WorldWideScience

Sample records for analytic geometries

  1. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  2. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  3. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  4. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar

    1964-01-01

    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

  5. Programming system for analytic geometry

    International Nuclear Information System (INIS)

    Raymond, Jacques

    1970-01-01

    After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry

  6. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  7. Recent topics in differential and analytic geometry

    CERN Document Server

    Ochiai, T

    1990-01-01

    Advanced Studies in Pure Mathematics, Volume 18-I: Recent Topics in Differential and Analytic Geometry presents the developments in the field of analytical and differential geometry. This book provides some generalities about bounded symmetric domains.Organized into two parts encompassing 12 chapters, this volume begins with an overview of harmonic mappings and holomorphic foliations. This text then discusses the global structures of a compact Kähler manifold that is locally decomposable as an isometric product of Ricci-positive, Ricci-negative, and Ricci-flat parts. Other chapters con

  8. Analytic Coleman-de Luccia Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC; Harlow, Daniel; /Stanford U., ITP /Stanford U., Phys. Dept.

    2012-02-16

    We present the necessary and sufficient conditions for a Euclidean scale factor to be a solution of the Coleman-de Luccia equations for some analytic potential V ({psi}), with a Lorentzian continuation describing the growth of a bubble of lower-energy vacuum surrounded by higher-energy vacuum. We then give a set of explicit examples that satisfy the conditions and thus are closed-form analytic examples of Coleman-de Luccia geometries.

  9. Use of information technologies in teaching course "Analytical geometry" in higher schools on example of software "ANALYTICAL GEOMETRY"

    OpenAIRE

    V. B. Grigorieva

    2009-01-01

    In article are considered the methodical questions of using of computer technologies, for example, the software "Analytical geometry", in process of teaching course of analytical geometry in the higher school.

  10. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  11. Increasing insightful thinking in analytic geometry

    NARCIS (Netherlands)

    Timmer, Mark; Verhoef, Neeltje Cornelia

    Elsewhere in this issue Ferdinand Verhulst described the discussion of the interaction of analysis and geometry in the 19th century. In modern times such discussions come up again and again. As of 2014, synthetic geometry will not be part of the Dutch 'vwo - mathematics B' programme anymore.

  12. Instructor's manual to accompany calculus with analytic geometry

    CERN Document Server

    Zhou, Yong

    1978-01-01

    Instructor's Manual to Accompany Calculus with Analytic Geometry is an instructor's manual on calculus with analytic geometry. It contains answers to even-numbered exercises and solutions of selected even- and odd-numbered exercises. Comments on selected exercises are included.Comprised of 18 chapters, this book first presents answers and solutions to exercises relating to functions and graphs. The next chapter is about derivatives and covers topics ranging from the slope problem to limits, sums and products, and quotients and square roots, along with limits and continuity. Subsequent chapters

  13. Pre-Calculus Instructional Guide for Elementary Functions, Analytic Geometry.

    Science.gov (United States)

    Montgomery County Public Schools, Rockville, MD.

    This is a guide for use in semester-long courses in Elementary Functions and Analytic Geometry. A list of entry-level skills and a list of approved textbooks is provided. Each of the 18 units consists of: (1) overview, suggestions for teachers, and suggested time; (2) list of objectives; (3) cross-references guide to approved textbooks; (4) sample…

  14. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  15. Geometries

    CERN Document Server

    Sossinsky, A B

    2012-01-01

    The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...

  16. Multiplier ideal sheaves and analytic methods in algebraic geometry

    International Nuclear Information System (INIS)

    Demailly, J.-P.

    2001-01-01

    Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry

  17. Multiplier ideal sheaves and analytic methods in algebraic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Demailly, J -P [Universite de Grenoble I, Institut Fourier, Saint-Martin d' Heres (France)

    2001-12-15

    Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry.

  18. Optimizing multi-pinhole SPECT geometries using an analytical model

    International Nuclear Information System (INIS)

    Rentmeester, M C M; Have, F van der; Beekman, F J

    2007-01-01

    State-of-the-art multi-pinhole SPECT devices allow for sub-mm resolution imaging of radio-molecule distributions in small laboratory animals. The optimization of multi-pinhole and detector geometries using simulations based on ray-tracing or Monte Carlo algorithms is time-consuming, particularly because many system parameters need to be varied. As an efficient alternative we develop a continuous analytical model of a pinhole SPECT system with a stationary detector set-up, which we apply to focused imaging of a mouse. The model assumes that the multi-pinhole collimator and the detector both have the shape of a spherical layer, and uses analytical expressions for effective pinhole diameters, sensitivity and spatial resolution. For fixed fields-of-view, a pinhole-diameter adapting feedback loop allows for the comparison of the system resolution of different systems at equal system sensitivity, and vice versa. The model predicts that (i) for optimal resolution or sensitivity the collimator layer with pinholes should be placed as closely as possible around the animal given a fixed detector layer, (ii) with high-resolution detectors a resolution improvement up to 31% can be achieved compared to optimized systems, (iii) high-resolution detectors can be placed close to the collimator without significant resolution losses, (iv) interestingly, systems with a physical pinhole diameter of 0 mm can have an excellent resolution when high-resolution detectors are used

  19. Gauge field geometry from complex and harmonic analyticities

    International Nuclear Information System (INIS)

    Gal'perin, A.S.; Ivanov, E.A.; Ogievetsky, V.I.; Sokatchev, E.

    1987-01-01

    The analyticity preservation principle is employed to demonstrate and impressive affinity between field theories with intrinsic analytic structure and superfield gauge theories. The defining constraints of the former theories are interpreted as the integrability conditions for the existence of appropriate analytic subspaces and are solved by passing to the basis with manifest analyticity. We prefer to work within the analytic basis. This allows, e.g., to replace the nonlinear splitting problem of twistor approach by solving a linear equation

  20. Linear algebra and analytic geometry for physical sciences

    CERN Document Server

    Landi, Giovanni

    2018-01-01

    A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises. Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers m...

  1. Analytic Approximation to Radiation Fields from Line Source Geometry

    International Nuclear Information System (INIS)

    Michieli, I.

    2000-01-01

    Line sources with slab shields represent typical source-shield configuration in gamma-ray attenuation problems. Such shielding problems often lead to the generalized Secant integrals of the specific form. Besides numerical integration approach, various expansions and rational approximations with limited applicability are in use for computing the value of such integral functions. Lately, the author developed rapidly convergent infinite series representation of generalized Secant Integrals involving incomplete Gamma functions. Validity of such representation was established for zero and positive values of integral parameter a (a=0). In this paper recurrence relations for generalized Secant Integrals are derived allowing us simple approximate analytic calculation of the integral for arbitrary a values. It is demonstrated how truncated series representation can be used, as the basis for such calculations, when possibly negative a values are encountered. (author)

  2. AN ADVANCED PLACEMENT COURSE IN ANALYTIC GEOMETRY AND CALCULUS (MATHEMATICS XV X AP).

    Science.gov (United States)

    DEROLF, JOHN J.; MIENTKA, WALTER E.

    THIS TEXT ON ANALYTIC GEOMETRY AND CALCULUS IS A CORRESPONDENCE COURSE DESIGNED FOR ADVANCED PLACEMENT OF HIGH SCHOOL STUDENTS IN COLLEGE. EACH OF THE 21 LESSONS INCLUDES READING ASSIGNMENTS AND LISTS OF PROBLEMS TO BE WORKED. IN ADDITION, SUPPLEMENTARY EXPLANATIONS AND COMMENTS ARE INCLUDED THAT (1) PROVIDE ILLUSTRATIVE EXAMPLES OF CONCEPTS AND…

  3. The identification of van Hiele level students on the topic of space analytic geometry

    Science.gov (United States)

    Yudianto, E.; Sunardi; Sugiarti, T.; Susanto; Suharto; Trapsilasiwi, D.

    2018-03-01

    Geometry topics are still considered difficult by most students. Therefore, this study focused on the identification of students related to van Hiele levels. The task used from result of the development of questions related to analytical geometry of space. The results of the work involving 78 students who worked on these questions covered 11.54% (nine students) classified on a visual level; 5.13% (four students) on analysis level; 1.28% (one student) on informal deduction level; 2.56% (two students) on deduction and 2.56% (two students) on rigor level, and 76.93% (sixty students) classified on the pre-visualization level.

  4. Geometry

    CERN Document Server

    Prasolov, V V

    2015-01-01

    This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

  5. Analytic theory of the energy and time independent particle transport in the plane geometry

    International Nuclear Information System (INIS)

    Simovic, R.D.

    2001-01-01

    An analytic investigation of the energy and time independent particle transport in the plane geometry described by a common anisotropic scattering function is carried out. Regarding the particles with specific diffusion histories in the infinite or the semi-infinite medium, new exact solutions of the corresponding transport equations are analytically derived by means of the Fourier inversion technique. Two particular groups of particles scattered after each successive collision into the directions μ 0, were considered. Its Fourier transformed transport equations have solutions without logarithmic singular points, in the upper part or the lower part of the complex k-plane. The Fourier inversion of solutions are carried out analytically and the obtained formulae represents valid generalization of the expressions for the flux of once scattered particles. (author)

  6. An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst

    2011-01-01

    Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)

  7. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  8. An analytical solution of the one-dimensional neutron diffusion kinetic equation in cartesian geometry

    International Nuclear Information System (INIS)

    Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.

    2009-01-01

    In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)

  9. Human eye analytical and mesh-geometry models for ophthalmic dosimetry using MCNP6

    International Nuclear Information System (INIS)

    Angelocci, Lucas V.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2015-01-01

    Eye tumors can be treated with brachytherapy using Co-60 plaques, I-125 seeds, among others materials. The human eye has regions particularly vulnerable to ionizing radiation (e.g. crystalline) and dosimetry for this region must be taken carefully. A mathematical model was proposed in the past [1] for the eye anatomy to be used in Monte Carlo simulations to account for dose distribution in ophthalmic brachytherapy. The model includes the description for internal structures of the eye that were not treated in previous works. The aim of this present work was to develop a new eye model based on the Mesh geometries of the MCNP6 code. The methodology utilized the ABAQUS/CAE (Simulia 3DS) software to build the Mesh geometry. For this work, an ophthalmic applicator containing up to 24 model Amersham 6711 I-125 seeds (Oncoseed) was used, positioned in contact with a generic tumor defined analytically inside the eye. The absorbed dose in eye structures like cornea, sclera, choroid, retina, vitreous body, lens, optical nerve and optical nerve wall were calculated using both models: analytical and MESH. (author)

  10. Human eye analytical and mesh-geometry models for ophthalmic dosimetry using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Angelocci, Lucas V.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Eye tumors can be treated with brachytherapy using Co-60 plaques, I-125 seeds, among others materials. The human eye has regions particularly vulnerable to ionizing radiation (e.g. crystalline) and dosimetry for this region must be taken carefully. A mathematical model was proposed in the past [1] for the eye anatomy to be used in Monte Carlo simulations to account for dose distribution in ophthalmic brachytherapy. The model includes the description for internal structures of the eye that were not treated in previous works. The aim of this present work was to develop a new eye model based on the Mesh geometries of the MCNP6 code. The methodology utilized the ABAQUS/CAE (Simulia 3DS) software to build the Mesh geometry. For this work, an ophthalmic applicator containing up to 24 model Amersham 6711 I-125 seeds (Oncoseed) was used, positioned in contact with a generic tumor defined analytically inside the eye. The absorbed dose in eye structures like cornea, sclera, choroid, retina, vitreous body, lens, optical nerve and optical nerve wall were calculated using both models: analytical and MESH. (author)

  11. Analytical solution for the transport equation for neutral particles in cylindrical and Cartesian geometry

    International Nuclear Information System (INIS)

    Goncalves, Glenio Aguiar

    2003-01-01

    In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)

  12. Neutron noise calculations in a hexagonal geometry and comparison with analytical solutions

    International Nuclear Information System (INIS)

    Tran, H. N.; Demaziere, C.

