.

    Science.gov (United States)

    da Costa, Silvânio Silvério Lopes; Pereira, Ana Cristina Lima; Passos, Elisangela Andrade; Alves, José do Patrocínio Hora; Garcia, Carlos Alexandre Borges; Araujo, Rennan Geovanny Oliveira

    2013-04-15

    Experimental design methodology was used to optimize an analytical method for determination of the mineral element composition (Al, Ca, Cd, Cr, Cu, Ba, Fe, K, Mg, Mn, P, S, Sr and Zn) of dog and cat foods. Two-level full factorial design was applied to define the optimal proportions of the reagents used for microwave-assisted sample digestion (2.0 mol L(-1) HNO3 and 6% m/v H2O2). A three-level factorial design for two variables was used to optimize the operational conditions of the inductively coupled plasma optical emission spectrometer, employed for analysis of the extracts. A radiofrequency power of 1.2 kW and a nebulizer argon flow of 1.0 L min(-1) were selected. The limits of quantification (LOQ) were between 0.03 μg g(-1) (Cr, 267.716 nm) and 87 μg g(-1) (Ca, 373.690 nm). The trueness of the optimized method was evaluated by analysis of five certified reference materials (CRMs): wheat flour (NIST 1567a), bovine liver (NIST 1577), peach leaves (NIST 1547), oyster tissue (NIST 1566b), and fish protein (DORM-3). The recovery values obtained for the CRMs were between 80 ± 4% (Cr) and 117 ± 5% (Cd), with relative standard deviations (RSDs) better than 5%, demonstrating that the proposed method offered good trueness and precision. Ten samples of pet food (five each of cat and dog food) were acquired at supermarkets in Aracaju city (Sergipe State, Brazil). Concentrations in the dog food ranged between 7.1 mg kg(-1) (Ba) and 2.7 g kg(-1) (Ca), while for cat food the values were between 3.7 mg kg(-1) (Ba) and 3.0 g kg(-1) (Ca). The concentrations of Ca, K, Mg, P, Cu, Fe, Mn, and Zn in the food were compared with the guidelines of the United States' Association of American Feed Control Officials (AAFCO) and the Brazilian Ministry of Agriculture, Livestock, and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento-MAPA). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  4. Shielding of the contralateral breast during tangential irradiation.

    Science.gov (United States)

    Goffman, Thomas E; Miller, Michael; Laronga, Christine; Oliver, Shelly; Wong, Ping

    2004-08-01

    The purpose of this study was to investigate both optimal and practical contralateral breast shielding during tangential irradiation in young patients. A shaped sheet of variable thickness of lead was tested on a phantom with rubber breasts, and an optimized shield was created. Testing on 18 consecutive patients 50 years or younger showed shielding consistently reduced contralateral breast dose to at least half, with small additional reduction after removal of the medial wedge. For younger patients in whom radiation exposure is of considerable concern, a simple shield of 2 mm lead thickness proved practical and effective.

  5. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  6. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  7. Thermal design of top shield

    International Nuclear Information System (INIS)

    Raghupathy, S.; Velusamy, K.; Parthasarathy, U.; Ghosh, D.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2005-01-01

    m 3 /s and using air as the coolant is provided. The bottom plate of TS is cooled by air jets to maintain its temperature at 393 K. The air leaving the bottom plate is circulated through vertical cooling passages around the component penetrations shells and the same air is used to heat the top plate thereby coupling the temperatures of top and bottom plates thus maintaining the ΔT between them. Mineral wool insulation is provided above top plate to reduce the heat loss and to maintain the ΔT across the height of TS. No cooling is provided for CP and 48 shielding plates with varying spacing between them are provided to get a linear temperature variation across the plates. The heat transfer through cover gas has been estimated analytically. Detailed thermal hydraulic analysis has been carried out to estimate the coolant distribution to various cooling passages and the temperature distribution in TS. Cellular convection in the component penetrations has been analysed using the THYC-2D code to calculate the axial and circumferential temperature distribution in the penetration shells. Analysis carried out using HEATING-5 code indicates that the temperature and ΔT limits for the top plate of CP are met. CP is provided with a mechanism box above the top of SRP. Detailed analysis for the thermal management of the upper part of CP has been carried out leading to provision of 1 kW heater, 50 mm thick insulation outside the mechanism box and shutters to control the temperature inside the box in order to maintain the temperature of top plate of CP. Detailed thermal analysis carried out indicates that the temperatures near the inflatable seal / backup seal are 377 K / 375 K respectively. The geometry outside roof slab is quite complex with multi-modal heat transfer interaction among the various structures. Thermal analysis of the MV-RS junction has been carried out resulting in the optimization of the geometry and location of the ACB along with optimum thickness of the SV

  8. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  9. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  10. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  11. Biological shield design for a 10 MeV Rhodotron

    International Nuclear Information System (INIS)

    Khalafi, H.; Ghane, A.; Safaei Arshi, S.; Tabakh, F.

    2012-01-01

    Highlights: ► We evaluate the produced radiations of the Rhodotron-TT200 and their attenuation to the permitted level. ► We apply analytical calculations to determine the shield material and thickness. ► We simulate the Rhodotron accelerator and its shielding using MCNPX code to make sure of results accuracy. -- Abstract: Radiation field of the Rhodotron-TT200 electron accelerator is determined in this study. Regarding the interactions of electron with matter, the produced radiations and their attenuation to the permitted level (i.e. 0.01 mrem/h) are evaluated and calculated. For this purpose analytical calculations are applied to determine the biological shield material and thickness. In order to make sure of results accuracy, Rhodotron accelerator and its shielding are simulated using MCNPX code and the results of analytical calculations and MCNPX code are compared with the experimental ones.

  12. Business Analytics and Performance Management: A Small Data Example Combining TD-ABC and BSC for Simulation and Optimization

    DEFF Research Database (Denmark)

    Nielsen, Steen

    The purpose of this paper is twofold: first, it discuss the potentials of combining performance management with the concept and methodology of business analytics. The inspiration for this stems from the intensified discussions and use of business analytics and performance in organizations by both...

  13. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  14. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  15. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  16. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  17. Optimization of instrumental neutron activation analysis method by means of 2k experimental design technique aiming the validation of analytical procedures

    International Nuclear Information System (INIS)

    Petroni, Robson; Moreira, Edson G.

    2013-01-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2 k experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  18. Optimization of instrumental neutron activation analysis method by means of 2{sup k} experimental design technique aiming the validation of analytical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Robson; Moreira, Edson G., E-mail: rpetroni@ipen.br, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2{sup k} experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  19. Shielding member for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori

    1997-06-30

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  20. Radiation shielding activities at IDOM

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora, E-mail: cesar.hueso@idom.com [IDOM, Consulting, Engineering and Architecture, S.A.U, Vizcaya (Spain)

    2017-07-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  1. Radiation shielding activities at IDOM

    International Nuclear Information System (INIS)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora

    2017-01-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  2. Estimating ISABELLE shielding requirements

    International Nuclear Information System (INIS)

    Stevens, A.J.; Thorndike, A.M.

    1976-01-01

    Estimates were made of the shielding thicknesses required at various points around the ISABELLE ring. Both hadron and muon requirements are considered. Radiation levels at the outside of the shield and at the BNL site boundary are kept at or below 1000 mrem per year and 5 mrem/year respectively. Muon requirements are based on the Wang formula for pion spectra, and the hadron requirements on the hadron cascade program CYLKAZ of Ranft. A muon shield thickness of 77 meters of sand is indicated outside the ring in one area, and hadron shields equivalent to from 2.7 to 5.6 meters in thickness of sand above the ring. The suggested safety allowance would increase these values to 86 meters and 4.0 to 7.2 meters respectively. There are many uncertainties in such estimates, but these last figures are considered to be rather conservative

  3. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  4. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  5. Radiation shielding curtain

    International Nuclear Information System (INIS)

    Winkler, N.T.

    1976-01-01

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  6. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Fisher, J.J.

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures

  7. Shield nuclear design for the 5-kWe TE system

    International Nuclear Information System (INIS)

    Keshishian, V.

    1972-01-01

    The nuclear analysis of the 5-kW(e) reactor shield is presented. Calculation methods and optimization techniques used are presented. Borated stainless steel was selected for the gamma ray shield with tungsten alloy as an alternate. The total shield weight was calculated to be 355 lb. (U.S.)

  8. Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem

    Science.gov (United States)

    Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi

    2017-07-01

    The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.

  9. Optimization of IC/HPLC as a rapid analytical tool for characterization of total impurities in UO2

    International Nuclear Information System (INIS)

    Kelkar, A.G.; Kapoor, Y.S.; Mahanty, B.N.; Fulzele, A.K.; Mallik, G.K.

    2007-01-01

    Use of ion chromatography in the determination of metallic and non metallic impurities has been studied and observed to be very satisfactory. In the present paper the total time was monitored in all these experiments and compared with the conventional analytical techniques. (author)

  10. Overtaking CPU DBMSes with a GPU in whole-query analytic processing with parallelism-friendly execution plan optimization

    NARCIS (Netherlands)

    A. Agbaria (Adnan); D. Minor (David); N. Peterfreund (Natan); E. Rozenberg (Eyal); O. Rosenberg (Ofer); Huawei Research

    2016-01-01

    textabstractExisting work on accelerating analytic DB query processing with (discrete) GPUs fails to fully realize their potential for speedup through parallelism: Published results do not achieve significant speedup over more performant CPU-only DBMSes when processing complete queries. This

  11. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  12. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  13. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  14. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  15. Shield support frame. Schildausbaugestell

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, K.

    1981-09-17

    A powered shield support frame for coal sheds is described comprising of two bottom sliding shoes, a large area gob shield and a larg area roof assembly, all joined movable together. The sliding shoes and the gob shield are joined by a lemniscate guide. Two hydraulic props are arranged at the face-side at one third of the length of the sliding shoes and at the goaf-side at one third of the length of the roof assembly. A nearly horizontal lying pushing prop unit joins the bottom wall sliding shoes to the goaf-side lemniscate guide. This assembly can be applied to seams with a thickness down to 45 cm. (OGR).

  16. Radiation shielding material

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Isobe, Eiji.

    1976-01-01

    Purpose: To increase the shielding capacity of the radiation shielding material having an abundant flexibility. Constitution: A mat consisting of a lead or lead alloy fibrous material is covered with a cloth, and the two are made integral by sewing in a kilted fashion by using a yarn. Thereafter, the system is covered with a gas-tight film or sheet. The shielding material obtained in this way has, in addition to the above merits, advantages in that (1) it is free from restoration due to elasticity so that it can readily seal contaminants, (2) it can be used in a state consisting of a number of overlapped layers, (3) it fits the shoulder well and is readily portable and (4) it permits attachment of fasteners or the like. (Ikeda, J.)

