WorldWideScience

Sample records for analytic function expansion

  1. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  2. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  3. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  4. Critical node treatment in the analytic function expansion method for Pin Power Reconstruction

    International Nuclear Information System (INIS)

    Gao, Z.; Xu, Y.; Downar, T.

    2013-01-01

    Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)

  5. Critical node treatment in the analytic function expansion method for Pin Power Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z. [Rice University, MS 318, 6100 Main Street, Houston, TX 77005 (United States); Xu, Y. [Argonne National Laboratory, 9700 South Case Ave., Argonne, IL 60439 (United States); Downar, T. [Department of Nuclear Engineering, University of Michigan, 2355 Bonisteel blvd., Ann Arbor, MI 48109 (United States)

    2013-07-01

    Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)

  6. Analytic structure and power series expansion of the Jost function for the two-dimensional problem

    International Nuclear Information System (INIS)

    Rakityansky, S A; Elander, N

    2012-01-01

    For a two-dimensional quantum-mechanical problem, we obtain a generalized power series expansion of the S-matrix that can be done near an arbitrary point on the Riemann surface of the energy, similar to the standard effective-range expansion. In order to do this, we consider the Jost function and analytically factorize its momentum dependence that causes the Jost function to be a multi-valued function. The remaining single-valued function of the energy is then expanded in the power series near an arbitrary point in the complex energy plane. A systematic and accurate procedure has been developed for calculating the expansion coefficients. This makes it possible to obtain a semi-analytic expression for the Jost function (and therefore for the S-matrix) near an arbitrary point on the Riemann surface and use it, for example, to locate the spectral points (bound and resonant states) as the S-matrix poles. The method is applied to a model similar to those used in the theory of quantum dots. (paper)

  7. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  8. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  9. A comparison of two nodal codes : Advanced nodal code (ANC) and analytic function expansion nodal (AFEN) code

    International Nuclear Information System (INIS)

    Chung, S.K.; Hah, C.J.; Lee, H.C.; Kim, Y.H.; Cho, N.Z.

    1996-01-01

    Modern nodal methods usually employs the transverse integration technique in order to reduce a multi-dimensional diffusion equation to one-dimensional diffusion equations. The use of the transverse integration technique requires two major approximations such as a transverse leakage approximation and a one-dimensional flux approximation. Both the transverse leakage and the one-dimensional flux are approximated by polynomials. ANC (Advanced Nodal Code) developed by Westinghouse employs a modern nodal expansion method for the flux calculation, the equivalence theory for the homogenization error reduction and a group theory for pin power recovery. Unlike the conventional modern nodal methods, AFEN (Analytic Function Expansion Nodal) method expands homogeneous flux distributions within a node into non-separable analytic basis functions, which eliminate two major approximations of the modern nodal methods. A comparison study of AFEN with ANC has been performed to see the applicability of AFEN to commercial PWR and different types of reactors such as MOX fueled reactor. The qualification comparison results demonstrate that AFEN methodology is accurate enough to apply for commercial PWR analysis. The results show that AFEN provides very accurate results (core multiplication factor and assembly power distribution) for cores that exhibit strong flux gradients as in a MOX loaded core. (author)

  10. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  11. Perturbative expansion of the QCD Adler function improved by renormalization-group summation and analytic continuation in the Borel plane

    Czech Academy of Sciences Publication Activity Database

    Abbas, G.; Ananthanarayan, B.; Caprini, I.; Fischer, Jan

    2013-01-01

    Roč. 87, č. 1 (2013), "014008-1"-"014008-14" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : perturbative expansion * Borel transformation * Adler function Subject RIV: BE - Theoretical Physics Impact factor: 4.864, year: 2013

  12. Analytic functionals on the sphere

    CERN Document Server

    Morimoto, Mitsuo

    1998-01-01

    This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.

  13. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  14. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  15. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  16. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    Science.gov (United States)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  17. Analytic continuation and perturbative expansions in QCD

    Czech Academy of Sciences Publication Activity Database

    Caprini, I.; Fischer, Jan

    2002-01-01

    Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002

  18. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  19. Expansion of passive safety function

    International Nuclear Information System (INIS)

    Inai, Nobuhiko; Nei, Hiromichi; Kumada, Toshiaki.

    1995-01-01

    Expansion of the use of passive safety functions is proposed. Two notions are presented. One is that, in the design of passive safety nuclear reactors where aversion of active components is stressed, some active components are purposely introduced, by which a system is built in such a way that it behaves in an apparently passive manner. The second notion is that, instead of using a passive safety function alone, a passive safety function is combined with some active components, relating the passivity in the safety function with enhanced controllability in normal operation. The nondormant system which the authors propose is one example of the first notion. This is a system in which a standby safety system is a portion of the normal operation system. An interpretation of the nondormant system via synergetics is made. As an example of the second notion, a PIUS density lock aided with active components is proposed and is discussed

  20. An analytical model for the assessment of airline expansion strategies

    Directory of Open Access Journals (Sweden)

    Mauricio Emboaba Moreira

    2014-01-01

    Full Text Available Purpose: The purpose of this article is to develop an analytical model to assess airline expansion strategies by combining generic business strategy models with airline business models. Methodology and approach: A number of airline business models are examined, as are Porter’s (1983 industry five forces that drive competition, complemented by Nalebuff/ Brandenburger’s  (1996 sixth force, and the basic elements of the general environment in which the expansion process takes place.  A system of points and weights is developed to create a score among the 904,736 possible combinations considered. The model’s outputs are generic expansion strategies with quantitative assessments for each specific combination of elements inputted. Originality and value: The analytical model developed is original because it combines for the first time and explicitly elements of the general environment, industry environment, airline business models and the generic expansion strategy types. Besides it creates a system of scores that may be used to drive the decision process toward the choice of a specific strategic expansion path. Research implications: The analytical model may be adapted to other industries apart from the airline industry by substituting the element “airline business model” by other industries corresponding elements related to the different specific business models.

  1. Improved wave functions for large-N expansions

    International Nuclear Information System (INIS)

    Imbo, T.; Sukhatme, U.

    1985-01-01

    Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics

  2. Analytic Hierarchy Process Expansion for Innovation Performance Measurement Framework

    Directory of Open Access Journals (Sweden)

    Song-Kyoo Kim

    2013-01-01

    Full Text Available Innovation is a top strategic priority for the majority of companies. The need for innovation becomes more and more evident in the current corporate world, and the purpose of innovation is to create business value. The Analytic Hierarchy Process (AHP is a structured technique for organizing and analyzing complex decisions. This paper is targeting the framework design of the innovation performance criteria and provides the general guidelines to evaluate the relationship between the criteria by using AHP expansion.

  3. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    Science.gov (United States)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  4. Operator product expansion on the lattice: analytic Wilson coefficients

    Science.gov (United States)

    Perlt, Holger

    2006-12-01

    We present first results for Wilson coefficients of operators up to first order in the covariant deriva- tives for the case of Wilson fermions. They are derived from the off-shell Compton scattering amplitude Wµν (a, p, q) of massless quarks with momentum p. The Wilson coefficients are clas- sified according to the transformation of the corresponding operators under the hypercubic group H(4). We give selected examples for a special choice of the momentum transfer q. All Wil- son coefficients are given in closed analytic form and in an expansion in powers of a up to first corrections.

  5. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  6. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  7. Recurrence formulas for evaluating expansion series of depletion functions

    International Nuclear Information System (INIS)

    Vukadin, Z.

    1991-01-01

    A high-accuracy analytical method for solving the depletion equations for chains of radioactive nuclides is based on the formulation of depletion functions. When all the arguments of the depletion function are too close to each other, series expansions of the depletion function have to be used. However, the high-accuracy series expressions for the depletion functions of high index become too complicated. Recursion relations are derived which enable an efficient high-accuracy evaluation of the depletion functions with high indices. (orig.) [de

  8. Analytical potential energy function for the Br + H2 system

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru

    2001-01-01

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H 2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  9. Discrete expansions of continuum wave functions

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  10. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  11. Expansion of continuum functions on resonance wave functions and amplitudes

    International Nuclear Information System (INIS)

    Bang, J.; Gareev, F.A.; Gizzatkulov, M.H.; Goncharov, S.A.

    1978-01-01

    To overcome difficulties encountered with wave functions of continuum spectrum (for example, in a shell model with continuum) the pole expansion (by the Mittag-Leffler theorem) of wave functions, scattering amplitudes and the Green functions with positive energies are considered. It is shown that resonance functions (the Gamov functions) form a complete set over which the continuum functions could be expanded. The general view of these expansions for final potentials and for the Coulomb repulsion potential are obtained and discussed. It is shown that the application of the method to nuclear structure calculations leads to simple algebraic equations

  12. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  13. Edgeworth expansion for functionals of continuous diffusion processes

    DEFF Research Database (Denmark)

    Podolskij, Mark; Yoshida, Nakahiro

    This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes....... Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations.......This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes...

  14. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  15. An analytical calculation of the axial density profile for 1-d slab expansion

    International Nuclear Information System (INIS)

    Ho, D

    1999-01-01

    Obtaining an analytical expression for the axial density profile can provide us with a quick and convenient way to evaluate the density evolution for targets with different densities and dimensions. In this note, we show that such an analytical expression can be obtained based on the self-similar solutions and the method of characteristics for 1-D slab expansion

  16. Density-functional expansion methods: Grand challenges.

    Science.gov (United States)

    Giese, Timothy J; York, Darrin M

    2012-03-01

    We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.

  17. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  18. Analytical and numerical studies of positive ion beam expansion for surface treatment applications

    Science.gov (United States)

    Lounes-Mahloul, Soumya; Bendib, Abderrezeg; Oudini, Noureddine

    2018-01-01

    The aim of this work is to study the expansion in vacuum, of a positive ion beam with the use of one dimensional (1D) analytic model and a two dimensional Particle-In-Cell (2D-PIC) simulation. The ion beam is extracted and accelerated from preformed plasma by an extraction system composed of two polarized parallel perforated grids. The results obtained with both approaches reveal the presence of a potential barrier downstream the extraction system which tends to reflect the ion flux. The dependence of the critical distance for which all extracted ions are reflected, is investigated as a function of the extracted ion beam current density. In particular, it is shown that the 1D model recovers the well-known Child-Langmuir law and that the 2D simulation presents a significant discrepancy with respect to the 1D prediction. Indeed, for a given value of current density, the transverse effects lead to a greater critical distance.

  19. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  20. Computing the zeros of analytic functions

    CERN Document Server

    Kravanja, Peter

    2000-01-01

    Computing all the zeros of an analytic function and their respective multiplicities, locating clusters of zeros and analytic fuctions, computing zeros and poles of meromorphic functions, and solving systems of analytic equations are problems in computational complex analysis that lead to a rich blend of mathematics and numerical analysis. This book treats these four problems in a unified way. It contains not only theoretical results (based on formal orthogonal polynomials or rational interpolation) but also numerical analysis and algorithmic aspects, implementation heuristics, and polished software (the package ZEAL) that is available via the CPC Program Library. Graduate studets and researchers in numerical mathematics will find this book very readable.

  1. Analytic Solutions of Special Functional Equations

    Directory of Open Access Journals (Sweden)

    Octav Olteanu

    2013-07-01

    Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.

  2. Precise analytic approximations for the Bessel function J1 (x)

    Science.gov (United States)

    Maass, Fernando; Martin, Pablo

    2018-03-01

    Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.

  3. Graph approach to the gradient expansion of density functionals

    International Nuclear Information System (INIS)

    Kozlowski, P.M.; Nalewajski, R.F.

    1986-01-01

    A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion

  4. An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija

    2018-06-01

    We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.

  5. Nodewise analytical calculation of the transfer function

    International Nuclear Information System (INIS)

    Makai, Mihaly

    1994-01-01

    The space dependence of neutron noise has so far been mostly investigated in homogeneous core models. Application of core diagnostic methods to locate a malfunction requires however that the transfer function be calculated for real, inhomogeneous cores. A code suitable for such purpose must be able to handle complex arithmetic and delta-function source. Further requirements are analytical dependence in one spatial variable and fast execution. The present work describes the TIDE program written to fulfil the above requirements. The core is subdivided into homogeneous, square assemblies. An analytical solution is given, which is a generalisation of the inhomogeneous response matrix method. (author)

  6. Jacobian elliptic function expansion solutions of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Wei Caimin; Xia Zunquan; Tian Naishuo

    2005-01-01

    Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation

  7. Promoting Efficacy Research on Functional Analytic Psychotherapy

    Science.gov (United States)

    Maitland, Daniel W. M.; Gaynor, Scott T.

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a form of therapy grounded in behavioral principles that utilizes therapist reactions to shape target behavior. Despite a growing literature base, there is a paucity of research to establish the efficacy of FAP. As a general approach to psychotherapy, and how the therapeutic relationship produces change,…

  8. Analytical potential energy function for the Br + H{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H{sub 2} system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  9. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  10. Multipole expansion of vertex functions with two final particles

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    The expansions of the usual vertex functions are generalized to the vertex functions with two final particles. For four vector functions, expressions are similar to those of Chew, Goldberger, Low and Nambu, and of Adler and the consequences of the isobaric model are studied [fr

  11. Using Fourier and Taylor series expansion in semi-analytical deformation analysis of thick-walled isotropic and wound composite structures

    Directory of Open Access Journals (Sweden)

    Jiran L.

    2016-06-01

    Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.

  12. Conformal four point functions and the operator product expansion

    International Nuclear Information System (INIS)

    Dolan, F.A.; Osborn, H.

    2001-01-01

    Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion

  13. Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties

    NARCIS (Netherlands)

    Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik

    2007-01-01

    Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in

  14. Analytic functions of several complex variables

    CERN Document Server

    Gunning, Robert C

    2009-01-01

    The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincaré and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resol

  15. Approximation of Analytic Functions by Bessel's Functions of Fractional Order

    Directory of Open Access Journals (Sweden)

    Soon-Mo Jung

    2011-01-01

    Full Text Available We will solve the inhomogeneous Bessel's differential equation x2y″(x+xy′(x+(x2-ν2y(x=∑m=0∞amxm, where ν is a positive nonintegral number and apply this result for approximating analytic functions of a special type by the Bessel functions of fractional order.

  16. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  17. Nonlocal Symmetries, Consistent Riccati Expansion, and Analytical Solutions of the Variant Boussinesq System

    Science.gov (United States)

    Feng, Lian-Li; Tian, Shou-Fu; Zhang, Tian-Tian; Zhou, Jun

    2017-07-01

    Under investigation in this paper is the variant Boussinesq system, which describes the propagation of surface long wave towards two directions in a certain deep trough. With the help of the truncated Painlevé expansion, we construct its nonlocal symmetry, Bäcklund transformation, and Schwarzian form, respectively. The nonlocal symmetries can be localised to provide the corresponding nonlocal group, and finite symmetry transformations and similarity reductions are computed. Furthermore, we verify that the variant Boussinesq system is solvable via the consistent Riccati expansion (CRE). By considering the consistent tan-function expansion (CTE), which is a special form of CRE, the interaction solutions between soliton and cnoidal periodic wave are explicitly studied.

  18. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

    Energy Technology Data Exchange (ETDEWEB)

    Warren, T.L.; Tabbara, M.R.

    1997-05-01

    In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

  19. Fourier expansions and multivariable Bessel functions concerning radiation programmes

    International Nuclear Information System (INIS)

    Dattoli, G.; Richetta, M.; Torre, A.; Chiccoli, C.; Lorenzutta, S.; Maino, G.

    1996-01-01

    The link between generalized Bessel functions and other special functions is investigated using the Fourier series and the generalized Jacobi-Anger expansion. A new class of multivariable Hermite polynomials is then introduced and their relevance to physical problems discussed. As an example of the power of the method, applied to radiation physics, we analyse the role played by multi-variable Bessel functions in the description of radiation emitted by a charge constrained to a nonlinear oscillation. (author)

  20. Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.

    Science.gov (United States)

    Dey, Prasanta Kumar; Ramcharan, Eugene K

    2008-09-01

    Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.

  1. Analytic properties of the whistler dispersion function

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1986-01-01

    The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed. (author)

  2. Asymptotic expansions of Mathieu functions in wave mechanics

    International Nuclear Information System (INIS)

    Hunter, G.; Kuriyan, M.

    1976-01-01

    Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states

  3. Multipole expansion of vertex functions in an arbitrary frame

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    Vertex functions are expanded on the bases of tensor spherical harmonics and tensor multipoles. The coefficients of the expansions are rotational invariant form factors. The relations with those defined in particular frames by Durand, De Celles and Marr, and by De Rafael are exhibited. Finally multipolar form factors are built which are irreducible under pure Lorentz transformations [fr

  4. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  5. An analytic method for S-expansion involving resonance and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ipinza, M.C.; Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Lingua, F. [DISAT, Politecnico di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)

    2016-11-15

    In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an S-expansion process (with either resonance or 0{sub S}-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the subset decomposition of the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory

    Directory of Open Access Journals (Sweden)

    Suman Manandhar

    2012-01-01

    Full Text Available On the basis of evidence from model tests on increasing the end-bearing behavior of tapered piles at the load-settlement curve, this paper proposes an analytical spherical cavity expansion theory to evaluate the end-bearing capacity. The angle of tapering is inserted in the proposed model to evaluate the end-bearing capacity. The test results of the proposed model in different types of sands and different relative densities show good effects compared to conventional straight piles. The end-bearing capacity increases with increases in the tapering angle. The paper then propounds a model for prototypes and real-type pile tests which predicts and validates to evaluate the end-bearing capacity.

  7. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

  8. General post-Minkowskian expansion of time transfer functions

    International Nuclear Information System (INIS)

    Teyssandier, Pierre; Poncin-Lafitte, Christophe Le

    2008-01-01

    Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation

  9. General post-Minkowskian expansion of time transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Teyssandier, Pierre; Poncin-Lafitte, Christophe Le [Departement Systemes de Reference Temps et Espace, CNRS/UMR 8630, Observatoire de Paris, 61 avenue de l' Observatoire, F-75014 Paris (France)

    2008-07-21

    Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation.

  10. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    Science.gov (United States)

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  11. Nucleon structure functions from lattice operator product expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-15

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  12. Nucleon structure functions from lattice operator product expansion

    International Nuclear Information System (INIS)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.

    2017-03-01

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  13. Nucleon Structure Functions from Operator Product Expansion on the Lattice.

    Science.gov (United States)

    Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M

    2017-06-16

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  14. Analytic approximation for the modified Bessel function I -2/3(x)

    Science.gov (United States)

    Martin, Pablo; Olivares, Jorge; Maass, Fernando

    2017-12-01

    In the present work an analytic approximation to modified Bessel function of negative fractional order I -2/3(x) is presented. The validity of the approximation is for every positive value of the independent variable. The accuracy is high in spite of the small number (4) of parameters used. The approximation is a combination of elementary functions with rational ones. Power series and assymptotic expansions are simultaneously used to obtain the approximation.

  15. Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.

    Science.gov (United States)

    Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko

    2017-07-10

    This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.

  16. Derivation of the density functional theory from the cluster expansion.

    Science.gov (United States)

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  17. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  18. Analytical evaluation of the plasma dispersion function for a Fermi Dirac distribution

    International Nuclear Information System (INIS)

    Mamedov, B.A.

    2012-01-01

    An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi—Dirac distribution is proposed. The new method has been developed using the binomial expansion theorem and the Gamma functions. The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function. The resulting series present better convergence rates. Several acceleration techniques are combined to further improve the efficiency. The obtained results for the plasma dispersion function are in good agreement with the known numerical data. (physics of gases, plasmas, and electric discharges)

  19. On the analytic continuation of functions defined by Legendre series

    International Nuclear Information System (INIS)

    Grinstein, F.F.

    1981-07-01

    An infinite diagonal sequence of Punctual Pade Approximants is considered for the approximate analytical continuation of a function defined by a formal Legendre series. The technique is tested in the case of two series with exactly known analytical sum: the generating function for Legendre polynomials and the Coulombian scattering amplitude. (author)

  20. Analytical approximations to seawater optical phase functions of scattering

    Science.gov (United States)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  1. Power system generation expansion planning using the maximum principle and analytical production cost model

    International Nuclear Information System (INIS)

    Lee, K.Y.; Park, Y.M.

    1991-01-01

    Historically, the electric utility demand in most countries has increased rapidly, with a doubling of approximately 10 years in the case of developing countries. In order to meet this growth in demand, the planners of expansion policies were concerned with obtaining expansion pans which dictate what new generation facilities to add and when to add them. This paper reports that, however, the practical planning problem is extremely difficult and complex, and required many hours of the planner's time even though the alternatives examined were extremely limited. In this connection, increased motivation for more sophisticated techniques of valuating utility expansion policies has been developed during the past decade. Among them, the long-range generation expansion planning is to select the most economical and reliable generation expansion plans in order to meet future power demand over a long period of time subject to a multitude of technical, economical, and social constraints

  2. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  3. Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

    Science.gov (United States)

    James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.

    2018-03-01

    Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

  4. Asymptotics and Numerics of Polynomials Used in Tricomi and Buchholz Expansions of Kummer functions

    NARCIS (Netherlands)

    J.L. López; N.M. Temme (Nico)

    2010-01-01

    textabstractExpansions in terms of Bessel functions are considered of the Kummer function ${}_1F_1(a;c,z)$ (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic

  5. Expansion of a function about a displaced centre

    International Nuclear Information System (INIS)

    Rashid, M.A.

    1981-07-01

    We review the progress recently made in obtaining closed form expressions for the expansion of general orbitals about a displaced centre and establish the equivalence between different expansions. We also examine how these expressions do have the desired limit as the displacement approaches zero. (author)

  6. An analytical wall-function for recirculating and impinging turbulent heat transfer

    International Nuclear Information System (INIS)

    Suga, K.; Ishibashi, Y.; Kuwata, Y.

    2013-01-01

    Highlights: ► Improvement of the analytical wall-function is proposed. ► Strain parameter dependency is introduced to the prescribed eddy viscosity profile of the analytical wall-function. ► The model performance is evaluated in turbulent pipe, channel, back-step, abrupt expansion pipe and plane impinging flows. ► Generally improved heat transfer is obtained in all the test cases with the standard k-e model. -- Abstract: The performance of the analytical wall-function (AWF) of Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002, Progress in the generalisation of wall-function treatments. Int. J. Heat Fluid Flow 23, 148–160.] is improved for predicting turbulent heat transfer in recirculating and impinging flows. Since constant parameters of the eddy viscosity formula were used to derive the AWF, the prediction accuracy of the original AWF tends to deteriorate in complex flows where those parameters need changing according to the local turbulence. To overcome such shortcomings, the present study introduces a functional behaviour on the strain parameter into the coefficient of the eddy viscosity of the AWF. The presently modified version of the AWF is validated in turbulent heat transfer of pipe flows, channel flows, back-step flows, pipe flows with abrupt expansion and plane impinging slot jets. The results confirm that the present modification successfully improves the performance of the original AWF for all the flows and heat transfer tested

  7. What do analytic functions look like?

    Indian Academy of Sciences (India)

    They are ”nice” functions from open, connected subsets of the complex plane .... A motivating example. The function f(z) = z − a. 1 − az for z ∈ D is called the Mobius map. It has the property that |f(z)| ≤ 1 if z ∈ D. Tirthankar Bhattacharyya. Indian Institute ..... trappings of painting or music, yet sublimely pure, and capable of a.