    2012-01-01

    This paper presents the development of a neutronic and kinetic solver for hexagonal geometries. The tool is developed based on the diffusion theory with multi-energy groups and multi-groups of delayed neutron precursors allowing the solutions of forward and adjoint problems of static and dynamic states, and is applicable to both thermal and fast systems with hexagonal geometries. In the dynamic problems, the small stationary fluctuations of macroscopic cross sections are considered as noise sources, and then the induced first order noise is calculated fully in the frequency domain. Numerical algorithms for solving the static and noise equations are implemented with a spatial discretization based on finite differences and a power iterative solution. A coarse mesh finite difference method has been adopted for speeding up the convergence. Since no other numerical tool could calculate frequency-dependent noise in hexagonal geometry, validation calculations have been performed and benchmarked to analytical solutions based on a 2-D homogeneous system with two-energy groups and one-group of delayed neutron precursor, in which point-like perturbations of thermal absorption cross section at central and non-central positions are considered as noise sources. (authors)

  13. A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry

    International Nuclear Information System (INIS)

    Hebert, Alain

    2008-01-01

    The nodal diffusion algorithms used in many production reactor simulation codes are originating from a common ancestry developed in the 1970s, the analytic nodal method (ANM) of the QUANDRY code. However, this original presentation of the ANM is complex and makes difficult the calculation of the nodal coupling matrices. Moreover, QUANDRY is limited to two-energy groups and its generalization to more groups appears laborious. We are presenting a simplified implementation of the ANM requiring only limited programming work. This formulation is consistent with the initial QUANDRY implementation and is easily generalizable to arbitrary G-group problems. A Matlab script is provided to highlight the simplicity of our presentation. For the sake of clarity, our implementation is limited to G-group, 2-D Cartesian geometry

  14. Growing geometric reasoning in solving problems of analytical geometry through the mathematical communication problems to state Islamic university students

    Science.gov (United States)

    Mujiasih; Waluya, S. B.; Kartono; Mariani

    2018-03-01

    Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.

  15. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  16. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis.

    Science.gov (United States)

    Khan, Farman U; Qamar, Shamsul

    2017-05-01

    A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    Science.gov (United States)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  18. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  19. International Conference on Analytic and Algebraic Geometry held at the Tata Institute of Fundamental Research and the University of Hyderabad

    CERN Document Server

    Biswas, Indranil; Morye, Archana; Parameswaran, A

    2017-01-01

    This volume is an outcome of the International conference held in Tata Institute of Fundamental Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results.

  20. Approximate analytical solutions in the analysis of elastic structures of complex geometry

    Science.gov (United States)

    Goloskokov, Dmitriy P.; Matrosov, Alexander V.

    2018-05-01

    A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.

  1. Modeling of cavities using the analytic modal method and an open geometry formalism

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Christensen, Thomas; Mørk, Jesper

    2012-01-01

    We present an eigenmode expansion technique for calculating the properties of a dipole emitter inside a micropillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric field, and expand the field on analytic eigenmodes. In contrast to finite...

  2. Superconformal geometry from the Grassmann and harmonic analyticities II: The N=4SU(2) conformal case

    International Nuclear Information System (INIS)

    Saidi, E.H.; Zakkari, M.

    1990-05-01

    N=4SU(2) conformal invariance is studied in harmonic superspace. It is shown that the N=4SU(2) conformal structure is equivalent to the harmonic analyticity. The solutions of the superconformal constraints are worked out in detail and the conformal properties of all objects of interests are given. A realization of the N=4 current in terms of the free (F.S.) hypermultiplet is obtained. (author). 10 refs

  3. A novel analytical description of periodic volume coil geometries in MRI

    Science.gov (United States)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  4. An analytical approach to bistable biological circuit discrimination using real algebraic geometry.

    Science.gov (United States)

    Siegal-Gaskins, Dan; Franco, Elisa; Zhou, Tiffany; Murray, Richard M

    2015-07-06

    Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturm's theorem--a tool from nineteenth-century real algebraic geometry--to comparing 'functionally equivalent' bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh-Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturm's theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis.

  5. Analytical study on optically measured surface profiles of referential geometry using a finite-difference time-domain method

    International Nuclear Information System (INIS)

    Fujii, A; Hayashi, S; Fujii, S; Yanagi, K

    2014-01-01

    This paper deals with the functional performance of optical surface texture measuring instruments on the market. It is well known that their height response curves against certain referential geometry are not always identical to each other. So, a more precise study on the optical instrument's characteristics is greatly needed. Firstly, we developed a new simulation tool using a finite-difference time-domain technique, which enables the prediction of the height response curve against the fundamental surface geometry in the case of the confocal laser scanning microscope. Secondly, by utilizing this new simulation tool, measurement results, including outliers, were compared with the analytical simulation results. The comparison showed the consistency, which indicates that necessary conditions of surface measurement standards for verifying the instrument performance can be established. Consequently, we suggest that the maximum measurable slope angle must be added to evaluation subjects as significant metrological characteristics of measuring instruments, along with the lateral period limit. Finally, we propose a procedure to determine the lateral period limit in an ISO standard. (paper)

  6. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio, E-mail: julio.lombaldo@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada; Borges, Volnei; Bodmann, Bardo Ernest, E-mail: bardo.bodmann@ufrgs.b, E-mail: borges@ufrgs.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2011-07-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S{sub N} consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S{sub 2} approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  7. Analytical reconstruction schemes for coarse-mesh spectral nodal solution of slab-geometry SN transport problems

    International Nuclear Information System (INIS)

    Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.

    2009-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)

  8. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Borges, Volnei; Bodmann, Bardo Ernest

    2011-01-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S N consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S 2 approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  9. Analytical solution of the multigroup neutron diffusion kinetic equation in one-dimensional cartesian geometry by the integral transform technique

    International Nuclear Information System (INIS)

    Ceolin, Celina

    2010-01-01

    The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)

  10. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  11. On some methods of achieving a continuous and differentiated assessment in Linear Algebra and Analytic and Differential Geometry courses and seminars

    Directory of Open Access Journals (Sweden)

    M. A.P. PURCARU

    2017-12-01

    Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.

  12. Analytical Study of the Effect of the System Geometry on Photon Sensitivity and Depth of Interaction of Positron Emission Mammography

    Directory of Open Access Journals (Sweden)

    Pablo Aguiar

    2012-01-01

    Full Text Available Positron emission mammography (PEM cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required.

  13. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  14. The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: Development and performance analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria

    2008-01-01

    In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks

  15. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  16. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    Science.gov (United States)

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  17. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  18. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  19. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Science.gov (United States)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  20. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    International Nuclear Information System (INIS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-01-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label

  1. Combined analytical-numerical procedure to solve multigroup spherical harmonics equations in two-dimensional r-z geometry

    International Nuclear Information System (INIS)

    Matausek, M.V.; Milosevic, M.

    1986-01-01

    In the present paper a generalization is performed of a procedure to solve multigroup spherical harmonics equations, which has originally been proposed and developed for one-dimensional systems in cylindrical or spherical geometry, and later extended for a special case of a two-dimensional system in r-z geometry. The expressions are derived for the axial and the radial dependence of the group values of the neutron flux moments, in the P-3 approximation of the spherical harmonics method, in a cylindrically symmetrical system with an arbitrary number of material regions in both r- and z-directions. In the special case of an axially homogeneous system, these expressions reduce to the relations derived previously. (author)

  2. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  3. Numerical solution of the equation of neutrons transport on plane geometry by analytical schemes using acceleration by synthetic diffusion

    International Nuclear Information System (INIS)

    Alonso-Vargas, G.

    1991-01-01

    A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)

  4. Analytical evaluation of neutron diffusion equation for the geometry of very intense continuous high flux pulsed reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    1995-01-01

    Using the concept of Very Intense Continuous High Flux Pulsed Reactor to obtain a rotating high flux pulse in an annular core an analytical treatment for the quasi-static solution with a moving reflector is presented. Under quasi-static situation, time averaged values for important parameters like multiplication factor, flux, leakage do not change with time. As a result the instantaneous solution can be considered to be separable in time and space after correcting for the coordinates for the motion of the pulser. The space behaviour of the pulser is considered as exp(-αx 2 ). Movement of delayed neutron precursors is also taken into account. (author). 4 refs

  5. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  6. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  7. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric

  8. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  9. An analytical spatial reconstruction algorithm for the SD-SGF-CN hybrid nodal method for one-speed X,Y-geometry SN eigenvalue problems

    International Nuclear Information System (INIS)

    Menezes, Welton Alves; Alves Filho, Hermes; Barros, Ricardo C.

    2009-01-01

    In this paper the X,Y-geometry SD-SGF-CN spectral nodal method, cf. spectral diamond-spectral Green's function-constant nodal, is used to determine the one-speed node-edge average angular fluxes in heterogeneous domains. This hybrid spectral nodal method uses the spectral diamond (SD) auxiliary equation for the multiplying regions and the spectral Green's function (SGF) auxiliary equation for the non-multiplying regions of the domain. Moreover, we consider constant approximations for the transverse-leakage terms in the transverse integrated S N nodal equations. We solve the SD-SGF-CN equations using the one-node block inversion (NBI) iterative scheme, which uses the most recent estimates available for the node-entering fluxes to evaluate the node-exiting fluxes in the directions that constitute the incoming fluxes for the adjacent node. Using these results, we offer an algorithm for analytical reconstruction of the coarse-mesh nodal solution within each spatial node, as localized numerical solutions are not generated by usual accurate nodal methods. Numerical results are presented to illustrate the accuracy of the present algorithm. (author)

  10. Technical calculus with analytic geometry

    CERN Document Server

    Gersting, Judith L

    2010-01-01

    This well-thought-out text, filled with many special features, is designed for a two-semester course in calculus for technology students with a background in college algebra and trigonometry. The author has taken special care to make the book appealing to students by providing motivating examples, facilitating an intuitive understanding of the underlying concepts involved, and by providing much opportunity to gain proficiency in techniques and skills.Initial chapters cover functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, using the derivative, in

  11. Analytical geometry of three dimensions

    CERN Document Server

    McCrea, William Hunter

    1947-01-01

    Brief but rigorous, this text is geared toward advanced undergraduates and graduate students. It covers the coordinate system, planes and lines, spheres, homogeneous coordinates, general equations of the second degree, quadric in Cartesian coordinates, and intersection of quadrics.Mathematician, physicist, and astronomer, William H. McCrea conducted research in many areas and is best known for his work on relativity and cosmology. McCrea studied and taught at universities around the world, and this book is based on a series of his lectures.