  17. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  18. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.

    1992-01-01

    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  19. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  20. A Complete First-Order Analytical Solution for Optimal Low-Thrust Limited-Power Transfers Between Coplanar Orbits with Small Eccentricities

    Science.gov (United States)

    Da Silva Fernandes, Sandro; Das Chagas Carvalho, Francisco; Vilhena de Moraes, Rodolpho

    The purpose of this work is to present a complete first order analytical solution, which includes short periodic terms, for the problem of optimal low-thrust limited power trajectories with large amplitude transfers (no rendezvous) between coplanar orbits with small eccentricities in Newtonian central gravity field. The study of these transfers is particularly interesting because the orbits found in practice often have a small eccentricity and the problem of transferring a vehicle from a low earth orbit to a high earth orbit is frequently found. Besides, the analysis has been motivated by the renewed interest in the use of low-thrust propulsion systems in space missions verified in the last two decades. Several researchers have obtained numerical and sometimes analytical solutions for a number of specific initial orbits and specific thrust profiles. Averaging methods are also used in such researches. Firstly, the optimization problem associated to the space transfer problem is formulated as a Mayer problem of optimal control with Cartesian elements - position and velocity vectors - as state variables. After applying the Pontryagin Maximum Principle, successive Mathieu transformations are performed and suitable sets of orbital elements are introduced. The short periodic terms are eliminated from the maximum Hamiltonian function through an infinitesimal canonical transformation built through Hori method - a perturbation canonical method based on Lie series. The new Hamiltonian function, which results from the infinitesimal canonical transformation, describes the extremal trajectories for long duration maneuvers. Closed-form analytical solutions are obtained for the new canonical system by solving the Hamilton-Jacobi equation through the separation of variables technique. By applying the transformation equations of the algorithm of Hori method, a first order analytical solution for the problem is obtained in non-singular orbital elements. For long duration maneuvers

  1. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  2. Radiation shielding bricks

    International Nuclear Information System (INIS)

    Crowe, G.J.W.

    1983-01-01

    A radiation shielding brick for use in building dry walls to form radiation proof enclosures and other structures is described. It is square in shape and comprises a sandwich of an inner layer of lead or similar shielding material between outer layers of plastics material, for structural stability. The ability to mechanically interlock adjacent bricks is provided by shaping the edges as cooperating external and internal V-sections. Relatively leak-free joints are ensured by enlarging the width of the inner layer in the edge region. (author)

  3. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  4. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  5. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  6. Radiation shielding cloth

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Tamura, Shoji.

    1989-01-01

    Radiation shielding cloth having radiation shielding layers comprising a composition of inorganic powder of high specific gravity and rubber are excellentin flexibility and comfortable to put on. However, since they are heavy in the weight, operators are tired upon putting them for a long time. In view of the above, the radiation ray shielding layers are prepared by calendering sheets obtained by preliminary molding of the composition to set the variation of the thickness within a range of +15% to -0% of prescribed thickness. Since the composition of inorganic powder at high specific gravity and rubber used for radiation ray shielding comprises a great amount of inorganic powder at high specific gravity blended therein, it is generally poor in fabricability. Therefor, it is difficult to attain fine control for the sheet thickness by merely molding a composition block at once. Then, the composition is at first preliminarily molded into a sheet-like shape which is somewhat thickener than the final thickness and then finished by calendering, by which the thickness can be reduced in average as compared with conventional products while keeping the prescribed thickness and reducing the weight reduce by so much. (N.H.)

  7. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  8. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  9. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  10. Radiation shielding glass

    International Nuclear Information System (INIS)

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  11. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  12. An Optimization Algorithm for the Design of an Irregularly-Shaped Bridge Based on the Orthogonal Test and Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-11-01

    Full Text Available Irregularly-shaped bridges are usually adopted to connect the main bridge and ramps in urban overpasses, which are under significant flexion-torsion coupling effects and in complicated stress states. In irregular-shaped bridge design, the parameters such as ramp radius, bifurcation diaphragm stiffness, box girder height, and supporting condition could affect structural performance in different manners. In this paper, the influence of various parameters on three indices, including maximum stress, the stress variation coefficient, and the fundamental frequency of torsional vibration, is investigated and analyzed based on orthogonal test method. Through orthogonal analysis, the major influence parameters and corresponding optimal values for these indices are achieved. Combining with the analytic hierarchy process (AHP, the hierarchical structure model of the multi-indices orthogonal test is established and a comprehensive weight analysis method is proposed to reflect the parameter influence on overall mechanical properties of an irregularly-shaped bridge. Influence order and optimal values of parameters for overall mechanical properties are determined based on the weight of factors and levels calculated by the comprehensive weight analysis method. The results indicate that the comprehensive weight analysis method is superior to the overall balance method, which verifies the effectiveness and accuracy of the comprehensive weight analysis in the parameter optimization of the multi-indices orthogonal test for an irregularly-shaped bridge. Optimal parameters obtained in this paper can provide reference and guidance for parameter control in irregularly-shaped bridge design.

  13. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  14. Optimization of the scheme for natural ecology planning of urban rivers based on ANP (analytic network process) model.

    Science.gov (United States)

    Zhang, Yichuan; Wang, Jiangping

    2015-07-01

    Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.

  15. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    Science.gov (United States)

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.

  16. Optimization and development of analytical methods for the determination of new brominated flame retardants and polybrominated diphenyl ethers in sediments and suspended particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P. [VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam (Netherlands); Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Retieseweg 111, 2440, Geel (Belgium); Brandsma, S.A.; Leonards, P.E.G.; Boer, J. de [VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam (Netherlands)

    2011-05-15

    With more stringent legislation on brominated flame retardants, it is expected that increasing amounts of substitutes would replace polybrominated diphenylethers (PBDEs). Therefore, the development and optimization of analytical methodologies that allow their identification and quantification are of paramount relevance. This work describes the optimization of an analytical procedure to determine pentabromochlorocyclohexane, tetrabromo-o-chlorotoluene, 2,3,5,6-tetrabromo-p-xylene, tetrabromophthalic anhydride, 2,3,4,5,6-pentabromotoluene, tris(2,3-dibromopropyl)phosphate, decabromodiphenylethane and 1,2-bis(2,4,6-tribromophenoxy)ethane together with PBDEs in sediments and in suspended particulate matter. This method comprises a pressurized liquid extraction followed by three cleanup steps (gel permeation chromatography and solid phase extraction on Oasis trademark HLB and on silica cartridges). Gas chromatography-mass spectrometry, using electron capture negative chemical ionization, is used for the final analysis. The proposed method provides recoveries >85%. The method was applied to sediment and suspended particulate matter samples from different locations in the Western Scheldt estuary (the Netherlands). To the best of our knowledge, this is the first time that the occurrence of the additive flame retardants 2,3,5,6-tetrabromo-p-xylene, 3,4,5,6-tetrabromo-o-chlorotoluene and 2,3,4,5,6-pentabromochlorocyclohexane is reported in the literature. The concentrations of these new flame retardants ranged from 0.05 to 0.30 {mu}g/kg dry weight. (orig.)

  17. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  18. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  19. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  20. Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data.

    Science.gov (United States)

    Goldberg, Tony L; Gillespie, Thomas R; Singer, Randall S

    2006-09-01

    Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.

  1. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  2. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    OpenAIRE

    Dimitrov, I K; Zhang, X; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in ...

  3. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  4. Optimization of Decision-Making in Port Logistics Terminals: Using Analytic Hierarchy Process for the Case of Port of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Gogas Michael

    2014-12-01

    Full Text Available The management models pursued in logistics terminals determine their performance to a great extent. Terminals managed by public actors usually incorporate more social criteria into their decision-making processes. In addition, private management focuses on economic viability of the initiative. Decision-making is a complex process regardless the structure of management or the decision models useddue to the fact that a wide range of diverse criteria are embedded into this process. The objective of this paper it to determine a prioritization of a set of alternative options for investment projects which were suggested by port executives taking into account criteria and evaluation that have already validated by them. In order to perform the analysis a multi-criteria decision-making model was used: the Analytic Hierachy Process. The outcomes support a low-biased and efficient strategic planning through a balanced decision-making framework.

  5. Development of Computer Program for Analysis of Irregular Non Homogenous Radiation Shielding

    International Nuclear Information System (INIS)

    Bang Rozali; Nina Kusumah; Hendro Tjahjono; Darlis

    2003-01-01

    A computer program for radiation shielding analysis has been developed to obtain radiation attenuation calculation in non-homogenous radiation shielding and irregular geometry. By determining radiation source strength, geometrical shape of radiation source, location, dimension and geometrical shape of radiation shielding, radiation level of a point at certain position from radiation source can be calculated. By using a computer program, calculation result of radiation distribution analysis can be obtained for some analytical points simultaneously. (author)

  6. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  7. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  8. Shielding benchmark test

    International Nuclear Information System (INIS)

    Kawai, Masayoshi

    1984-01-01

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    Suzuki, Shigenori; Iimori, Hiroshi; Kobori, Junzo.

    1980-01-01

    Purpose: To provide a neutron shielding material which incorporates preferable shielding capacity, heat resistance, fire resistance and workability by employing a mixture of thermosetting resin, polyethylene and aluminium hydroxide in special range ratio and curing it. Constitution: A mixture containing 20 to 60% by weight of thermosetting resin having preferable heat resistance, 10 to 40% by weight of polyethylene powder having high hydrogen atom density and 1000 to 60000 of molecular weight, and 15 to 55% by weight of Al(OH) 3 for imparting fire resistance and self-fire extinguishing property thereto is cured. At this time approx. 0.5 to 5% of curing catalyst of the thermosetting resin is contained in 100 parts by weight of the mixture. (Sekiya, K.)

  10. Radiation shielding wall structure

    International Nuclear Information System (INIS)

    Nishimura, Yoshitaka; Oka, Shinji; Kan, Toshihiko; Misato, Takeshi.

    1990-01-01

    A space between a pair of vertical steel plates laterally disposed in parallel at an optional distance has a structure of a plurality of vertically extending tranks partitioned laterally by vertically placed steel plates. Then, cements are grouted to the tranks. Strip-like steel plates each having a thickness greater than the gap between the each of the vertically placed steel plates and the cement are bonded each at the surface for each of the vertically placed steel plates opposing to the cements. A protrusion of a strip width having radiation shielding performance substantially identical with that by the thickness of the cement is disposed in the strip-like steel plates. With such a constitution, a safety radiation shielding wall structure with no worry of radiation intrusion to gaps, if formed, between the steel plates and the grouted cements due to shrinkage of the cements. (I.N.)