  8. Analytical fits to the synchrotron functions

    Science.gov (United States)

    Fouka, Mourad; Ouichaoui, Saad

    2013-06-01

    Accurate fitting formulae to the synchrotron function, F(x), and its complementary function, G(x), are performed and presented. The corresponding relative errors are less than 0.26% and 0.035% for F(x) and G(x), respectively. To this end we have, first, fitted the modified Bessel functions, K5/3(x) and K2/3(x). For all the fitted functions, the general fit expression is the same, and is based on the well known asymptotic forms for low and large values of x for each function. It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large values of x. Simple formulae are suggested in this paper, depending on adjustable parameters. The latter have been determined by adopting the Levenberg-Marquardt algorithm. The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for synchrotron radiation, both for laboratory and astrophysical applications.

  9. Local properties of analytic functions and non-standard analysis

    International Nuclear Information System (INIS)

    O'Brian, N.R.

    1976-01-01

    This is an expository account which shows how the methods of non-standard analysis can be applied to prove the Nullstellensatz for germs of analytic functions. This method of proof was discovered originally by Abraham Robinson. The necessary concepts from model theory are described in some detail and the Nullstellensatz is proved by investigating the relation between the set of infinitesimal elements in the complex n-plane and the spectrum of the ring of germs of analytic functions. (author)

  10. Executive Function and Reading Comprehension: A Meta-Analytic Review

    Science.gov (United States)

    Follmer, D. Jake

    2018-01-01

    This article presents a meta-analytic review of the relation between executive function and reading comprehension. Results (N = 6,673) supported a moderate positive association between executive function and reading comprehension (r = 0.36). Moderator analyses suggested that correlations between executive function and reading comprehension did not…

  11. Analytic structure of the wave function for a hydrogen atom in an analytic potential

    International Nuclear Information System (INIS)

    Hill, R.N.

    1984-01-01

    The rate of convergence of an approximate method for solving Schroedinger's equation depends on the ability of the approximating sequence to mimic the analytic structure of the unknown exact wave function. Thus a knowledge of the analytic structure of the wave function can be of great value when approximation schemes are designed. Consider the Schroedinger equation [- 1/2 del 2 -r -1 +V(r)]Psi(r) = EPsi(r) for a hydrogen atom in a potential V(r). The general theory of elliptic partial differential equations implies that Psi is analytic at regular points, but no general theory is available at singular points. The present paper investigates the Coulomb singular point at r = 0 and shows that, if V(r) = V 1 (x, y, z)+rV 2 (x, y, z) where V 1 and V 2 are analytic functions of x, y, z at x = y = z = 0, then the wave function has the form Psi(r) = Psi 1 (x, y, z)+rPsi 2 (x, y, z) where Psi 1 and Psi 2 are analytic functions of x, y, z at x = y = z = 0

  12. Analytic behavior of the QED polarizability function at finite temperature

    International Nuclear Information System (INIS)

    Bernal, A.; Perez, A.

    2012-01-01

    We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.

  13. Unitarity or asymptotic completeness equations and analytic structure of the S matrix and Green functions

    International Nuclear Information System (INIS)

    Iagolnitzer, D.

    1983-11-01

    Recent axiomatic results on the (non holonomic) analytic structure of the multiparticle S matrix and Green functions are reviewed and related general conjectures are described: (i) formal expansions of Green functions in terms of (holonomic) Feynman-type integrals in which each vertex represents an irreducible kernel, and (ii) ''graph by graph unitarity'' and other discontinuity formulae of the latter. These conjectures are closely linked with unitarity or asymptotic completeness equations, which they yield in a formal sense. In constructive field theory, a direct proof of the first conjecture (together with an independent proof of the second) would thus imply, as a first step, asymptotic completeness in that sense

  14. Green functions of graphene: An analytic approach

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, James A., E-mail: jalawlor@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Ferreira, Mauro S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2015-04-15

    In this article we derive the lattice Green Functions (GFs) of graphene using a Tight Binding Hamiltonian incorporating both first and second nearest neighbour hoppings and allowing for a non-orthogonal electron wavefunction overlap. It is shown how the resulting GFs can be simplified from a double to a single integral form to aid computation, and that when considering off-diagonal GFs in the high symmetry directions of the lattice this single integral can be approximated very accurately by an algebraic expression. By comparing our results to the conventional first nearest neighbour model commonly found in the literature, it is apparent that the extended model leads to a sizeable change in the electronic structure away from the linear regime. As such, this article serves as a blueprint for researchers who wish to examine quantities where these considerations are important.

  15. Coefficient inequality for certain subclass of analytic functions

    Directory of Open Access Journals (Sweden)

    D. Vamshee Krishna

    2013-03-01

    Full Text Available The objective of this paper is to an obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to a certain subclass of analytic functions, using Toeplitz determinants.

  16. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  17. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    Science.gov (United States)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  18. Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions

    International Nuclear Information System (INIS)

    Altac, Zekeriya

    2007-01-01

    Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values

  19. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output.

    Science.gov (United States)

    Lombardi, Giovanni; Sansoni, Veronica; Banfi, Giuseppe

    2017-08-01

    In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.

  20. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    Science.gov (United States)

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  1. On the divergence of gradient expansions for kinetic energy functionals in the potential functional theory

    International Nuclear Information System (INIS)

    Sergeev, Alexey; Jovanovic, Raka; Kais, Sabre; Alharbi, Fahhad H

    2016-01-01

    We consider the density of a fermionic system as a functional of the potential, in one-dimensional case, where it is approximated by the Thomas–Fermi term plus semiclassical corrections through the gradient expansion. We compare this asymptotic series with the exact answer for the case of the harmonic oscillator and the Morse potential. It is found that the leading (Thomas–Fermi) term is in agreement with the exact density, but the subdominant term does not agree in terms of the asymptotic behavior because of the presence of oscillations in the exact density, but their absence in the gradient expansion. However, after regularization of the density by convolution with a Gaussian, the agreement can be established even in the subdominant term. Moreover, it is found that the expansion is always divergent, and its terms grow proportionally to the factorial function of the order, similar to the well-known divergence of perturbation series in field theory and the quantum anharmonic oscillator. Padé–Hermite approximants allow summation of the series, and one of the branches of the approximants agrees with the density. (paper)

  2. Functional perturbative RG and CFT data in the ϵ -expansion

    DEFF Research Database (Denmark)

    Codello, A.; Safari, M.; Vacca, G. P.

    2018-01-01

    We show how the use of standard perturbative RG in dimensional regularization allows for a renormalization group-based computation of both the spectrum and a family of coefficients of the operator product expansion (OPE) for a given universality class. The task is greatly simplified by a straight......We show how the use of standard perturbative RG in dimensional regularization allows for a renormalization group-based computation of both the spectrum and a family of coefficients of the operator product expansion (OPE) for a given universality class. The task is greatly simplified...... several results for the whole family of renormalizable multi-critical models ϕ2 n. Whenever comparison is possible our RG results explicitly match the ones recently derived in CFT frameworks....

  3. From divergent power series to analytic functions theory and application of multisummable power series

    CERN Document Server

    Balser, Werner

    1994-01-01

    Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.

  4. Analytical Role of Corporate Strategy in Growth and Expansion of Unilever Pakistan

    Directory of Open Access Journals (Sweden)

    Hassan Abbas

    2018-03-01

    Full Text Available The corporate strategy plays an integral role in providing business entities with a market direction. The formulation and implementation of corporate strategy aids in providing businesses with abilities and capabilities so as to maintain and develop adequate pace with the consistently changing business environment, aids in the development of a strategic vision and focus on overall business goals and objectives, strengthens decision making and most importantly helps in the provision of a competitive edge to a business. The role of corporate strategy becomes highly significant when the business operates globally. The research undertakes the relative role, significance and overall impact of its corporate strategy in making adequate contribution towards the attainment of business growth and expansion and assessing the correlation between the corporate strategy and overall business growth.

  5. Equifinality in Functional Analytic Psychotherapy: Different Strokes for Different Folks

    Science.gov (United States)

    Darrow, Sabrina M.; Dalto, Georgia; Follette, William C.

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is an interpersonal behavior therapy that relies on a therapist's ability to contingently respond to in-session client behavior. Valued behavior change in clients results from the therapist shaping more effective client interpersonal behaviors by providing effective social reinforcement when these behaviors…

  6. Functional Commutant Lifting and Interpolation on Generalized Analytic Polyhedra

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore

    2008-01-01

    Roč. 34, č. 2 (2008), s. 519-543 ISSN 0362-1588 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : intertwining lifting * interpolation * analytic functions Subject RIV: BA - General Mathematics Impact factor: 0.327, year: 2008

  7. Pre-Calculus Instructional Guide for Elementary Functions, Analytic Geometry.

    Science.gov (United States)

    Montgomery County Public Schools, Rockville, MD.

    This is a guide for use in semester-long courses in Elementary Functions and Analytic Geometry. A list of entry-level skills and a list of approved textbooks is provided. Each of the 18 units consists of: (1) overview, suggestions for teachers, and suggested time; (2) list of objectives; (3) cross-references guide to approved textbooks; (4) sample…

  8. Some classes of analytic functions involving Noor integral operator

    Science.gov (United States)

    Patel, J.; Cho, N. E.

    2005-12-01

    The object of the present paper is to investigate some inclusion properties of certain subclasses of analytic functions defined by using the Noor integral operator. The integral preserving properties in connection with the operator are also considered. Relevant connections of the results presented here with those obtained in earlier works are pointed out.

  9. Functional Analytic Multisensory Environmental Therapy for People with Dementia

    OpenAIRE

    Staal, Jason A.

    2012-01-01

    This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET) for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment thera...

  10. Linear circuit transfer functions an introduction to fast analytical techniques

    CERN Document Server

    Basso, Christophe P

    2016-01-01

    Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...

  11. Quantum field theory in the presence of a medium: Green's function expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-12-15

    Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.

  12. Properties of power series of analytic in a bidisc functions of bounded $\\mathbf{L}$-index in joint variables

    Directory of Open Access Journals (Sweden)

    A. I. Bandura

    2017-07-01

    Full Text Available We generalized some criteria of boundedness of $\\mathbf{L}$-index in joint variables for analytic in a bidisc functions, where $\\mathbf{L}(z=(l_1(z_1,z_2,$ $l_{2}(z_1,z_2,$ $l_j:\\mathbb{D}^2\\to \\mathbb{R}_+$ is a continuous function, $j\\in\\{1,2\\},$ $\\mathbb{D}^2$ is a bidisc $\\{(z_1,z_2\\in\\mathbb{C}^2: |z_1|<1,|z_2|<1\\}.$ The propositions describe a behaviour of power series expansion on a skeleton of a bidisc. We estimated power series expansion by a dominating homogeneous polynomial with the degree that does not exceed some number depending only from radii of bidisc. Replacing universal quantifier by existential quantifier for radii of bidisc, we also proved sufficient conditions of boundedness of $\\mathbf{L}$-index in joint variables for analytic functions which are weaker than necessary conditions.

  13. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    International Nuclear Information System (INIS)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-01-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses

  14. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)

    2016-08-15

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses

  15. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    Science.gov (United States)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-08-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions

  16. Analytic properties for the honeycomb lattice Green function at the origin

    Science.gov (United States)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  17. A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d-Finite Functions

    Directory of Open Access Journals (Sweden)

    Agata Bezubik

    2006-03-01

    Full Text Available This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained.

  18. Expansion of infinite series containing modified Bessel functions of the second kind

    International Nuclear Information System (INIS)

    Fucci, Guglielmo; Kirsten, Klaus

    2015-01-01

    The aim of this work is to analyze general infinite sums containing modified Bessel functions of the second kind. In particular we present a method for the construction of a proper asymptotic expansion for such series valid when one of the parameters in the argument of the modified Bessel function of the second kind is small compared to the others. We apply the results obtained for the asymptotic expansion to specific problems that arise in the ambit of quantum field theory. (paper)

  19. Proper Analytic Point Spread Function for Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Shimizu, Kunio; Matsui, Norihiko

    2010-07-01

    For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.

  20. Fine structure and analytical quantum-defect wave functions

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.

    1988-01-01

    We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms

  1. A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion

    International Nuclear Information System (INIS)

    Hussein, A.; Selim, M.M.

    2013-01-01

    This paper considers the solution of the stochastic integro-differential equation of Milne problem with random operator. The Pomraning–Eddington method is implemented to get a closed form solution deterministically. Relying on the spectral properties of the covariance function, the Karhunen–Loeve (K–L) expansion is used to represent the input stochastic process in the deterministic solution. This leads to an explicit expression for the solution process as a multivariate functional of a set of uncorrelated random variables. By using different distributions for these variables, the work is realized through computing the mean and the variance of the solution. The numerical results are found in agreement with those obtained in the literature. -- Highlights: •The solution of the stochastic Milne problem is considered. •We dealt with the random cross-section itself not with the optical transformation of it. •Pomraning–Eddington method together with the (K–L) expansion were implemented. •The solution process is obtained as a functional of a set of uncorrelated random variables. •Good results are obtained for different distributions of these variables

  2. Fast evaluation of nonlinear functionals of tensor product wavelet expansions

    NARCIS (Netherlands)

    Schwab, C.; Stevenson, R.

    2011-01-01

    Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree

  3. The P(phi)2 Green's functions; asymptotic perturbation expansion

    International Nuclear Information System (INIS)

    Dimock, J.

    1976-01-01

    The real time Green's functions in the P(phi) 2 quantum field theory are infinitely differentiable functions of the coupling constant lambda up to and including lamba=0. It follows that the perturbation series are asymptotic as lambda→0 + . (Auth.)

  4. Adler function for light quarks in analytic perturbation theory

    International Nuclear Information System (INIS)

    Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.

    2001-01-01

    The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale

  5. Regge expansion of a casual spectral function in electroproduction

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Taha, M.O.

    1975-01-01

    The conjecture that a term in the Regge espansion of the Deser-Gilbert-Sudarshan spectral function in electroproduction may identically vanish is investigated. It is shown that this conjecture does not appear to be in agreement with experiment

  6. Expansion of Sobolev functions in series in Laguerre polynomials

    International Nuclear Information System (INIS)

    Selyakov, K.I.

    1985-01-01

    The solution of the integral equation for the Sobolev functions is represented in the form of series in Laguerre polynomials. The coefficients of these series are simultaneously the coefficients of the power series for the Ambartsumyan-Chandrasekhar H functions. Infinite systems of linear algebraic equations with Toeplitz matrices are given for the coefficients of the series. Numerical results and approximate expressions are given for the case of isotropic scattering

  7. Local extremal problems for bounded analytic functions without zeros

    International Nuclear Information System (INIS)

    Prokhorov, D V; Romanova, S V

    2006-01-01

    In the class B(t), t>0, of all functions f(z,t)=e -t +c 1 (t)z+c 2 (t)z 2 +... that are analytic in the unit disc U and such that 0 0. We suggest an algorithm for determining those t>0 for which the canonical functions provide the local maximum of Re c n (t) in B(t). We describe the set of functionals Lf)=Σ k=0 n λ k c k for which the canonical functions provide the maximum of Re L(f) in B(t) for small and large values of t. The proofs are based on optimization methods for solutions of control systems of differential equations

  8. Local extremal problems for bounded analytic functions without zeros

    Science.gov (United States)

    Prokhorov, D. V.; Romanova, S. V.

    2006-08-01

    In the class B(t), t>0, of all functions f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\\dots that are analytic in the unit disc U and such that 00. We suggest an algorithm for determining those t>0 for which the canonical functions provide the local maximum of \\operatorname{Re}c_n(t) in B(t). We describe the set of functionals L(f)=\\sum_{k=0}^n\\lambda_kc_k for which the canonical functions provide the maximum of \\operatorname{Re}L(f) in B(t) for small and large values of t. The proofs are based on optimization methods for solutions of control systems of differential equations.

  9. Self-adaptive numerical integrator for analytic functions

    International Nuclear Information System (INIS)

    Garribba, S.; Quartapelle, L.; Reina, G.

    1978-01-01

    A new adaptive algorithm for the integration of analytical functions is presented. The algorithm processes the integration interval by generating local subintervals whose length is controlled through a feedback loop. The control is obtained by means of a relation derived on an analytical basis and valid for an arbitrary integration rule: two different estimates of an integral are used to compute the interval length necessary to obtain an integral estimate with accuracy within the assigned error bounds. The implied method for local generation of subintervals and an effective assumption of error partition among subintervals give rise to an adaptive algorithm provided with a highly accurate and very efficient integration procedure. The particular algorithm obtained by choosing the 6-point Gauss-Legendre integration rule is considered and extensive comparisons are made with other outstanding integration algorithms

  10. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  11. Evaluation of Analytical Modeling Functions for the Phonation Onset Process

    Directory of Open Access Journals (Sweden)

    Simon Petermann

    2016-01-01

    Full Text Available The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO, called the voice onset time (VOT, is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1 reliability of the fit function for a correct approximation of VO; (2 consistency represented by the standard deviation of VOT; and (3 accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.

  12. The boundary value problem for discrete analytic functions

    KAUST Repository

    Skopenkov, Mikhail

    2013-06-01

    This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.

  13. Functional analytic multisensory environmental therapy for people with dementia.

    Science.gov (United States)

    Staal, Jason A

    2012-01-01

    This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET) for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment therapy. The aim of the treatment is to provide a safe and effective framework for reducing the behavioral disturbance of the disease process, increasing elder well-being, and to promote transfer of positive effects to other environments outside of the multisensory treatment room.

  14. Elements of a function analytic approach to probability.

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, Roger Georges (University of Southern California, Los Angeles, CA); Red-Horse, John Robert

    2008-02-01

    We first provide a detailed motivation for using probability theory as a mathematical context in which to analyze engineering and scientific systems that possess uncertainties. We then present introductory notes on the function analytic approach to probabilistic analysis, emphasizing the connections to various classical deterministic mathematical analysis elements. Lastly, we describe how to use the approach as a means to augment deterministic analysis methods in a particular Hilbert space context, and thus enable a rigorous framework for commingling deterministic and probabilistic analysis tools in an application setting.

  15. Functional Analytic Multisensory Environmental Therapy for People with Dementia

    Directory of Open Access Journals (Sweden)

    Jason A. Staal

    2012-01-01

    Full Text Available This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment therapy. The aim of the treatment is to provide a safe and effective framework for reducing the behavioral disturbance of the disease process, increasing elder well-being, and to promote transfer of positive effects to other environments outside of the multisensory treatment room.

  16. The Expansion of Criminal Control: A Critical to Feather Functions

    Directory of Open Access Journals (Sweden)

    Mariel Muraro

    2015-12-01

    Full Text Available This article aims to relate the theories of punishment, retributive and preventive, with the criminological discourse, and make brief notes about the negative theories and criticism of the sentence. The article begins by making a few notes on the mass incarceration of the phenomenon, then going to discuss and present the form of action of the police state. Then they present the theories of punishment under the critical perspective, and then work the two main critical theories of punishment, thus treating the position Prof. Eugenio Raúl Zaffaroni and Prof. Juarez Cirino dos Santos. These presentations and discussions have left the critical discourse, not taking our work as end revisit the theoretical construction of the functions of the pen, just to demonstrate how the discourse of shame built by criminal law legitimizes selective and violent actions of the penal system.

  17. Trinucleon wave functions from separable expansions of the N-N interaction

    International Nuclear Information System (INIS)

    Birrell, N.D.

    1976-09-01

    This work is intended to determine whether a separable expansion for the N-N interaction can be used to obtain trinucleon wave functions of high quality. The expansions used in the study are the Unitary Pole expansion of Harms, Afnan and Read, and the expansion of Adhikari and Sloan. We first compare the calculation of the RSC potential Triton binding energy with the two methods, and find that the results agree quite closely. However, while it is found necessary to use t-matrix perturbation theory to obtain the UPE result, such is not the case with the ASE, thus offering a considerable improvement on the previously used method. We then proceed to calculate the L-S coupling probabilities for the wave function, and in so doing, discover a source of inaccuracy in the work of other authors. We also find that the UPE and ASE give probabilities in good agreement with one another. The calculation of the He 3 charge form factor turns out to be the most critical judge of the accuracy of the wave function. Although both expansions give quite satisfactory results for the charge form factor, those obtained with the ASE are exceptionally pleasing. We finally apply both methods to the OBEP of Holinde and Machleidt, and find that the UPE is quite unsuitable for such application. The ASE, however, once again gives very good results, indicating the high quality of the trinucleon wave function obtained with it. (author)

  18. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self­ contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier­ Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin­ earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...

  19. Semigroups of analytic functions in analysis and applications

    International Nuclear Information System (INIS)

    Goryainov, Victor V

    2012-01-01

    This survey considers problems of analysis and certain related areas in which semigroups of analytic functions with respect to the operation of composition appear naturally. The main attention is devoted to holomorphic maps of a disk (or a half-plane) into itself. The role of fixed points is highlighted, both in the description of the structure of semigroups and in applications. Interconnections of the problem of fractional iteration with certain problems in the theory of random branching processes are pointed out, as well as with certain questions of non-commutative probability. The role of the infinitesimal description of semigroups of conformal maps in the development of the parametric method in the theory of univalent functions is shown. Bibliography: 94 titles.

  20. Interpolation and sampling in spaces of analytic functions

    CERN Document Server

    Seip, Kristian

    2004-01-01

    The book is about understanding the geometry of interpolating and sampling sequences in classical spaces of analytic functions. The subject can be viewed as arising from three classical topics: Nevanlinna-Pick interpolation, Carleson's interpolation theorem for H^\\infty, and the sampling theorem, also known as the Whittaker-Kotelnikov-Shannon theorem. The book aims at clarifying how certain basic properties of the space at hand are reflected in the geometry of interpolating and sampling sequences. Key words for the geometric descriptions are Carleson measures, Beurling densities, the Nyquist rate, and the Helson-Szegő condition. The book is based on six lectures given by the author at the University of Michigan. This is reflected in the exposition, which is a blend of informal explanations with technical details. The book is essentially self-contained. There is an underlying assumption that the reader has a basic knowledge of complex and functional analysis. Beyond that, the reader should have some familiari...