  12. Modern calculus and analytic geometry

    CERN Document Server

    Silverman, Richard A

    2012-01-01

    A self-contained text for an introductory course, this volume places strong emphasis on physical applications. Key elements of differential equations and linear algebra are introduced early and are consistently referenced, all theorems are proved using elementary methods, and numerous worked-out examples appear throughout. The highly readable text approaches calculus from the student's viewpoint and points out potential stumbling blocks before they develop. A collection of more than 1,600 problems ranges from exercise material to exploration of new points of theory - many of the answers are fo

  13. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Science.gov (United States)

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  14. Ground Deformation and Sources geometry of the 2016 Central Italy Earthquake Sequence Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data

    Science.gov (United States)

    Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.

    2017-12-01

    The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate

  15. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  16. Hyperbolic geometry

    CERN Document Server

    Iversen, Birger

    1992-01-01

    Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

  17. Twistor geometry

    NARCIS (Netherlands)

    van den Broek, P.M.

    1984-01-01

    The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

  18. Teaching Spatial Geometry in a Virtual World

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho

    2017-01-01

    Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...

  19. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  20. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  1. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  2. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  3. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  4. Analytische Geometrie

    Science.gov (United States)

    Kemnitz, Arnfried

    Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.

  5. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  6. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  7. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  8. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  9. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  10. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  11. Projective Geometry

    Indian Academy of Sciences (India)

    mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.

  12. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.

  13. Analytic aspects of convexity

    CERN Document Server

    Colesanti, Andrea; Gronchi, Paolo

    2018-01-01

    This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world’s leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.

  14. The Potential of GeoGebra Dynamic Mathematics Software in Teaching Analytic Geometry: The Opinion of Pre-service Mathematics Teachers [Analitik Geometri Öğretiminde GeoGebra Yazılımının Potansiyeli: Öğretmen Adaylarının Görüşleri

    Directory of Open Access Journals (Sweden)

    Serdal Baltacı

    2016-12-01

    Full Text Available The potential of GeoGebra in teaching analytic geometry concepts was investigated in this paper. The study carried out with case study methodology and the participants were 6 pre-service mathematics teachers at 3rd grade of elementary mathematics education. All of the participants had the skill of well self-expression and they were volunteers for interview. Two participants were at high achievement levels, two participants were at medium achievement levels and two participants were low achievement levels. While carrying out each lesson, participants used worksheets which were prepared by the researchers. The data were obtained by semi-structured interviews which were carried out at the end of the courses and the data were analyzed with content analysis method. Research results showed that using dynamic mathematics software while studying on analytic geometry provides convenience for the participants and they felt more active while they were using software in the learning environment. [Bu çalışmada, analitik geometri kavramlarının öğretiminde GeoGebra’ nın potansiyeli incelenmiştir. Özel durum çalışması yöntemiyle yürütülen bu araştırmanın katılımcılarını, ilköğretim matematik öğretmenliği 3. sınıfa devam eden 6 öğretmen adayı oluşturmaktadır. Katılımcılar kendini ifade etme becerisi yüksek, mülakata gönüllü ve farklı başarı düzeyinde (yüksek, orta, düşük olan ikişer öğretmen adayından oluşmaktadır. Çalışmada analitik geometri dersleri, araştırmacılar tarafından geliştirilen çalışma yaprakları kullanılarak yürütülmüştür. Araştırmanın verileri derslerin sonunda yapılan yarı yapılandırılmış mülakatlarla toplanmıştır. Araştırmadan elde edilen veriler, içerik analizi yöntemi ile analiz edilmiştir. Araştırma sonuçları öğretmen adaylarının analitik geometri kavramlarını öğrenmede yazılımı kullanmalarının onlara kolaylık sa

  15. Special geometry

    International Nuclear Information System (INIS)

    Strominger, A.

    1990-01-01

    A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

  16. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  17. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  18. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  19. GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE

    OpenAIRE

    Liliana TOCARIU, PhD

    2017-01-01

    Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...

  20. The geometry of René Descartes

    CERN Document Server

    Descartes, René

    1954-01-01

    The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." - John Stuart Mill.

  1. Geometry The Language of Space and Form (Revised Edition)

    CERN Document Server

    Tabak, John

    2011-01-01

    Geometry, Revised Edition describes geometry in antiquity. Beginning with a brief description of some of the geometry that preceded the geometry of the Greeks, it takes up the story of geometry during the European Renaissance as well as the significant mathematical progress in other areas of the world. It also discusses the analytic geometry of Ren Descartes and Pierre Fermat, the alternative coordinate systems invented by Isaac Newton, and the solid geometry of Leonhard Euler. Also included is an overview of the geometry of one of the most successful mathematicians of the 19th century, Bernha

  2. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  3. Geometry of the Universe

    International Nuclear Information System (INIS)

    Gurevich, L.Eh.; Gliner, Eh.B.

    1978-01-01

    Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

  4. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  5. A polynomial analytical method for one-group slab-geometry discrete ordinates heterogeneous problems; Metodo analitico de aproximacao polinomial para problemas de ordenadas discretas em geometria Cartesiana unidimensional

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Andre Luiz do Carmo

    2008-07-01

    In this work we evaluate polynomial approximations to obtain the transfer functions that appear in SGF auxiliary equations (Green's Functions) for monoenergetic linearly anisotropic scattering SN equations in one-dimensional Cartesian geometry. For this task we use Lagrange Polynomials in order to compare the numerical results with the ones generated by the standard SGF method applied to SN problems in heterogeneous domains. This work is a preliminary investigation of a new proposal for handling the transverse leakage terms that appear in the transverse-integrated one-dimensional SN equations when we use the SGF - exponential nodal method (SGF-ExpN) in multidimensional rectangular geometry. (author)

  6. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  7. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  8. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  9. Spinorial Geometry and Branes

    International Nuclear Information System (INIS)

    Sloane, Peter

    2007-01-01

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  10. Spinorial Geometry and Branes

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

    2007-09-15

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  11. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  12. Web Analytics

    Science.gov (United States)

    EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.

  13. Arithmetic noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2005-01-01

    Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

  14. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Buescher, R.

    2005-01-01

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  15. Geometry of curves and surfaces with Maple

    CERN Document Server

    Rovenski, Vladimir

    2000-01-01

    This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...

  16. A geometry calibration method for rotation translation trajectory

    International Nuclear Information System (INIS)

    Zhang Jun; Yan Bin; Li Lei; Lu Lizhong; Zhang Feng

    2013-01-01

    In cone-beam CT imaging system, it is difficult to directly measure the geometry parameters. In this paper, a geometry calibration method for rotation translation trajectory is proposed. Intrinsic parameters are solved from the relationship built on geometry parameter of the system and projection trajectory of calibration object. Parameters of rotation axis are extrapolated from the unified intrinsic parameter, and geometry parameters of the idle trajectory are acquired too. The calibration geometry can be analytically determined using explicit formulae, it can avoid getting into local optimum in iterative way. Simulation experiments are carried out on misaligned geometry, experiment results indicate that geometry artifacts due to misaligned geometry are effectively depressed by the proposed method, and the image quality is enhanced. (authors)

  17. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  18. Aspects of differential geometry II

    CERN Document Server

    Gilkey, Peter

    2015-01-01

    Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...

  19. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  20. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  1. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  2. Developments in special geometry

    International Nuclear Information System (INIS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-01-01

    We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  3. Numerical determination of transmission probabilities in cylindrical geometry

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1989-11-01

    Efficient methods for numerical calculation of transmission probabilities in cylindrical geometry are presented. Relative errors of the order of 10 -5 or smaller are obtained using analytical solutions and low order quadrature integration schemes. (author) [pt

  4. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  5. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  6. Geometry of multihadron production

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  7. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  8. Geometry of multihadron production

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

  9. The Beauty of Geometry

    Science.gov (United States)

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  10. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  11. Methods of information geometry

    CERN Document Server

    Amari, Shun-Ichi

    2000-01-01

    Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...

  12. A Lorentzian quantum geometry

    International Nuclear Information System (INIS)

    Grotz, Andreas

    2011-01-01

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  13. THE COMMON EVOLUTION OF GEOMETRY AND ARCHITECTURE FROM A GEODETIC POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    T. Bellone

    2017-05-01

    Full Text Available Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,… those most frequently employed in architectural design are: – Euclidean Geometry – Projective Geometry – The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.

  14. The Common Evolution of Geometry and Architecture from a Geodetic Point of View

    Science.gov (United States)

    Bellone, T.; Fiermonte, F.; Mussio, L.

    2017-05-01

    Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,…) those most frequently employed in architectural design are: - Euclidean Geometry - Projective Geometry - The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.

  15. Geometry on the space of geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1988-06-01

    We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs

  16. Discrete quantum geometries and their effective dimension

    International Nuclear Information System (INIS)

    Thuerigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  17. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  18. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  19. Lectures on coarse geometry

    CERN Document Server

    Roe, John

    2003-01-01

    Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

  20. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  1. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  2. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  3. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  4. Geometry and billiards

    CERN Document Server

    Tabachnikov, Serge

    2005-01-01

    Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...

  5. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  6. Rudiments of algebraic geometry

    CERN Document Server

    Jenner, WE

    2017-01-01

    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  7. Quantization of the Schwarzschild geometry

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2013-01-01

    The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.

  8. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  9. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  10. CMS geometry through 2020

    International Nuclear Information System (INIS)

    Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J

    2014-01-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  11. Software Geometry in Simulations

    Science.gov (United States)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  12. Introduction to combinatorial geometry

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Emmett, M.B.

    1985-01-01

    The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity

  13. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  14. Geometry of isotropic convex bodies

    CERN Document Server

    Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen

    2014-01-01

    The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...

  15. Global aspects of complex geometry

    CERN Document Server

    Catanese, Fabrizio; Huckleberry, Alan T

    2006-01-01

    Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.

  16. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  17. LEARNING GEOMETRY THROUGH MIMESIS AND DIGITAL CONSTRUCT

    OpenAIRE

    Maria Mion POP; Mihaela GIURGIULESCU

    2015-01-01

    The theme proposed by us is useful to teachers and students for mathematics in the compulsory school cycle. The issues faced by school teachers/parents are the difficulty with which students read and understand the lessons/examples/synthesis in order to assimilate technical terms. The echoic and iconic memory facilitates the learning of the specific curriculum of linear, spatial and analytical geometry by the students using digital platform designed by us; it facilitates the acquiring of the ...