  11. Radiation shielding material

    International Nuclear Information System (INIS)

    Kawakubo, Takamasa; Yamada, Fumiyuki; Nakazato, Kenjiro.

    1976-01-01

    Purpose: To provide a material, which is used for printing a samples name and date on an X-ray photographic film at the same time an X-ray radiography. Constitution: A radiation shielding material of a large mass absorption coefficient such as lead oxide, barium oxide, barium sulfate, etc. is added to a solution of a radiation permeable substance capable of imparting cold plastic fluidity (such as microcrystalline wax, paraffin, low molecular polyethylene, polyvinyl chloride, etc.). The resultant system is agitated and then cooled, and thereafter it is press fitted to or bonded to a base in the form of a film of a predetermined thickness. This radiation shielding layer is scraped off by using a writing tool to enter information to be printed in a photographic film, and then it is laid over the film and exposed to X-radiation to thereby print the information on the film. (Seki, T.)

  12. Multilayer radiation shield

    Science.gov (United States)

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  13. Light shielding apparatus

    Science.gov (United States)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  14. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  15. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  16. Optimization of the Analytical Method Using HPLC with Fluorescence Detection to Determine Selected Polycyclic Aromatic Compounds in Clean Water Samples

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.

    2013-01-01

    A study on the comparison and evaluation of 3 miniaturized extraction methods for the determination of selected PACs in clear waters is presented. Three types of liquid-liquid extraction were used for chromatographic analysis by HPLC with fluorescence detection. The main objective was the optimization and development of simple, rapid and low cost methods, minimizing the use of extracting solvent volume. The work also includes a study on the scope of the methods developed at low and high levels of concentration and intermediate precision. (Author)

  17. Shielding calculations using FLUKA

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri; Tesch, K.; Dinter, H.

    1988-06-01

    The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)

  18. Shielding experiments in different materials with 252Cf neutron spectra

    International Nuclear Information System (INIS)

    Sathian, Deepa; Marathe, P.K.; Pal, Rupali; Jayalakshmi, V.; Chourasiya, G.; Mayya, Y.S.

    2008-01-01

    Adequate shielding for neutron sources can be determined using analytical method or by actually measuring the attenuation for the target configuration. This paper describes the measurement of Half Value Thickness (HVT), Tenth Value Thickness (TVT), Σ values for four different shielding materials, using a standard 252 Cf neutron source and comparing with the values calculated using an empirical relationship. BF 3 based REM-counter is used for measurement of neutron dose equivalent, against different thickness of the shielding material. The experimental HVT and S values are in good agreement with the calculated values. From this study, it is concluded that, among the four materials studied, high density polyethylene (HDPE) is best suitable for the shielding of a 252 Cf neutron source. (author)

  19. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  20. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  1. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  2. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  3. A novel analytical method for pharmaceutical polymorphs by terahertz spectroscopy and the optimization of crystal form at the discovery stage.

    Science.gov (United States)

    Ikeda, Yukihiro; Ishihara, Yoko; Moriwaki, Toshiya; Kato, Eiji; Terada, Katsuhide

    2010-01-01

    A novel analytical method for the determination of pharmaceutical polymorphs was developed using terahertz spectroscopy. It was found out that each polymorph of a substance showed a specific terahertz absorption spectrum. In particular, analysis of the second derivative spectrum was enormously beneficial in the discrimination of closely related polymorphs that were difficult to discern by powder X-ray diffractometry. Crystal forms that were obtained by crystallization from various solvents and stored under various conditions were specifically characterized by the second derivative of each terahertz spectrum. Fractional polymorphic transformation for substances stored under stressed conditions was also identified by terahertz spectroscopy during solid-state stability test, but could not be detected by powder X-ray diffractometry. Since polymorphs could be characterized clearly by terahertz spectroscopy, further physicochemical studies could be conducted in a timely manner. The development form of compound examined was determined by the results of comprehensive physicochemical studies that included thermodynamic relationships, as well as chemical and physicochemical stability. In conclusion, terahertz spectroscopy, which has unique power in the elucidation of molecular interaction within a crystal lattice, can play more important role in physicochemical research. Terahertz spectroscopy has a great potential as a tool for polymorphic determination, particularly since the second derivative of the terahertz spectrum possesses high sensitivity for pharmaceutical polymorphs.

  4. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.

    Science.gov (United States)

    Sharon, Maheshwar; Apte, P R; Purandare, S C; Zacharia, Renju

    2005-02-01

    Seven variable parameters of the chemical vapor deposition system have been optimized with the help of the Taguchi analytical method for getting a desired product, e.g., carbon nanotubes or carbon nanobeads. It is observed that almost all selected parameters influence the growth of carbon nanotubes. However, among them, the nature of precursor (racemic, R or Technical grade camphor) and the carrier gas (hydrogen, argon and mixture of argon/hydrogen) seem to be more important parameters affecting the growth of carbon nanotubes. Whereas, for the growth of nanobeads, out of seven parameters, only two, i.e., catalyst (powder of iron, cobalt, and nickel) and temperature (1023 K, 1123 K, and 1273 K), are the most influential parameters. Systematic defects or islands on the substrate surface enhance nucleation of novel carbon materials. Quantitative contributions of process parameters as well as optimum factor levels are obtained by performing analysis of variance (ANOVA) and analysis of mean (ANOM), respectively.

  5. Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

    Science.gov (United States)

    Bozkaya, Uğur

    2018-03-15

    Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  7. Experimental Studies on Shadow Shields for Thermal Protection of Cryogenic Tanks in Space

    National Research Council Canada - National Science Library

    Knoll, Richard

    1968-01-01

    ... (high-emissivity coatings on annular rings of shields) on thermal performance. The experimental data, in general, agreed closely with an analytical model which assumed diffuse surfaces with nonuniform radiosity...

  8. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method.

    Science.gov (United States)

    Arcari, Stefany Grützmann; Caliari, Vinicius; Sganzerla, Marla; Godoy, Helena Teixeira

    2017-11-01

    A methodology for the determination of volatile compounds in red wine using headspace solid phase microextraction (HS-SPME) combined with gas chromatography-ion trap/ mass spectrometry (GC-IT/MS) and flame ionization detector (GC -FID) was developed, validated and applied to a sample of Brazilian red wine. The optimization strategy was conducted using the Plackett-Burman design for variable selection and central composite rotational design (CCRD). The response surface methodology showed that the performance of the extraction of the volatile compounds using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is improved with no sample dilution, the addition of 30% NaCl, applying an extraction temperature of 56°C and extraction time of 55min. The qualitative method allowed the extraction and identification of 60 volatile compounds in the sample studied, notably the classes of esters, alcohols, and fatty acids. Furthermore, the method was successfully validated for the quantification of 55 volatile compounds of importance in wines and applied to twelve samples of Merlot red wine from South of Brazil. The calculation of the odor activity value (OAV) showed the most important components of the samples aroma. Ethyl isovalerate, ethyl hexanoate, 1-hexanol, octanoic acid and ethyl cinnamate had the greatest contribution to the aroma of the wines analyzed, which is predominantly fruity with the presence of herbal and fatty odors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction

    International Nuclear Information System (INIS)

    Raissaki, Maria; Perisinakis, Kostas; Damilakis, John; Gourtsoyiannis, Nicholas

    2010-01-01

    CT scans of the brain, sinuses and petrous bones performed as the initial imaging test for a variety of indications have the potential to expose the eye-lens, considered among the most radiosensitive human tissues, to a radiation dose. There are several studies in adults discussing the reduction of orbital dose resulting from the use of commercially available bismuth-impregnated latex shields during CT examinations of the head. To evaluate bismuth shielding-induced artefacts and to provide suggestions for optimal eye-lens shielding in paediatric head CT. A bismuth shield was placed over the eyelids of 60 consecutive children undergoing head CT. Images were assessed for the presence and severity of artefacts with regard to eye-shield distance and shield wrinkling. An anthropomorphic paediatric phantom and thermoluminescence dosimeters (TLDs) were used to study the effect of eye lens-to-shield distance on shielding efficiency. Shields were tolerated by 56/60 children. Artefacts were absent in 45% of scans. Artefacts on orbits, not affecting and affecting orbit evaluation were noted in 39% and 14% of scans, respectively. Diagnostically insignificant artefacts on intracranial structures were noted in 1 case (2%) with shield misplacement. Mean eye-lens-to-shield distance was 8.8 mm in scans without artefacts, and 4.3 mm and 2.2 mm in scans with unimportant and diagnostically important artefacts, respectively. Artefacts occurred in 8 out of 9 cases with shield wrinkling. Dose reduction remained unchanged for different shield-to-eye distances. Bismuth shielding-related artefacts occurring in paediatric head CT are frequent, superficial and diagnostically insignificant when brain pathology is assessed. Shields should be placed 1 cm above the eyes when orbital pathology is addressed. Shield wrinkling should be avoided. (orig.)

  10. Radiation shielding quality assurance

    Science.gov (United States)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  11. Neutronic reactor thermal shield

    International Nuclear Information System (INIS)

    Lowe, P.E.

    1976-01-01

    A shield for a nuclear reactor includes at least two layers of alternating wide and narrow rectangular blocks so arranged that the spaces between blocks in adjacent layers are out of registry, each block having an opening therein equally spaced from the sides of the blocks and nearer the top of the block than the bottom, the distance from the top of the block to the opening in one layer being different from this distance in adjacent layers, openings in blocks in adjacent layers being in registry. 1 claim, 7 drawing figures

  12. A shield against distraction

    OpenAIRE

    Halin, N.; Marsh, J.E.; Hellman, A.; Hellstrom, I.; Sörqvist, Patrik

    2014-01-01

    In this paper, we apply the basic idea of a trade-off between the level of concentration and distractibility to test whether a manipulation of task difficulty can shield against distraction. Participants read, either in quiet or with a speech noise background, texts that were displayed either in an easy-to-read or a hard-to-read font. Background speech impaired prose recall, but only when the text was displayed in the easy-to-read font. Most importantly, recall was better in the background sp...