  1. Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion

    International Nuclear Information System (INIS)

    Ding Shouguo; Xie Yu; Yang Ping; Weng Fuzhong; Liu Quanhua; Baum, Bryan; Hu Yongxiang

    2009-01-01

    The bulk-scattering properties of dust aerosols and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort of the Joint Center for Satellite Data Assimilation (JCSDA). The delta-fit method is employed to truncate the forward peaks of the scattering phase functions and to compute the Legendre expansion coefficients for re-constructing the truncated phase function. Use of more terms in the expansion gives more accurate re-construction of the phase function, but the issue remains as to how many terms are necessary for different applications. To explore this issue further, the bidirectional reflectances associated with dust aerosols, water clouds, and ice clouds are simulated with various numbers of Legendre expansion terms. To have relative numerical errors smaller than 5%, the present analyses indicate that, in the visible spectrum, 16 Legendre polynomials should be used for dust aerosols, while 32 Legendre expansion terms should be used for both water and ice clouds. In the infrared spectrum, the brightness temperatures at the top of the atmosphere are computed by using the scattering properties of dust aerosols, water clouds and ice clouds. Although small differences of brightness temperatures compared with the counterparts computed with 4, 8, 128 expansion terms are observed at large viewing angles for each layer, it is shown that 4 terms of Legendre polynomials are sufficient in the radiative transfer computation at infrared wavelengths for practical applications.

  2. On the multiple zeros of a real analytic function with applications to the averaging theory of differential equations

    Science.gov (United States)

    García, Isaac A.; Llibre, Jaume; Maza, Susanna

    2018-06-01

    In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.

  3. The propagator for the step potential and delta function potential using the path decomposition expansion

    Energy Technology Data Exchange (ETDEWEB)

    Yearsley, James M [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2008-07-18

    We present a derivation of the propagator for a particle in the presence of the step and delta function potentials. These propagators are known, but we present a direct path integral derivation, based on the path decomposition expansion and the Brownian motion definition of the path integral. The derivation exploits properties of the Catalan numbers, which enumerate certain classes of lattice paths.

  4. Functional expansion for evolution operators in a system of many fermions with many conditions

    International Nuclear Information System (INIS)

    Barrios, S.C.

    1985-01-01

    We present a mean field expansion for many body system, using integral functionals. The problem is formulated as a initial conditions one and it is studied the effective dynamics of the body density with given initial conditions. (M.W.O.) [pt

  5. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self-contained approach to the mathematical theory of a viscous, incompressible fluid in a domain of the Euclidean space, described by the equations of Navier-Stokes. Moreover, the theory is presented for completely general domains, in particular, for arbitrary unbounded, nonsmooth domains. Therefore, restriction was necessary to space dimensions two and three, which are also the most significant from a physical point of view. For mathematical generality, however, the linearized theory is expounded for general dimensions higher than one. Although the functional analytic approach developed here is, in principle, known to specialists, the present book fills a gap in the literature providing a systematic treatment of a subject that has been documented until now only in fragments. The book is mainly directed to students familiar with basic tools in Hilbert and Banach spaces. However, for the readers’ convenience, some fundamental properties...

  6. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  7. ANALYTIC CAUSATIVES IN JAVANESE: A LEXICAL- FUNCTIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Agus Subiyanto

    2014-01-01

    Full Text Available Analytic  causatives  are  the  type  of  causatives  formed  by  separate predicates  expressing the cause and the effect, that is, the causing notion  is  realized  by  a  word  separate  from  the  word  denoting  the caused activity. This paper aims to discuss the forms and syntactic structure  of  analytic  causatives  in  Javanese.  To  discuss  the syntactic structure, the theory of lexical functional grammar (LFG is  employed.  The  data  used  in  this  study  is  the  „ngoko‟  level  of Javanese of the Surakarta dialect. By using a negation marker and modals  as  the  syntactic  operators to test mono-  or bi-clausality  of analytic  causatives,  the  writer  found  that  analytic  causatives  in Javanese form biclausal constructions. These constructions have an X-COMP  structure,  in  that  the  SUBJ  of  the  second  verb  is controlled  by  the  OBJ  of  the  causative  verb  (Ngawe  „make‟.  In terms  of  the  constituent  structure,  analytic  causatives  have  two kinds of structures, which are V-cause OBJ X-COMP and V-cause X-COMP OBJ. Kausatif  analitik  adalah  tipe  kausatif  yang  dibentuk  oleh  dua predikat  atau  dua  kata  terpisah  untuk  mengungkapkan  makna sebab dan akibat, yakni makna sebab direalisasikan oleh kata yang berbeda  dengan  kata  yang  menyatakan  makna  akibat.  Tulisan  ini membahas  bentuk  dan  struktur  sintaksis  kausatif  analitik  dalam bahasa Jawa. Untuk menjelaskan struktur sintaksis digunakan teori Tata  Bahasa  Leksikal  Fungsional.  Data  yang  digunakan  dalam penelitian  ini  adalah  bahasa  Jawa  dialek  Surakarta  ragam  ngoko. Dengan  menggunakan  alat  uji  pemarkah  negasi  dan  penggunaaan modalitas,  penulis  menemukan  bahwa  kausatif  analitik  dalam bahasa Jawa membentuk struktur biklausa. Konstruksi ini memiliki struktur  X

  8. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  9. Analytical Tools for Functional Assessment of Architectural Layouts

    Science.gov (United States)

    Bąkowski, Jarosław

    2017-10-01

    defects. This approach, supplemented by the method of reverse engineering means that already in the design phase there is essential knowledge about the functioning of the facility. It is far beyond intuitive knowledge, based on the standards and specifications. In the scope of reverse engineering methods, the subject of the research is an audit of the product (i.e. architectural design, especially the built spatial layout) in order to determine exactly how it works. Information gained in this way is to help building a system for supporting decisions for preparing design solutions for future investments as well as the functional analysis itself becomes an essential part of the setting up building information process. The data are presented with graphical methods as networks of different factors between rooms. The direct analytical method for the setting is to determine the functional collision between users’ tracks, finding or indication of the shortest paths connecting analyzed rooms and finally to identify the optimal location of these rooms (each according to different factor). The measurement data are supplemented by the results of surveys conducted among users of hospitals, statistics and quantitative medical procedures performed in the test section of the hospital. The results of research are transferred and integrated with BIM system (building information modelling system), and included in the specifications of the IFC (Industry Foundation Classes), especially at the level of information on the relationship between the individual properties associated with elements (in the case of hospitals it may be information about the necessary connections with other rooms, access times from or to specific rooms, rooms utilization conditions, fire safety protection and conditions and many other). At the level of the BIM specification the model data are integrated at the BIM 6D (an extension of the model data with a range of functional analysis) or even BIM 7D (additional

  10. Finite-temperature correlation function for the one-dimensional quantum Ising model:The virial expansion

    Science.gov (United States)

    Reyes, S. A.; Tsvelik, A. M.

    2006-06-01

    We rewrite the exact expression for the finite-temperature two-point correlation function for the magnetization as a partition function of some field theory. This removes singularities and provides a convenient form to develop a virial expansion (expansion in powers of the soliton density).

  11. Applying fuzzy analytic network process in quality function deployment model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afsharkazemi

    2012-08-01

    Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.

  12. Beam brightness calculation for analytical and empirical distribution functions

    International Nuclear Information System (INIS)

    Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.

    1992-01-01

    The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution

  13. Aft-body loading function for penetrators based on the spherical cavity-expansion approximation.

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, Donald B., Jr.; Warren, Thomas Lynn; Duong, Henry

    2009-12-01

    In this paper we develop an aft-body loading function for penetration simulations that is based on the spherical cavity-expansion approximation. This loading function assumes that there is a preexisting cavity of radius a{sub o} before the expansion occurs. This causes the radial stress on the cavity surface to be less than what is obtained if the cavity is opened from a zero initial radius. This in turn causes less resistance on the aft body as it penetrates the target which allows for greater rotation of the penetrator. Results from simulations are compared with experimental results for oblique penetration into a concrete target with an unconfined compressive strength of 23 MPa.

  14. Adler function and Bjorken polarized sum rule: Perturbation expansions in powers of the S U (Nc) conformal anomaly and studies of the conformal symmetry limit

    Science.gov (United States)

    Cvetič, Gorazd; Kataev, A. L.

    2016-07-01

    We consider a new form of analytical perturbation theory expansion in the massless S U (Nc) theory, for the nonsinglet part of the e+e--annihilation to hadrons Adler function Dn s and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering Cns B j p, and demonstrate its validity at the O (αs4)-level at least. It is a two-fold series in powers of the conformal anomaly and of S U (Nc) coupling αs. Explicit expressions are obtained for the {β }-expanded perturbation coefficients at O (αs4) level in MS ¯ scheme, for both considered physical quantities. Comparisons of the terms in the {β }-expanded coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or Rδ-scheme motivated expansion in the Principle of Maximal Conformality. Relations between terms of the {β }-expansion for the Dn s- and Cns B j p-functions, which follow from the conformal symmetry limit and its violation, are presented. The relevance to the possible new analyses of the experimental data for the Adler function and Bjorken sum rule is discussed.

  15. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  16. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  17. Hadronic wave functions at short distances and the operator product expansion

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1980-01-01

    The operator product expansion, of appropriate products of quark fields, is used to find the anamalous dimensions which control the short distance behavior of hadronic wave functions. This vehavior in turn controls the high-Q 2 limit of hadronic form factors. In particular, we relate each anamalous dimension of the nonsinglet structure functions to a corresponding logarithmic correction factor to the nominal αsub(s)(Q 2 )/Q 2 fall off of meson form factors. Unlike the case of deep inelastic lepton-hadron scattering, the operator product necessary here involves extra terms which do not contribute to forward matrix elements. (orig.)

  18. Functional perturbative RG and CFT data in the ε-expansion

    Energy Technology Data Exchange (ETDEWEB)

    Codello, A. [Southern Denmark Univ., Odense (Denmark). CP3-Origins; INFN-Sezione di Bologna, Bologna (Italy); Safari, M. [INFN-Sezione di Bologna, Bologna (Italy); Bologna Univ. (Italy). Dipt di Fisica e Astronomia; Vacca, G.P. [INFN-Sezione di Bologna, Bologna (Italy); Zanusso, O. [INFN-Sezione di Bologna, Bologna (Italy); Jena Univ. (Germany). Theoretisch-Physikalisches Inst.

    2018-01-15

    We show how the use of standard perturbative RG in dimensional regularization allows for a renormalization group-based computation of both the spectrum and a family of coefficients of the operator product expansion (OPE) for a given universality class. The task is greatly simplified by a straightforward generalization of perturbation theory to a functional perturbative RG approach. We illustrate our procedure in the ε-expansion by obtaining the next-to-leading corrections for the spectrum and the leading corrections for the OPE coefficients of Ising and Lee-Yang universality classes and then give several results for the whole family of renormalizable multi-critical models φ{sup 2n}. Whenever comparison is possible our RG results explicitly match the ones recently derived in CFT frameworks. (orig.)

  19. Wrapping interactions and the genus expansion of the 2-point function of composite operators

    International Nuclear Information System (INIS)

    Sieg, Christoph; Torrielli, Alessandro

    2005-01-01

    We perform a systematic analysis of wrapping interactions for a general class of theories with color degrees of freedom, including N=4 SYM. Wrapping interactions arise in the genus expansion of the 2-point function of composite operators as finite size effects that start to appear at a certain order in the coupling constant at which the range of the interaction is equal to the length of the operators. We analyze in detail the relevant genus expansions, and introduce a strategy to single out the wrapping contributions, based on adding spectator fields. We use a toy model to demonstrate our procedure, performing all computations explicitly. Although completely general, our treatment should be particularly useful for applications to the recent problem of wrapping contributions in some checks of the AdS/CFT correspondence

  20. Analysis of water hammer in pipelines by partial fraction expansion of transfer function in frequency domain

    International Nuclear Information System (INIS)

    Lee, Jun Shin; Lee, Wook Ryun; Oh, Ki Yong; Kim, Bong Ki

    2010-01-01

    Understanding water hammer is very important to the prevention of excessive pressure build-up in pipelines. Many researchers have studied this phenomenon, drawing effective solutions through the time- and frequency-domain approaches. For the purposes of enhancing the advantages of the frequency-domain approach and, thereby, rendering investigations of the dynamic characteristics of pipelines more effective, we propose partial fraction expansion of the transfer function between the unsteady flow source and a given section. We simulate the proposed approach using a vibration element inserted into a simple pipeline, deducing much useful physical information pertaining to pipeline design. We conclude that locating the resonance of the vibration element between the first and second resonances of the pipeline can mitigate the excessive pressure build-up attendant on the occurrence of water hammer. Our method of partial fraction expansion is expected to be useful and effective in analyses of unsteady flows in pipelines

  1. Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials

    International Nuclear Information System (INIS)

    Olesov, A V

    2014-01-01

    New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles

  2. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2015-08-15

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  3. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    International Nuclear Information System (INIS)

    th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Lahti, Erik; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Zhang, Jinsuo

    2015-01-01

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes

  4. Thermal expansion of an amorphous alloy. Reciprocal-space versus real-space distribution functions

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    This paper describes the relation between the change in the position of the first X-ray diffraction maximum in reciprocal space and the first maximum of the distribution function in real space for the Ge 50 Al 40 Cr 10 amorphous alloy. It is also shown that the first diffraction maximum of the interference function carries the most significant information about the interatomic distances in real space while the subsequent peaks of the interference function are responsible for the shoulders of the main peak of the real-space distribution function. The results are used to support validity of the method previously used to monitor thermal expansion of the glassy alloys using an X-ray diffraction profile

  5. Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.

    1989-01-01

    It is shown in an arbitrary model that the coefficient functions of the operator expansion (renormalized in the minimal subtraction scheme) are finite. Explicit formulas convenient for calculating them in practice are obtained. The gluing method and the formalism of the R* operation are used to transform the formulas in such a way that the coefficient functions can be expressed in terms of ordinary diagrams containing neither nonstandard propagators nor an additional loop integration. An important feature of the representation for the coefficient functions is that the R* operation, which subtracts simultaneously the ultraviolet and infrared divergences, guarantees the existence of the coefficient functions in the limit when the dimensional regularization is lifted without any restrictions

  6. More on zeta-function regularization of high-temperature expansions

    International Nuclear Information System (INIS)

    Actor, A.

    1987-01-01

    A recent paper using the Riemann ζ-function to regularize the (divergent) coefficients occurring in the high-temperature expansions of one-loop thermodynamic potentials is extended. This method proves to be a powerful tool for converting Dirichlet-type series Σ m a m (x i )/m s into power series in the dimensionless parameters x i . The coefficients occurring in the power series are (proportional to) ζ-functions evaluated away from their poles - this is where the regularization occurs. High-temperature expansions are just one example of this highly-nontrivial rearrangement of Dirichlet series into power series form. We discuss in considerable detail series in which a m (x i ) is a product of trigonometric, algebraic and Bessel function factors. The ζ-function method is carefully explained, and a large number of new formulae are provided. The means to generalize these formulae are also provided. Previous results on thermodynamic potentials are generalized to include a nonzero constant term in the gauge potential (time component) which can be used to probe the electric sector of temperature gauge theories. (author)

  7. A new approach to stochastic transport via the functional Volterra expansion

    International Nuclear Information System (INIS)

    Ziya Akcasu, A.; Corngold, N.

    2005-01-01

    In this paper we present a new algorithm (FDA) for the calculation of the mean and the variance of the flux in stochastic transport when the transport equation contains a spatially random parameter θ(r), such as the density of the medium. The approach is based on the renormalized functional Volterra expansion of the flux around its mean. The attractive feature of the approach is that it explicitly displays the functional dependence of the flux on the products of θ(r i ), and hence enables one to take ensemble averages directly to calculate the moments of the flux in terms of the correlation functions of the underlying random process. The renormalized deterministic transport equation for the mean flux has been obtained to the second order in θ(r), and a functional relationship between the variance and the mean flux has been derived to calculate the variance to this order. The feasibility and accuracy of FDA has been demonstrated in the case of stochastic diffusion, using the diffusion equation with a spatially random diffusion coefficient. The connection of FDA with the well-established approximation schemes in the field of stochastic linear differential equations, such as the Bourret approximation, developed by Van Kampen using cumulant expansion, and by Terwiel using projection operator formalism, which has recently been extended to stochastic transport by Corngold. We hope that FDA's potential will be explored numerically in more realistic applications of the stochastic transport. (authors)

  8. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis.

    Science.gov (United States)

    Xiao, Chaowen; Somerville, Chris; Anderson, Charles T

    2014-03-01

    Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.

  9. Analytic structure of many-body Coulombic wave functions

    DEFF Research Database (Denmark)

    Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas

    2009-01-01

    We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coal...

  10. Algebraic and analyticity properties of the n-point function in quantum field theory

    International Nuclear Information System (INIS)

    Bros, Jacques

    1970-01-01

    The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr

  11. Asymptotic expansion of a partition function related to the sinh-model

    CERN Document Server

    Borot, Gaëtan; Kozlowski, Karol K

    2016-01-01

    This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integra...

  12. Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions

    International Nuclear Information System (INIS)

    Rudaz, S.

    1990-01-01

    Asymptotic series for the Hurwitz zeta function, its derivative, and related functions (including the Riemann zeta function of odd integer argument) are derived as an illustration of a simple, direct method of broad applicability, inspired by the calculus of finite differences

  13. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    Science.gov (United States)

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  14. A direct method to transform between expansions in the configuration state function and Slater determinant bases

    International Nuclear Information System (INIS)

    Olsen, Jeppe

    2014-01-01

    A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10 6 coefficients in the CSF basis is obtained from the 150 × 10 6 coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require

  15. Low-temperature expansions and correlation functions of the Z3-chiral Potts model

    International Nuclear Information System (INIS)

    Han, N.S.; Honecker, A.

    1993-04-01

    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z 3 -chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z n -spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z 3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length. (orig.)

  16. DNA breathing dynamics: analytic results for distribution functions of relevant Brownian functionals.

    Science.gov (United States)

    Bandyopadhyay, Malay; Gupta, Shamik; Segal, Dvira

    2011-03-01

    We investigate DNA breathing dynamics by suggesting and examining several Brownian functionals associated with bubble lifetime and reactivity. Bubble dynamics is described as an overdamped random walk in the number of broken base pairs. The walk takes place on the Poland-Scheraga free-energy landscape. We suggest several probability distribution functions that characterize the breathing process, and adopt the recently studied backward Fokker-Planck method and the path decomposition method as elegant and flexible tools for deriving these distributions. In particular, for a bubble of an initial size x₀, we derive analytical expressions for (i) the distribution P(t{f}|x₀) of the first-passage time t{f}, characterizing the bubble lifetime, (ii) the distribution P(A|x₀) of the area A until the first-passage time, providing information about the effective reactivity of the bubble to processes within the DNA, (iii) the distribution P(M) of the maximum bubble size M attained before the first-passage time, and (iv) the joint probability distribution P(M,t{m}) of the maximum bubble size M and the time t{m} of its occurrence before the first-passage time. These distributions are analyzed in the limit of small and large bubble sizes. We supplement our analytical predictions with direct numericalsimulations of the related Langevin equation, and obtain a very good agreement in the appropriate limits. The nontrivial scaling behavior of the various quantities analyzed here can, in principle, be explored experimentally.

  17. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

    International Nuclear Information System (INIS)

    Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

    2005-01-01

    We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

  18. An integral equation for the continuation of perturbative expansions

    International Nuclear Information System (INIS)

    Ciulli, S.

    1984-01-01

    It is shown how a procedure for analytic continuation, based on methods of functional analysis, can be used to extend the results of a perturbative calculation to yield nonperturbative information which could not be obtained directly from a perturbative expansion

  19. A new way of obtaining analytic approximations of Chandrasekhar's H function

    International Nuclear Information System (INIS)

    Vukanic, J.; Arsenovic, D.; Davidovic, D.

    2007-01-01

    Applying the mean value theorem for definite integrals in the non-linear integral equation for Chandrasekhar's H function describing conservative isotropic scattering, we have derived a new, simple analytic approximation for it, with a maximal relative error below 2.5%. With this new function as a starting-point, after a single iteration in the corresponding integral equation, we have obtained a new, highly accurate analytic approximation for the H function. As its maximal relative error is below 0.07%, it significantly surpasses the accuracy of other analytic approximations

  20. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    Science.gov (United States)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  1. A convenient analytical form for the triton wave function

    International Nuclear Information System (INIS)

    Hajduk, C.; Green, A.M.; Sainio, M.E.

    1979-01-01

    The triton wave function obtained by solving the Faddeev equations with the Reid soft core potential is parametrized in a symmetrized cluster form. As a test the 3 He charge form factor is calculated for the exact and the parametrized wave functions and reasonable agreement between the two is found. (author)

  2. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  3. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry

    International Nuclear Information System (INIS)

    Heim, Erik; Ludwig, Frank; Schilling, Meinhard

    2009-01-01

    Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.

  4. Computing the hadronic vacuum polarization function by analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Hashimoto, Shoji [KEK National High Energy Physics, Tsukuba (Japan); The Graduate Univ. for Advanced Studies, Tsukuba (Japan). School of High Energy Accelerator Science; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-07-15

    We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the space-like and time-like regions. We provide two independent derivations of this method showing that it leads to the desired hadronic vacuum polarization function in Minkowski space-time. We show with the example of the leading- order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.

  5. Analytical evaluation of integrals over Coulomb wave functions

    International Nuclear Information System (INIS)

    Nesbet, R.K.

    1988-01-01

    Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)

  6. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  7. Partition function expansion on region graphs and message-passing equations

    International Nuclear Information System (INIS)

    Zhou, Haijun; Wang, Chuang; Xiao, Jing-Qing; Bi, Zedong

    2011-01-01

    Disordered and frustrated graphical systems are ubiquitous in physics, biology, and information science. For models on complete graphs or random graphs, deep understanding has been achieved through the mean-field replica and cavity methods. But finite-dimensional 'real' systems remain very challenging because of the abundance of short loops and strong local correlations. A statistical mechanics theory is constructed in this paper for finite-dimensional models based on the mathematical framework of the partition function expansion and the concept of region graphs. Rigorous expressions for the free energy and grand free energy are derived. Message-passing equations on the region graph, such as belief propagation and survey propagation, are also derived rigorously. (letter)

  8. Studies on the Zeroes of Bessel Functions and Methods for Their Computation: IV. Inequalities, Estimates, Expansions, etc., for Zeros of Bessel Functions

    Science.gov (United States)

    Kerimov, M. K.