  18. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  19. Generalizing optical geometry

    International Nuclear Information System (INIS)

    Jonsson, Rickard; Westman, Hans

    2006-01-01

    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity

  20. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  1. Discrete and computational geometry

    CERN Document Server

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  2. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  3. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  4. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  5. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  6. Multiplicity in difference geometry

    OpenAIRE

    Tomasic, Ivan

    2011-01-01

    We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.

  7. Spacetime and Euclidean geometry

    Science.gov (United States)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  8. Physics and geometry

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2009-01-01

    The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered

  9. Origami, Geometry and Art

    Science.gov (United States)

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  10. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  11. Towards a Nano Geometry?

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...

  12. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc

    2000-01-01

    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  13. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  14. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM

    1965-01-01

    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  15. Topics in Riemannian geometry

    International Nuclear Information System (INIS)

    Ezin, J.P.

    1988-08-01

    The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs

  16. Using an analytical geometry method to improve tiltmeter data presentation

    Science.gov (United States)

    Su, W.-J.

    2000-01-01

    The tiltmeter is a useful tool for geologic and geotechnical applications. To obtain full benefit from the tiltmeter, easy and accurate data presentations should be used. Unfortunately, the most commonly used method for tilt data reduction now may yield inaccurate and low-resolution results. This article describes a simple, accurate, and high-resolution approach developed at the Illinois State Geological Survey for data reduction and presentation. The orientation of tiltplates is determined first by using a trigonometric relationship, followed by a matrix transformation, to obtain the true amount of rotation change of the tiltplate at any given time. The mathematical derivations used for the determination and transformation are then coded into an integrated PC application by adapting the capabilities of commercial spreadsheet, database, and graphics software. Examples of data presentation from tiltmeter applications in studies of landfill covers, characterizations of mine subsidence, and investigations of slope stability are also discussed.

  17. 3-D Discrete Analytical Ridgelet Transform

    OpenAIRE

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  18. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  20. The Kerr geometry, complex world lines and hyperbolic strings

    International Nuclear Information System (INIS)

    Burinskii, A.Ya.

    1994-01-01

    In the Lind-Newman representation the Kerr geometry is created by a source moving along an analytical complex world line. An equivalence of the complex world line and complex (hyperbolic) string is considered. Therefore the hyperbolic string may play the role of the complex source of the Kerr geometry. The Kerr solution with the complex string source acquires Regge behavior of the angular momentum. (orig.)

  1. Multivariate calculus and geometry

    CERN Document Server

    Dineen, Seán

    2014-01-01

    Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

  2. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  3. Multilevel geometry optimization

    Science.gov (United States)

    Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

    2000-02-01

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

  4. Multilevel geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2000-02-15

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.

  5. Geometry and Destiny

    OpenAIRE

    Krauss, Lawrence M.; Turner, Michael S.

    1999-01-01

    The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.

  6. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  7. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  8. W-geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    1993-01-01

    The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)

  9. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  10. CBM RICH geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

  11. Introducing geometry concept based on history of Islamic geometry

    Science.gov (United States)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  12. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  13. Two lectures on D-geometry and noncommutative geometry

    International Nuclear Information System (INIS)

    Douglas, M.R.

    1999-01-01

    This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

  14. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  15. Simplified discrete ordinates method in spherical geometry

    International Nuclear Information System (INIS)

    Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.

    1999-01-01

    The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations

  16. Sub-Riemannian geometry and optimal transport

    CERN Document Server

    Rifford, Ludovic

    2014-01-01

    The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.

  17. LEARNING GEOMETRY THROUGH MIMESIS AND DIGITAL CONSTRUCT

    Directory of Open Access Journals (Sweden)

    Maria Mion POP

    2015-12-01

    Full Text Available The theme proposed by us is useful to teachers and students for mathematics in the compulsory school cycle. The issues faced by school teachers/parents are the difficulty with which students read and understand the lessons/examples/synthesis in order to assimilate technical terms. The echoic and iconic memory facilitates the learning of the specific curriculum of linear, spatial and analytical geometry by the students using digital platform designed by us; it facilitates the acquiring of the theoretical elements of applied geometry by encoding-decoding, so that the teacher's role becomes the one of the advisor and not only a person who transmits the information. The utility of the program extends from mainstream schools to special schools.

  18. Geometry of Quantum States

    International Nuclear Information System (INIS)

    Hook, D W

    2008-01-01

    A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and

  19. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  20. Functional integration over geometries

    International Nuclear Information System (INIS)

    Mottola, E.

    1995-01-01

    The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted

  1. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  2. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  3. Torsional heterotic geometries

    International Nuclear Information System (INIS)

    Becker, Katrin; Sethi, Savdeep

    2009-01-01

    We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

  4. Geometrie verstehen: statisch - kinematisch

    Science.gov (United States)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  5. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  6. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  7. Geometry and trigonometry

    CERN Document Server

    2015-01-01

    This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

  8. Geometry I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

  9. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  10. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  11. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  12. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  13. Confinement and related transport in Extrap geometry

    International Nuclear Information System (INIS)

    Tendler, M.

    1983-01-01

    The properties of the plasma dynamic equilibrium are investigated for the Extrap magnetic confinement geometry. The temperatures achieved so far in the high-#betta# pinches are much lower than the predicted values. Here, it is shown that the particle containment in Extrap may be improved as compared to the other pinches due to the electrostatic confinement. An analytic solution for the profiles of the plasma parameters are found under the assumption that the energy is lost primarily in the radial direction by heat conduction and convection. An estimate of the radial particle confinement time is given, showing favourable scaling with plasma density and temperature. The conventional assumption of a uniform current density is shown to be unjustified in the case of an inhomogeneous electron temperature. An analytical expression is found for the pinch radius at different mechanisms of the heat transport. (orig.)

  14. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  15. Critique of information geometry

    International Nuclear Information System (INIS)

    Skilling, John

    2014-01-01

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples

  16. Geometry from Gauge Theory

    International Nuclear Information System (INIS)

    Correa, Diego H.; Silva, Guillermo A.

    2008-01-01

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents

  17. Emergent geometry of membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-13

    In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.

  18. Geometry through history Euclidean, hyperbolic, and projective geometries

    CERN Document Server

    Dillon, Meighan I

    2018-01-01

    Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...

  19. Parametric excitation of drift waves in a sheared slab geometry

    International Nuclear Information System (INIS)

    Vranjes, J.; Weiland, J.

    1992-01-01

    The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)

  20. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  1. On organizing principles of discrete differential geometry. Geometry of spheres

    International Nuclear Information System (INIS)

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  2. INdAM Workshop on Analytic Aspects of Convexity

    CERN Document Server

    Colesanti, Andrea; Gronchi, Paolo

    2018-01-01

    This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world’s leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.

  3. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart

    2016-01-01

    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  4. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  5. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1982-01-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)

  6. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1981-09-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)

  7. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan

    2006-01-01

    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  8. Ostrich eggs geometry

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2013-01-01

    Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

  9. Nonperturbative quantum geometries

    International Nuclear Information System (INIS)

    Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara

    1988-01-01

    Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)

  10. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  11. Analytical mechanics

    CERN Document Server

    Helrich, Carl S

    2017-01-01

    This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...

  12. GPS: Geometry, Probability, and Statistics

    Science.gov (United States)

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  13. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  14. Kaehler geometry and SUSY mechanics

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen

    2001-01-01

    We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed

  15. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  16. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  17. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  18. Optical geometry across the horizon

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

  19. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  20. Controlling electromagnetic fields at boundaries of arbitrary geometries

    Science.gov (United States)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  1. Dependence of displacement fields on the damage cluster nucleus geometry

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Zabela, A.G.; Nikolajchuk, L.I.; Prokhorenko, E.M.; Khizhnyak, N.A.

    1988-01-01

    Displacement fields in doped crystals of cubic and hexagonal structures containing extended defects are studied. The numerical results are presented depending on the damage cluster nucleus geometry. All calculations are based on analytical representations of displacement fields in an integral form using elasticity theory equations. The investigation results are vital for radiation physics as they permit to predict and calculate both the character and geometry of distortions near damaged region cluster and determine cluster parameters on the basis of the known structure of distortions. Dependences are obtained for the following monocrystals: Mg, ZnO, CdS, W, Au. 6 refs.; 3 figs

  2. Complex analysis and CR geometry

    CERN Document Server

    Zampieri, Giuseppe

    2008-01-01

    Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...

  3. The geometry description markup language

    International Nuclear Information System (INIS)

    Chytracek, R.

    2001-01-01

    Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML

  4. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  5. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  6. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kohnel, Wolfgang

    2002-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

  7. A proposal of an open PET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inaniwa, Taku [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Minohara, Shinichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Shibuya, Kengo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Lam, Chih Fung [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan)

    2008-02-07

    The long patient port of a PET scanner tends to put stress on patients, especially patients with claustrophobia. It also prevents doctors and technicians from taking care of patients during scanning. In this paper, we proposed an 'open PET' geometry, which consists of two axially separated detector rings. A long and continuous field-of-view (FOV) including a 360 deg. opened gap between two detector rings can be imaged enabling a fully 3D image reconstruction of all the possible lines-of-response. The open PET will become practical if iterative image reconstruction methods are applied even though image reconstruction of the open PET is analytically an incomplete problem. First we implemented a 'masked' 3D ordered subset expectation maximization (OS-EM) in which the system matrix was obtained from a long 'gapless' scanner by applying a mask to detectors corresponding to the open space. Next, in order to evaluate imaging performance of the proposed open PET geometry, we simulated a dual HR+ scanner (ring diameter of D = 827 mm, axial length of W = 154 mm x 2) separated by a variable gap. The gap W was the maximum limit to have axially continuous FOV of 3W though the maximum diameter of FOV at the central slice was limited to D/2. Artifacts, observed on both sides of the open space when the gap exceeded W, were effectively reduced by inserting detectors partially into unnecessary open spaces. We also tested the open PET geometry using experimental data obtained by the jPET-D4. The jPET-D4 is a prototype brain scanner, which has 5 rings of 24 detector blocks. We simulated the open jPET-D4 with a gap of 66 mm by eliminating 1 block-ring from experimental data. Although some artifacts were seen at both ends of the opened gap, very similar images were obtained with and without the gap. The proposed open PET geometry is expected to lead to realization of in-beam PET, which is a method for an in situ monitoring of charged particle therapy, by

  8. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  9. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  10. An introduction to differential geometry

    CERN Document Server

    Willmore, T J

    2012-01-01

    This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

  11. Symplectic geometry and Fourier analysis

    CERN Document Server

    Wallach, Nolan R

    2018-01-01

    Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

  12. Geometry and Mechanics of Chiral Pod Opening

    Science.gov (United States)

    Sharon, Eran; Armon, Shahaf; Efrati, Efi; Kupferman, Raz

    2012-02-01

    We study the geometry and mechanics that drive the opening of Bauhinia seeds pods. The pod valve wall consists of two fibrous layers oriented at ± 45^o with respect to the pod axis. Upon drying, each of the layers shrinks uniaxially, perpendicularly to the fibers orientation. This active deformation turn the valve into an incompatible sheet with reference saddle-like curvature tensor and a flat (Euclidean) reference metric. These two intrinsic properties are incompatible. The shape is, therefore, selected by a stretching-bending competition. Strips cut from the valve tissue and from synthetic model material adopt various helical configurations. We provide analytical expressions for these configurations in the bending and stretching dominated regimes. Surface measurements show the transition from minimal surfaces (narrow limit) to cylindrical ones (wide limit). Finally, we show how plants use these mechanical principles using different tissue architectures.