  13. Methods for calculating radiation attenuation in shields

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J; Bueneman, D; Etemad, A; Lafore, P; Moncassoli, A M; Penkuhn, H; Shindo, M; Stoces, B

    1964-10-01

    In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In

  14. Analytical and Mathematical Modeling and Optimization of Fiber Metal Laminates (FMLs subjected to low-velocity impact via combined response surface regression and zero-One programming

    Directory of Open Access Journals (Sweden)

    Faramarz Ashenai Ghasemi

    Full Text Available This paper presents analytical and mathematical modeling and optimization of the dynamic behavior of the fiber metal laminates (FMLs subjected to low-velocity impact. The deflection to thickness (w/h ratio has been identified through the governing equations of the plate that are solved using the first-order shear deformation theory as well as the Fourier series method. With the help of a two degrees-of-freedom system, consisting of springs-masses, and the Choi's linearized Hertzian contact model the interaction between the impactor and the plate is modeled. Thirty-one experiments are conducted on samples of different layer sequences and volume fractions of Al plies in the composite Structures. A reliable fitness function in the form of a strict linear mathematical function constructed. Using an ordinary least square method, response regression coefficients estimated and a zero-one programming technique proposed to optimize the FML plate behavior subjected to any technological or cost restrictions. The results indicated that FML plate behavior is highly affected by layer sequences and volume fractions of Al plies. The results also showed that, embedding Al plies at outer layers of the structure significantly results in a better response of the structure under low-velocity impact, instead of embedding them in the middle or middle and outer layers of the structure.

  15. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  16. Selective shielding device for scintiphotography

    International Nuclear Information System (INIS)

    Harper, J.W.; Kay, T.D.

    1976-01-01

    A selective shielding device to be used in combination with a scintillation camera is described. The shielding device is a substantially oval-shaped configuration removably secured to the scintillation camera. As a result of this combination scanning of preselected areas of a patient can be rapidly and accurately performed without the requirement of mounting any type of shielding paraphernalia on the patient. 1 claim, 2 drawing figures

  17. Tax Shield, Insolvenz und Zinsschranke

    OpenAIRE

    Arnold, Sven; Lahmann, Alexander; Schwetzler, Bernhard

    2010-01-01

    Dieser Beitrag analysiert den Wertbeitrag fremdfinanzierungsbedingter Steuervorteile (Tax Shield) unter realistischen Bedingungen (keine Negativsteuer; mögliche Insolvenz) für unterschiedliche Finanzierungspolitiken. Zusätzlich wird der Effekt der sogenannten Zinsschranke auf den Wert des Tax Shield ermittelt. Die Bewertung des Tax Shield mit und ohne Zinsschranke findet im einperiodigen Fall auf der Basis von Optionspreismodellen und im mehrperiodigen Fall auf der Basis von Monte Carlo Simul...

  18. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Science.gov (United States)

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  19. SHIELD verification and validation report

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation

  20. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  1. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  2. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ngo, Ngoc-Tri

    2016-01-01

    Highlights: • This study develops a novel time-series sliding window forecast system. • The system integrates metaheuristics, machine learning and time-series models. • Site experiment of smart grid infrastructure is installed to retrieve real-time data. • The proposed system accurately predicts energy consumption in residential buildings. • The forecasting system can help users minimize their electricity usage. - Abstract: Smart grids are a promising solution to the rapidly growing power demand because they can considerably increase building energy efficiency. This study developed a novel time-series sliding window metaheuristic optimization-based machine learning system for predicting real-time building energy consumption data collected by a smart grid. The proposed system integrates a seasonal autoregressive integrated moving average (SARIMA) model and metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-LSSVR) model. Specifically, the proposed system fits the SARIMA model to linear data components in the first stage, and the MetaFA-LSSVR model captures nonlinear data components in the second stage. Real-time data retrieved from an experimental smart grid installed in a building were used to evaluate the efficacy and effectiveness of the proposed system. A k-week sliding window approach is proposed for employing historical data as input for the novel time-series forecasting system. The prediction system yielded high and reliable accuracy rates in 1-day-ahead predictions of building energy consumption, with a total error rate of 1.181% and mean absolute error of 0.026 kW h. Notably, the system demonstrates an improved accuracy rate in the range of 36.8–113.2% relative to those of the linear forecasting model (i.e., SARIMA) and nonlinear forecasting models (i.e., LSSVR and MetaFA-LSSVR). Therefore, end users can further apply the forecasted information to enhance efficiency of energy usage in their buildings, especially

  3. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  4. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  5. SHIELDS Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania Koleva [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-03

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.

  6. Radiation shielding analysis

    International Nuclear Information System (INIS)

    Moon, S.H.; Ha, C.W.; Kwon, S.K.; Lee, J.K.; Choi, H.S.

    1982-01-01

    The theoretical bases of radiation streaming analysis in power reactors, such as ducts or reactor cavity, have been investigated. Discrete ordinates-Monte Carlo or Monte Carlo-Monte Carlo coupling techniques are suggested for the streaming analysis of ducts or reactor cavity. Single albedo scattering approximation code (SINALB) has been developed for simple and quick estimation of gamma-ray ceiling scattering, where the ceiling is assumed to be semi-infinite medium. This code has been employed to calculate the gamma-ray ceiling scattering effects in the laboratory containing a Co-60 source. The SINALB is applicable to gamma-ray scattering, only where the ceiling is thicker than Σsup(-1) and the height is at least twice higher than the shield wall. This code can be used for the purpose of preliminary radiation shield design. The MORSE code has been improved to analyze the gamma-ray scattering problem with on approximation method in respect to the random walk and estimation processes. This improved MORSE code has been employed to the gamma-ray ceiling scattering problem. The results of the improved MORSE calculation are in good agreement with the SINALB and standard MORSE. (Author)

  7. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  8. Detector Background Reduction by Passive and Active Shielding

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Slivka, J.; Todorovic, N.

    2013-01-01

    The operational problems of the gamma ray spectrometer shielded passively with 12 cm of lead and actively by five 0.5 m × 0.5 m × 0.05 m plastic veto shields are described. The active shielding effect from both environmental gamma ray, cosmic muons and neutrons was investigated. For anticoincidence gating wide range of scintillator pulses, corresponding to the energy range of 150 keV-75 MeV, were used. With the optimal set up the integral background, for the energy region of 50 - 3000 keV, of 0.31 c/s was achieved. The detector mass related background was 0.345 c/(kg s). The 511 keV annihilation line was reduced by the factor of 7 by the anticoincidence gate. It is shown that the plastic shields increase the neutron capture gamma line intensities due to neutron termalization.(author)

  9. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  10. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  11. MicroShield/ISOCS gamma modeling comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  12. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  13. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  14. Concrete shielding exterior to iron

    International Nuclear Information System (INIS)

    Yurista, P.; Cossairt, D.

    1983-08-01

    A rule of thumb at Fermilab has been to use 3 feet of concrete exterior to iron shielding. A recent design of a shield with a severe dimensional constraint has prompted a re-evaluation of this rule of thumb and has led to the following calculations of the concrete thickness required to nullify this problem. 4 references, 4 figures

  15. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    1975-06-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. This pamphlet will provide physicians and radiologic technologists with information which will aid their appropriate use of gonad shielding

  16. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    Science.gov (United States)

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  17. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  18. The Imperial Shield

    DEFF Research Database (Denmark)

    Mortensen, Simon Valentin

    2006-01-01

      The title of this Ph.d. dissertation is "The Imperial Shield: Imperial Overstretch, Assured Destruction, and the ban on nationwide ABM-defense with particular emphasis on the Johnson and the Nixon Administration". The dissertation set out to explain the origins of the ABM Treaty's central meaning....... Domestic spending continued to increase by more in real terms than the GDP, and the Democratically controlled Congress also made some very expensive modifications in Nixon tax bill in the fall of 1969, once again plunging the budget into the red.The economic crisis was partly caused by, and partly...... the Administration debated the deployment of new ABM-sites in early 1970, Kissinger could not prevail against these forces, but had to settle for a compromise, which he regarded as less than a definite commitment to nationwide ABM-defense.The political developments were of even greater importance. A strong link has...

  19. Shielded Canister Transporter

    International Nuclear Information System (INIS)

    Eidem, G.G. Jr.; Fages, R.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) will produce canisters filled with high-level radioactive waste immobilized in borosilicate glass. This report discusses a Shielded Canister Transporter (SCT) which will provide the means for safe transportation and handling of the canisters from the Vitrification Building to the Canister Storage Building (CSB). The stainless steel canisters are 0.61 meters in diameter, 3.0 meters tall, and weigh approximately 2,135 kilograms, with a maximum exterior surface dose rate of 90,000 R/hr. The canisters are placed into storage tubes to a maximum of three tall (two for overpack canisters) with an impact limiter placed at the tube bottom and between each canister. A floor plug seals the top of the storage tube at the operating floor level of the CSB

  20. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  1. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  2. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  3. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  4. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  5. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  6. Web Analytics

    Science.gov (United States)

    EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.

  7. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  8. Fast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterization.

    Science.gov (United States)

    Salvo, Andrea; La Torre, Giovanna Loredana; Di Stefano, Vita; Capocchiano, Valentina; Mangano, Valentina; Saija, Emanuele; Pellizzeri, Vito; Casale, Katia Erminia; Dugo, Giacomo

    2017-04-15

    A fast reversed-phase UPLC method was developed for squalene determination in Sicilian pistachio samples that entry in the European register of the products with P.D.O. In the present study the SPE procedure was optimized for the squalene extraction prior to the UPLC/PDA analysis. The precision of the full analytical procedure was satisfactory and the mean recoveries were 92.8±0.3% and 96.6±0.1% for 25 and 50mgL -1 level of addition, respectively. Selected chromatographic conditions allowed a very fast squalene determination; in fact it was well separated in ∼0.54min with good resolution. Squalene was detected in all the pistachio samples analyzed and the levels ranged from 55.45-226.34mgkg -1 . Comparing our results with those of other studies it emerges that squalene contents in P.D.O. Sicilian pistachio samples, generally, were higher than those measured for other samples of different geographic origins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analytical characterization and optimization in the determination of trihalomethanes on drinking water by purge and trap coupled to a gas chromatography

    International Nuclear Information System (INIS)

    Costa Junior, Nelson Vicente da

    2010-01-01

    This work shows an analytical methodology developed and optimized to determine trihalomethanes level THMs, in drinking water samples, using purge and trap coupled to gas chromatography (GC-PT). THMs are byproducts water chlorination, these compounds must have a maximum of 100 μg.L -1 under Brazilian law, due these compounds be suspected human carcinogens base on studies in laboratory animals. The technique of purge and trap efficiently extracts these compounds from water, and the gas chromatograph separates the THMs. The GC uses a light polarity column and electron capture detector. This detector is selective and more sensitive in the detection of these compounds. The methodology was validated in terms of: linearity, selectivity, accuracy, precision, quantification limit, detection limit and robustness. The detection limit was less than 0,5 μg.L -1 . The accuracy and precision were adequate for testing the trace compounds. The drinking water samples were collected in the city of Suzano-SP, which belongs to 'Alto do Tiete', in this region lay 'Tiete' river with predominant vegetation. The THMs compound found in drinking water at higher concentrations was chloroform where the spread of values found between 15,9 to 111,0 μg.L -1 in drinking water. (author)

  10. Decision support for environmental management of industrial non-hazardous secondary materials: New analytical methods combined with simulation and optimization modeling.