    2018-01-01

    This paper is the fourth in a series of survey articles concerning zeros of Bessel functions and methods for their computation. Various inequalities, estimates, expansions, etc. for positive zeros are analyzed, and some results are described in detail with proofs.

  9. Heavy-quark QCD vacuum polarisation function. Analytical results at four loops

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kotikov, A.V.

    2006-07-01

    The first two moments of the heavy-quark vacuum polarisation function at four loops in quantum chromo-dynamics are found in fully analytical form by evaluating the missing massive four-loop tadpole master integrals. (orig.)

  10. ORBITALES. A program for the calculation of wave functions with an analytical central potential

    International Nuclear Information System (INIS)

    Yunta Carretero; Rodriguez Mayquez, E.

    1974-01-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs

  11. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  12. The boundary value problem for discrete analytic functions

    KAUST Repository

    Skopenkov, Mikhail

    2013-01-01

    This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete

  13. Executive functioning in adult ADHD: a meta-analytic review

    NARCIS (Netherlands)

    Boonstra, A.M.; Oosterlaan, J.; Sergeant, J.A.; Buitelaar, J.K.

    2005-01-01

    Background. Several theoretical explanations of ADHD in children have focused on executive functioning as the main explanatory neuropsychological domain for the disorder. In order to establish if these theoretical accounts are supported by research data for adults with ADHD, we compared

  14. Constructing and deriving reciprocal trigonometric relations: a functional analytic approach.

    Science.gov (United States)

    Ninness, Chris; Dixon, Mark; Barnes-Holmes, Dermot; Rehfeldt, Ruth Anne; Rumph, Robin; McCuller, Glen; Holland, James; Smith, Ronald; Ninness, Sharon K; McGinty, Jennifer

    2009-01-01

    Participants were pretrained and tested on mutually entailed trigonometric relations and combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine, secant, and cosecant. Experiment 1 focused on training and testing transformations of these mathematical functions in terms of amplitude and frequency followed by tests of novel relations. Experiment 2 addressed training in accordance with frames of coordination (same as) and frames of opposition (reciprocal of) followed by more tests of novel relations. All assessments of derived and novel formula-to-graph relations, including reciprocal functions with diversified amplitude and frequency transformations, indicated that all 4 participants demonstrated substantial improvement in their ability to identify increasingly complex trigonometric formula-to-graph relations pertaining to same as and reciprocal of to establish mathematically complex repertoires.

  15. Applying the expansion method in hierarchical functions to the solution of Navier-Stokes equations for incompressible fluids

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane

    1999-01-01

    This work presents a novel numeric method, based on the finite element method, applied for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. The method is based on the expansion of the variables in almost hierarchical functions. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desired degree. This novel numeric method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature in two dimensions are analyzed. The results show the method capacity in supplying precise results. From the results obtained in this thesis it is possible to conclude that the hierarchical expansion method can be applied successfully for the solution of fluid dynamic problems that involve incompressible fluids. (author)

  16. Exchange splitting of the interaction energy and the multipole expansion of the wave function

    Energy Technology Data Exchange (ETDEWEB)

    Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2015-10-21

    The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.

  17. Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, M.Yu.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-07-15

    We prove the following theorems: 1) The Laurent expansions in {epsilon} of the Gauss hypergeometric functions {sub 2}F{sub 1}(I{sub 1}+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+(p/q)+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z) and {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+ a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), where I{sub 1},I{sub 2},I{sub 3},p,q are arbitrary integers, a,b,c are arbitrary numbers and {epsilon} is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+c{epsilon};z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums {sigma}{sup {infinity}}{sub j=1}({gamma}(j))/({gamma}(1+j-(p)/(q))) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1) and the multiple rational sums {sigma}{sup {infinity}}{sub j=1} ({gamma}(j+(p)/(q)))/({gamma}(1+j)) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1), where S{sub a}(j)={sigma}{sup j}{sub k=1}(1)/(k{sup a}) is a harmonic series and c is an arbitrary integer, are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions {sub p}F{sub p.1}((vector)A+(vector)a{epsilon};(vector)B+(vector)b{epsilon},(p)/(q)+B{sub p-1};z) and {sub p}F{sub p-1}((vector)A+(vector)a{epsilon},(p)/(q)+A{sub p};(vector)B+(vector)b{epsilon};z) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials. (orig.)

  18. [System analytical approach of lung function and hemodynamics].

    Science.gov (United States)

    Naszlady, Attila; Kiss, Lajos

    2009-02-15

    The authors critically analyse the traditional views in physiology and complete them with new statements based on computer model simulations of lung function and of hemodynamics. Conclusions are derived for the clinical practice as follows: the four-dimensional function curves are similar in both systems; there is a "waterfall" zone in the pulmonary blood perfusion; the various time constants of pulmonary regions can modify the blood gas values; pulmonary capillary pressure is equal to pulmonary arterial diastole pressure; heart is not a pressure pump, but a flow source; ventricles are loaded by the input impedance of the arterial systems and not by the total vascular (ohmlike) resistance; optimum heart rate in rest depends on the length of the aorta; this law of heart rate, based on the principle of resonance is valid along the mammalian allometric line; tachycardia decreases the input impedance; using positive end expiratory pressure respirators the blood gas of pulmonary artery should be followed; coronary circulation should be assessed in beat per milliliter, the milliliter per minute may be false. These statements are compared to related references.

  19. Tailored functional materials with controlled thermal expansion and excellent thermal conductivity

    International Nuclear Information System (INIS)

    Korb, G.; Sebo, P.

    1997-01-01

    Engineering materials are mainly used for structures. Therefore high-strength, stiffness and sufficient toughness are of prime importance. For a long time engineers thought first in terms of metals. Material scientists developed alloys tailored to the needs of industry. Ceramics are known to be brittle and therefore not suitable in the first place for structural application under stress. Polymers with their low modulus became attractive when reinforced with high-strength fibres. Composites processed by polymer, metal or ceramic matrices and high-strength reinforcements have been introduced into many sectors of industry. Engineering materials for structural applications fulfil a function: they withstand high stresses, temperatures, fatigue, creep etc. But usually we do not call them functional materials. Functional materials serve applications apart from classical engineering fields. Electricity conducting materials, semi conductors, memory alloys and many others are called functional materials. Because of the fact that the basic physical properties cannot be changed in single-phase materials, the combination of two and more materials with different properties lead to components with new and tailored properties. A few techniques for preparation are described as powder metallurgy, infiltration of prepegs and compaction of precoated fibres/particles. The lecture is focusing on carbon fibre/particle reinforced Metal Matrix Materials. The achievable properties, in particular the thermal conductivity originating from the base materials is depending on the orientation of the fibres and interfacial contacts in the composite. The carefully controlled expansion behaviour is the most important property to use the material as a heat sink in electronic assemblies. (author)

  20. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  1. Reciprocal expansion of modified Bessel function in simple fractions and obtaining general summation relationships containing its zeros

    Science.gov (United States)

    Sherstyukov, V. B.; Sumin, E. V.

    2017-12-01

    Modified Bessel functions of the first kind Iv (z) (Infeld functions) where v > -1 are considered. Due to the constraint on the parameter v, all zeros of the function Iv (z) except z = 0 are simple, located on the imaginary axis by symmetric pairs and form an infinite countable set. On the basis on previous research of the authors dealing with general Bessel functions of the first kind Jv (z), a question about reciprocal expansion 1/Iv (z) in series of simple fractions of a certain structure (Krein’s series) is studied. The general formulas to calculate of special infinite sums containing degrees of Infeld function zeros are an important consequence of obtained expansion in simple fractions of the value 1/Iv (z) with any v > -1. The possibility of concrete definition of established summation relationships at different values of parameters and their connection with analogous relationships for the Bessel functions of the first kind Jv (z) is discussed.

  2. A high precision semi-analytic mass function

    Energy Technology Data Exchange (ETDEWEB)

    Del Popolo, Antonino [Dipartimento di Fisica e Astronomia, University of Catania, Viale Andrea Doria 6, I-95125 Catania (Italy); Pace, Francesco [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (United Kingdom); Le Delliou, Morgan, E-mail: adelpopolo@oact.inaf.it, E-mail: francesco.pace@manchester.ac.uk, E-mail: delliou@ift.unesp.br [Instituto de Física Teorica, Universidade Estadual de São Paulo (IFT-UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2—Barra Funda, 01140-070 São Paulo, SP Brazil (Brazil)

    2017-03-01

    In this paper, extending past works of Del Popolo, we show how a high precision mass function (MF) can be obtained using the excursion set approach and an improved barrier taking implicitly into account a non-zero cosmological constant, the angular momentum acquired by tidal interaction of proto-structures and dynamical friction. In the case of the ΛCDM paradigm, we find that our MF is in agreement at the 3% level to Klypin's Bolshoi simulation, in the mass range M {sub vir} = 5 × 10{sup 9} h {sup −1} M {sub ⊙}–−5 × 10{sup 14} h {sup −1} M {sub ⊙} and redshift range 0 ∼< z ∼< 10. For z = 0 we also compared our MF to several fitting formulae, and found in particular agreement with Bhattacharya's within 3% in the mass range 10{sup 12}–10{sup 16} h {sup −1} M {sub ⊙}. Moreover, we discuss our MF validity for different cosmologies.

  3. Application of modified analytical function for approximation and computer simulation of diffraction profile

    International Nuclear Information System (INIS)

    Marrero, S. I.; Turibus, S. N.; Assis, J. T. De; Monin, V. I.

    2011-01-01

    Data processing of the most of diffraction experiments is based on determination of diffraction line position and measurement of broadening of diffraction profile. High precision and digitalisation of these procedures can be resolved by approximation of experimental diffraction profiles by analytical functions. There are various functions for these purposes both simples, like Gauss function, but no suitable for wild range of experimental profiles and good approximating functions but complicated for practice using, like Vougt or PersonVII functions. Proposed analytical function is modified Cauchy function which uses two variable parameters allowing describing any experimental diffraction profile. In the presented paper modified function was applied for approximation of diffraction lines of steels after various physical and mechanical treatments and simulation of diffraction profiles applied for study of stress gradients and distortions of crystal structure. (Author)

  4. The resonance expansion for the Green's function of the Schroedinger and wave equations

    International Nuclear Information System (INIS)

    Albeverio, S.; Aix-Marseille-2 Univ., 13 - Marseille; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of some recent mathematical work on resonances, in particular on perturbation series, low energy expansions and on resonances for point interactions. Expansions of the kernels of esup(-it)√sup(H+) and esup(-itH) in terms of resonances are also given (where Hsub(+) is the positive part of the Hamiltonian). (orig.)

  5. An advanced complex analysis problem book topological vector spaces, functional analysis, and Hilbert spaces of analytic functions

    CERN Document Server

    Alpay, Daniel

    2015-01-01

    This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

  6. Analytical functions in non-canonical two dimensional algebras; Funzioni analitiche nelle algebre a due componenti

    Energy Technology Data Exchange (ETDEWEB)

    Catoni, Francesco; Zampetti, Paolo [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Cannata, Roberto [ENEA, Centro Ricerche Casaccia, Rome (Italy). Funzione Centrale INFO; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1997-10-01

    Systems of two-dimensional hypercomplex numbers are usually studied in their canonical form, i.e. according to the multiplicative rule for the ``imaginary``versor i{sup 2} = {+-} 1, 0. In this report those systems for which i{sup 2} = {alpha} + {beta}i are studied and expressions are derived for functions given by series expansion as well as for some elementary functions. The results obtained for systems which can be decomposed are then extended to all systems.

  7. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-01-01

    Resins are prepared by chemically bonding N,N-dialkylamides and polyamine functional groups to Amberlite XAD-4. These resins are applied to the concentration of metal ions from dilute aqueous solution and the rapid separation of metal ions by high-speed liquid chromatography with continuous on-line detection of the eluent stream. A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from seawater. A triethylenetetramine resin is used for the separation of copper(II) from equal molar amounts and large excesses of nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III) and aluminum(III). Copper(II), nickel(II), zinc(II), cobalt(II) and cadmium(II) are determined in the presence of large excesses of calcium(II) and magnesium(II). The resin was found to be selective for silver(I) and mercury(II) at low pH values and a rapid separation of equal molar amounts of copper(II) and silver(I) was performed. The resin was also found to have an affinity for anionic metal complexes such as iron(III)-tartrate when the resin is in the hydrogen form. A study of the retention of the anions chromium(III)-tartrate and dichromate at various pH values was performed to better understand the anion exchange properties of the resin. Triethylenetetramine resins were also prepared from polystyrene gel to make a resin with higher capacities for copper

  8. Analytic solution of field distribution and demagnetization function of ideal hollow cylindrical field source

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-09-01

    The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.

  9. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  10. Analytic Lorentz integral transform of an arbitrary response function and its application to the inversion problem

    International Nuclear Information System (INIS)

    Barnea, N.; Liverts, E.

    2010-01-01

    In this paper we present an analytic expression for the Lorentz integral transform of an arbitrary response function expressed as a polynomial times a decaying exponent. The resulting expression is applied to the inversion problem of the Lorentz integral transform, simplifying the inversion procedure and improving the accuracy of the procedure. We have presented analytic formulae for a family of basis function often used in the inversion of the LIT function. These formulae allow for an efficient and accurate inversion. The quality and the stability of the resulting inversions were demonstrated through two different examples yielding outstanding results. (author)

  11. Intimacy Is a Transdiagnostic Problem for Cognitive Behavior Therapy: Functional Analytical Psychotherapy Is a Solution

    Science.gov (United States)

    Wetterneck, Chad T.; Hart, John M.

    2012-01-01

    Problems with intimacy and interpersonal issues are exhibited across most psychiatric disorders. However, most of the targets in Cognitive Behavioral Therapy are primarily intrapersonal in nature, with few directly involved in interpersonal functioning and effective intimacy. Functional Analytic Psychotherapy (FAP) provides a behavioral basis for…

  12. Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    2001-01-01

    textabstractA logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic Banach algebra valued function. For functions possessing a meromorphic inverse with simple poles only, the logarithmic residues are identified as the sums of idempotents. With the help

  13. On a Monge-Amp\\`ere operator for plurisubharmonic functions with analytic singularities

    OpenAIRE

    Andersson, Mats; Błocki, Zbigniew; Wulcan, Elizabeth

    2017-01-01

    We study continuity properties of generalized Monge-Amp\\`ere operators for plurisubharmonic functions with analytic singularities. In particular, we prove continuity for a natural class of decreasing approximating sequences. We also prove a formula for the total mass of the Monge-Amp\\`ere measure of such a function on a compact K\\"ahler manifold.

  14. Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach

    Directory of Open Access Journals (Sweden)

    Fenghua He

    2013-01-01

    Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.

  15. Computation of the modified Bessel function of the third kind of imaginary orders: uniform Airy-type asymptotic expansion

    NARCIS (Netherlands)

    A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2002-01-01

    textabstractThe use of a uniform Airy-type asymptotic expansion for the computation of the modified Bessel functions of the third kind of imaginary orders ($K_{ia}(x)$) near the transition point $x=a$, is discussed. In [2], an algorithm for the evaluation of $K_{ia}(x)$ was presented, which made use

  16. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    Science.gov (United States)

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  17. Recovering functions from the spherical mean transform with data on an ellipse using eigenfunction expansion in elliptical coordinates

    Science.gov (United States)

    Salman, Yehonatan

    2017-09-01

    The aim of this paper is to introduce a new inversion procedure for recovering functions, defined on R2 , from the spherical mean transform, which integrates functions on a prescribed family Λ of circles, where Λ consists of circles whose centers belong to a given ellipse E on the plane. The method presented here follows the same procedure which was used by Norton (J Acoust Soc Am 67:1266-1273, 1980) for recovering functions in case where Λ consists of circles with centers on a circle. However, at some point we will have to modify the method in [24] by using expansion in elliptical coordinates, rather than spherical coordinates, in order to solve the more generalized elliptical case. We will rely on a recent result obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the eigenfunction expansion of the Bessel function in elliptical coordinates.

  18. A New Class of Analytic Functions Defined by Using Salagean Operator

    Directory of Open Access Journals (Sweden)

    R. M. El-Ashwah

    2013-01-01

    Full Text Available We derive some results for a new class of analytic functions defined by using Salagean operator. We give some properties of functions in this class and obtain numerous sharp results including for example, coefficient estimates, distortion theorem, radii of star-likeness, convexity, close-to-convexity, extreme points, integral means inequalities, and partial sums of functions belonging to this class. Finally, we give an application involving certain fractional calculus operators that are also considered.

  19. Extended Jacobi Elliptic Function Rational Expansion Method and Its Application to (2+1)-Dimensional Stochastic Dispersive Long Wave System

    International Nuclear Information System (INIS)

    Song Lina; Zhang Hongqing

    2007-01-01

    In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.

  20. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2008-11-15

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient.

  1. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2008-01-01

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient

  2. Applications of the large mass expansion

    International Nuclear Information System (INIS)

    Fleischer, J.; Kotikov, A.V.; ); Veretin, O.L.

    1998-01-01

    The method of the large mass expansion (LME) is investigated for selfenergy and vertex functions in two-loop order. It has the technical advantage that in many cases the expansion coefficients can be expressed analytically. As long as only one non-zero external momentum squared, q 2 , is involved also the Taylor expansion (TE) w.r.t. small q 2 yields high precision results in a domain sufficient for most applications. In the case of only one non-zero mass M and only one external momentum squared, the expansion w.r.t. q 2 /M 2 is identical for the TE and the LME. In this case the combined techniques yield analytic expressions for many diagrams, which are quite easy to handle numerically. (author)

  3. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  4. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    Science.gov (United States)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure

  5. Functional analytic methods in complex analysis and applications to partial differential equations

    International Nuclear Information System (INIS)

    Mshimba, A.S.A.; Tutschke, W.

    1990-01-01

    The volume contains 24 lectures given at the Workshop on Functional Analytic Methods in Complex Analysis and Applications to Partial Differential Equations held in Trieste, Italy, between 8-19 February 1988, at the ICTP. A separate abstract was prepared for each of these lectures. Refs and figs

  6. The Distortion Theorems for Harmonic Mappings with Analytic Parts Convex or Starlike Functions of Order β

    Directory of Open Access Journals (Sweden)

    Mengkun Zhu

    2015-01-01

    Full Text Available Some sharp estimates of coefficients, distortion, and growth for harmonic mappings with analytic parts convex or starlike functions of order β are obtained. We also give area estimates and covering theorems. Our main results generalise those of Klimek and Michalski.

  7. Interpersonal Mindfulness Informed by Functional Analytic Psychotherapy: Findings from a Pilot Randomized Trial

    Science.gov (United States)

    Bowen, Sarah; Haworth, Kevin; Grow, Joel; Tsai, Mavis; Kohlenberg, Robert

    2012-01-01

    Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991) aims to improve interpersonal relationships through skills intended to increase closeness and connection. The current trial assessed a brief mindfulness-based intervention informed by FAP, in which an interpersonal element was added to a traditional intrapersonal mindfulness…

  8. Remark on the Operator-valued Interpolation for Multivariable Bounded Analytic Functions

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore

    2004-01-01

    Roč. 53, č. 6 (2004), s. 1551-1576 ISSN 0022-2518 R&D Projects: GA ČR(CZ) GA201/03/0041 Institutional research plan: CEZ:AV0Z1019905 Keywords : von Neumann inequality * interpolation * analytic functions Subject RIV: BA - General Mathematics Impact factor: 0.784, year: 2004

  9. Analytical expression for the nonsinglet structure functions at small x in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, Michael

    2004-01-01

    A simple analytic expression for the nonsinglet structure function f NS is given. The expression is derived from the result of Ermolaev, Manaenkov, and Ryskin obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD

  10. An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy

    Science.gov (United States)

    Collis, Peter

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…

  11. Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions

    Directory of Open Access Journals (Sweden)

    Selvaraj C.

    2016-07-01

    Full Text Available The main object of this paper is to study Fekete-Szegö problem for a certain subclass of p - valent analytic functions. Fekete-Szegö inequality of several classes are obtained as special cases from our results. Applications of the result are also obtained on the class defined by convolution.

  12. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    2015-01-01

    We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized

  13. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  14. Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse

    OpenAIRE

    Bart, Harm; Ehrhardt, T.; Silbermann, B.

    2001-01-01

    textabstractA logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic Banach algebra valued function. For functions possessing a meromorphic inverse with simple poles only, the logarithmic residues are identified as the sums of idempotents. With the help of this observation, the issue of left versus right logarithmic residues is investigated, both for connected and nonconnected underlying Cauchy domains. Examples are given to elucidate the subject ...

  15. On the analytical evaluation of the partition function for unit hypercubes in four dimensions

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-10-01

    The group integrations required for the analytic evaluation of the partition function for unit hypercubes in four dimensions are carried out. Modifications of the graphical rules for SU 2 group integrations cited in the literature are developed for this purpose. A complete classification of all surfaces that can be embedded in the unit hypercube is given and their individual contribution to the partition function worked out. Applications are discussed briefly. (orig.)

  16. The General Analytic Solution of a Functional Equation of Addition Type

    OpenAIRE

    Braden, H. W.; Buchstaber, V. M.

    1995-01-01

    The general analytic solution to the functional equation $$ \\phi_1(x+y)= { { \\biggl|\\matrix{\\phi_2(x)&\\phi_2(y)\\cr\\phi_3(x)&\\phi_3(y)\\cr}\\biggr|} \\over { \\biggl|\\matrix{\\phi_4(x)&\\phi_4(y)\\cr\\phi_5(x)&\\phi_5(y)\\cr}\\biggr|} } $$ is characterised. Up to the action of the symmetry group, this is described in terms of Weierstrass elliptic functions. We illustrate our theory by applying it to the classical addition theorems of the Jacobi elliptic functions and the functional equations $$ \\phi_1(x+...

  17. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Science.gov (United States)

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V

    2017-02-01

    Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high

  18. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Directory of Open Access Journals (Sweden)

    Lucila Traverso

    2017-02-01

    Full Text Available Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs, Cytochromes P450 (CYPs and Carboxyl/Cholinesterases (CCEs. Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease.The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms

  19. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors

    NARCIS (Netherlands)

    van den Akker, Emile; van Dijk, Thamar; Parren-van Amelsvoort, Martine; Grossmann, Katja S.; Schaeper, Ute; Toney-Earley, Kenya; Waltz, Susan E.; Löwenberg, Bob; von Lindern, Marieke

    2004-01-01

    Erythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the

  20. Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions

    OpenAIRE

    Siregar, Saibah; Raman, Sintuja

    2012-01-01

    In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double zeta functions in the open unit disc U={z:zEC, |z|<1}. The estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function class Σ are obtained in our investigation.