  13. Black Holes and Large Order Quantum Geometry

    CERN Document Server

    Huang, Min-xin; Mariño, Marcos; Tavanfar, Alireza

    2009-01-01

    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations -which seem necessary to resolve the so-called entropy enigma in the OSV conjecture- do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.

  14. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  15. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  16. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  17. Magnetic response of certain curved graphitic geometries

    International Nuclear Information System (INIS)

    Wang, L.; Davids, P.S.; Saxena, A.; Bishop, A.R.

    1992-01-01

    The quasi-particle energy spectra associated with some members of buckyfamily (curved graphitic geometries), in particular C 50 , C 60 , C 70 and related fullerenes as well as coaxial helical microtubules of graphite, are obtained analytically within the mean-field approximation. These energy spectra are then used to calculate various response functions. Specifically, we calculate the specific heat, magnetization and magnetic susceptibility in the presence of an external magnetic field at low temperatures. For a single microtubule an extra peak superimposed on the first de Haas van Alphen (dHvA) oscillation in magnetic susceptibility is found in the 50--170 Tesla range depending on the radius which is possibly accessible in special (explosive flux compression) experiments. Finally, we point to important potential applications of these novel mesoscopic structures in nanotechnology

  18. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  19. Scattering Amplitudes via Algebraic Geometry Methods

    CERN Document Server

    Søgaard, Mads; Damgaard, Poul Henrik

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...

  20. Topology and geometry for physicists

    CERN Document Server

    Nash, Charles

    1983-01-01

    Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr

  1. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  2. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  3. Complex geometry and quantum string theory

    International Nuclear Information System (INIS)

    Belavin, A.A.; Knizhnik, V.G.

    1986-01-01

    Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry

  4. Prediction of melt geometry in laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Giovanni; Tomesani, Luca; Campana, Giampaolo

    2003-03-15

    In this paper, an analytical model for the evaluation of the melt film geometry in laser cutting of steels is developed. Using as basis, a previous model for kerf geometry estimation developed by the authors, with both reactive and non-reactive process gases, the film thickness and velocity were determined as a function of the kerf depth in the cutting plate. Two criteria were then adopted to predict the quality of the laser cutting operation: the first is based on a minimum acceptable value of the ejection speed of the melt from the bottom of the kerf, the second on the occlusion of the kerf itself due to an excess of molten material in the boundary layer at the kerf width. These criteria determined a feasibility region in the domain of the process and material variables, such as cutting speed, assistant gas pressure, laser beam power and material characteristics. These factors may be successfully used to build a process-planning tool for parameters optimisation and setting, in order to achieve a satisfactory process quality. The model response is in excellent agreement with the feasibility regions reported from experimental data by various authors and demonstrates a relationship between the occurrence of dross adhesion and the two different mechanisms predicted for such a phenomenon were: unsatisfactory ejection speed of the melt film from the bottom of the kerf and occlusion of the kerf.

  5. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  6. System theory as applied differential geometry. [linear system

    Science.gov (United States)

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  7. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  8. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  9. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  10. Euclidean geometry and its subgeometries

    CERN Document Server

    Specht, Edward John; Calkins, Keith G; Rhoads, Donald H

    2015-01-01

    In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...

  11. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  12. Electrodynamics and Spacetime Geometry: Foundations

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  13. Dayside merging and cusp geometry

    International Nuclear Information System (INIS)

    Crooker, N.U.

    1979-01-01

    Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle

  14. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS

    International Nuclear Information System (INIS)

    BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.

    2001-01-01

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective

  15. Design and analysis of an intelligent controller for active geometry suspension systems

    Science.gov (United States)

    Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim

    2011-02-01

    An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.

  16. KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI

    Directory of Open Access Journals (Sweden)

    Irkham Ulil Albab

    2014-10-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews

  17. Graphical debugging of combinational geometry

    International Nuclear Information System (INIS)

    Burns, T.J.; Smith, M.S.

    1992-01-01

    A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development

  18. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  19. Combinatorial geometry in the plane

    CERN Document Server

    Hadwiger, Hugo; Klee, Victor

    2014-01-01

    Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa

  20. Modern differential geometry for physicists

    CERN Document Server

    Isham, C J

    1989-01-01

    These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields

  1. Comparison theorems in Riemannian geometry

    CERN Document Server

    Cheeger, Jeff

    2008-01-01

    The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re

  2. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  3. Spatial geometry and special relativity

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame......-dependent and frame-independent entities. We depart from a subject well known by students, which is the three-dimensional geometric space in order to compare, afterwards, with the treatment of four-dimensional space in the special relativity. The differences and similarities between these two subjects are also...

  4. Stochastic geometry and its applications

    CERN Document Server

    Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph

    2013-01-01

    An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a

  5. Introduction to topology and geometry

    CERN Document Server

    Stahl, Saul

    2014-01-01

    An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele

  6. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  7. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  8. The Idea of Order at Geometry Class.

    Science.gov (United States)

    Rishel, Thomas

    The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…

  9. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  10. Normal forms in Poisson geometry

    NARCIS (Netherlands)

    Marcut, I.T.

    2013-01-01

    The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric

  11. Exploring Bundling Theory with Geometry

    Science.gov (United States)

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  12. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  13. Matter in toy dynamical geometries

    NARCIS (Netherlands)

    Konopka, T.J.

    2009-01-01

    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect

  14. Let??s teach geometry

    OpenAIRE

    Ca??adas, Mar??a C.; Molina, Marta; Gallardo, Sandra; Mart??nez-Santaolalla, Manuel J.; Pe??as, Mar??a

    2010-01-01

    In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.

  15. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  16. General Relativity: Geometry Meets Physics

    Science.gov (United States)

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  17. Learners engaging with transformation geometry

    African Journals Online (AJOL)

    participants engaged in investigative semi-structured interviews with the resear- chers. ... Keywords: analysis; conversions; transformation geometry; transformations; treatments .... semiotic systems of representation is not only to designate mathematical objects or to com- municate but also to ... Research design. We believe ...

  18. Multivariable calculus and differential geometry

    CERN Document Server

    Walschap, Gerard

    2015-01-01

    This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

  19. College geometry a unified development

    CERN Document Server

    Kay, David C

    2011-01-01

    ""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273

  20. Geometry.

    Science.gov (United States)

    Mahaffey, Michael L.

    One of a series of experimental units for children at the preschool level, this booklet deals with geometric concepts. A unit on volume and a unit on linear measurement are covered; for each unit a discussion of mathematical objectives, a list of materials needed, and a sequence of learning activities are provided. Directions are specified for the…

  1. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...

  2. Differential Geometry Applied to Rings and Möbius Nanostructures

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2014-01-01

    Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chap......Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable....... In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy...

  3. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  4. Let's Talk... Analytics

    Science.gov (United States)

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  5. Analytics for Education

    Science.gov (United States)

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  6. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  7. Numerically robust geometry engine for compound solid geometries

    International Nuclear Information System (INIS)

    Vlachoudis, V.; Sinuela-Pastor, D.

    2013-01-01

    Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)

  8. Code subspaces for LLM geometries

    Science.gov (United States)

    Berenstein, David; Miller, Alexandra

    2018-03-01

    We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.

  9. Euclidean distance geometry an introduction

    CERN Document Server

    Liberti, Leo

    2017-01-01

    This textbook, the first of its kind, presents the fundamentals of distance geometry:  theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several.  Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.

  10. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  11. The geometry of celestial mechanics

    CERN Document Server

    Geiges, Hansjörg

    2016-01-01

    Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.

  12. Differential geometry and mathematical physics

    CERN Document Server

    Rudolph, Gerd

    Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

  13. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  14. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  15. Groups and Geometries : Siena Conference

    CERN Document Server

    Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria

    1998-01-01

    On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi­ tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...

  16. Needle decompositions in Riemannian geometry

    CERN Document Server

    Klartag, Bo'az

    2017-01-01

    The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.

  17. Systematics of IIB spinorial geometry

    OpenAIRE

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2005-01-01

    We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...

  18. Geometry Dependence of Stellarator Turbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.

    2009-01-01

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes

  19. Superbanana orbits in stellarator geometries

    International Nuclear Information System (INIS)

    Derr, J.A.; Shohet, J.L.

    1979-04-01

    The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

  20. Turtle geometry the Python way

    OpenAIRE

    Battle, S.

    2014-01-01

    An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.

  1. Topics in modern differential geometry

    CERN Document Server

    Verstraelen, Leopold

    2017-01-01

    A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

  2. Computational geometry for reactor applications

    International Nuclear Information System (INIS)

    Brown, F.B.; Bischoff, F.G.

    1988-01-01

    Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications

  3. Number theory III Diophantine geometry

    CERN Document Server

    1991-01-01

    From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...

  4. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  5. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  6. Algebraic Geometry and Number Theory Summer School

    CERN Document Server

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk

    2017-01-01

    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  7. Geometry success in 20 minutes a day

    CERN Document Server

    LLC, LearningExpress

    2014-01-01

    Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr

  8. Network geometry with flavor: From complexity to quantum geometry

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but

  9. Geometry-invariant GRIN lens: finite ray tracing.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V

    2014-11-17

    The refractive index distribution of the geometry-invariant gradient refractive index lens (GIGL) model is derived as a function of Cartesian coordinates. The adjustable external geometry of the GIGL model aims to mimic the shape of the human and animal crystalline lens. The refractive index distribution is based on an adjustable power-law profile, which provides additional flexibility of the model. An analytical method for layer-by-layer finite ray tracing through the GIGL model is developed and used to calculate aberrations of the GIGL model. The result of the finite ray tracing aberrations of the GIGL model are compared to those obtained with paraxial ray tracing. The derived analytical expression for the refractive index distribution can be employed in the reconstruction processes of the eye using the conventional ray tracing methods. The layer-by-layer finite ray tracing approach would be an asset in ray tracing through a modified GIGL model, where the refractive index distribution cannot be described analytically. Using the layer-by-layer finite ray-tracing method, the potential of the GIGL model in representing continuous as well as shell-like layered structures is illustrated and the results for both cases are presented and analysed.

  10. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  11. A Whirlwind Tour of Computational Geometry.