    Science.gov (United States)

    Little, Keith W; Koralegedara, Nadeesha H; Northeim, Coleen M; Al-Abed, Souhail R

    2017-07-01

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313-1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. Published by Elsevier Ltd.

  11. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  12. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  13. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  14. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  15. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  16. A study of gamma shielding

    International Nuclear Information System (INIS)

    Roogtanakait, N.

    1981-01-01

    Gamma rays have high penetration power and its attenuation depends upon the thickness and the attenuation coefficient of the shield, so it is necessary to use the high density shield to attenuate the gamma rays. Heavy concrete is considered to be used for high radiation laboratory and the testing of the shielding ability and compressibility of various types of heavy concrete composed of baryte, hematite, ilmenite and galena is carried out. The results of this study show that baryte-ilmenite concrete is the most suitable for high radiation laboratory in Thailand

  17. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  18. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  19. Gonad shielding in paediatric pelvic radiography: Effectiveness and practice

    International Nuclear Information System (INIS)

    Warlow, Thomas; Walker-Birch, Peter; Cosson, Philip

    2014-01-01

    The use of Gonad Shields (GS) has been advocated during pelvic radiography since the 1950's, particularly in children where the risks from radiation are higher. Previous literature reports that GS are often omitted and rarely used correctly. Objectives: Presentation of findings concerning use of GS in the context of previous data in the literature, and recommend any appropriate actions. Method: A retrospective analysis of images from an existing DICOM Digital Teaching Library (DTL) was conducted. Images of the pelvis from paediatric patients were reviewed and scored on whether a GS was present and (if present) whether the shield was considered to adequately protect the gonads. Results: 130 images were reviewed. 70 male and 60 female. The gonads were deemed to be protected by a shield in 22 images (17%), inadequately protected when a shield was used in 44 images (34%) with the remaining 64 images (49%) having no shield at all. A lack of adequate protection for the gonads was found, with females more likely to be inadequately protected than males (χ 2  = 19.009, df = 1, p < 0.001). These findings become more clinically significant when reports of ovaries lying outside of the pelvic basin (in paediatric patients) are considered. Conclusions: The current practice of gonad shielding is neither effective nor beneficial for female paediatric patients, incorrect shield placement can often require repeat exposures. This finding is commensurate with previous literature. Therefore, gonad shielding is no longer an appropriate optimization tool for female paediatric patients during conventional radiography of the pelvis, and should be abandoned

  20. Neutron streaming analysis for shield design of FMIT Facility

    International Nuclear Information System (INIS)

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe

  1. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  2. Radiation shielding member

    International Nuclear Information System (INIS)

    Nemezawa, Isao; Kimura, Tadahiro; Mizuochi, Akira; Omori, Tetsu

    1998-01-01

    A single body of a radiation shield comprises a bag prepared by welding or bonding a polyurethane sheet which is made flat while interposing metal plates at the upper and the lower portion of the bag. Eyelet fittings are disposed to the upper and the lower portions of the bag passing through the metal plates and the flat portion of the bag. Water supplying/draining ports are disposed to two upper and lower places of the bag at a height where the metal plates are disposed. Reinforcing walls welded or bonded to the inner wall surface of the bag are elongated in vertical direction to divide the inside of the bag to a plurality of cells. The bag is suspended and supported from a frame with S-shaped hooks inserted into the eyelet fittings as connecting means. A plurality of bags are suspended and supported from the frame at a required height by way of the eyelets at the lower portion of the suspended and supported bag and the eyelet fittings at the upper portion of the bag below the intermediate connection means. (I.N.)

  3. Self-shielding factors

    International Nuclear Information System (INIS)

    Kaul, D.C.

    1982-01-01

    Throughout the last two decades many efforts have been made to estimate the effect of body self-shielding on organ doses from externally incident neutrons and gamma rays. These began with the use of simple geometry phantoms and have culminated in the use of detailed anthropomorphic phantoms. In a recent effort, adjoint Monte Carlo analysis techniques have been used to determine dose and dose equivalent to the active marrow as a function of energy and angle of neutron fluence externally incident on an anthropomorphic phantom. When combined with fluences from actual nuclear devices, these dose-to-fluence factors result in marrow dose values that demonstrate great sensitivity to variations in device type, range, and body orientation. Under a state-of-the-art radiation transport analysis demonstration program for the Japanese cities, sponsored by the Defense Nuclear Agency at the request of the National Council on Radiation Protection and Measurements, the marrow dose study referred to above is being repeated to obtain spectral distributions within the marrow for externally incident neutrons and gamma rays of arbitrary energy and angle. This is intended to allow radiobiologists and epidemiologists to select and to modify numbers of merit for correlation with health effects and to permit a greater understanding of the relationship between human and laboratory subject dosimetry

  4. Shielding plug device

    International Nuclear Information System (INIS)

    Orii, Shoichi; Hasegawa, Satoshi; Makishima, Kenji.

    1976-01-01

    Object: To reduce the size of and extend the life of a revolving bearing and facilitate the laying of driving cables and duct lines, this being accomplished by providing plug raising means of a fast breeder on a stationary plug mounting base so as to prevent the shearing force of sodium from acting upon the revolving bearing. Structure: The shield plug means comprises a stationary plug secured to the open end of the reactor container, a rotary plug rotatable with respect to the stationary plug, an annular base formed on top of the stationary plug so as to cover the rotary plug, a bearing secured to the rotary plug edge lower face and upper and lower locking plates. At the time of the rotation of the rotary plug, the upper locking plate is withdrawn, the stationary plug is raised to release the seal structure, and the lower locking plate is inserted between the bearing and stationary plug. In this way, smooth rotation of the rotary plug can be obtained. (Horiuchi, T.)

  5. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

  6. DEVELOPMENT OF EXTREMELY LOW FREQUENCY PASSIVE SHIELDING APPLICATION USING MAGNETIC AQUEOUS SUBSTRATE

    Directory of Open Access Journals (Sweden)

    NOOR ASHIKIN MOHD RASHID

    2016-04-01

    Full Text Available Public concerns on Extremely Low Frequency (ELF Electromagnetic Field (EMF exposure have been elongated since the last few decades. Electrical substations and high tension rooms in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A magnetic aqueous substrate, Manganese Zinc Ferrite was used as shielding material. The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELFEMF exposure, as to mitigate its exposure.

  7. Analytical results of variance reduction characteristics of biased Monte Carlo for deep-penetration problems

    International Nuclear Information System (INIS)

    Murthy, K.P.N.; Indira, R.

    1986-01-01

    An analytical formulation is presented for calculating the mean and variance of transmission for a model deep-penetration problem. With this formulation, the variance reduction characteristics of two biased Monte Carlo schemes are studied. The first is the usual exponential biasing wherein it is shown that the optimal biasing parameter depends sensitively on the scattering properties of the shielding medium. The second is a scheme that couples exponential biasing to the scattering angle biasing proposed recently. It is demonstrated that the coupled scheme performs better than exponential biasing

  8. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  9. Active Radiation Shield, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — DEC-Shield technology offers the means to generate electric power from cosmic radiation sources and fuse dissimilar systems and functionality into a structural...

  10. Gonad shielding in computerized tomography

    International Nuclear Information System (INIS)

    Rockstroh, G.

    1984-01-01

    The reduction of gonadal dose by shielding of the gonads was investigated for a Somatom 2 using an anthropomorphic phantom. For small distances from the slice examined the gonadal dose results from intracorporal secondary radiation and is only insignificantly reduced by shielding. For greater distances shielding is relatively more effective, the gonadal dose however is small because of the approximately exponential decay. Shielding of the gonads therefore does not seem adequate for the reduction of gonadal dose. From dose measurements in cylinder phantoms of several diameters it appears that no different results would be obtained for children and young adults. An effective reduction of gonadal dose is only possible with lead capsules for males. (author)

  11. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  12. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  13. Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Titt, U.; Dexheimer, D.; Yan, X.; Nill, S.

    2002-01-01

    The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent

  14. Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations.

    Science.gov (United States)

    Aviat, Félix; Levitt, Antoine; Stamm, Benjamin; Maday, Yvon; Ren, Pengyu; Ponder, Jay W; Lagardère, Louis; Piquemal, Jean-Philip

    2017-01-10

    We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production

  15. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  16. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A., E-mail: a.ferrari@hzdr.de [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Amato, E. [Department of Radiological Sciences, Messina University (Italy); Margarone, D. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); PALS Centre, Za Slovankou, 18200 Prague (Czech Republic); Cowan, T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Korn, G. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 10{sup 9}–10{sup 10} for the electron beams and 10{sup 10}–10{sup 12} for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the “source terms” in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  17. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  18. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  19. Application of Advanced Radiation Shielding Materials to Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  20. Criticality safety and shielding analysis of WWER-440 fuel configurations

    International Nuclear Information System (INIS)

    Christoskov, I.

    2008-01-01

    An overview is made of some studies performed on the criticality safety and radiation shielding analysis of irradiated WWER-440 fuel storage and handling configurations. The analytical tools are based on the SCALE 4.4a code system, in combination with the TORT discrete ordinates transport code and the BUGLE-96 cross-sections library. The accuracy of some important results is assessed through comparison with independent evaluations and with measurement data. (author)

  1. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  2. Radiation shielding in dental radiography

    International Nuclear Information System (INIS)

    Stenstroem, B.; Rehnmark-Larsson, S.; Julin, P.; Richter, S.

    1983-01-01

    The protective effect in the thyroid region from different types of radiation shieldings at intraoral radiography has been studied as well as the reduction of the absorbed dose to the sternal and the gonadal regions. The shieldings tested were five different types of leaded aprons, of which three had an attached leaded collar and the other two were used in combination with separate soft leaded collars. Furthermore one of the soft leaded collars and an unflexible horizontal leaded shield were tested separately. Two dental x-ray machines of 60 and 65 kVp with rectangular and circular tube collimators were used. The exposure time corresponded to speed group E film. The absorbed doses were measured with two ionization chambers. No significant difference in the protective effect in the thyroid gland could be found between the different types of radiation shieldings. There was a dose reduction by approximately a factor of 2 to the thyroid region down to 0.08 mGy per full survey using parallelling technique, and below 0.001 mGy per single bitewing exposure. The shieldings reduced the thyroid dose using bisecting-angle technique by a factor of 5 down to 0.15 mGy per full survey (20 exposures). In the sternal region the combinations of apron and collar reduced the absorbed dose from a full survey to below 2 μGy compared with 18 μGy (parallelling) and 31 μGy (biscting-angle) without any shielding. With the horizontal leaded shield a reduction by a factor of 6 was obtained but no significant sternal dose reduction could be detected from the soft collar alone. The gonadal dose could be reduced by a factor of 10 with the horizontal leaded shield, parallelling technique and circular collimator. Using leaded aprons the gonadal dose was approximately one per cent of the dose without any shielding, i.e. below 0.01 μGy per single intraoral exposure. (Authors)

  3. Shielding features of quarry stone

    International Nuclear Information System (INIS)

    Hernandez V, C.; Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Vega C, H. R.