  1. An analytically resolved model of a potato's thermal processing using Heun functions

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A potato's thermal processing model is solved analytically. The model is formulated using the equation of heat diffusion in the case of a spherical potato processed in a furnace, and assuming that the potato's thermal conductivity is radially modulated. The model is solved using the method of the Laplace transform, applying Bromwich Integral and Residue Theorem. The temperatures' profile in the potato is presented as an infinite series of Heun functions. All computations are performed with computer algebra software, specifically Maple. Using the numerical values of the thermal parameters of the potato and geometric and thermal parameters of the processing furnace, the time evolution of the temperatures in different regions inside the potato are presented analytically and graphically. The duration of thermal processing in order to achieve a specified effect on the potato is computed. It is expected that the obtained analytical results will be important in food engineering and cooking engineering.

  2. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    Science.gov (United States)

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. New Exact Solutions of Time Fractional Gardner Equation by Using New Version of F -Expansion Method

    International Nuclear Information System (INIS)

    Pandir, Yusuf; Duzgun, Hasan Huseyin

    2017-01-01

    In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained. (paper)

  4. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  5. An alternative analytical formulation for the Voigt function applied to resonant effects in nuclear processes

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Goncalves, Alessandro da C; Martinez, Aquilino S.

    2011-01-01

    The Voigt function H(a,v) is defined as the convolution of the Gaussian and Lorentzian functions. Recent papers puplished in different areas of physics emphasize the importance of the fast and accurate calculation of the Voigt function for different orders of magnitude of variables a and v. An alternative analytical formulation for the Voigt function is proposed in this paper. This formulation is based on the solution of the non-homogeneous ordinary differential equation, satisfied by the Voigt function, using the Frobenius and parameter variation methods. The functional form of the Voigt function, as proposed, proved simple and precise. Systematic tests are accomplished demonstrating some advantages with other existent methods in the literature and with the numeric method of reference.

  6. An alternative analytical formulation for the Voigt function applied to resonant effects in nuclear processes

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P., E-mail: dpalmaster@gmail.com [CNEN-Comissao Nacional de Energia Nuclear, 22290-901, Rio de Janeiro (Brazil); Goncalves, Alessandro da C; Martinez, Aquilino S. [COPPE/UFRJ-Programa de Engenharia Nuclear, 21941-972, Rio de Janeiro (Brazil)

    2011-10-21

    The Voigt function H(a,v) is defined as the convolution of the Gaussian and Lorentzian functions. Recent papers puplished in different areas of physics emphasize the importance of the fast and accurate calculation of the Voigt function for different orders of magnitude of variables a and v. An alternative analytical formulation for the Voigt function is proposed in this paper. This formulation is based on the solution of the non-homogeneous ordinary differential equation, satisfied by the Voigt function, using the Frobenius and parameter variation methods. The functional form of the Voigt function, as proposed, proved simple and precise. Systematic tests are accomplished demonstrating some advantages with other existent methods in the literature and with the numeric method of reference.

  7. Multipole expansion of acoustical Bessel beams with arbitrary order and location.

    Science.gov (United States)

    Gong, Zhixiong; Marston, Philip L; Li, Wei; Chai, Yingbin

    2017-06-01

    An exact solution of expansion coefficients for a T-matrix method interacting with acoustic scattering of arbitrary order Bessel beams from an obstacle of arbitrary location is derived analytically. Because of the failure of the addition theorem for spherical harmonics for expansion coefficients of helicoidal Bessel beams, an addition theorem for cylindrical Bessel functions is introduced. Meanwhile, an analytical expression for the integral of products including Bessel and associated Legendre functions is applied to eliminate the integration over the polar angle. Note that this multipole expansion may also benefit other scattering methods and expansions of incident waves, for instance, partial-wave series solutions.

  8. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  9. Analytical expressions for the correlation function of a hard sphere dimer fluid

    Science.gov (United States)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  10. Analytical expression for the correlation function of a hard sphere chain fluid

    Science.gov (United States)

    Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.

  11. Revisiting the Fourier expansion of Mie scattering matrices in generalized spherical functions

    International Nuclear Information System (INIS)

    Sanghavi, Suniti

    2014-01-01

    Mie computations of the scattering properties of large particles are a time consuming step in the radiative transfer modeling of aerosol and clouds. Currently, there exist two methods based on the use of spherical functions for computing the Fourier moments of the phase matrix of a given spherical particle or particulate polydispersion: The first, developed over the years before being presented in a convenient form by Siewert [31], required an intermediate computation of the phase matrix over which numerical integration was performed to deliver the required Fourier components. The second, suggested by Domke [9], promised a direct computation of the Fourier moments using Wigner 3-j symbols. While the former was relatively easy to implement and is thus the most commonly used to date, its numerical implementation using an arbitrary user choice of angular quadrature (NAI-1) can produce inaccurate results. Numerical integration using quadrature points as recommended by de Rooij and van der Stap [5] (NAI-2) delivers accurate results with high computational efficiency. Domke's method enables a direct computation of the exact number of required Fourier components. However, the original manuscript contained several misprints, many of which were subsequently corrected by de Rooij and van der Stap [5]. Unfortunately, the main recurrence relationship used in Domke [9] remained uncorrected. In this paper, the corrected relationship is presented along with other minor corrections. de Rooij and van der Stap [5] had found the straightforward application of Domke's method viable only for size parameters smaller than ∼120 due to issues involving computer storage. A means of implementing the corrected Domke formalism using precomputed tabulations of Wigner 3-j symbols (PCW) is presented here, making it more computationally economical and applicable over much broader particle size ranges. The accuracy of PCW is only limited by machine precision. For a single particle, NAI-2 is found

  12. An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong; Zhang Hongqing

    2005-01-01

    With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition

  13. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  14. Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava

    CERN Document Server

    Rassias, Michael

    2014-01-01

    This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.

  15. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  16. The degree of C0-sufficiency of analytic function germs with respect to an ideal

    International Nuclear Information System (INIS)

    Pham Tien Son

    2006-07-01

    Let f:(C 2 , 0) → (C, 0) be an analytic function germ of two complex variables and let I be an ideal of C{x,y). We give some formulae for the degree of C 0 -sufficiency of f with respect to I. When I is the maximal ideal we retrieve a result of T.C. Kuo and Y.C. Lu. (author)

  17. Supplier Selection for Food Industry: A Combination of Taguchi Loss Function and Fuzzy Analytical Hierarchy Process

    OpenAIRE

    Renna Magdalena

    2012-01-01

    Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming) was used ...

  18. A functional-analytic method for the study of difference equations

    Directory of Open Access Journals (Sweden)

    Siafarikas Panayiotis D

    2004-01-01

    Full Text Available We will give the generalization of a recently developed functional-analytic method for studying linear and nonlinear, ordinary and partial, difference equations in the and spaces, p∈ℕ, . The method will be illustrated by use of two examples concerning a nonlinear ordinary difference equation known as the Putnam equation, and a linear partial difference equation of three variables describing the discrete Newton law of cooling in three dimensions.

  19. The analytic regularization ζ function method and the cut-off method in Casimir effect

    International Nuclear Information System (INIS)

    Svaiter, N.F.; Svaiter, B.F.

    1990-01-01

    The zero point energy associated to a hermitian massless scalar field in the presence of perfectly reflecting plates in a three dimensional flat space-time is discussed. A new technique to unify two different methods - the ζ function and a variant of the cut-off method - used to obtain the so called Casimir energy is presented, and the proof of the analytic equivalence between both methods is given. (author)

  20. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  1. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  2. Small-x behavior of the structure function F2 and its slope ∂lnF2/∂ln(1/x) for ''frozen'' and analytic strong-coupling constants

    International Nuclear Information System (INIS)

    Cvetic, G.; Kniehl, B.A.; Kotikov, A.V.

    2009-06-01

    Using the leading-twist approximation of the Wilson operator product expansion with ''frozen'' and analytic versions of the strong-coupling constant, we show that the Bessel-inspired behavior of the structure function F 2 and its slope ∂lnF 2 /∂ln(1/x) at small values of x, obtained for a at initial condition in the DGLAP evolution equations, leads to good agreement with experimental data of deep-inelastic scattering at DESY HERA. (orig.)

  3. The nonlocal operator expansion for structure functions of e+e- annihilation

    International Nuclear Information System (INIS)

    Balitsky, I.I.; Braun, V.M.

    1989-01-01

    The Wilson operator expansion is generalized to inclusive particle production in e + e - annihilation. This turns out to be possible at the price of doubling the number of quantum quark and gluon fields in a similar fashion that gives rise to the Keldysh technique for nonequilibrium processes. Well-known results on the leading logarithmic contributions to inclusive production are reproduced as the one-loop evolution of the string operator of the leading twist. The general structure of the power corrections 1/Q 2 is outlined. (orig.)

  4. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets

    OpenAIRE

    Janssen, Augustus J. E. M.

    2015-01-01

    We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized Zernike functions is developed, with attention for computational results for their Fourier transform, Funk and Radon transform, and scaling operations. The Fourier transform of generalized 3D Zern...

  5. On a class of analytic functions generated by fractional integral operator

    Directory of Open Access Journals (Sweden)

    Ibrahim Rabha W.

    2017-01-01

    Full Text Available In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander. We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.

  6. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    Science.gov (United States)

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  7. Ex Vivo Expansion of Functional Human UCB-HSCs/HPCs by Coculture with AFT024-hkirre Cells

    Directory of Open Access Journals (Sweden)

    Muti ur Rehman Khan

    2014-01-01

    Full Text Available Kiaa1867 (human Kirre, hKirre has a critical role in brain development and/or maintenance of the glomerular slit diaphragm in kidneys. Murine homolog of this gene, mKirre expressed in OP9 and AFT024 cells could support hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC expansion in vitro. HKirre is also expressed in human FBMOB-hTERT cell line and fetal liver fibroblast-like cells but its function has remained unclear. In this paper, we cloned a hKirre gene from human fetal liver fibroblast-like cells and established a stably overexpressing hKirre-AFT024 cell line. Resultant cells could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than AFT024-control cells transformed with mock plasmid. The Expanded human umbilical cord blood (hUCB CD34+ cells retained the capacity of multipotent differentiation as long as 8 weeks and successfully repopulated the bone marrow of sublethally irradiated NOD/SCID mice, which demonstrated the expansion of long-term primitive transplantable HSCs/HPCs. Importantly, hkirre could upregulate the expressions of Wnt-5A, BMP4, and SDF-1 and downregulate TGF-β with other hematopoietic growth factors. By SDS-PAGE and Western Blot analysis, a ~89 kDa protein in total lysate of AFT024-hKirre was identified. Supernatants from AFT024-hkirre could also support CD34+CD38− cells expansion. These results demonstrated that the AFT024-hKirre cells have the ability to efficiently expand HSCs/HPCs.

  8. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab.

    Science.gov (United States)

    Seo, Neungseon; Polozova, Alla; Zhang, Mingxuan; Yates, Zachary; Cao, Shawn; Li, Huimin; Kuhns, Scott; Maher, Gwendolyn; McBride, Helen J; Liu, Jennifer

    ABP 215 is a biosimilar product to bevacizumab. Bevacizumab acts by binding to vascular endothelial growth factor A, inhibiting endothelial cell proliferation and new blood vessel formation, thereby leading to tumor vasculature normalization. The ABP 215 analytical similarity assessment was designed to assess the structural and functional similarity of ABP 215 and bevacizumab sourced from both the United States (US) and the European Union (EU). Similarity assessment was also made between the US- and EU-sourced bevacizumab to assess the similarity between the two products. The physicochemical properties and structural similarity of ABP 215 and bevacizumab were characterized using sensitive state-of-the-art analytical techniques capable of detecting small differences in product attributes. ABP 215 has the same amino acid sequence and exhibits similar post-translational modification profiles compared to bevacizumab. The functional similarity assessment employed orthogonal assays designed to interrogate all expected biological activities, including those known to affect the mechanisms of action for ABP 215 and bevacizumab. More than 20 batches of bevacizumab (US) and bevacizumab (EU), and 13 batches of ABP 215 representing unique drug substance lots were assessed for similarity. The large dataset allows meaningful comparisons and garners confidence in the overall conclusion for the analytical similarity assessment of ABP 215 to both US- and EU-sourced bevacizumab. The structural and purity attributes, and biological properties of ABP 215 are demonstrated to be highly similar to those of bevacizumab.

  9. Finding an analytic description of the resolution function for n_TOF-EAR2 at CERN

    CERN Document Server

    Eriksson, John Benjamin

    2017-01-01

    At CERN's neutron time-of-flight facility n_TOF a high intensity pulsed neutron source is used to measure energy-dependent neutron-induced reaction cross sections of isotopes relevant to various fields of research such as nuclear astrophysics, -technology or -medicine. Neutron kinetic energies are determined using the time-of-flight (ToF) technique. A correct ToF to energy conversion is essential and is influenced by many factors, one of which is the so-called resolution function (RF). The RF is a characteristic unique to each experimental facility and can only be determined through simulations using Monte Carlo codes. The goal of this project is to find an analytic description of the RF for n_TOF-EAR2. Two functions for two different energy ranges were found, each a combination of linear, polynomial and exponential functions. Furthermore, the energy dependence of the function's parameters was investigated.

  10. Federalism. Theory and Neo-Functionalism: Elements for an analytical framework

    DEFF Research Database (Denmark)

    Dosenrode, Søren

    2010-01-01

    -McKayian way, is able to explain the cases of ‘big bang’ integration (USA, Australia, Canada), but not an ‘organic’ integration process. Neo-functionalism, on the other hand, is not able to explain this relatively fast form of integration, but it is – in its new version - able to analyze and explain......The purpose of this article is to propose a draft for an analytical frame for analyzing regional integration consisting of federalism theory and neo-functionalism. It starts out discussing the concept of regional integration setting up a stagiest model for categorizing it.Then follows an analysis...... of federalism theory and neo-functionalism. One argument of this article is to understand federalism theory as a regional integration theory. Another is to look at federalism theory as complementary to neo-functionalism when trying to explain regional integration. Federalism theory, in an extended Riker...

  11. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Directory of Open Access Journals (Sweden)

    Pengkai Wang

    2016-09-01

    Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  12. Long-Term Reserve Expansion of Power Systems With High Wind Power Penetration Using Universal Generating Function Methods

    DEFF Research Database (Denmark)

    DING, YI; Wang, Peng; Goel, Lalit

    2010-01-01

    from long term planning point of view utilizing universal generating function (UGF) methods. The reliability models of wind farms and conventional generators are represented as the correspondin UGFs and the special operators for these UGFs are defined to evaluate the customer and the system...... reliabilities. The effect of transmission network on customer reliabilities is also considered in the system UGF. The power output models of wind turbine generators in a wind farm considering wind speed correlation and un-correlation are developed, respectively. A reliability-based reserve expansion method...

  13. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    Science.gov (United States)

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the

  14. Mass spectra and wave functions of meson systems and the covariant oscillator quark model as an expansion basis

    International Nuclear Information System (INIS)

    Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo

    1999-01-01

    We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)

  15. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    Science.gov (United States)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  16. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Science.gov (United States)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  17. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  18. First non-zero terms for the Taylor expansion at 1 of the Conway potential function

    NARCIS (Netherlands)

    Buryak, A.Y.

    2011-01-01

    The Conway potential function ∇ L (t 1,...,t l ) of an ordered oriented link L = L 1 ∪ L 2 ∪ ... ∪ L l ⊂ S 3 is considered. In general, this function is not determined by the linking numbers and the Conway potential functions of the components. However, the first two nonzero terms of the Taylor

  19. On q-extension of Laurent expansion with applications

    Directory of Open Access Journals (Sweden)

    Ahmed Salem

    2014-01-01

    Full Text Available In this article, Cauchy’s integral formula for nth q-derivative of analytic functions is established and used to introduce a new proof to q-Taylor series by means of using the residue calculus in the complex analysis. Some theorems related to this formula are presented. A q-extension of a Laurent expansion is derived and proved by means of using Cauchy’s integral formula for a function, which is analytic on a ring-shaped region bounded by two concentric circles. Three illustrative examples are presented to be as applications for a q-Laurent expansion.

  20. An analytical longitudinal dielectric function of primitive electrolyte solutions and its application in predicting thermodynamic properties

    International Nuclear Information System (INIS)

    Xiao, Tiejun

    2015-01-01

    In this paper, the longitudinal dielectric function ϵ_l(k) of primitive electrolyte solutions is discussed. Starting from a modified mean spherical approximation, an analytical dielectric function in terms of two parameters is established. These two parameters can be related to the first two decay parameters k_1_,_2 of the dielectric response modes of the bulk system, and can be determined using constraints of k_1_,_2 from statistical theories. Furthermore, a combination of this dielectric function and the molecular Debye-Hückel theory[J. Chem. Phys. 135(2011)104104] leads to a self-consistent mean filed description of electrolyte solutions. Our theory reveals a relationship between the microscopic structure parameters of electrolyte solutions and the macroscopic thermodynamic properties, which is applied to concentrated electrolyte solutions.

  1. Analytic perturbation theory for screened Coulomb potential: full continuum wave function

    International Nuclear Information System (INIS)

    Bechler, A.; Ennan, Mc J.; Pratt, R.H.

    1979-01-01

    An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)

  2. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.

    Science.gov (United States)

    Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella

    2013-05-01

    Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and

  3. Analytic derivatives for perturbatively corrected ''double hybrid'' density functionals: Theory, implementation, and applications

    International Nuclear Information System (INIS)

    Neese, Frank; Schwabe, Tobias; Grimme, Stefan

    2007-01-01

    A recently proposed new family of density functionals [S. Grimme, J. Chem. Phys. 124, 34108 (2006)] adds a fraction of nonlocal correlation as a new ingredient to density functional theory (DFT). This fractional correlation energy is calculated at the level of second-order many-body perturbation theory (PT2) and replaces some of the semilocal DFT correlation of standard hybrid DFT methods. The new ''double hybrid'' functionals (termed, e.g., B2-PLYP) contain only two empirical parameters that have been adjusted in thermochemical calculations on parts of the G2/3 benchmark set. The methods have provided the lowest errors ever obtained by any DFT method for the full G3 set of molecules. In this work, the applicability of the new functionals is extended to the exploration of potential energy surfaces with analytic gradients. The theory of the analytic gradient largely follows the standard theory of PT2 gradients with some additional subtleties due to the presence of the exchange-correlation terms in the self-consistent field operator. An implementation is reported for closed-shell as well as spin-unrestricted reference determinants. Furthermore, the implementation includes external point charge fields and also accommodates continuum solvation models at the level of the conductor like screening model. The density fitting resolution of the identity (RI) approximation can be applied to the evaluation of the PT2 part with large gains in computational efficiency. For systems with ∼500-600 basis functions the evaluation of the double hybrid gradient is approximately four times more expensive than the calculation of the standard hybrid DFT gradient. Extensive test calculations are provided for main group elements and transition metal containing species. The results reveal that the B2-PLYP functional provides excellent molecular geometries that are superior compared to those from standard DFT and MP2

  4. Analytic function theory of several variables elements of Oka’s coherence

    CERN Document Server

    Noguchi, Junjiro

    2016-01-01

    The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...

  5. Analytic continuation of massless two-loop four-point functions

    International Nuclear Information System (INIS)

    Gehrmann, T.; Remiddi, E.

    2002-01-01

    We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1→3 decay to Minkowskian regions relevant to all 1→3 and 2→2 reactions with one space-like or time-like off-shell external leg. Our results can be used to derive two-loop master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron-positron annihilation. (author)

  6. A functional-analytic method for the study of difference equations

    Directory of Open Access Journals (Sweden)

    Panayiotis D. Siafarikas

    2004-07-01

    Full Text Available We will give the generalization of a recently developed functional-analytic method for studying linear and nonlinear, ordinary and partial, difference equations in the ℓp1 and ℓp2 spaces, p∈ℕ, p≥1. The method will be illustrated by use of two examples concerning a nonlinear ordinary difference equation known as the Putnam equation, and a linear partial difference equation of three variables describing the discrete Newton law of cooling in three dimensions.

  7. Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy

    Directory of Open Access Journals (Sweden)

    Kalezić-Glišović A.

    2009-01-01

    Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.

  8. Expansion of X-ray form factor for close shell using uncorrelated wave function

    Energy Technology Data Exchange (ETDEWEB)

    AL-Robayi, Enas M. [Babylon University , College of Science for Women, laser Physics Department, Hilla (Iraq)

    2013-12-16

    The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.

  9. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  10. Integral relations in complex space and the global analytic and monodromic structure of Green's functions in quantum field theory

    International Nuclear Information System (INIS)

    Bros, J.

    1980-01-01

    In this lecture, we present some of the ideas of a global consistent approach to the analytic and monodromic structure of Green's functions and scattering amplitudes of elementary particles on the basis of general quantum field theory. (orig.)

  11. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  12. On the spherical harmonic expansion of the neutron angular distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Depken, Sven

    1959-03-15

    The neutron (one-velocity) angular distribution function is expanded in terms of spherical harmonic tensors. The solution to the equations of the moments is given explicitly and the result is applied to the plane, spherical and cylinder symmetrical cases.

  13. On the spherical harmonic expansion of the neutron angular distribution function

    International Nuclear Information System (INIS)

    Depken, Sven

    1959-03-01

    The neutron (one-velocity) angular distribution function is expanded in terms of spherical harmonic tensors. The solution to the equations of the moments is given explicitly and the result is applied to the plane, spherical and cylinder symmetrical cases

  14. Condensation pressures in small pores: An analytical model based on density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Nilson; S. K. Griffiths

    1999-02-01

    Adsorption and condensation are critical to many applications of porous materials including filtration, separation, and the storage of gases. Integral methods are used to derive an analytical expression describing fluid condensation pressures in slit pores bounded by parallel plane walls. To obtain this result, the governing equations of Density Functional Theory (DFT) are integrated across the pore width assuming that fluid densities within adsorbed layers are spatially uniform. The thickness, density, and energy of these layers are expressed as composite functions constructed from asymptotic limits applicable to small and large pores. By equating the total energy of the adsorbed layers to that of a liquid-full pore, the authors arrive at a closed-form expression for the condensation pressure in terms of the pore size, surface tension, and Lennard-Jones parameters of the adsorbent and adsorbate molecules. The resulting equation reduces to the Kelvin equation in the large-pore limit. It further reproduces the condensation pressures computed by means of the full DFT equations for all pore sizes in which phase transitions are abrupt. Finally, in the limit of extremely small pores, for which phase transitions may be smooth and continuous, this simple analytical expression provides a good approximation to the apparent condensation pressure indicated by the steepest portion of the adsorption isotherm computed via DFT.