    Science.gov (United States)

    Graham, Ron; Yao, Frances

    1990-01-01

    Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)

  12. Optimizing solar-cell grid geometry

    Science.gov (United States)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  13. submitter On Roebel Cable Geometry for Accelerator Magnet

    CERN Document Server

    Fleiter, J; Ballarino, A

    2016-01-01

    Roebel-type cables made of a ReBCO conductor are potential candidates for high-field accelerator magnets. The necessity to promote a large effective transverse section in a Roebel cable to avoid local overstress leading to degradation in electrical performance has been recently addressed. In this paper, a new geometry of meander tapes for a Roebel cable that enhances both the transverse effective section and the current margin at crossing segments is discussed. As Roebel cables are bent at the coil ends, the modulation of the bending radius of strands along the cable pitch leads to a shift of the strands with respect to each other. The shift magnitude is analytically investigated in this paper as a function of both cable features and coil geometry. Finally, the minimum transposition pitch of Roebel cables is determined on the basis of coil characteristics.

  14. Location Discovery Based on Fuzzy Geometry in Passive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2011-01-01

    Full Text Available Location discovery with uncertainty using passive sensor networks in the nation's power grid is known to be challenging, due to the massive scale and inherent complexity. For bearings-only target localization in passive sensor networks, the approach of fuzzy geometry is introduced to investigate the fuzzy measurability for a moving target in R2 space. The fuzzy analytical bias expressions and the geometrical constraints are derived for bearings-only target localization. The interplay between fuzzy geometry of target localization and the fuzzy estimation bias for the case of fuzzy linear observer trajectory is analyzed in detail in sensor networks, which can realize the 3-dimensional localization including fuzzy estimate position and velocity of the target by measuring the fuzzy azimuth angles at intervals of fixed time. Simulation results show that the resulting estimate position outperforms the traditional least squares approach for localization with uncertainty.

  15. An immersed boundary method for modeling a dirty geometry data

    Science.gov (United States)

    Onishi, Keiji; Tsubokura, Makoto

    2017-11-01

    We present a robust, fast, and low preparation cost immersed boundary method (IBM) for simulating an incompressible high Re flow around highly complex geometries. The method is achieved by the dispersion of the momentum by the axial linear projection and the approximate domain assumption satisfying the mass conservation around the wall including cells. This methodology has been verified against an analytical theory and wind tunnel experiment data. Next, we simulate the problem of flow around a rotating object and demonstrate the ability of this methodology to the moving geometry problem. This methodology provides the possibility as a method for obtaining a quick solution at a next large scale supercomputer. This research was supported by MEXT as ``Priority Issue on Post-K computer'' (Development of innovative design and production processes) and used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science.

  16. Vibration characteristics of a deployable controllable-geometry truss boom

    Science.gov (United States)

    Dorsey, J. T.

    1983-01-01

    An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.

  17. Classical An-W-geometry

    International Nuclear Information System (INIS)

    Gervais, J.L.

    1993-01-01

    By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)

  18. Stochastic geometry for image analysis

    CERN Document Server

    Descombes, Xavier

    2013-01-01

    This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are  described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed.  Numerous applications, covering remote sensing images, biological and medical imaging, are detailed.  This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.

  19. Magnetoelectrostatic thruster physical geometry tests

    Science.gov (United States)

    Ramsey, W. D.

    1981-01-01

    Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.

  20. The geometry of special relativity

    International Nuclear Information System (INIS)

    Parizet, Jean

    2008-01-01

    This book for students in mathematics or physics shows the interest of geometry to understand special relativity as a consequence of invariance of Maxwell equations and of constancy of the speed of light. Space-time is actually provided with a geometrical structure and a physical interpretation: at each observer are associated his own time and his own physical space in which occur events he is concerned with. This leads to a natural approach to special relativity. The Lorentz group and its algebra are then studied by using matrices and the Pauli algebra. Quaternions are also addressed

  1. Moduli spaces in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves

  2. Worldsheet geometries of ambitwistor string

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)

    2015-06-12

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  3. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  4. Geometry of physical dispersion relations

    International Nuclear Information System (INIS)

    Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.

    2011-01-01

    To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.

  5. Projective geometry and projective metrics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio

  6. Tropical geometry of statistical models.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  7. Geometry of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Gieres, F.

    1988-01-01

    This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism

  8. Clustering in Hilbert simplex geometry

    KAUST Repository

    Nielsen, Frank

    2017-04-03

    Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.

  9. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  10. Analyticity without Differentiability

    Science.gov (United States)

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  11. Understanding Business Analytics

    Science.gov (United States)

    2015-01-05

    analytics have been used in organizations for a variety of reasons for quite some time; ranging from the simple (generating and understanding business analytics...process. understanding business analytics 3 How well these two components are orchestrated will determine the level of success an organization has in

  12. Trends and developments in computational geometry

    NARCIS (Netherlands)

    Berg, de M.

    1997-01-01

    This paper discusses some trends and achievements in computational geometry during the past five years, with emphasis on problems related to computer graphics. Furthermore, a direction of research in computational geometry is discussed that could help in bringing the fields of computational geometry

  13. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  14. "WGL," a Web Laboratory for Geometry

    Science.gov (United States)

    Quaresma, Pedro; Santos, Vanda; Maric, Milena

    2018-01-01

    The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…

  15. Computational geometry algorithms and applications

    CERN Document Server

    de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried

    1997-01-01

    Computational geometry emerged from the field of algorithms design and anal­ ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc­ cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in­ formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...

  16. Foundations of arithmetic differential geometry

    CERN Document Server

    Buium, Alexandru

    2017-01-01

    The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

  17. Differential geometry of group lattices

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2003-01-01

    In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained

  18. Geometry of anisotropic CO outflows

    International Nuclear Information System (INIS)

    Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)

    1986-01-01

    A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references

  19. The advanced geometry of plane curves and their applications

    CERN Document Server

    Zwikker, C

    2005-01-01

    ""Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating."" - British Journal of Applied PhysicsThis study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves.Informativ

  20. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  1. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    International Nuclear Information System (INIS)

    LIN-LUI, Y.R; CHAN, V.S; PRATER, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  2. Canonical differential geometry of string backgrounds

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

  3. On the geometry of luxury

    OpenAIRE

    A. Mantovi

    2013-01-01

    A 2-parameter class of ordinal utility functions over a pair of goods is discussed with respect to general traits of preferences for luxury. The class contains Cobb-Douglas functions as no-luxury limit; its analytical tractability is probed by simple closed form solutions for Marshallian demand functions, expansion paths, Engel curves, income elasticity of demand, saturation levels, elasticity of substitution. Following Mantovi (2013), scale and substitution effects can be represented in term...

  4. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  5. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  6. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation

    Science.gov (United States)

    Mukta, K. N.; MacLaurin, J. N.; Robinson, P. A.

    2017-11-01

    Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1 /f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1 /f2 . Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks

  7. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  8. Integrable systems, geometry, and topology

    CERN Document Server

    Terng, Chuu-Lian

    2006-01-01

    The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...

  9. Tarski Geometry Axioms. Part III

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2017-12-01

    Full Text Available In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters. Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations the propositions (“Satz” are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2.

  10. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  11. Introduction to global variational geometry

    CERN Document Server

    Krupka, Demeter

    2015-01-01

    The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...

  12. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  13. Seesaw mechanism in warped geometry

    International Nuclear Information System (INIS)

    Huber, S.J.; Shafi, Q.

    2003-09-01

    We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)

  14. Seesaw mechanism in warped geometry

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Shafi, Qaisar

    2004-01-01

    We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed

  15. Conformal geometry and quasiregular mappings

    CERN Document Server

    Vuorinen, Matti

    1988-01-01

    This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...

  16. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  17. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  18. Analytic nuclear scattering theories

    International Nuclear Information System (INIS)

    Di Marzio, F.; University of Melbourne, Parkville, VIC

    1999-01-01

    A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed

  19. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  20. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  1. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  2. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  3. Second International workshop Geometry and Symbolic Computation

    CERN Document Server

    Walczak, Paweł; Geometry and its Applications

    2014-01-01

    This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

  4. Intrinsic Losses Based on Information Geometry and Their Applications

    Directory of Open Access Journals (Sweden)

    Yao Rong

    2017-08-01

    Full Text Available One main interest of information geometry is to study the properties of statistical models that do not depend on the coordinate systems or model parametrization; thus, it may serve as an analytic tool for intrinsic inference in statistics. In this paper, under the framework of Riemannian geometry and dual geometry, we revisit two commonly-used intrinsic losses which are respectively given by the squared Rao distance and the symmetrized Kullback–Leibler divergence (or Jeffreys divergence. For an exponential family endowed with the Fisher metric and α -connections, the two loss functions are uniformly described as the energy difference along an α -geodesic path, for some α ∈ { − 1 , 0 , 1 } . Subsequently, the two intrinsic losses are utilized to develop Bayesian analyses of covariance matrix estimation and range-spread target detection. We provide an intrinsically unbiased covariance estimator, which is verified to be asymptotically efficient in terms of the intrinsic mean square error. The decision rules deduced by the intrinsic Bayesian criterion provide a geometrical justification for the constant false alarm rate detector based on generalized likelihood ratio principle.

  5. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  6. Interplay between geometry and temperature in the Casimir effect

    International Nuclear Information System (INIS)

    Weber, Alexej

    2010-01-01

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  7. A dissipative particle dynamics method for arbitrarily complex geometries

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its

  8. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  9. Classical geometry Euclidean, transformational, inversive, and projective

    CERN Document Server

    Leonard, I E; Liu, A C F; Tokarsky, G W

    2014-01-01

    Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p

  10. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  11. Introduction to non-Euclidean geometry

    CERN Document Server

    Wolfe, Harold E

    2012-01-01

    One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc

  12. Disformal transformation in Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)

    2016-08-15

    Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)

  13. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  14. Special Geometry and Automorphic Forms

    CERN Document Server

    Berglund, P; Wyllard, N; Berglund, Per; Henningson, Mans; Wyllard, Niclas

    1997-01-01

    We consider special geometry of the vector multiplet moduli space in compactifications of the heterotic string on $K3 \\times T^2$ or the type IIA string on $K3$-fibered Calabi-Yau threefolds. In particular, we construct a modified dilaton that is invariant under $SO(2, n; Z)$ T-duality transformations at the non-perturbative level and regular everywhere on the moduli space. The invariant dilaton, together with a set of other coordinates that transform covariantly under $SO(2, n; Z)$, parameterize the moduli space. The construction involves a meromorphic automorphic function of $SO(2, n; Z)$, that also depends on the invariant dilaton. In the weak coupling limit, the divisor of this automorphic form is an integer linear combination of the rational quadratic divisors where the gauge symmetry is enhanced classically. We also show how the non-perturbative prepotential can be expressed in terms of meromorphic automorphic forms, by expanding a T-duality invariant quantity both in terms of the standard special coord...

  15. Differential geometry in string models

    International Nuclear Information System (INIS)

    Alvarez, O.