    2010-10-01

    Quarry stone lineal attenuation coefficient for gamma-rays has been obtained. In Zacatecas, quarry stone is widely utilized as a decorative item in buildings, however its shielding features against gamma-rays unknown. The aim of this work is to determine the shielding properties of quarry stone against γ-rays using Monte Carlo calculations where a detailed model of a good geometry experimental setup was carried out. In the calculations 10 pieces 10 X 10 cm 2 of different thickness were utilized to evaluate the photons transmission as the quarry stone thickness is increased. It was noticed that transmitted photons decay away as the shield thickness is increased, these results were fitted to an exponential function were the linear attenuation coefficient was estimated. Also, using XCOM code the linear attenuation coefficient from several keV up to 100 MeV was estimated. From the comparison between Monte Carlo results and XCOM calculations a good agreement was found. For 0.662 MeV γ-rays the attenuation coefficient of quarry stone, whose density is 2.413 g-cm -3 , is 0.1798 cm -1 , this mean a X 1/2 = 3.9 cm, X 1/4 = 7.7 cm, X 1/10 = 12.8 cm, and X 1/100 = 25.6 cm. Having the information of quarry stone performance as shielding give the chance to use this material to shield X and γ-ray facilities. (Author)

  4. Shielding calculations using computer techniques; Calculo de blindajes mediante tecnicas de computacion

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Portilla, M. I.; Marquez, J.

    2011-07-01

    Radiological protection aims to limit the ionizing radiation received by people and equipment, which in numerous occasions requires of protection shields. Although, for certain configurations, there are analytical formulas, to characterize these shields, the design setup may be very intensive in numerical calculations, therefore the most efficient from to design the shields is by means of computer programs to calculate dose and dose rates. In the present article we review the codes most frequently used to perform these calculations, and the techniques used by such codes. (Author) 13 refs.

  5. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  6. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  7. Superconducting magnetic shields production. Realisation d'ecrans magnetiques supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lainee, F; Kormann, R [Thomson-CSF, Domaine de Corbeville, 91 - Orsay (FR); Lainee, F [Ecole des Mines de Paris, 91 - Evry (FR)

    1992-02-01

    Low fields and low frequency shielding properties of YBCO magnetic shields are measured at 77 K. They compare favourably with shielding properties of mumetal shields. Therefore high-T{sub c} superconducting magnetic shields can already be used to shield small volumes. The case of magnetic shields for large volumes is also discussed. 3 refs; 6 figs; 4 tabs.

  8. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  9. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1980-01-01

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  10. Shielding design study of the demonstration fast breeder reactor. 2. Shielding design on the basis of the JASPER analysis

    International Nuclear Information System (INIS)

    Suzuoki, Zenro; Tabayashi, Masao; Handa, Hiroyuki; Iida, Masaaki; Takemura, Morio

    2000-01-01

    Conceptual shielding design has been performed for the Demonstration Fast Breeder Reactor (DFBR) to achieve further optimization and reduction of the plant construction cost. The design took into account its implications in overall plant configuration such as reduction of shields in the core, adoption of fission gas plenum in the lower portion of fuel assemblies, and adoption of gas expansion modules. Shielding criteria applied for the design are to secure fast neutron fluence on in-vessel structures as well as responses of the nuclear instrumentation system and to restrict secondary sodium activation. The design utilized the cross sections and the one- and two-dimensional discrete ordinates transport codes, whose verification had been performed by the JASPER experiment analysis. Correction factors yielded by the JASPER analysis were applied to the design calculations to obtain design values with improved accuracy. Design margins, which are defined by the ratios of the design criteria to the design values, were more than two for all shielding issues of interest, showing the adequacy of the shielding design of the DFBR. (author)

  11. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    1993-05-01

    Hot-cell shielding walls consist of building blocks made of lead according to DIN 25407 part 1, and of special elements according to DIN 25407 part 2. Alpha-gamma cells can be built using elements for protective contamination boxes according to DIN 25480 part 1. This standards document intends to provide planning engineers, manufacturers, future users and the competent authorities and experts with a basis for the design of hot cells with lead shielding walls and the design of hot-cell equipment. (orig./HP) [de

  12. Nuclear steam generator tubesheet shield

    International Nuclear Information System (INIS)

    Nickerson, J.H.D.; Ruhe, A.

    1982-01-01

    The invention involves improvements to a nuclear steam generator of the type in which a plurality of U-shaped tubes are connected at opposite ends to a tubesheet and extend between inlet and outlet chambers, with the steam generator including an integral preheater zone adjacent to the downflow legs of the U-shaped tubes. The improvement is a thermal shield disposed adjacent to an upper face of the tubesheet within the preheater zone, the shield including ductile cladding material applied directly to the upper face of the tubesheet, with the downflow legs of the U-shaped tubes extending through the cladding into the tubesheet

  13. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  14. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  15. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  16. Analysis of ferromagnetic shielding of the ITER NBI

    International Nuclear Information System (INIS)

    Roccella, M.; Lucca, F.; Roccella, R.; Cocilovo, V.; Ramogida, G.; Portone, A.; Tanga, A.; Formisano, A.; Martone, R.

    2006-01-01

    thickness, the coil shapes and the NBI geometry, without completely remaking the FEM model, a complete parametric modeling approach has been used. These features of the component together with the box length, height and width and the number of elements inside the ferromagnetic layer, can be changed, by simply changing a parameter value. This possibility has been used to optimize the shielding thickness and to face geometrical minor changes of the various NBI design options. At the end, the currents in the active shield coils have been optimized to achieve an overall shielding effectiveness compatible with the NBI requirements. (author)

  17. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  18. Method of constructing shielding wall

    International Nuclear Information System (INIS)

    Nagao, Tetsuya.

    1990-01-01

    For instance, surfaces of lead particles each formed into a sphere of about 0.5 to 0.3 mm grain size are coated with a coating material of a synthetic resin comprising a polymeric material such as teflon. Subsequently, the floated lead particle are kneaded with concrete materials and then poured into a molding die by way of a hose. After coagulation, the molding die is removed to complete shielding walls in which lead particles are scattered substantially at an equal distance. In this way, since the lead particles are mixed into the shielding walls, shielding effects can be improved by so much as the lead particles are mixed, thereby enabling to reduce the thickness of the shielding walls. Further, since the lead particles are coated with the coating material, the lead particles are insulated from the concrete materials, thereby enabling to prevent the corrosion of the lead particles. Furthermore, since the lead particles and the concrete materials can be transported with ease, operation labors can be reduced. (T.M.)

  19. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  20. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: guchen@tsinghua.edu.cn; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya, ku, Yokohama (Japan); Qu, T.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2008-09-15

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I{sub c} increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account.

  1. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  2. Simulation of transport critical current of Bi2223/Ag tape with ferromagnetic shielding

    International Nuclear Information System (INIS)

    Gu, C.; Alamgir, A.K.M.; Qu, T.M.; Han, Z.

    2008-01-01

    Ferromagnetic shielding (FS) was coated onto the surface of the Bi2223/Ag multi-filamentary tape. Transport critical current of the Bi2223/Ag multi-filamentary tape with a FS was systematically studied by numerical simulation. In the help of a finite element analysis (FEA) tool, we are able to understand how the FS alters the flux inside the superconductor region and thus increases and decreases the critical current density locally. The results show the open FS function both positively and negatively to the performance of the tape. An optimization process was proposed, aiming to reach a tradeoff between I c increasing and less usage of the ferromagnetic material. Three important shielding parameters, shielding width, shielding thickness, and shielding material were taken into account

  3. Current status on detail design and fabrication techniques development of ITER blanket shield block in Korea

    International Nuclear Information System (INIS)

    Kim, Duck Hoi; Cho, Seungyon; Ahn, Mu-Young; Lee, Eun-Seok; Jung, Ki Jung

    2007-01-01

    The allocation of components and systems to be delivered to ITER on an in-kind basis, was agreed between the ITER Parties. Among parties, Korea agreed to procure inboard blanket modules 1, 2 and 6, which consists of FW and shield block. Regarding shield block the detail design and Fabrication techniques development have been undertaken in Korea. Especially manufacturing feasibility study on shield block had been performed and some technical issues for the fabrication were selected. Based on these results, fabrication techniques using EB welding are being developed. Meanwhile, the detail design of inboard standard module has been carried out. The optimization of flow driver design to improve the cooling performance was executed. And, thermo-hydraulic analysis on half block of inboard standard module was performed. In this study, current status and some results from Fabrication techniques development on ITER blanket shield block are described. The detail design activity and results on shield block are also introduced herein. (orig.)

  4. Shielding Effectiveness of a Thin Film Window

    National Research Council Canada - National Science Library

    Johnson, Eric

    1998-01-01

    .... The predicted shielding effectiveness was 29 dB based on theoretical calculations. The error analysis of the shielding effectiveness showed that this predicted value was within the measurement error...

  5. Gonadal Shielding in Radiography: A Best Practice?

    Science.gov (United States)

    Fauber, Terri L

    2016-11-01

    To investigate radiation dose to phantom testes with and without shielding. A male anthropomorphic pelvis phantom was imaged with thermoluminescent dosimeters (TLDs) placed in the right and left detector holes corresponding to the testes. Ten exposures were made of the pelvis with and without shielding. The exposed TLDs were packaged securely and mailed to the University of Wisconsin Calibration Laboratory for reading and analysis. A t test was calculated for the 2 exposure groups (no shield and shielded) and found to be significant, F = 8.306, P shield was used during pelvic imaging. Using a flat contact shield during imaging of the adult male pelvis significantly reduces radiation dose to the testes. Regardless of the contradictions in the literature on gonadal shielding, the routine practice of shielding adult male gonads during radiographic imaging of the pelvis is a best practice. © 2016 American Society of Radiologic Technologists.

  6. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  7. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  8. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  9. Shielding and grounding in large detectors

    International Nuclear Information System (INIS)

    Radeka, V.