  15. Condensation pressures in small pores: An analytical model based on density functional theory

    International Nuclear Information System (INIS)

    Nilson, R.H.; Griffiths, S.K.

    1999-01-01

    Integral methods are used to derive an analytical expression describing fluid condensation pressures in slit pores bounded by parallel plane walls. To obtain this result, the governing equations of density functional theory (DFT) are integrated across the pore width assuming that fluid densities within adsorbed layers are spatially uniform. The thickness, density, and free energy of these layers are expressed as composite functions constructed from asymptotic limits applicable to small and large pores. By equating the total free energy of the adsorbed layers to that of a liquid-full pore, we arrive at a closed-form expression for the condensation pressure in terms of the pore size, surface tension, and Lennard-Jones parameters of the adsorbent and adsorbate molecules. The resulting equation reduces to the Kelvin equation in the large-pore limit. It further reproduces the condensation pressures computed by means of the full DFT equations for all pore sizes in which phase transitions are abrupt. Finally, in the limit of extremely small pores, for which phase transitions may be smooth and continuous, this simple analytical expression provides a good approximation to the apparent condensation pressure indicated by the steepest portion of the adsorption isotherm computed via DFT. copyright 1999 American Institute of Physics

  16. Integrasi Taguchi Loss Function dengan Fuzzy Analytical Hierarchy Process dalam Pemilih Pemasok

    Directory of Open Access Journals (Sweden)

    Ahmad S. Indrapriyatna

    2011-01-01

    Full Text Available One important issue in the line production is the selection of the company's best supplier. Various criteria should be considered for determining the best supplier. Answering to that challenge, we apply Taguchi loss function- Analytical Hierarchy Process Fuzzy-Linear Programming (Taguchi loss function-Fuzzy AHP to find out the best supplier. Moreover, we also consider multiple criteria, i.e., goods’ completeness, quality, delivery, and quality loss in that analysis. By maximizing the suppliers’ performances based on each criterion and aggregated the suppliers’ performances based on the overall criteria, we selected the best one. Applying this method for selecting the best pressure gauge’s supplier in PT. Coca Cola Bottling Indonesia Central Sumatera (PT. CCBICS, we found out that among three suppliers, the second supplier is the best one.

  17. Supplier Selection for Food Industry: A Combination of Taguchi Loss Function and Fuzzy Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Renna Magdalena

    2012-09-01

    Full Text Available Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming was used to determine the best supplier. In this analysis, several suppliers’ criteria were considered, namely quality, delivery, completeness, quality loss and environmental management. By maximizing the suppliers’ performances based on each criterion and aggregating the suppliers’ performances based on the overall criteria, the best supplier was determined. Keywords: supplier selection, taguchi loss function, AHP, fuzzy linear programming,environment

  18. Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions.

    Science.gov (United States)

    Wang, Kun; Schoonover, Robert W; Su, Richard; Oraevsky, Alexander; Anastasio, Mark A

    2014-05-01

    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT.

  19. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  20. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    Directory of Open Access Journals (Sweden)

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  1. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  2. Improved Green’s function measurement for hybridization expansion quantum Monte Carlo

    Czech Academy of Sciences Publication Activity Database

    Augustinský, Pavel; Kuneš, Jan

    2013-01-01

    Roč. 184, č. 9 (2013), s. 2119-2126 ISSN 0010-4655 Institutional support: RVO:68378271 Keywords : continuous time quantum Monte Carlo method * Green function estimator Subject RIV: BE - Theoretical Physics Impact factor: 2.407, year: 2013

  3. Expansion of the Kano model to identify relevant customer segments and functional requirements

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Stefansson, Arnaldur Smari; Wietz, Miriam

    2017-01-01

    The Kano model of customer satisfaction has been widely used to analyse perceived needs of customers. The model provides product developers valuable information about if, and then how much a given functional requirement (FR) will impact customer satisfaction if implemented within a product, system...... or a service. A current limitation of the Kano model is that it does not allow developers to visualise which combined sets of FRs would provide the highest satisfaction between different customer segments. In this paper, a stepwise method to address this particular shortcoming is presented. First......, a traditional Kano analysis is conducted for the different segments of interest. Second, for each FR, relationship functions are integrated between x=0 and x=1. Third, integrals are inserted into a combination matrix crossing segments and FRs, where FRs with the highest sum across the chosen segments...

  4. Cognitive-analytical therapy for a patient with functional neurological symptom disorder-conversion disorder (psychogenic myopia: A case study

    Directory of Open Access Journals (Sweden)

    Hamid Nasiri

    2015-01-01

    Full Text Available Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.

  5. Cognitive-analytical therapy for a patient with functional neurological symptom disorder-conversion disorder (psychogenic myopia): A case study.

    Science.gov (United States)

    Nasiri, Hamid; Ebrahimi, Amrollah; Zahed, Arash; Arab, Mostafa; Samouei, Rahele

    2015-05-01

    Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia) was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.

  6. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  7. An analytical method for free vibration analysis of functionally graded beams with edge cracks

    Science.gov (United States)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai

    2012-03-01

    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  8. Research on AutoCAD secondary development and function expansion based on VBA technology

    Science.gov (United States)

    Zhang, Runmei; Gu, Yehuan

    2017-06-01

    AutoCAD is the most widely used drawing tool among the similar design drawing products. In the process of drawing different types of design drawings of the same product, there are a lot of repetitive and single work contents. The traditional manual method uses a drawing software AutoCAD drawing graphics with low efficiency, high error rate and high input cost shortcomings and many more. In order to solve these problems, the design of the parametric drawing system of the hot-rolled I-beam (steel beam) cross-section is completed by using the VBA secondary development tool and the Access database software with large-capacity storage data, and the analysis of the functional extension of the plane drawing and the parametric drawing design in this paper. For the secondary development of AutoCAD functions, the system drawing work will be simplified and work efficiency also has been greatly improved. This introduction of parametric design of AutoCAD drawing system to promote the industrial mass production and related industries economic growth rate similar to the standard I-beam hot-rolled products.

  9. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function.

    Science.gov (United States)

    Parrish-Novak, J; Dillon, S R; Nelson, A; Hammond, A; Sprecher, C; Gross, J A; Johnston, J; Madden, K; Xu, W; West, J; Schrader, S; Burkhead, S; Heipel, M; Brandt, C; Kuijper, J L; Kramer, J; Conklin, D; Presnell, S R; Berry, J; Shiota, F; Bort, S; Hambly, K; Mudri, S; Clegg, C; Moore, M; Grant, F J; Lofton-Day, C; Gilbert, T; Rayond, F; Ching, A; Yao, L; Smith, D; Webster, P; Whitmore, T; Maurer, M; Kaushansky, K; Holly, R D; Foster, D

    2000-11-02

    Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

  10. Analytic cubic and quartic force fields using density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

  11. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits

    Science.gov (United States)

    Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi

    2018-01-01

    Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory

  12. Explanatory Factors of the Expansion of Recreation Function on the Bank of Danube River in Budapest

    Directory of Open Access Journals (Sweden)

    Pál Szabó

    2015-10-01

    Full Text Available In a city's development a river and riverbank played important role, however in recent decades the functions of them have changed, transformed, especially in major cities in the more developed countries, so the city administration was faced with a new phenomenon and geographical space: the changing riverbanks, and the utilization, development, revitalization of them has become a key issue. The various real processes showed the direction that these areas should be provided to the people, and the recreation service will be important for the local residents and tourists. Overall, the urban waterfront development is an increasingly important researched topic and policy. The question is: can we realize it in Budapest also nowadays? In recent years, those processes took place in Budapest, which resulted in an increasing utilization of the Danube and its banks for recreational functions. On the one hand, local social and economic processes have led to the waterfront sites released, on the other hand the needs of the residential population and tourists using the river and the riverside for recreational purposes have increased, and thirdly, the new city administration decided to renew the banks of the Danube, mainly to create new recreational areas. In this paper, we analyze these three factors, focusing on a past short period, because there is an exceptional cohesion between the processes, the needs and the new development goals. Two case studies are in the paper also: the Margaret Island as the oldest traditional recreational area in Budapest, and the Kopaszi-dam, as the newest and successful recreational area of Budapest. The analysis of the processes is based on data and literature, the analysis of the needs is based on a survey, and the analysis of the goals is based on the different development documents.

  13. Analysis of those national analytic epidemiological studies that by obtention the exposure-response functions

    International Nuclear Information System (INIS)

    Molina, E.; Meneses, E.

    2003-01-01

    The Impact Pathway methodology, developed in the frame of Extern E project for estimating of the external costs or externalities of the energy use, has as one of their main steps the health impact evaluation. This evaluation is carried out through exposure-response functions. In previous estimates of the external costs of power generation in Cuba, functions obtained in international studies were used. The main objective of this work was to carry out a summarized critical analysis of those national analytic epidemiological studies that, according the exposed methodology, consider the main aspects specialized with views to the possible preliminary proposal of functions exposure-response (FER) based own in epidemiologic evidences. In agreement with the analysis, the results show that the great majority of the studies are not useful for the FER establishment, at least in their present form. A minority studies exists that contributes limited evidence and their reanalysis could increase their contribution to the propose purpose. Finally the main problems found in the studies are enumerated revision object

  14. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  15. Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory.

    Science.gov (United States)

    Likos, Christos N; Mladek, Bianca M; Gottwald, Dieter; Kahl, Gerhard

    2007-06-14

    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio Lf=0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.

  16. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    Science.gov (United States)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  17. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function.

    Science.gov (United States)

    Zitzer, Nina C; Snyder, Katiri; Meng, Xiamoei; Taylor, Patricia A; Efebera, Yvonne A; Devine, Steven M; Blazar, Bruce R; Garzon, Ramiro; Ranganathan, Parvathi

    2018-06-15

    MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155 -/- ) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8 + T cells and conventional CD4 + CD25 - T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8 + donor T cells and promoting exhaustion in donor CD4 + T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155 -/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. An analytic distribution function for a mass-less cored stellar system in a cuspy dark-matter halo

    NARCIS (Netherlands)

    Breddels, Maarten A.; Helmi, Amina

    2013-01-01

    We demonstrate the existence of a distribution function that can be used to represent spherical mass-less cored stellar systems having constant mildly tangential velocity anisotropy embedded in cuspy dark-matter halos. In particular, we derived analytically the functional form of the distribution

  19. First Steps in FAP: Experiences of Beginning Functional Analytic Psychotherapy Therapist with an Obsessive-Compulsive Personality Disorder Client

    Science.gov (United States)

    Manduchi, Katia; Schoendorff, Benjamin

    2012-01-01

    Practicing Functional Analytic Psychotherapy (FAP) for the first time can seem daunting to therapists. Establishing a deep and intense therapeutic relationship, identifying FAP's therapeutic targets of clinically relevant behaviors, and using contingent reinforcement to help clients emit more functional behavior in the therapeutic relationship all…

  20. Spanish juniper gain expansion opportunities by counting on a functionally diverse dispersal assemblage community.

    Science.gov (United States)

    Escribano-Ávila, Gema; Pías, Beatriz; Sanz-Pérez, Virginia; Virgós, Emilio; Escudero, Adrián; Valladares, Fernando

    2013-10-01

    Seed dispersal is typically performed by a diverse array of species assemblages with different behavioral and morphological traits which determine dispersal quality (DQ, defined as the probability of recruitment of a dispersed seed). Fate of ecosystems to ongoing environmental changes is critically dependent on dispersal and mainly on DQ in novel scenarios. We assess here the DQ, thus the multiplicative effect of germination and survival probability to the first 3 years of life, for seeds dispersed by several bird species (Turdus spp.) and carnivores (Vulpes vulpes, Martes foina) in mature woodland remnants of Spanish juniper (Juniperus thurifera) and old fields which are being colonized by this species. Results showed that DQ was similar in mature woodlands and old fields. Germination rate for seeds dispersed by carnivores (11.5%) and thrushes (9.12%) was similar, however, interacted with microhabitat suitability. Seeds dispersed by carnivores reach the maximum germination rate on shrubs (16%), whereas seeds dispersed by thrushes did on female juniper canopies (15.5) indicating that each group of dispersers performed a directed dispersal. This directional effect was diluted when survival probability was considered: thrushes selected smaller seeds which had higher mortality in the seedling stage (70%) in relation to seedlings dispersed by carnivores (40%). Overall, thrushes resulted low-quality dispersers which provided a probability or recruitment of 2.5%, while a seed dispersed by carnivores had a probability of recruitment of 6.5%. Our findings show that generalist dispersers (i.e., carnivores) can provide a higher probability of recruitment than specialized dispersers (i.e., Turdus spp.). However, generalist species are usually opportunistic dispersers as their role as seed dispersers is dependent on the availability of trophic resources and species feeding preferences. As a result, J. thurifera dispersal community is composed by two functional groups of

  1. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  2. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  3. On a generalized oscillator system: interbasis expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kibler, M [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Mardoyan, L G; Pogosyan, G S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1997-12-31

    This article deals with a nonrelativistic quantum mechanical study of a dynamical system which generalizes the isotropic harmonic oscillator system in three dimensions. The Schroedinger equation for this generalized oscillator system is separable in spherical, cylindrical, and spheroidal (prolate and oblate) coordinates. The quantum mechanical spectrum of this system is worked out in some details. The problem of interbasis expansions of the wave functions is completely solved. The coefficients for the expansion of the cylindrical basis in terms of the spherical basis, and vice-versa, are found to be analytic continuations (to real values of their arguments) of Clebsch-Gordan coefficients for the group SU(2). The interbasis expansion coefficients for the prolate and oblate spheroidal bases in terms of the spherical or the cylindrical bases are shown to satisfy three-term recursion relations. Finally, a connection between the generalized oscillator system (projected on the z-line) and the Morse system (in one dimension) are discussed. 41 refs.,.

  4. On a generalized oscillator system: interbasis expansions

    International Nuclear Information System (INIS)

    Kibler, M.; Mardoyan, L.G.; Pogosyan, G.S.

    1996-01-01

    This article deals with a nonrelativistic quantum mechanical study of a dynamical system which generalizes the isotropic harmonic oscillator system in three dimensions. The Schroedinger equation for this generalized oscillator system is separable in spherical, cylindrical, and spheroidal (prolate and oblate) coordinates. The quantum mechanical spectrum of this system is worked out in some details. The problem of interbasis expansions of the wave functions is completely solved. The coefficients for the expansion of the cylindrical basis in terms of the spherical basis, and vice-versa, are found to be analytic continuations (to real values of their arguments) of Clebsch-Gordan coefficients for the group SU(2). The interbasis expansion coefficients for the prolate and oblate spheroidal bases in terms of the spherical or the cylindrical bases are shown to satisfy three-term recursion relations. Finally, a connection between the generalized oscillator system (projected on the z-line) and the Morse system (in one dimension) are discussed. 41 refs.,

  5. Phylogenetic Analysis, Lineage-Specific Expansion and Functional Divergence of seed dormancy 4-Like Genes in Plants.

    Directory of Open Access Journals (Sweden)

    Saminathan Subburaj

    Full Text Available The rice gene seed dormancy 4 (OsSdr4 functions in seed dormancy and is a major factor associated with pre-harvest sprouting (PHS. Although previous studies of this protein family were reported for rice and other species, knowledge of the evolution of genes homologous to OsSdr4 in plants remains inadequate. Fifty four Sdr4-like (hereafter designated Sdr4L genes were identified in nine plant lineages including 36 species. Phylogenetic analysis placed these genes in eight subfamilies (I-VIII. Genes from the same lineage clustered together, supported by analysis of conserved motifs and exon-intron patterns. Segmental duplications were present in both dicot and monocot clusters, while tandemly duplicated genes occurred only in monocot clusters indicating that both tandem and segmental duplications contributed to expansion of the grass I and II subfamilies. Estimation of the approximate ages of the duplication events indicated that ancestral Sdr4 genes evolved from a common angiosperm ancestor, about 160 million years ago (MYA. Moreover, diversification of Sdr4L genes in mono and dicot plants was mainly associated with genome-wide duplication and speciation events. Functional divergence was observed in all subfamily pairs, except IV/VIIIa. Further analysis indicated that functional constraints between subfamily pairs I/II, I/VIIIb, II/VI, II/VIIIb, II/IV, and VI/VIIIb were statistically significant. Site and branch-site model analyses of positive selection suggested that these genes were under strong adaptive selection pressure. Critical amino acids detected for both functional divergence and positive selection were mostly located in the loops, pointing to functional importance of these regions in this protein family. In addition, differential expression studies by transcriptome atlas of 11 Sdr4L genes showed that the duplicated genes may have undergone divergence in expression between plant species. Our findings showed that Sdr4L genes are

  6. Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.

    Science.gov (United States)

    Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel

    2009-11-01

    A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.

  7. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; Stack, Andrew G.; van Duin, Adri C. T.; Logan, Bruce E.

    2014-01-01

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  8. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  9. Scale breaking parton fragmentation functions, analytical parametrizations and comparison with charged multiplicities in e+e- annihilation

    International Nuclear Information System (INIS)

    Perlt, H.

    1980-01-01

    Scale breaking quark and gluon fragmentation functions obtained by solving numerically Altarelli-Parisi type equations are presented. Analytical parametrizations are given for the fragmentation of u and d quarks into pions. The calculated Q 2 dependent fragmentation functions are compared with experimental data. With these scale breaking fragmentation functions the average charged multiplicity is calculated in e + e - annihilation, which rises with energy more than logarithmically and is in good agreement with experiment. (author)

  10. Computationally simple, analytic, closed form solution of the Coulomb self-interaction problem in Kohn Sham density functional theory

    International Nuclear Information System (INIS)

    Gonis, Antonios; Daene, Markus W.; Nicholson, Don M.; Stocks, George Malcolm

    2012-01-01

    We have developed and tested in terms of atomic calculations an exact, analytic and computationally simple procedure for determining the functional derivative of the exchange energy with respect to the density in the implementation of the Kohn Sham formulation of density functional theory (KS-DFT), providing an analytic, closed-form solution of the self-interaction problem in KS-DFT. We demonstrate the efficacy of our method through ground-state calculations of the exchange potential and energy for atomic He and Be atoms, and comparisons with experiment and the results obtained within the optimized effective potential (OEP) method.

  11. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    Science.gov (United States)

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  12. Sequential fitting-and-separating reflectance components for analytical bidirectional reflectance distribution function estimation.

    Science.gov (United States)

    Lee, Yu; Yu, Chanki; Lee, Sang Wook

    2018-01-10

    We present a sequential fitting-and-separating algorithm for surface reflectance components that separates individual dominant reflectance components and simultaneously estimates the corresponding bidirectional reflectance distribution function (BRDF) parameters from the separated reflectance values. We tackle the estimation of a Lafortune BRDF model, which combines a nonLambertian diffuse reflection and multiple specular reflectance components with a different specular lobe. Our proposed method infers the appropriate number of BRDF lobes and their parameters by separating and estimating each of the reflectance components using an interval analysis-based branch-and-bound method in conjunction with iterative K-ordered scale estimation. The focus of this paper is the estimation of the Lafortune BRDF model. Nevertheless, our proposed method can be applied to other analytical BRDF models such as the Cook-Torrance and Ward models. Experiments were carried out to validate the proposed method using isotropic materials from the Mitsubishi Electric Research Laboratories-Massachusetts Institute of Technology (MERL-MIT) BRDF database, and the results show that our method is superior to a conventional minimization algorithm.

  13. Using analytic derivatives to assess the impact of phase function Fourier decomposition technique on the accuracy of a radiative transfer model

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Natraj, Vijay

    2013-01-01

    Fourier decomposition of the phase function is essential to decouple the azimuthal component of the radiative transfer equation for multiple scattering calculations. This decomposition can be carried out by means of a direct numerical method based on the definition of the Fourier transform (numFT), or by an expansion of the phase function in terms of spherical Legendre polynomials (sphFT). numFT requires interpolation of the phase function between discrete angles, leading to spurious errors in the final computations. This error is difficult to quantify by means of intensity-only computations, since it is hard to determine the absolute accuracy of any given approach. We show that a linearization (analytic computation of derivatives) of the intensity with respect to parameters governing the phase function can be compared against results using the finite difference method, thereby providing a self-consistency test for characterizing and quantifying the error. We have applied this approach to two linearized versions of the Matrix Operator Method, which are identical in all respects except that one uses numFT while the other uses sphFT. In both cases, we compute the derivatives of the intensity with respect to aerosol parameters governing scattering in the simulated atmosphere. Comparison of the derivatives against their finite difference estimates shows a reduction of error by several orders of magnitude when Legendre polynomials are employed. We have also examined the effect of the angular resolution of the phase function on the error due to the numFT technique. A general reduction of error is seen with increasing angular resolution, indicating that interpolation is indeed the major error source. Also, we have pointed out a related source of error in numFT computations that occurs when Fourier decomposition is carried out on the composite phase function of a layer consisting of more than one scatterer. We conclude that an expansion of the phase function in terms of

  14. Modeling of stochastic broadening in a poloidally diverted discharge with piecewise analytic symplectic mapping flux functions

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen

    2008-01-01

    A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results

  15. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  16. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  17. Detector line spread functions determined analytically by transport of Compton recoil electrons

    International Nuclear Information System (INIS)

    Veld, A.A. van't; Luijk, P. van; Praamstra, F.; Hulst, P.C. van der

    2001-01-01

    To achieve the maximum benefit of conformal radiation therapy it is necessary to obtain accurate knowledge of radiation beam penumbras based on high-resolution relative dosimetry of beam profiles. For this purpose there is a need to perform high-resolution dosimetry with well-established routine dosimeters, such as ionization chambers or diodes. Profiles measured with these detectors must be corrected for the dosimeter's nonideal response, caused by finite dimensions and, in the case of an ionization chamber, the alteration of electron transport and a contribution of electrons recoiled in the chamber wall and the central electrode. For this purpose the line spread function (LSF) of the detector is needed. The experimental determination of LSFs is cumbersome and restricted to the specific detector and beam energy spectrum used. Therefore, a previously reported analytical model [Med. Phys. 27, 923-934 (2000)] has been extended to determine response profiles of routine dosimeters: shielded diodes and, in particular, ionization chambers, in primary dose slit beams. The model combines Compton scattering of incident photons, the transport of recoiled electrons by Fermi-Eyges small-angle multiple scattering theory, and functions to limit electron transport. It yields the traveling direction and the energy of electrons upon incidence on the detector surface. In the case of ionization chambers, geometrical considerations are then sufficient to calculate the relative amount of ionization in chamber air, i.e., the detector response, as a function of the detector location in the slit beam. In combination with the previously reported slit beam dose profiles, the LSF can then readily be derived by reconstruction techniques. Since the spectral contributions are preserved, the LSF of a dosimeter is defined for any beam for which the effective spectrum is known. The detector response profiles calculated in this study have been verified in a telescopic slit beam geometry, and were

  18. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  19. An analytical expression for the non-singlet structure functions at small χ in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, M.