    1986-01-01

    In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

  16. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  17. Latent geometry of bipartite networks

    Science.gov (United States)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  18. Fractal Geometry and Stochastics V

    CERN Document Server

    Falconer, Kenneth; Zähle, Martina

    2015-01-01

    This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott,  Michał Rams, Pablo Shmerkin, and András Te...

  19. Stochastic geometry in PRIZMA code

    International Nuclear Information System (INIS)

    Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.

    2007-01-01

    The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)

  20. The geometry of population genetics

    CERN Document Server

    Akin, Ethan

    1979-01-01

    The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono­ graph I hope to show that his ideas illuminate many aspects of pop­ ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...

  1. Topics in Cubic Special Geometry

    CERN Document Server

    Bellucci, Stefano; Roychowdhury, Raju

    2011-01-01

    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...

  2. The Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2007-01-01

    The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....

  3. Signals: Applying Academic Analytics

    Science.gov (United States)

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  4. Analytic Moufang-transformations

    International Nuclear Information System (INIS)

    Paal, Eh.N.

    1988-01-01

    The paper is aimed to be an introduction to the concept of an analytic birepresentation of an analytic Moufang loop. To describe the deviation of (S,T) from associativity, the associators (S,T) are defined and certain constraints for them, called the minimality conditions of (S,T) are established

  5. Quine's "Strictly Vegetarian" Analyticity

    NARCIS (Netherlands)

    Decock, L.B.

    2017-01-01

    I analyze Quine’s later writings on analyticity from a linguistic point of view. In Word and Object Quine made room for a “strictly vegetarian” notion of analyticity. In later years, he developed this notion into two more precise notions, which I have coined “stimulus analyticity” and “behaviorist

  6. Learning analytics dashboard applications

    NARCIS (Netherlands)

    Verbert, K.; Duval, E.; Klerkx, J.; Govaerts, S.; Santos, J.L.

    2013-01-01

    This article introduces learning analytics dashboards that visualize learning traces for learners and teachers. We present a conceptual framework that helps to analyze learning analytics applications for these kinds of users. We then present our own work in this area and compare with 15 related

  7. Learning Analytics Considered Harmful

    Science.gov (United States)

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  8. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  10. Experimental validation on the effect of material geometries and processing methodology of Polyoxymethylene (POM)

    Science.gov (United States)

    Hafizzal, Y.; Nurulhuda, A.; Izman, S.; Khadir, AZA

    2017-08-01

    POM-copolymer bond breaking leads to change depending with respect to processing methodology and material geometries. This paper present the oversights effect on the material integrity due to different geometries and processing methodology. Thermo-analytical methods with reference were used to examine the degradation of thermomechanical while Thermogravimetric Analysis (TGA) was used to judge the thermal stability of sample from its major decomposition temperature. Differential Scanning Calorimetry (DSC) investigation performed to identify the thermal behaviour and thermal properties of materials. The result shown that plastic gear geometries with injection molding at higher tonnage machine more stable thermally rather than resin geometries. Injection plastic gear geometries at low tonnage machine faced major decomposition temperatures at 313.61°C, 305.76 °C and 307.91 °C while higher tonnage processing method are fully decomposed at 890°C, significantly higher compared to low tonnage condition and resin geometries specimen at 398°C. Chemical composition of plastic gear geometries with injection molding at higher and lower tonnage are compare based on their moisture and Volatile Organic Compound (VOC) content, polymeric material content and the absence of filler. Results of higher moisture and Volatile Organic Compound (VOC) content are report in resin geometries (0.120%) compared to higher tonnage of injection plastic gear geometries which is 1.264%. The higher tonnage of injection plastic gear geometry are less sensitive to thermo-mechanical degradation due to polymer chain length and molecular weight of material properties such as tensile strength, flexural strength, fatigue strength and creep resistance.

  11. Analytical prediction of turbulent friction factor for a rod bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Park, Joo Hwan

    2011-01-01

    An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.

  12. An analytical theory of transmission line shielding

    International Nuclear Information System (INIS)

    Pettersson, Per

    1993-01-01

    The classical electrogeometric model of shielding failure flashovers on transmission lines is investigated by analytical methods. Most of the basic elements that has appeared in the literature on the subject have been incorporated and put into a comprehensive model. These elements are: tower top geometry, structure height above ground, line insulation, lateral slope of ground, probability distribution of lightning currents, ratio of striking distances to ground wire and earth relative to conductor, and probability distribution of lightning leader approach angle to ground. Departing from a basic idealistic case, the sensitivity of the model to variations in these parameters is studied. Numerical examples are given. 8 refs, 8 figs, 1 tab

  13. Geometry of Gaussian quantum states

    International Nuclear Information System (INIS)

    Link, Valentin; Strunz, Walter T

    2015-01-01

    We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)

  14. Foliations dynamics, geometry and topology

    CERN Document Server

    Nicolau, Marcel

    2014-01-01

    This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods arising and used in the study of foliations. The lectures by A. El Kacimi Alaoui offer an introduction to Foliation Theory, with emphasis on examples and transverse structures. S. Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations, like limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, stable manifolds, Pesin Theory, and hyperbolic, parabolic, and elliptic types of foliations, all of them illustrated with examples. The lectures by M. Asaoka are devoted to the computation of the leafwise cohomology of orbit foliations given by locally free actions of certain Lie groups, and its application to the description of the deformation of those actions. In the lectures by K. Richardson, he studies the geometric and analytic properties ...

  15. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  16. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  17. Quantum groups: Geometry and applications

    International Nuclear Information System (INIS)

    Chu, C.S.

    1996-01-01

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge

  18. The geometry of elementary particles

    International Nuclear Information System (INIS)

    Lov, T.R.

    1987-01-01

    A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity

  19. Geometry and physics of branes

    International Nuclear Information System (INIS)

    Gal'tsov, D V

    2003-01-01

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field

  20. Description of SSG Geometry - phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work.......The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work....

  1. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  2. Curvature tensor copies in affine geometry

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1981-01-01

    The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt

  3. Fractal geometry of high temperature superconductors

    International Nuclear Information System (INIS)

    Mosolov, A.B.

    1989-01-01

    Microstructural geometry of superconducting structural composites of Ag-Yba 2 Cu 3 O x system with a volumetric shave of silver from 0 to 60% is investigated by light and electron microscopy methods. It is ascertained that the structure of cermets investigated is characterized by fractal geometry which is sufficient for describing the electrical and mechanical properties of these materials

  4. Quantification of variability in bedform geometry

    NARCIS (Netherlands)

    van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.

    2008-01-01

    We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.

  5. Random geometry and Yang-Mills theory

    International Nuclear Information System (INIS)

    Froehlich, J.

    1981-01-01

    The author states various problems and discusses a very few preliminary rigorous results in a branch of mathematics and mathematical physics which one might call random (or stochastic) geometry. Furthermore, he points out why random geometry is important in the quantization of Yang-Mills theory. (Auth.)

  6. The Geometry of the Universe: Part 2

    Science.gov (United States)

    Francis, Stephanie

    2009-01-01

    Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…

  7. Poisson geometry from a Dirac perspective

    Science.gov (United States)

    Meinrenken, Eckhard

    2018-03-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  8. An approach for management of geometry data

    Science.gov (United States)

    Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.

    1980-01-01

    The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.

  9. Transformasi Geometri Rotasi Berbantuan Software Geogebra

    Directory of Open Access Journals (Sweden)

    Muhamad Hanafi

    2018-02-01

    Full Text Available Penelitian  ini bertujuan untuk membantu visualisasi dan menemukan konsep pada Transformasi geometri Rotasi di titik Pusat  dengan menggunakan software GeoGebra. Penelitian ini mengulas tentang Koordinat Kartesius dan Polar, dan selanjutntya Transformasi geometri Rotasi di titik Pusat .

  10. Analisis Keterampilan Geometri Siswa Dalam Memecahkan Masalah Geometri Berdasarkan Tingkat Berpikir Van Hiele

    OpenAIRE

    Muhassanah, Nuraini; Sujadi, Imam; Riyadi, Riyadi

    2014-01-01

    The objective of this research was to describe the VIII grade students geometry skills atSMP N 16 Surakarta in the level 0 (visualization), level 1 (analysis), and level 2 (informaldeduction) van Hiele level of thinking in solving the geometry problem. This research was aqualitative research in the form of case study analyzing deeply the students geometry skill insolving the geometry problem based on van Hiele level of thingking. The subject of this researchwas nine students of VIII grade at ...

  11. The design of geometry teaching: learning from the geometry textbooks of Godfrey and Siddons

    OpenAIRE

    Fujita, Taro; Jones, Keith

    2002-01-01

    Deciding how to teach geometry remains a demanding task with one of major arguments being about how to combine the intuitive and deductive aspects of geometry into an effective teaching design. In order to try to obtain an insight into tackling this issue, this paper reports an analysis of innovative geometry textbooks which were published in the early part of the 20th Century, a time when significant efforts were being made to improve the teaching and learning of geometry. The analysis sugge...

  12. Physical meaning of the optical reference geometry

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-09-01

    I show that contrary to a popular misconception the optical reference geometry, introduced a few years ago as a formally possible metric of a 3-space corresponding to a static spacetime, is quite satisfactory also from the physical point of view. The optical reference geometry has a clear physical meaning, as it may be constructed experimentally by measuring light round travel time between static observers. Distances and directions in the optical reference geometry are more strongly connected to experiment than distances and directions in the widely used directly projected metric (discussed e.g. in Landau and Lifshitz textbook. In addition, the optical reference geometry is more natural and convenient than the directly projected one in application to dynamics. In the optical geometry dynamical behaviour of matter is described by concepts and formulae identical to those well known in Newtonian dynamics on a given two dimensional (curved) surface. (author). 22 refs

  13. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  14. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  15. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    Singer, Isadore M.

    2008-01-01

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  16. Special metrics and group actions in geometry

    CERN Document Server

    Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

    2017-01-01

    The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

  17. Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry

    Science.gov (United States)

    Mammana, M. F.; Micale, B.; Pennisi, M.

    2012-01-01

    We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…

  18. Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry

    Science.gov (United States)

    Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe

    2012-01-01

    This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…

  19. Google analytics integrations

    CERN Document Server

    Waisberg, Daniel

    2015-01-01

    A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens

  20. Approximations to the non-adiabatic particle response in toroidal geometry

    International Nuclear Information System (INIS)

    Schep, T.J.; Braams, B.J.

    1981-08-01

    The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure

  1. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  2. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  3. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  4. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  5. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  6. Mobility Data Analytics Center.

    Science.gov (United States)

    2016-01-01

    Mobility Data Analytics Center aims at building a centralized data engine to efficiently manipulate : large-scale data for smart decision making. Integrating and learning the massive data are the key to : the data engine. The ultimate goal of underst...

  7. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  8. Encyclopedia of analytical surfaces

    CERN Document Server

    Krivoshapko, S N

    2015-01-01

    This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions  and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.