    1998-09-01

    Prevention of electromagnetic interference (EMI), or ''noise pickup,'' is an important design aspect in large detectors in accelerator environments. Shielding effectiveness as a function of shield thickness and conductivity vs the type and frequency of the interference field is described. Noise induced in transmission lines by ground loop driven currents in the shield is evaluated and the importance of low shield resistance is emphasized. Some measures for prevention of ground loops and isolation of detector-readout systems are discussed

  10. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  11. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  12. Computed tomography shielding methods: a literature review.

    Science.gov (United States)

    Curtis, Jessica Ryann

    2010-01-01

    To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning. Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield's effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice. Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose. Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.

  13. BRH Gonad Shielding Program: where it has led

    International Nuclear Information System (INIS)

    Arcarese, J.S.

    1975-01-01

    Some topics discussed are: Bureau of Radiological Health guidelines; types of gonad shields; specific area shielding; gonad shielding guidelines; and publication of pamphlet on types of shields and circumstances under which they should be used

  14. Micro-focused ultrasonic solid-liquid extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept.

    Science.gov (United States)

    Capelo, J L; Galesio, M M; Felisberto, G M; Vaz, C; Pessoa, J Costa

    2005-06-15

    Analytical minimalism is a concept that deals with the optimization of all stages of an analytical procedure so that it becomes less time, cost, sample, reagent and energy consuming. The guide-lines provided in the USEPA extraction method 3550B recommend the use of focused ultrasound (FU), i.e., probe sonication, for the solid-liquid extraction of Polycyclic Aromatic Hydrocarbons, PAHs, but ignore the principle of analytical minimalism. The problems related with the dead sonication zones, often present when high volumes are sonicated with probe, are also not addressed. In this work, we demonstrate that successful extraction and quantification of PAHs from sediments can be done with low sample mass (0.125g), low reagent volume (4ml), short sonication time (3min) and low sonication amplitude (40%). Two variables are here particularly taken into account for total extraction: (i) the design of the extraction vessel and (ii) the solvent used to carry out the extraction. Results showed PAHs recoveries (EPA priority list) ranged between 77 and 101%, accounting for more than 95% for most of the PAHs here studied, as compared with the values obtained after soxhlet extraction. Taking into account the results reported in this work we recommend a revision of the EPA guidelines for PAHs extraction from solid matrices with focused ultrasound, so that these match the analytical minimalism concept.

  15. Status of shielding analysis methods for transport packages

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Brady, M.C.

    1991-01-01

    Shielding analysis methods for transport packages are becoming more important to the cask designer because optimized cask designs with higher payloads can yield doses near the limits set by regulatory authorities. Uncertainty arising from generation of radiation sources, selection of cross-section data, and the radiation transport methodology must be considered. Recent comparison studies using popular US codes illustrate calculational discrepancies arising from each of these areas

  16. Survivor shielding. Part A. Nagasaki factory worker shielding

    International Nuclear Information System (INIS)

    Santoro, Robert T.; Barnes, John M.; Azmy, Yousry Y.; Kerr, George D.; Egbert, Stephen D.; Cullings, Harry M.

    2005-01-01

    Recent investigations based on conventional chromosome aberration data by the RERF suggest that the DS86 doses received by many Nagasaki factory workers may have been overestimated by as much as 40% relative to those for other survivors in Japanese-type houses and other shielding configurations (Kodama et al. 2001). Since the factory workers represent about 25% of the Nagasaki survivors with DS86 doses in excess of 0.5 Gy (50 rad), systematic errors in their dose estimates can have a major impact on the risk coefficients from RERF studies. The factory worker doses may have been overestimated for a number of reasons. The calculation techniques, including the factory building modeling, weapon source spectra and cross-section data used in the DS86 shielding calculations were not detailed enough to replicate actual conditions. The models used did not take into account local shielding provided by machinery, tools, and the internal structure in the buildings. In addition, changes in the disposition of shielding following collapse of the building by the blast wave were not considered. The location of large factory complexes may be uncertain, causing large numbers of factory survivors, correctly located relative to each other, to be uniformly too close to the hypocenter. Any or all of these reasons are sufficient to result in an overestimate of the factory worker doses. During the DS02 studies, factory worker doses have been reassessed by more carefully modeling the factory buildings, incorporating improved radiation transport methods and cross-section data and using the most recent bomb leakage spectra (Chapter 2). Two-dimensional discrete ordinates calculations were carried out initially to estimate the effects of workbenches and tools on worker doses to determine if the inclusion of these components would, in fact, reduce the dose by amounts consistent with the RERF observations (Kodama et al. 2001). (author)

  17. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  18. Analytical modeling and numerical optimization of the biosurfactants production in solid-state fermentation by Aspergillus fumigatus - doi: 10.4025/actascitechnol.v36i1.17818

    Directory of Open Access Journals (Sweden)

    Gabriel Castiglioni

    2014-01-01

    Full Text Available This is an experimental, analytical and numerical study to optimize the biosurfactants production in solid-state fermentation of a medium containing rice straw and minced rice bran inoculated with Aspergillus fumigatus. The goal of this work was to analytically model the biosurfactants production in solid-state fermentation into a column fixed bed bioreactor. The Least-Squares Method was used to adjust the emulsification activity experimental values to a quadratic function semi-empirical model. Control variables were nutritional conditions, the fermentation time and the aeration. The mathematical model is validated against experimental results and then used to predict the maximum emulsification activity for different nutritional conditions and aerations. Based on the semi-empirical model the maximum emulsification activity with no additional hydrocarbon sources was 8.16 UE·g-1 for 112 hours. When diesel oil was used the predicted maximum emulsification activity was 8.10 UE·g-1 for 108 hours.

  19. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  20. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  1. Improvement of top shield analysis technology for CANDU 6 reactor

    International Nuclear Information System (INIS)

    Kim, Kyo Yoon; Jin, Young Kwon; Lee, Sung Hee; Moon, Bok Ja; Kim, Yong Il

    1996-07-01

    As for Wolsung NPP unit 1, radiation shielding analysis was performed by using neutron diffusion codes, one-dimensional discrete ordinates code ANISN, and analytical methods. But for Wolsung NPP unit 2, 3, and 4, two-dimensional discrete ordinates code DOT substituted for neutron diffusion codes. In other words, the method of analysis and computer codes used for radiation shielding of CANDU 6 type reactor have been improved. Recently Monte Carlo MCNP code has been widely utilized in the field of radiation physics and other radiation related areas because it can describe an object sophisticately by use of three-dimensional modelling and can adopt continuous energy cross-section library. Nowadays Monte Carlo method has been reported to be competitive to discrete ordinate method in the field of radiation shielding and the former has been known to be superior to the latter for complex geometry problem. However, Monte Carlo method had not been used for radiation streaming calculation in the shielding design of CANDU type reactor. Neutron and gamma radiations are expected to be streamed from calandria through the penetrations to reactivity mechanism deck (R/M deck) because many reactivity control units which are established on R/M deck extend from R/M deck to calandria within penetrations, which are provided by guide tube extensions. More precise estimation of radiation streaming is required because R/M deck is classified as an accessible area where atomic worker can access when necessary. Therefore neutron and gamma dose rates were estimated using MCNP code on the R/M deck in the top shield system of CANDU 6 reactor. 9 tabs., 17 figs., 21 refs. (Author)

  2. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  3. New facility shield design criteria

    International Nuclear Information System (INIS)

    Howell, W.P.

    1981-07-01

    The purpose of the criteria presented here is to provide standard guidance for the design of nuclear radiation shields thoughout new facilities. These criteria are required to assure a consistent and integrated design that can be operated safely and economically within the DOE standards. The scope of this report is confined to the consideration of radiation shielding for contained sources. The whole body dose limit established by the DOE applies to all doses which are generally distributed throughout the trunk of the body. Therefore, where the whole body is the critical organ for an internally deposited radionuclide, the whole body dose limit applies to the sum of doses received must assure control of the concentration of radionuclides in the building atmosphere and thereby limit the dose from internal sources

  4. INERT GAS SHIELD FOR WELDING

    Science.gov (United States)

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  5. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  6. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  7. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Thomsen, D.H.

    1975-08-01

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  8. Radiation-shielding transparent material

    International Nuclear Information System (INIS)

    Kusumeki, Asao.

    1983-01-01

    Purpose : To obtain radiation-shielding transparent material having a high resistivity to the radioactive rays or light irradiation which is greater at least by two digits as compared with lead glass. Constitution : The shielding material is composed of a saturated aqueous solution zinc iodide. Zinc iodide (specific gravity of 4.2) is dissolved by 430 g into 100 cc of water at a temperature of 20 0 C and forms a heavy liquid with a specific gravity of 2.80. The radiation length of the heavy liquid is 3.8 cm which is 1.5 times as large as lead glass. The light transmission is greater than 95% in average. Furthermore, by adding hypophosphorous acid as a reducing agent to the aqueous solution of the lead iodide, the material is stabilized against the irradiation of light or radioactive rays and causes no discoloration for a long time. (Moriyama, K.)

  9. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  10. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  11. Radiation shield vest and skirt

    International Nuclear Information System (INIS)

    Maine, G.J.

    1982-01-01

    A two-piece garment is described which provides shielding for female workers exposed to radiation. The upper part is a vest, overlapping and secured in the front by adjustable closures. The bottom part is a wraparound skirt, also secured by adjustable closures. The two parts overlap, thus providing continuous protection from shoulder to knee and ensuring that the back part of the body is protected as well as the front

  12. Handbook of radiation shielding data

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1976-07-01

    This handbook is a compilation of data on units, conversion factors, geometric considerations, sources of radiation, and the attenuation of photons, neutrons, and charged particles. It also includes related topics in health physics. Data are presented in tabular and graphical form with sufficient narrative for a least first-approximation solutions to a variety of problems in nuclear radiation protection. Members of the radiation shielding community contributed the information in this document from unclassified and uncopyrighted sources, as referenced

  13. SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP

    Directory of Open Access Journals (Sweden)

    V. S. Grinchenko

    2015-04-01

    Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.