    2004-01-01

    A simple analytic expression for the non-singlet structure function fns is given. The expression is derived from the result of B. I. Ermolaev et al. (1996) obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD. (orig.)

  20. Using Analytic Hierarchy Process for Exploring Prioritization of Functional Strategies in Auto Parts Manufacturing SMEs of Pakistan

    OpenAIRE

    Yasir Ahmad; Danial Saeed Pirzada

    2014-01-01

    This article uses analytical hierarchy process (AHP) to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management) by small and medium enterprises (SMEs) operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally famil...

  1. Analytical tools and functions of GIS in the process control and decision support of mining company

    Directory of Open Access Journals (Sweden)

    Semrád Peter

    2001-12-01

    calculate their total quantity of reserves and distance and network analysis (modelling protection pillars as buffer zones for operating objects above ground, time calculation for transport of mineral resource, using optimal routes combined with cost calcultion, from the analytical apparatus and functions of GIS used in the process control and decision support of mining company.Modern mining is ranked to the specific group of fields with high information intensity. Because of high financial demands of the mine processes and technologies, the basical strategy of all mining companies is the utilization of information technologies for the reduction of expenses. Implementation of GIS in this area is, according to their options and functions, ideal.

  2. The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    International Nuclear Information System (INIS)

    Keitel, Jan; Bartosch, Lorenz

    2012-01-01

    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model. (paper)

  3. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    Science.gov (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  4. Cys-X scanning for expansion of active-site residues and modulation of catalytic functions in a glutathione transferase.

    Science.gov (United States)

    Norrgård, Malena A; Hellman, Ulf; Mannervik, Bengt

    2011-05-13

    We propose Cys-X scanning as a semisynthetic approach to engineer the functional properties of recombinant proteins. As in the case of Ala scanning, key residues in the primary structure are identified, and one of them is replaced by Cys via site-directed mutagenesis. The thiol of the residue introduced is subsequently modified by alternative chemical reagents to yield diverse Cys-X mutants of the protein. This chemical approach is orthogonal to Ala or Cys scanning and allows the expansion of the repertoire of amino acid side chains far beyond those present in natural proteins. In its present application, we have introduced Cys-X residues in human glutathione transferase (GST) M2-2, replacing Met-212 in the substrate-binding site. To achieve selectivity of the modifications, the Cys residues in the wild-type enzyme were replaced by Ala. A suite of simple substitutions resulted in a set of homologous Met derivatives ranging from normethionine to S-heptyl-cysteine. The chemical modifications were validated by HPLC and mass spectrometry. The derivatized mutant enzymes were assayed with alternative GST substrates representing diverse chemical reactions: aromatic substitution, epoxide opening, transnitrosylation, and addition to an ortho-quinone. The Cys substitutions had different effects on the alternative substrates and differentially enhanced or suppressed catalytic activities depending on both the Cys-X substitution and the substrate assayed. As a consequence, the enzyme specificity profile could be changed among the alternative substrates. The procedure lends itself to large-scale production of Cys-X modified protein variants.

  5. An Analytical Study of the Nonsinglet Spin Structure Function g1NS(x,t) Up to NLO in the DGLAP Approach at Small x

    International Nuclear Information System (INIS)

    Borah, Neelakshi N. K.; Choudhury, D. K.

    2014-01-01

    A next-to-leading order QCD calculation of nonsinglet spin structure function g 1 NS (x,t) at small x is presented using the analytical methods: Lagrange’s method and method of characteristics. The compatibility of these analytical approaches is tested by comparing the analytical solutions with the available polarized global fits

  6. The Expansion and Functional Diversification of the Mammalian Ribonuclease A Superfamily Epitomizes the Efficiency of Multigene Families at Generating Biological Novelty

    Science.gov (United States)

    Goo, Stephen M.; Cho, Soochin

    2013-01-01

    The ribonuclease (RNase) A superfamily is a vertebrate-specific gene family. Because of a massive expansion that occurred during the early mammalian evolution, extant mammals in general have much more RNase genes than nonmammalian vertebrates. Mammalian RNases have been associated with diverse physiological functions including digestion, cytotoxicity, angiogenesis, male reproduction, and host defense. However, it is still uncertain when their expansion occurred and how a wide array of functions arose during their evolution. To answer these questions, we generate a compendium of all RNase genes identified in 20 complete mammalian genomes including the platypus, Ornithorhynchus anatinus. Using this, we delineate 13 ancient RNase gene lineages that arose before the divergence between the monotreme and the other mammals (∼220 Ma). These 13 ancient gene lineages are differentially retained in the 20 mammals, and the rate of protein sequence evolution is highly variable among them, which suggest that they have undergone extensive functional diversification. In addition, we identify 22 episodes of recent expansion of RNase genes, many of which have signatures of adaptive functional differentiation. Exemplifying this, bursts of gene duplication occurred for the RNase1, RNase4, and RNase5 genes of the little brown bat (Myotis lucifugus), which might have contributed to the species’ effective defense against heavier pathogen loads caused by its communal roosting behavior. Our study illustrates how host-defense systems can generate new functions efficiently by employing a multigene family, which is crucial for a host organism to adapt to its ever-changing pathogen environment. PMID:24162010

  7. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    Science.gov (United States)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  8. Analytical determination of Kondo and Fano resonances of electron Green's function in a single-level quantum dot

    International Nuclear Information System (INIS)

    Nguyen Bich Ha; Nguyen Van Hop

    2009-01-01

    The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.

  9. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-01-01

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems

  10. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  11. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  12. A comparison of galaxy group luminosity functions from semi-analytic models

    NARCIS (Netherlands)

    Snaith, Owain N.; Gibson, Brad K.; Brook, Chris B.; Courty, Stéphanie; Sánchez-Blázquez, Patricia; Kawata, Daisuke; Knebe, Alexander; Sales, Laura V.

    Semi-analytic models (SAMs) are currently one of the primary tools with which we model statistically significant ensembles of galaxies. The underlying physical prescriptions inherent to each SAM are, in many cases, different from one another. Several SAMs have been applied to the dark matter merger

  13. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  14. Advances in functional brain imaging technology and developmental neuro-psychology: their applications in the Jungian analytic domain.

    Science.gov (United States)

    Petchkovsky, Leon

    2017-06-01

    Analytical psychology shares with many other psychotherapies the important task of repairing the consequences of developmental trauma. The majority of analytic patients come from compromised early developmental backgrounds: they may have experienced neglect, abuse, or failures of empathic resonance from their carers. Functional brain imagery techniques including Quantitative Electroencephalogram (QEEG), and functional Magnetic Resonance Imagery (fMRI), allow us to track mental processes in ways beyond verbal reportage and introspection. This independent perspective is useful for developing new psychodynamic hypotheses, testing current ones, providing diagnostic markers, and monitoring treatment progress. Jung, with the Word Association Test, grasped these principles 100 years ago. Brain imaging techniques have contributed to powerful recent advances in our understanding of neurodevelopmental processes in the first three years of life. If adequate nurturance is compromised, a range of difficulties may emerge. This has important implications for how we understand and treat our psychotherapy clients. The paper provides an overview of functional brain imaging and advances in developmental neuropsychology, and looks at applications of some of these findings (including neurofeedback) in the Jungian psychotherapy domain. © 2017, The Society of Analytical Psychology.

  15. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  16. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products.

    Science.gov (United States)

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2016-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.

  17. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Padé approximant

    Science.gov (United States)

    Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.

    2016-04-01

    The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

  18. The delta expansion in zero dimensions

    International Nuclear Information System (INIS)

    Cho, H.T.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.

    1989-01-01

    The recently introduced δ-expansion (or logarithmic-expansion) technique for obtaining nonperturbative information about quantum field theories is reviewed in the zero-dimensional context. There, it is easy to study questions of analytic continuation that arise in the construction of the Feynman rules that generate the δ series. It is found that for six- and higher-point Green's functions, a cancellation occurs among the most divergent terms, and that divergences that arise from summing over an infinite number of internal lines are illusory. The numerical accuracy is studied in some detail: The δ series converges inside a circle of radius one for positive bare mass squared, and diverges if the bare mass squared is negative, but in all cases, low-order Pade approximants are extremely accurate. These general features are expected to hold in higher dimensions, such as four

  19. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  20. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  1. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    Science.gov (United States)

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  2. Comment on 'Analytical results for a Bessel function times Legendre polynomials class integrals'

    International Nuclear Information System (INIS)

    Cregg, P J; Svedlindh, P

    2007-01-01

    A result is obtained, stemming from Gegenbauer, where the products of certain Bessel functions and exponentials are expressed in terms of an infinite series of spherical Bessel functions and products of associated Legendre functions. Closed form solutions for integrals involving Bessel functions times associated Legendre functions times exponentials, recently elucidated by Neves et al (J. Phys. A: Math. Gen. 39 L293), are then shown to result directly from the orthogonality properties of the associated Legendre functions. This result offers greater flexibility in the treatment of classical Heisenberg chains and may do so in other problems such as occur in electromagnetic diffraction theory. (comment)

  3. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    Science.gov (United States)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  4. Analytical Calculation of D- and Q-axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory

    Directory of Open Access Journals (Sweden)

    Peixin Liang

    2016-07-01

    Full Text Available Interior permanent magnet (IPM motors are widely used in electric vehicles (EVs, benefiting from the excellent advantages of a more rational use of energy. For further improvement of energy utilization, this paper presents an analytical method of d- and q-axis inductance calculation for IPM motors with V-shaped rotor in no-load condition. A lumped parameter magnetic circuit model (LPMCM is adopted to investigate the saturation and nonlinearity of the bridge. Taking into account the influence of magnetic field distribution on inductance, the winding function theory (WFT is employed to accurately calculate the armature reaction airgap magnetic field and d- and q-axis inductances. The validity of the analytical technique is verified by the finite element method (FEM.

  5. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vudakin, Z.

    1999-01-01

    Analytical method for solving radioactive transformations is presented in this paper. High accuracy series expansion of the depletion function and nonsingular Bateman coefficients are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Generality and simplicity of the method are found to be useful in evaluating nuclide chains with one hundred or more nuclides in the chain. Method enables evaluation of complete chain, without elimination of short-lives nuclides. It is efficient and accurate

  6. Resonances and analyticity of scattering wave function for square-well-type potentials

    International Nuclear Information System (INIS)

    Weber, T.A.; Hammer, C.L.; Zidell, V.S.

    1982-01-01

    In this paper we extend our previous analysis of the scattering of wave packets in one dimension to the case of the square-well potential. The analytic properties of the general scattering solution are emphasized thereby making the analysis useful as introductory material for a more sophisticated S-matrix treatment. The square-well model is particularly interesting because of its application to the deuteron problem. Resonance scattering, barrier penetration, time delay, and line shape are discussed at the level of the first-year graduate student

  7. Testing a path-analytic mediation model of how motivational enhancement physiotherapy improves physical functioning in pain patients.

    Science.gov (United States)

    Cheing, Gladys; Vong, Sinfia; Chan, Fong; Ditchman, Nicole; Brooks, Jessica; Chan, Chetwyn

    2014-12-01

    Pain is a complex phenomenon not easily discerned from psychological, social, and environmental characteristics and is an oft cited barrier to return to work for people experiencing low back pain (LBP). The purpose of this study was to evaluate a path-analytic mediation model to examine how motivational enhancement physiotherapy, which incorporates tenets of motivational interviewing, improves physical functioning of patients with chronic LBP. Seventy-six patients with chronic LBP were recruited from the outpatient physiotherapy department of a government hospital in Hong Kong. The re-specified path-analytic model fit the data very well, χ (2)(3, N = 76) = 3.86, p = .57; comparative fit index = 1.00; and the root mean square error of approximation = 0.00. Specifically, results indicated that (a) using motivational interviewing techniques in physiotherapy was associated with increased working alliance with patients, (b) working alliance increased patients' outcome expectancy and (c) greater outcome expectancy resulted in a reduction of subjective pain intensity and improvement in physical functioning. Change in pain intensity also directly influenced improvement in physical functioning. The effect of motivational enhancement therapy on physical functioning can be explained by social-cognitive factors such as motivation, outcome expectancy, and working alliance. The use of motivational interviewing techniques to increase outcome expectancy of patients and improve working alliance could further strengthen the impact of physiotherapy on rehabilitation outcomes of patients with chronic LBP.

  8. On Some Analytic Operator Functions in the Theory of Hermitian Operators

    Directory of Open Access Journals (Sweden)

    Perch Melik-Adamyan

    2014-01-01

    Full Text Available A densely defined Hermitian operator $A_0$ with equal defect numbers is considered. Presentable by means of resolvents of a certain maximal dissipative or accumulative extensions of $A_0$, bounded linear operators acting from some defect subspace $\\mfn_\\gamma$ to arbitrary other $\\mfn_\\lambda$ are investigated. With their aid are discussed characteristic and Weyl functions. A family of Weyl functions is described, associated with a given self-adjoint extension of $A_0$. The specific property of Weyl function's factors enabled to obtain a modified formulas of von Neumann. In terms of characteristic and Weyl functions of suitably chosen extensions the resolvent of Weyl function is presented explicitly.

  9. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products

    OpenAIRE

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2015-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92–17.80 % (wb) and protein from 5.03 % (wb) to 5.46–13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33–33.53 and 5.30–11.53 fold increase in the ...

  10. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: psharma@rtu.ac.in; Parashar, Sandeep Kumar, E-mail: parashar2@yahoo.com [Mechanical Engineering Department, Rajasthan Technical University, Kota (India)

    2016-05-06

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  11. Modelling altered revenue function based on varying power consumption distribution and electricity tariff charge using data analytics framework

    Science.gov (United States)

    Zainudin, W. N. R. A.; Ramli, N. A.

    2017-09-01

    In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.

  12. Towards an analytic solution of QCD: The glueball mass gap

    International Nuclear Information System (INIS)

    West, G.B.

    1987-01-01

    Certain general features and beliefs concerning quantum chromodynamics are reviewed with he view to seeing whether the theory sense and whether its physical spectrum can be determined. A typical Green's function is represented as an expansion around the minima of the action, each term of which is divergent and requires renormalization. It is shown that even after renormalization, each of the series generated by expansion around a minimum is divergent and requires a summability procedure to make sense. The causality and analyticity of the resulting Green's function is then discussed. The ideas thus developed are shown to determine the position of the first singularity of the Green's function

  13. Functional-analytical capabilities of GIS technology in the study of water use risks

    International Nuclear Information System (INIS)

    Nevidimova, O G; Yankovich, E P; Yankovich, K S

    2015-01-01

    Regional security aspects of economic activities are of great importance for legal regulation in environmental management. This has become a critical issue due to climate change, especially in regions where severe climate conditions have a great impact on almost all types of natural resource uses. A detailed analysis of climate and hydrological situation in Tomsk Oblast considering water use risks was carried out. Based on developed author's techniques an informational and analytical database was created using ArcGIS software platform, which combines statistical (quantitative) and spatial characteristics of natural hazards and socio-economic factors. This system was employed to perform areal zoning according to the degree of water use risks involved

  14. Simultaneous determination of renal function biomarkers in urine using a validated paper-based microfluidic analytical device.

    Science.gov (United States)

    Rossini, Eduardo Luiz; Milani, Maria Izabel; Carrilho, Emanuel; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-02

    In this paper, we describe a validated paper-based microfluidic analytical device for the simultaneous quantification of two important biomarkers of renal function in urine. This paper platform provides an inexpensive, simple, and easy to use colorimetric method for the quantification of creatinine (CRN) and uric acid (UA) in urine samples. The microfluidic paper-based analytical device (μPAD) consists of a main channel with three identical arms, each containing a circular testing zone and a circular uptake zone. Creatinine detection is based on the Jaffé reaction, in which CRN reacts with picrate to form an orange-red product. Uric acid quantification is based on the reduction of Fe 3+ to Fe 2+ by UA, which is detected in a colorimetric reaction using 1,10-phenanthroline. Under optimum conditions, obtained through chemometrics, the concentrations of the analytes showed good linear correlations with the effective intensities, and the method presented satisfactory repeatability. The limits of detection and the linear ranges, respectively, were 15.7 mg L -1 and 50-600 mg L -1 for CRN and 16.5 mg L -1 and 50-500 mg L -1 for UA. There were no statistically significant differences between the results obtained using the μPAD and a chromatographic comparative method (Student's t-test at 95% confidence level). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Triumph of Function over Form The Role of Analytic Philosophy in Planning and Analysing Modern Architecture

    Directory of Open Access Journals (Sweden)

    Borbala Jasz

    2017-07-01

    Full Text Available The most dominant dialectical succession of architectural thinking during the 20th Century was between form and function. The latter of these two modern ways of architectural thinking is based on the results of Carnapian Neopositivism. The keywords of this philosophical school, that are empiricism, logic, verification, unity of language and science, could still be applied to interpreting modern architecture. I will explain the antecedents and the first connection between analytic philosophy and architecture, and some characteristic points of their influence during the 20th Century: the triumph of function over form as analogous to triumph of analytic philosophy over metaphysics.After the theoretic grounding of the form-function debate, I am going to focus first on the characteristic appearance of form: the Façadism of Socialist Realism in the architecture of East-Central Europe. Second, I will explain that architectural tendencies of classical modernism did not disappear in this period, they were just hidden in case of public buildings or migrated to the industrial planning. Third, I am going to claim that after this socialist realist gap, the architectural theory and planning tendencies of the interwar period – especially the work of Le Corbusier – returned and continued.

  16. The Effect of Contingent Reinforcement on Target Variables in Outpatient Psychotherapy for Depression: A Successful and Unsuccessful Case Using Functional Analytic Psychotherapy

    Science.gov (United States)

    Kanter, Jonathan W.; Landes, Sara J.; Busch, Andrew M.; Rusch, Laura C.; Brown, Keri R.; Baruch, David E.; Holman, Gareth I.

    2006-01-01

    The current study investigated a behavior-analytic treatment, functional analytic psychotherapy (FAP), for outpatient depression utilizing two single-subject A/A+B designs. The baseline condition was cognitive behavioral therapy. Results demonstrated treatment success in 1 client after the addition of FAP and treatment failure in the 2nd. This…

  17. Social Stigma and Sexual Minorities’ Romantic Relationship Functioning: A Meta-Analytic Review

    Science.gov (United States)

    Doyle, David Matthew; Molix, Lisa

    2015-01-01

    To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. PMID:26199218

  18. Social Stigma and Sexual Minorities' Romantic Relationship Functioning: A Meta-Analytic Review.

    Science.gov (United States)

    Doyle, David Matthew; Molix, Lisa

    2015-10-01

    To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. © 2015 by the Society for Personality and Social Psychology, Inc.

  19. Do people with chronic pain have impaired executive function? A meta-analytical review.

    Science.gov (United States)

    Berryman, Carolyn; Stanton, Tasha R; Bowering, K Jane; Tabor, Abby; McFarlane, Alexander; Moseley, G Lorimer

    2014-11-01

    A widely held belief within the clinical community is that chronic pain is associated with cognitive impairment, despite the absence of a definitive systematic review or meta-analysis on the topic. The current systematic review and meta-analysis aimed to establish the current evidence concerning the difference in executive function between people with chronic pain and healthy controls. Six databases were searched for citations related to executive function and chronic pain from inception to June 24, 2013. Two reviewers independently assessed studies for eligibility and extracted relevant data according to the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty five studies were included in the review and twenty two studies in the meta-analysis. A small to moderate impairment in executive function performance was found in people with chronic pain across cognitive components, although all studies had a high risk of bias. The current evidence suggests impairment of executive function in people with chronic pain, however, important caveats exist. First, executive function involves many cognitive components and there is no standard test for it. Second, moderators of executive function, such as medication and sleep, were seldom controlled for in studies of executive function performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Multi-criteria Generation-Expansion Planning with Carbon dioxide emissions and Nuclear Safety considerations

    International Nuclear Information System (INIS)

    Lee, Hun Gyu; Kim, Young Chang

    2010-01-01

    A multiple criteria decision making (MCDM) method is developed to aid decision makers in Generation Expansion planning and management. Traditionally, the prime objective of an electric utility's generation-expansion planning has been to determine the minimum cost supply plans that meet expected demands over a planning horizon (typically 10 to 30 years). Today, however, the nature of decision environments has changed substantially. Increased policy attention is given to solve the multiple tradeoff function including environmental and social factors as well as economic one related to nuclear power expansion. In order to deal with this MCDM problem, the Analytic Hierarchy Process (AHP) Model is applied

  1. Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations

    International Nuclear Information System (INIS)

    Poquerusse, A.; Alexiou, S.

    1999-01-01

    In this work we review the status of the standard line broadening theory for plasmas and fill in the existing gap, i.e., the partially overlapping case for ions lines, by deriving expressions as well as fast and accurate numerical approximations for the relevant functions, namely the modified Bessel function of imaginary order and its derivative with respect to argument. These functions also arise in the context of the theory of Coulomb excitation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Analytic methods for the Percus-Yevick hard sphere correlation functions

    Directory of Open Access Journals (Sweden)

    D. Henderson

    2009-01-01

    Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.

  3. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2009-01-01

    an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second

  4. Causality and analyticity in optics

    International Nuclear Information System (INIS)

    Nussenzveig, H.M.

    In order to provide an overall picture of the broad range of optical phenomena that are directly linked with the concepts of causality and analyticity, the following topics are briefly reviewed, emphasizing recent developments: 1) Derivation of dispersion relations for the optical constants of general linear media from causality. Application to the theory of natural optical activity. 2) Derivation of sum rules for the optical constants from causality and from the short-time response function (asymptotic high-frequency behavior). Average spectral behavior of optical media. Applications. 3) Role of spectral conditions. Analytic properties of coherence functions in quantum optics. Reconstruction theorem.4) Phase retrieval problems. 5) Inverse scattering problems. 6) Solution of nonlinear evolution equations in optics by inverse scattering methods. Application to self-induced transparency. Causality in nonlinear wave propagation. 7) Analytic continuation in frequency and angular momentum. Complex singularities. Resonances and natural-mode expansions. Regge poles. 8) Wigner's causal inequality. Time delay. Spatial displacements in total reflection. 9) Analyticity in diffraction theory. Complex angular momentum theory of Mie scattering. Diffraction as a barrier tunnelling effect. Complex trajectories in optics. (Author) [pt

  5. ORBITALES. A program for the calculation of wave functions with an analytical central potential; ORBITALES. Programa de calculo de Funciones de Onda para una Potencial Central Analitico

    Energy Technology Data Exchange (ETDEWEB)

    Carretero, Yunta; Rodriguez Mayquez, E

    1974-07-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs.