  9. Geometry and physics of branes

    Energy Technology Data Exchange (ETDEWEB)

    Gal' tsov, D V

    2003-03-21

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two

  10. SRL online Analytical Development

    International Nuclear Information System (INIS)

    Jenkins, C.W.

    1991-01-01

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R ampersand D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R ampersand D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control ampersand Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications

  11. Pure sociology and social geometry as an example of formal sociological theory

    Directory of Open Access Journals (Sweden)

    Škorić Marko

    2012-01-01

    Full Text Available This paper analyzes pure sociology and social geometry of Donald Black as an example of formal sociological theory. Starting with the importance of formal and analytical theory in sociology, we present the bold theoretical strategy and/or the paradigm of the sociology of behavior of social life. The examples of pure sociology and social geometry concerning law, violence and homosexuality are presented as well. A review and critique of pure sociology as a scientific formal theory is offered in the end.

  12. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. A Gyrovector Space Approach to Hyperbolic Geometry

    CERN Document Server

    Ungar, Abraham

    2009-01-01

    The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. T

  14. SABRINA, Geometry Plot Program for MCNP

    International Nuclear Information System (INIS)

    SEIDL, Marcus

    2003-01-01

    1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required

  15. Information geometry near randomness and near independence

    CERN Document Server

    Arwini, Khadiga A

    2008-01-01

    This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

  16. Introduction into integral geometry and stereology

    DEFF Research Database (Denmark)

    Kiderlen, Markus

    Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula......This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...

  17. Differential geometry and topology of curves

    CERN Document Server

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  18. Digital and discrete geometry theory and algorithms

    CERN Document Server

    Chen, Li

    2014-01-01

    This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a

  19. Fractal geometry mathematical foundations and applications

    CERN Document Server

    Falconer, Kenneth

    2013-01-01

    The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals.  The book introduces and develops the general theory and applica

  20. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  1. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  2. Analytic manifolds in uniform algebras

    International Nuclear Information System (INIS)

    Tonev, T.V.

    1988-12-01

    Here we extend Bear-Hile's result concerning the version of famous Bishop's theorem for one-dimensional analytic structures in two directions: for n-dimensional complex analytic manifolds, n>1, and for generalized analytic manifolds. 14 refs

  3. Path Toward a Unified Geometry for Radiation Transport

    Science.gov (United States)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading

  4. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  5. Polynomials in finite geometries and combinatorics

    NARCIS (Netherlands)

    Blokhuis, A.; Walker, K.

    1993-01-01

    It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.

  6. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  7. Attitudes of High School Students towards Geometry

    Directory of Open Access Journals (Sweden)

    Esat Avcı

    2014-12-01

    Full Text Available In this research, attitudes of high school students towards geometry were investigated in terms of gender, grade, types of the field and school. Population of research includes students who were studying at high school in five distincs of Mersin in 2013-2014 academical year. Sample of research includes 935 students from twelve high schools. Attitude scale which was developed by Su-Özenir (2008 was used for data collection. For data analysis, mean, standart deviation, t test and ANOVA were used. A meaningful difference between students’ attitudes towards geometry and variance of gender and grade level wasn’t observed, on the other hand a meaningful difference according to field and school type is observed.Key Words:    Attitudes towards geometry, high school geometry lesson, attitude scale

  8. Geometry, structure and randomness in combinatorics

    CERN Document Server

    Nešetřil, Jaroslav; Pellegrini, Marco

    2014-01-01

    This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include:  graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.

  9. The elements of non-Euclidean geometry

    CERN Document Server

    Sommerville, D MY

    2012-01-01

    Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.

  10. The local index formula in noncommutative geometry

    International Nuclear Information System (INIS)

    Higson, N.

    2003-01-01

    These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas

  11. Quantum geometry of bosonic strings - revisited

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  12. Kerr geometry in f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-02-01

    Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)

  13. 10th China-Japan Geometry Conference

    CERN Document Server

    Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping

    2016-01-01

    Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...

  14. An experimental study of passive regenerator geometries

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini

    2011-01-01

    Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...

  15. VIII International Meeting on Lorentzian Geometry

    CERN Document Server

    Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics

    2017-01-01

    This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...

  16. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  17. Kerr geometry in f(T) gravity

    International Nuclear Information System (INIS)

    Bejarano, Cecilia; Guzman, Maria Jose; Ferraro, Rafael

    2015-01-01

    Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)

  18. Geometry modeling for SAM-CE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Steinberg, H.A.; Troubetzkoy, E.S.

    1980-01-01

    Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described

  19. Interplay between geometry and temperature for inclined Casimir plates

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T D behavior of the force, we find a T D-1 behavior for inclined plates, and a ∼T D-0.3 behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ∼T D-2 occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  20. Analysis meets geometry the Mikael Passare memorial volume

    CERN Document Server

    Boman, Jan; Kiselman, Christer; Kurasov, Pavel; Sigurdsson, Ragnar

    2017-01-01

    This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael’s life as well as his contributions to mathematics, written by friends of Mikael’s who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael’s ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael’s impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.

  1. Geometry and quantization of moduli spaces

    CERN Document Server

    Andersen, Jørgen; Riera, Ignasi

    2016-01-01

    This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.

  2. Geometry and topology of wild translation surfaces

    OpenAIRE

    Randecker, Anja

    2016-01-01

    A translation surface is a two-dimensional manifold, equipped with a translation structure. It can be obtained by considering Euclidean polygons and identifying their edges via translations. The vertices of the polygons form singularities if the translation structure can not be extended to them. We study translation surfaces with wild singularities, regarding the topology (genus and space of ends), the geometry (behavior of the singularities), and how the topology and the geometry are related.

  3. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  4. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  5. Competing on talent analytics.

    Science.gov (United States)

    Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy

    2010-10-01

    Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.

  6. Advanced business analytics

    CERN Document Server

    Lev, Benjamin

    2015-01-01

    The book describes advanced business analytics and shows how to apply them to many different professional areas of engineering and management. Each chapter of the book is contributed by a different author and covers a different area of business analytics. The book connects the analytic principles with business practice and provides an interface between the main disciplines of engineering/technology and the organizational, administrative and planning abilities of management. It also refers to other disciplines such as economy, finance, marketing, behavioral economics and risk analysis. This book is of special interest to engineers, economists and researchers who are developing new advances in engineering management but also to practitioners working on this subject.

  7. XBWR, 1-D Xe Transients for BWR in Axial Geometry

    International Nuclear Information System (INIS)

    Forti, G.

    1980-01-01

    1 - Nature of the physical problem solved: 1-D xenon transients for BWRs in axial geometry. 2 - Method of solution: XBWR couples a two group neutron diffusion calculation in plane geometry with a two phase flow cooling channel calculation and the heat conduction in the typical fuel rod. The program allows following any given power time schedule, such as shut-down and restart, day-night power variation etc., while the reactor is being kept critical by control rod movement, variable poisoning of the core, or coolant flow recirculation rate. The xenon and iodine concentrations variation is evaluated pointwise (up to 100 points) by analytical solution for successive fixed time steps. At the end of each time step a new distribution of fluxes, power, voids and temperatures is obtained, which is consistent with the reactor critical condition as it is got by variation of the control parameter taking into account the feedbacks. The new flux distribution is used as input for xenon and iodine concentrations evolution in the next time step

  8. Analytic number theory

    CERN Document Server

    Iwaniec, Henryk

    2004-01-01

    Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results, many of which belong to the mainstream of arithmetic. One of the main attractions of analytic number theory is the vast diversity of concepts and methods it includes. The main goal of the book is to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, its beautiful theorems and powerful techniques. The book is written with graduate students in mind, and the authors tried to balance between clarity, completeness, and generality. The exercis

  9. An analytic thomism?

    Directory of Open Access Journals (Sweden)

    Daniel Alejandro Pérez Chamorro.

    2012-12-01

    Full Text Available For 50 years the philosophers of the Anglo-Saxon analytic tradition (E. Anscombre, P. Geach, A. Kenny, P. Foot have tried to follow the Thomas Aquinas School which they use as a source to surpass the Cartesian Epistemology and to develop the virtue ethics. Recently, J. Haldane has inaugurated a program of “analytical thomism” which main result until the present has been his “theory of identity mind/world”. Nevertheless, none of Thomás’ admirers has still found the means of assimilating his metaphysics of being.

  10. Social network data analytics

    CERN Document Server

    Aggarwal, Charu C

    2011-01-01

    Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr

  11. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    welfare. In conjunction with the meeting of the steering committee in Tallinn, Estonia, in April, Mihkel Kaljurand and Mihkel Koel of Tallinn University of Technology organised a successful symposium attended by 51 participants. The symposium illustrated the scientific work of the steering committee...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  12. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  13. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  14. Unsteady two-dimensional potential-flow model for thin variable geometry airfoils

    DEFF Research Database (Denmark)

    Gaunaa, Mac

    2010-01-01

    In the present work, analytical expressions for distributed and integral unsteady two-dimensional forces on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camber line...... in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the integral forces can be reduced to Munk's steady and Theodorsen's unsteady results for thin airfoils, and numerical evaluation shows...

  15. Physics- and engineering knowledge-based geometry repair system for robust parametric CAD geometries

    OpenAIRE

    Li, Dong

    2012-01-01

    In modern multi-objective design optimisation, an effective geometry engine is becoming an essential tool and its performance has a significant impact on the entire process. Building a parametric geometry requires difficult compromises between the conflicting goals of robustness and flexibility. The work presents a solution for improving the robustness of parametric geometry models by capturing and modelling relative engineering knowledge into a surrogate model, and deploying it automatically...

  16. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...... a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node...

  17. Tensors and Differential Geometry Applied to Analytic and Numerical Coordinate Generation

    Science.gov (United States)

    1981-01-01

    If we now take o6 the inner multiplication of both sides of eq. (76) with g , we get a= g [ ca6 , 6 ] (78) The quantities T defined in (78) are the...299 (1974). [301 McVittie, G. C., "A Systematic Treatment of Moving Axes in Hydro- dynamics," Proc. Roy. Soc., Series A, 196, 285 (1949). [31j

  18. Contribution to analytical theory of neutron resonance absorption in heterogeneous reactor systems with cylindrical geometry

    International Nuclear Information System (INIS)

    Slipicevic, K.

    1968-12-01

    Following a review of the existing theories od resonance absorption this thesis includes a new approach for calculating the effective resonance integral of absorbed neutrons, new approximate formula for the penetration factor, an analysis of the effective resonance integral and the correction of the resonance integral taking into account the interference of potential and resonance dissipation. A separate chapter is devoted to calculation of the effective resonance integral for the regular reactor lattice with cylindrical fuel elements

  19. Microbial mutualism at a distance: The role of geometry in diffusive exchanges

    Science.gov (United States)

    Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.

    2018-02-01

    The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.

  20. Analytical system availability techniques

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Verbeek, P.H.J.; Thomson, W.R.

    1987-01-01

    Analytical techniques are presented to assess the probability distributions and related statistical parameters of loss of production from equipment networks subject to random failures and repairs. The techniques are based on a theoretical model for system availability, which was further developed