  14. Design of analytical instrumentation with D-T sealed neutron generators

    International Nuclear Information System (INIS)

    Qiao Yahua; Wu Jizong; Zheng Weiming; Liu Quanwei; Zhang Min

    2008-01-01

    Analytical instrumentation with D-T sealed neutron generators source activation, The 14 MeV D-T sealed neutron tube with 10 9 n · s -1 neutron yield is used as generator source. The optimal structure of moderator and shield was achieved by MC computing.The instrumentation's configuration is showed. The instrumentation is made up of the SMY-DT50.8-2.1 sealed neutron tube and the high-voltage power supply system, which center is the sealed neutron generators. 6 cm Pb and 20 cm polythene is chosen as moderator, Pb, polythene and 10 cm boron-PE was chosen as shield .The sample box is far the source from 9 cm, the measurement system were made up of HPGe detector and the sample transforming system. After moderator and shield, the thermal neutron fluence rate at the point of sample is 0.93 × 10 6 n · s -1 cm -2 , which is accorded with design demand, and the laboratory and surroundings reaches the safety standard of the dose levels. (authors)

  15. CASKCODES, Program CAPSIZE Scope KWIKDOSE for Shipping Cask Shielding

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of program or function: CAPSIZE is an interactive program to rapidly determine the likely impact that proposed design objectives might have on the size and capacity of spent fuel casks designed to meet those objectives. 2 - Method of solution: Given the burnup of the spent fuel, its cooling time, the thickness of the internal basket walls, the desired external dose rate, and the nominal weight limit of the load cask, the CAPSIZE program will determine the maximum number of PWR fuel assemblies that may be shipped in a lead-, steel-, or uranium- shielded cask meeting those objectives. Using optimal packing arrangements and shielding requirements input by the user, SCOPE will design a cask to carry a single fuel assembly and then continue incrementing the number of assemblies until one or more of the design limits can no longer be met. KWIKDOSE queries the user for the number of PWR fuel assemblies in a cask, the type of cask and thickness of the shield. Upon getting the necessary input, KWIKDOSE prints out the total dose rate, 10 feet from the centerline of the cask, as a function of the burnup and cooling time of the spent fuel. 3 - Restrictions on the complexity of the problem: The restrictions are subject to the shielding requirements of the shipping cask

  16. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  17. Helical tomotherapy shielding calculation for an existing LINAC treatment room: sample calculation and cautions

    International Nuclear Information System (INIS)

    Wu Chuan; Guo Fanqing; Purdy, James A

    2006-01-01

    This paper reports a step-by-step shielding calculation recipe for a helical tomotherapy unit (TomoTherapy Inc., Madison, WI, USA), recently installed in an existing Varian 600C treatment room. Both primary and secondary radiations (leakage and scatter) are explicitly considered. A typical patient load is assumed. Use factor is calculated based on an analytical formula derived from the tomotherapy rotational beam delivery geometry. Leakage and scatter are included in the calculation based on corresponding measurement data as documented by TomoTherapy Inc. Our calculation result shows that, except for a small area by the therapists' console, most of the existing Varian 600C shielding is sufficient for the new tomotherapy unit. This work cautions other institutions facing the similar situation, where an HT unit is considered for an existing LINAC treatment room, more secondary shielding might be considered at some locations, due to the significantly increased secondary shielding requirement by HT. (note)

  18. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.; Schaich, R.W.

    1984-07-01

    The ORNL Lithium Hydroxide Fire and Impact Shield and its packaging were designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B quantities of radioactive material and limited quantities of fissionable material. The shield and its packaging were evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield and its packaging are in compliance with the applicable regulations. 16 references, 8 figures, 5 tables

  19. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.

    1977-11-01

    The ORNL lithium hydroxide fire and impact shield was designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B and large quantities of radioactive material and limited quantities of fissionable material. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield is in compliance with the applicable regulations

  20. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  1. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  2. Photonic Bandgap (PBG) Shielding Technology

    Science.gov (United States)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  3. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Leduc, R.J.; Richard, J.W.; Malandra, L.J.

    1989-01-01

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  4. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  5. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    Science.gov (United States)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  6. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  7. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  8. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Akiba, Masato

    2002-07-01

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  9. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  10. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    Directory of Open Access Journals (Sweden)

    Omar Ahmed Mohamed

    2016-11-01

    Full Text Available Fused deposition modeling (FDM additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM and multilayer feed-forward neural networks (MFNNs. The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM. Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  11. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  12. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    minimize thermal effects on the mechanical properties and to reduce the number of fabrication steps. Based on the results of study for optimization of the simultaneous HIP bonding conditions, the HIP conditions were 1050degC, 150 MPa and holding time of 2 hours. Before this assembly for the HIP process, a deep drilling was performed for the coolant channels of the shield block from both sides of the block, then the shield block was bent by 10000-ton press machine to provide the specified curvature. During the bending, iced water was inserted into the drilled holes to prevent excessive deformation of the holes. Iced water was applied as the inserted material in this study because it was easy to remove the inserted material from the drilled holes and chemical reaction could be prevented during removal of the inserted materials. After the HIP process, the first wall surface was finally machined. The back part of the module was also machined to provide coolant manifolds, then cover plates of the manifolds were welded by TIG welding. A series of measurements and inspections was performed in the course of fabrication to make sure the dimensional accuracy and integrity of pressure boundaries. A destructive inspection was also performed with a cut specimen from the edge of the fabricated module to examine the bondability of HIPed interfaces. As a result of this fabrication experience, sufficient bonding by the single step solid HIP process has been demonstrated, and sufficient technical data base on the fabrication of the ITER shielding blanket module has been obtained. (author)

  13. Shielding of the GERDA experiment against external gamma background

    International Nuclear Information System (INIS)

    Barabanov, I.; Bezrukov, L.; Demidova, E.; Gurentsov, V.; Kianovsky, S.; Knoepfle, K.T.; Kornouhkov, V.; Schwingenheuer, B.; Vasenko, A.

    2009-01-01

    The GERmanium Detector Array (GERDA) experiment will search for neutrinoless double beta decay of 76 Ge and is currently under construction at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The basic design of GERDA is the use of cryogenic liquid and water of high purity as a superior shield against the hitherto dominant background from external gamma radiation. In this paper we show by Monte Carlo simulations and analytical calculations how GERDA was designed to suppress this background at Q ββ ( 76 Ge)=2039keV to a level of about 10 -4 cts/(keVkgy).

  14. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  15. Heavy concrete shieldings made of recycled radio-active steel

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Sappok, M.; Heim, H.

    1998-01-01

    Maintenance and decommissioning of nuclear installations will generate increasing quantities of radioactively contaminated metallic residues. For many years, Siempelkamp has been melting low-level radioactive scrap in order to re-use it for containers of nuclear industry. Another new recycling path has recently been developed by producing steel granules from the melt. These granules are used as replacement for hematite (iron ore) in the production of heavy concrete shieldings. In the CARLA plant (central plant for the recycling of low-level radioactive waste) of Siempelkamp Nuklear- und Umwelttechnik GmbH and Co., the scrap is melted in a medium frequency induction furnace. The liquid iron is poured into a cooling basin through a water jet, which splits the iron into granules. The shape of these granules is determined by various factors, such as water jet speed, pouring rate of the liquid iron and different additives to the melt. In this process, massive spheres with diameters ranging from 1 to 8 mm can be produced which add to the density of heavy concrete elements for optimum shielding. In close cooperation with Boschert, which indeed is an expert for the production of concrete shieldings, a new technology for manufacturing heavy concrete shieldings, containing low-level radioactive steel granules, has been developed. The portion of steel granules in the concrete is approx. 50 weight-%. A concrete density between 2.4 kg/dm 3 and 4.0 kg/dm 3 is available. The compressive strength for the concrete reaches values up to 65 MPa. Different types of Granulate Shielding Casks (GSC) are offered by Siempelkamp. The most famous one is the GSC 200 for 200 1 drums, which has already been qualified for final storage of radioactive wastes at the German Morsleben final repository (ERAM). This newly developed recycling process further increases the quantities of low-level radioactive metallic wastes available for recycling. Expensive storage area can thus be saved respectively

  16. IMRT treatment of anal cancer with a scrotal shield

    International Nuclear Information System (INIS)

    Hood, Rodney C.; Wu, Q. Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.

  17. IMRT treatment of anal cancer with a scrotal shield.

    Science.gov (United States)

    Hood, Rodney C; Wu, Q Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  19. Shielded room measurements, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, J.S.

    1949-02-22

    The attenuation of electro-statically and electro-magnetically shielded rooms in the ``E,`` ``R,`` ``I,`` and ``T`` Buildings was measured so that corrective measure could be taken if the attenuation was found to be low. If remedial measures could not be taken, the shortcomings of the rooms would be known. Also, the men making the measurements should oversee construction and correct errors at the time. The work was performed by measuring the attenuation at spot frequencies over the range of from 150 kilocycles to 1280 megacycles with suitable equipment mounted in small rubber-tried trucks. The attenuation was determined by ``before and after`` shielding and/or ``door open and door closed`` measurements after installation of copper shielding. In general, attenuation in the frequency range of approximately 10 to 150 mc. was good and was of the order expected. At frequencies in the range of 150 mc. to 1280 mc., the attenuation curve was more erratic; that is, at certain frequencies a severe loss of attenuation was noted, while at others, the attenuation was very good. This was mainly due to poor or faulty seals around doors and pass windows. These poor seals existed in the ``T,`` ``E,`` and ``I`` Buildings because the doors were fitted improperly and somewhat inferior material was used. By experience from these difficulties, both causes were corrected in the ``R`` Building, which resulted in the improvement of the very high frequency (v.h.f.) range in this building. In some specific cases, however, the results were about the same. For the range of frequencies below approximately 10 mc., the attenuation, in almost all cases, gradually decreased as the frequency decreased and reached a minimum at .3 to 1.0 mc. This loss of attenuation was attributed to multiple grounding caused by moisture in the insulating timbers and will gradually decrease as the wood dries out.

  20. Magnetic shielding of a limiter

    International Nuclear Information System (INIS)

    Brevnov, N.N.; Stepanov, S.B.; Khimchenko, L.N.; Matthews, G.F.; Goodal, D.H.J.

    1991-01-01

    Localization of plasma interaction with material surfaces in a separate chamber, from where the escape of impurities is hardly realized, i.e. application of magnetic divertors or pump limiters, is the main technique for reduction of the impurity content in a plasma. In this case, the production of a divertor configuration requires a considerable power consumption and results in a less effective utilization of the magnetic field volume. Utilization of a pump limiter, for example the ICL-type, under tokamak-reactor conditions would result in the extremely high and forbidden local heat loadings onto the limiter surface. Moreover, the magnetically-shielded pump limiter (MSL) was proposed to combine positive properties of the divertor and the pump limiter. The idea of magnetic shielding is to locate the winding with current inside the limiter head so that the field lines of the resultant magnetic field do not intercept the limiter surface. In this case the plasma flows around the limiter leading edges and penetrates into the space under the limiter. The shielding magnetic field can be directed either counter the toroidal field or counter the poloidal one of a tokamak, dependent on the concrete diagram of the device. Such a limiter has a number of advantages: -opportunity to control over the particle and impurity recycling without practical influence upon the plasma column geometry, - perturbation of a plasma column magnetic configuration from the side of such a limiter is less than that from the side of the divertor coils. The main deficiency is the necessity to locate active windings inside the discharge chamber. (author) 5 refs., 3 figs