  6. Analytical solution of Mori's equation with secant hyperbolic memory

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Pathak, K.N.

    1993-07-01

    The equation of motion of the auto-correlation function has been solved analytically using a secant-hyperbolic form of the memory function. The analytical results obtained for the long time expansion together with the short time expansion provide a good description over the whole time domain as judged by their comparison with the numerical solution of Mori's equation of motion. We also find that the time evolution of the auto-correlation function is determined by a single parameter τ which is related to the frequency sum rules up to the fourth order. The auto-correlation function has been found to show simple decaying or oscillatory behaviour depending on whether the parameter τ is greater than or less than some critical values. Similarities as well as differences in time evolution of the auto-correlation have been discussed for exponential, secant-hyperbolic and Gaussian approaches of the memory function. (author). 16 refs, 5 figs

  7. Application of ANFIS for analytical modeling of tensile strength of functionally graded steels

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.

  8. Using Analytic Hierarchy Process for Exploring Prioritization of Functional Strategies in Auto Parts Manufacturing SMEs of Pakistan

    Directory of Open Access Journals (Sweden)

    Yasir Ahmad

    2014-11-01

    Full Text Available This article uses analytical hierarchy process (AHP to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management by small and medium enterprises (SMEs operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally family-owned businesses, and this study provides concrete insights into the mind-set of owners toward different functional strategies. The AHP implementation steps are performed using commercially available software “Expert Choice®.” Marketing strategy is considered to be the most important strategy, while manufacturing management strategy is the second most important strategy. There is little emphasis on the financial and human resource management which is a serious cause of concern. The study would help policy makers to understand the business behaviors of this sector and consequently formulate policies to enhance their performance.

  9. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications.

    Science.gov (United States)

    Oh, Ju-Hwan; Park, Do Hyun; Joo, Jang Ho; Lee, Jae-Seung

    2015-11-01

    The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve "smart" nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.

  10. Renormalization group functions of the φ4 theory in the strong coupling limit: Analytical results

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2008-01-01

    The previous attempts of reconstructing the Gell-Mann-Low function β(g) of the φ 4 theory by summing perturbation series give the asymptotic behavior β(g) = β ∞ g in the limit g → ∞, where α = 1 for the space dimensions d = 2, 3, 4. It can be hypothesized that the asymptotic behavior is β(g) ∼ g for all d values. The consideration of the zero-dimensional case supports this hypothesis and reveals the mechanism of its appearance: it is associated with vanishing of one of the functional integrals. The generalization of the analysis confirms the asymptotic behavior β(g) ∼ g in the general d-dimensional case. The asymptotic behaviors of other renormalization group functions are constant. The connection with the zero-charge problem and triviality of the φ 4 theory is discussed

  11. The transcendent function, moments of meeting and dyadic consciousness: constructive and destructive co-creation in the analytic dyad.

    Science.gov (United States)

    Carter, Linda

    2010-04-01

    In reading the work of Beebe (2002), Sander (Amadei & Bianchi 2008), Tronick (2007) and Stern and the Boston Change Process Study Group (1998), resonances to the transcendent function can be registered but these researchers seem to be more focused on the interpersonal domain. In particular Tronick's concept of 'dyadic expansion of consciousness' and 'moments of meeting' from the Boston Change Process Study Group describe external dyadic interactions between mothers and babies and therapists and patients while, in contrast, Jung's early focus was on the intrapsychic process of internal interaction between conscious and unconscious within an individual. From an overall perspective, the interpersonal process of change described by infant researchers, when held in conjunction with Jung's internal process of change, together form a transcendent whole that could also be called a complex adaptive system. Such new theoretical perspectives from other fields confirm and elaborate long held Jungian notions such as the transcendent function which is, in many ways, harmonious with a systems perspective. Throughout this paper, clinical vignettes of interactive moments along with sand play and dreams will be used to illustrate theoretical points regarding the healthy process of the transcendent function along with descriptions of failures of such conjunctive experiences.

  12. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  13. A methodology to improve higher education quality using the quality function deployment and analytic hierarchy process

    NARCIS (Netherlands)

    Raharjo, H.; Xie, M.; Goh, T.N.; Brombacher, A.C.

    2007-01-01

    In order to formulate an effective strategic plan in a customer-driven education context, it is important to recognize who the customers are and what they want. Using Quality Function Deployment (QFD), this information can be translated into strategies to achieve customer satisfaction. Since the

  14. The evolution of the global stellar mass function of star clusters: an analytic description

    NARCIS (Netherlands)

    Lamers, H.J.G.L.M.; Baumgardt, H.; Gieles, M.

    2013-01-01

    The evolution of the global stellar mass function of star clusters is studied based on a large set of N-body simulations of clusters with a range of initial masses, initial concentrations, in circular or elliptical orbits in different tidal environments. Models with and without initial mass

  15. Pain beliefs and problems in functioning among people with arthritis: a meta-analytic review.

    Science.gov (United States)

    Jia, Xiaojun; Jackson, Todd

    2016-10-01

    In this meta-analysis, we evaluated overall strengths of relation between beliefs about pain, health, or illness and problems in functioning (i.e., functional impairment, affective distress, pain severity) in osteoarthritis and rheumatoid arthritis samples as well as moderators of these associations. In sum, 111 samples (N = 17,365 patients) met inclusion criteria. On average, highly significant, medium effect sizes were observed for associations between beliefs and problems in functioning but heterogeneity was also inflated. Effect sizes were not affected by arthritis subtype, gender, or age. However, pain belief content emerged as a significant moderator, with larger effect sizes for studies in which personal incapacity or ineffectiveness in controlling pain was a content theme of belief indices (i.e., pain catastrophizing, helplessness, self-efficacy) compared to those examining locus of control and fear/threat/harm beliefs. Furthermore, analyses of longitudinal study subsets supported the status of pain beliefs risk factors for later problems in functioning in these groups.

  16. Functional Communication Training: A Contemporary Behavior Analytic Intervention for Problem Behaviors.

    Science.gov (United States)

    Durand, V. Mark; Merges, Eileen

    2001-01-01

    This article describes functional communication training (FCT) with students who have autism. FCT involves teaching alternative communication strategies to replace problem behaviors. The article reviews the conditions under which this intervention is successful and compares the method with other behavioral approaches. It concludes that functional…

  17. A Factor-Analytic Study of Adaptive Behavior and Intellectual Functioning in Learning Disabled Children.

    Science.gov (United States)

    Yeargan, Dollye R.

    The factorial structure of intellectual functioning and adaptive behavior was examined in 160 learning disabled students (6 to 16 years old). Ss were administered the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Coping Inventory (CI). Factor analysis of WISC-R scores revealed three factors: verbal comprehenson, perceptual…

  18. Modeling Asymmetric Flow of Viscoelastic Fluid in Symmetric Planar Sudden Expansion Geometry Based on User-Defined Function in FLUENT CFD Package

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Zheng

    2013-01-01

    Full Text Available Through embedding an in-house subroutine into FLUENT code by utilizing the functionalization of user-defined function provided by the software, a new numerical simulation methodology on viscoelastic fluid flows has been established. In order to benchmark this methodology, numerical simulations under different viscoelastic fluid solution concentrations (with solvent viscosity ratio varied from 0.2 to 0.9, extensibility parameters (100≤L2≤500, Reynolds numbers (0.1 ≤ Re ≤ 100, and Weissenberg numbers (0 ≤ Wi ≤ 20 are conducted on unsteady laminar flows through a symmetric planar sudden expansion with expansion ratio of 1: 3 for viscoelastic fluid flows. The constitutive model used to describe the viscoelastic effect of viscoelastic fluid flow is FENE-P (finitely extensive nonlinear elastic-Peterlin model. The numerical simulation results show that the influences of elasticity, inertia, and concentration on the flow bifurcation characteristics are more significant than those of extensibility. The present simulation results including the critical Reynolds number for which the flow becomes asymmetric, vortex size, bifurcation diagram, velocity distribution, streamline, and pressure loss show good agreements with some published results. That means the newly established method based on FLUENT software platform for simulating peculiar flow behaviors of viscoelastic fluid is credible and suitable for the study of viscoelastic fluid flows.

  19. The Analytic Solution of Schroedinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    International Nuclear Information System (INIS)

    Hu Xianquan; Luo Guang; Cui Lipeng; Niu Lianbin; Li Fangyu

    2009-01-01

    The analytic solution of the radial Schroedinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schroedinger equation is V(r) = α 1 r 8 + α 2 r 3 + α 3 r 2 + β 3 r -1 + β 2 r -3 + β 1 r -4 . Generally speaking, there is only an approximate solution, but not analytic solution for Schroedinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schroedinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schroedinger equation; and lastly, they discuss the solutions and make conclusions. (general)

  20. Analytical method development using functionalized polysulfone membranes for the determination of chlorinated hydrocarbons in water.

    Science.gov (United States)

    Nuhu, Abdulmumin A; Basheer, Chanbasha; Abu-Thabit, Nedal Y; Alhooshani, Khalid; Al-Arfaj, Abdul Rahman

    2011-12-15

    In this study, functionalized polysulfone membrane has been utilized as a sorbent for the extraction of chlorinated hydrocarbons (CHCs) in water samples. Two different functionalized polysulfones (i) phosphonic acid functionalized polysulfone (PPSU-A) with different forms (cross-linked and non cross-linked) membranes and (ii) phosphonic ester functionalized polysulfone (PPSU-E) with different forms (cross-linked and non cross-linked) were evaluated for the extraction of CHCs in water. A 10 ml of spiked water sample was extracted with 50mg piece of the functionalized membrane. After extraction, the membrane was desorbed by organic solvent and the extract was analyzed by gas chromatography-mass spectrometry. Eight CHCs, 1,3,5-trichlorobenzene (1,3,5-TCB), 1,2,3-trichlorobenzene (1,2,3-TCB), 1,1,2,3,4,4-hexachloro-1,3-butadiene (HCBD), 1,2,4-trichloro-3-methylbenzene (TCMB), 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB), pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) were used as model compounds. Experimental parameters such as extraction time, desorption time, types of polymer membrane as well the nature of desorption solvent were optimized. Using optimum extraction conditions calibration curves were linear with coefficients of determination between 0.9954 and 0.9999 over wide range of concentrations (0.05-100 μgl(-1)). The method detection limits (at a signal-to-noise ratio of 3) were in the range of 0.4-3.9 ng l(-1). The proposed method was evaluated for the determination of CHCs in drinking water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  2. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    International Nuclear Information System (INIS)

    Carboni, Andrea; Emke, Erik; Parsons, John R.; Kalbitz, Karsten; Voogt, Pim de

    2014-01-01

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg −1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L −1 and 15–24 μg L −1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg −1 and 10 μg kg −1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices

  3. SU-G-206-06: Analytic Dose Function for CT Scans in Infinite Cylinders as a Function of Scan Length and Cylinder Radius

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); McKenney, S [Children’s National Medical Center, Washington, DC (United States)

    2016-06-15

    Purpose: The radiation dose absorbed at a particular radius ρ within the central plane of a long cylinder following a CT scan is a function of the length of the scan L and the cylinder radius R along with kVp and cylinder composition. An analytic function was created that that not only expresses these dependencies but is integrable in closed form over the area of the central plane. This feature facilitates explicit calculation of the planar average dose. The “approach to equilibrium” h(L) discussed in the TG111 report is seamlessly included in this function. Methods: For a cylindrically symmetric radiation field, Monte Carlo calculations were performed to compute the dose distribution to long polyethylene cylinders for scans of varying L for cylinders ranging in radius from 5 to 20 cm. The function was developed from the resultant Monte Carlo data. In addition, the function was successfully fit to data taken from measurements on the 30 cm diameter ICRU/TG200 phantom using a real-time dosimeter. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. There are competing effects as the beam penetrates the cylinder from the outside: attenuation, resulting in a decrease; scatter, abruptly increasing at the circumference. This competition may result in an absolute maximum between the center and outer edge leading to a “gull wing” shape for the radial dependence. For the smallest cylinders, scatter may dominate to the extent that there is an absolute maximum at the center. Conclusion: An integrable, analytic function has been developed that provides the radial dependency of dose for the central plane of a scan of length L for cylinders of varying diameter. Equivalently, we have developed h(L,R,ρ).

  4. Analyticity without Differentiability

    Science.gov (United States)

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  5. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    OpenAIRE

    Andrew J. Capel; Andrew Wright; Matthew J. Harding; George W. Weaver; Yuqi Li; Russell A. Harris; Steve Edmondson; Ruth D. Goodridge; Steven D. R. Christie

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro and milli-scale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multi-functional fluidic devices with embedded reaction moni...

  6. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    Science.gov (United States)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? and associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  7. An Analytical Model for Basin-scale Glacier Erosion as a Function of Climate and Topography

    Science.gov (United States)

    Jaffrey, M.; Hallet, B.

    2017-12-01

    Knowledge about glacier erosion has advanced considerably over the last few decades with the emergence of a firm mechanistic understanding of abrasion and quarrying, the growing sophistication of complex numerical models of glacial erosion and the evolution of glacial landforms, and the increase in data from field studies of erosion rates. Interest in glacial erosion has also intensified and diversified substantially as it is increasingly recognized as a key process affecting the heights of mountains, the overall evolution of mountain belts, and the coupling of climate, erosion, and tectonics. Yet, the general controls of glacier erosion rates have not been addressed theoretically, and the large range of published basin-scale erosion rates, covering more than 3 orders of magnitude, remains poorly understood. To help gain insight into glacier erosion rates at the scale of glacier basins, the only scale for which extensive data exist, we develop analytically a simple budget of the total mechanical energy per unit time, the power, dissipated by a steady state glacier in sliding, S, and viscous deformation, V. We hypothesize that the power for the work of erosion derives solely from S and that the basin wide erosion rate scales with S averaged over the basin. We solve the power budget directly in terms of climatic and topographic parameters, showing explicitly that the source of power to drive both S and V is the gravitational power supplied by the net snow accumulation (mass balance). The budget leads to the simple metric φ=mbΔz2 for the basin average of S with Δz being the glacier basin relief and mb the gradient of the mass balance with elevation. The dependence of φ on the square of the relief arises from both the mass balance's and potential energy's linear increases with elevation. We validate φ using results from a comprehensive field study of erosion rates paired with glaciological data along a transect extending from Southern Patagonia to the Antarctic

  8. The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field

    International Nuclear Information System (INIS)

    Wu Dong-Lan; Tan Bin; Wan Hui-Jun; Xie An-Dong; Ding Da-Jun

    2015-01-01

    The geometric structures of an NH radical in different external electric fields are optimized by using the density functional B3P86/cc-PV5Z method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect. (paper)

  9. An analytical wall-function for turbulent flows and heat transfer over rough walls

    International Nuclear Information System (INIS)

    Suga, K.; Craft, T.J.; Iacovides, H.

    2006-01-01

    This paper reports the development of a refined wall-function strategy for the modelling of turbulent forced convection heat transfer over smooth and rough surfaces. In order to include the effects of fine-grain surface roughness, the present study extends a more fundamental work by Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002. Progress in the generalisation of wall-function treatment. Int. J. Heat Fluid Flow 23, 148-160] on the development of advanced wall-functions of general applicability. The presently proposed model is validated through comparisons with data available for internal flows through channels and for external flows over flat and curved plates with both smooth and rough surfaces. Then, its further validation in separating flows over a sand dune and a sand-roughened ramp is discussed. The validation results suggest that the presently proposed form can be successfully applied to a wide range of attached and separated turbulent flows with heat transfer over smooth and fine-grain rough surfaces

  10. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  11. A semi-analytical three-dimensional free vibration analysis of functionally graded curved panels

    Energy Technology Data Exchange (ETDEWEB)

    Zahedinejad, P. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Persian Gulf University Boulevard, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Farid, M. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Karami, G. [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105-5285 (United States)

    2010-08-15

    Based on the three-dimensional elasticity theory, free vibration analysis of functionally graded (FG) curved thick panels under various boundary conditions is studied. Panel with two opposite edges simply supported and arbitrary boundary conditions at the other edges are considered. Two different models of material properties variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential distribution of the material properties through the thickness are considered. Differential quadrature method in conjunction with the trigonometric functions is used to discretize the governing equations. With a continuous material properties variation assumption through the thickness of the curved panel, differential quadrature method is efficiently used to discretize the governing equations and to implement the related boundary conditions at the top and bottom surfaces of the curved panel and in strong form. The convergence of the method is demonstrated and to validate the results, comparisons are made with the solutions for isotropic and FG curved panels. By examining the results of thick FG curved panels for various geometrical and material parameters and subjected to different boundary conditions, the influence of these parameters and in particular, those due to functionally graded material parameters are studied.

  12. Semi-analytical Vibration Characteristics of Rotating Timoshenko Beams Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimia

    Full Text Available AbstractFree vibration analysis of rotating functionally graded (FG thick Timoshenko beams is presented. The material properties of FG beam vary along the thickness direction of the constituents according to power law model. Governing equations are derived through Hamilton's principle and they are solved applying differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The emphasis is placed on investigating the effect of several beam parameters such as constituent volume fractions, slenderness ratios, rotational speed and hub radius on natural frequencies and mode shapes of the rotating thick FG beam.

  13. Psychological functioning of people living with chronic pain: a meta-analytic review.

    Science.gov (United States)

    Burke, Anne L J; Mathias, Jane L; Denson, Linley A

    2015-09-01

    Chronic pain (CP; >3 months) is a common condition that is associated with significant psychological problems. Many people with CP do not fit into discrete diagnostic categories, limiting the applicability of research that is specific to a particular pain diagnosis. This meta-analysis synthesized the large extant literature from a general CP, rather than diagnosis-specific, perspective to systematically identify and compare the psychological problems most commonly associated with CP. Four databases were searched from inception to December 2013 (PsychINFO, The Cochrane Library, Scopus, and PubMed) for studies comparing the psychological functioning of adults with CP to healthy controls. Data from 110 studies were meta-analysed and Cohen's d effect sizes calculated. The CP group reported experiencing significant problems in a range of psychological domains (depression, anxiety, somatization, anger/hostility, self-efficacy, self-esteem and general emotional functioning), with the largest effects observed for pain anxiety/concern and somatization; followed by anxiety and self-efficacy; and then depression, anger/hostility, self-esteem and general emotional functioning. This study demonstrates, for the first time, that individuals with CP are more likely to experience physically focussed psychological problems than other psychological problems and that, unlike self-efficacy, fear of pain is intrinsically tied to the CP experience. This challenges the prevailing view that, for individuals with CP, problems with depression are either equal to, or greater than, problems with anxiety, thereby providing important information to guide therapeutic targets. Positive clinical implications: This is the first time that the CP literature has been synthesized from a general perspective to examine psychological functioning in the presence of CP and provide practical recommendations for assessment and therapy. Individuals with CP were most likely to experience psychological problems

  14. Expansions of tau hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    Czech Academy of Sciences Publication Activity Database

    Abbas, G.; Ananthanarayan, B.; Caprini, I.; Fischer, Jan

    2013-01-01

    Roč. 88, č. 3 (2013), "034026-1"-"034026-16" ISSN 1550-7998 Institutional support: RVO:68378271 Keywords : Borel transformation * asymptotic series * Adler function Subject RIV: BE - Theoretical Physics Impact factor: 4.864, year: 2013

  15. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Science.gov (United States)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  16. Exact asymptotic expansion for the resistance between the center node and a node on the cobweb network boundary

    Directory of Open Access Journals (Sweden)

    R. Kenna

    2014-09-01

    Full Text Available We analyze the resistance between two nodes in a cobweb network of resistors. Based on an exact expression, we derive the asymptotic expansions for the resistance between the center node and a node on the boundary of the M x N cobweb network with resistors r and s in the two spatial directions. All coefficients in this expansion are expressed through analytical functions.

  17. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  18. Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs.

    Science.gov (United States)

    Buckley, C T; Kelly, D J

    2012-07-01

    MSCs from non-cartilaginous knee joint tissues such as the infrapatellar fat pad (IFP) and synovium possess significant chondrogenic potential and provide a readily available and clinically feasible source of chondroprogenitor cells. Fibroblast growth factor-2 (FGF-2) has been shown to be a potent mitotic stimulator during ex vivo expansion of MSCs, as well as regulating their subsequent differentiation potential. The objective of this study was to investigate the longer term effects of FGF-2 expansion on the functional development of cartilaginous tissues engineered using MSCs derived from the IFP. IFP MSCs were isolated and expanded to passage 2 in a standard media formulation with or without FGF-2 (5 ng/ml) supplementation. Expanded cells were encapsulated in agarose hydrogels, maintained in chondrogenic media for 42 days and analysed to determine their mechanical properties and biochemical composition. Culture media, collected at each feed, was also analysed for biochemical constituents. MSCs expanded in the presence of FGF-2 proliferated more rapidly, with higher cell yields and lower population doubling times. FGF-2 expanded MSCs generated the most mechanically functional tissue. Matrix accumulation was dramatically higher after 21 days for FGF-2 expanded MSCs, but decreased between day 21 and 42. By day 42, FGF-2 expanded MSCs had still accumulated ∼1.4 fold higher sGAG and ∼1.7 fold higher collagen compared to control groups. The total amount of sGAG synthesised (retained in hydrogels and released into the media) was ∼2.4 fold higher for FGF-2 expanded MSCs, with only ∼25% of the total amount generated being retained within the constructs. Further studies are required to investigate whether IFP derived MSCs have a diminished capacity to synthesise other matrix components important in the aggregation, assembly and retention of proteoglycans. In conclusion, expanding MSCs in the presence of FGF-2 rapidly accelerates chondrogenesis in 3D agarose

  19. Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel

    International Nuclear Information System (INIS)

    Garcia-Vicente, F.; Rodriguez, C.

    2000-01-01

    One of the most important aspects in the metrology of radiation fields is the problem of the measurement of dose profiles in regions where the dose gradient is large. In such zones, the 'detector size effect' may produce experimental measurements that do not correspond to reality. Mathematically it can be proved, under some general assumptions of spatial linearity, that the disturbance induced in the measurement by the effect of the finite size of the detector is equal to the convolution of the real profile with a representative kernel of the detector. In this work the exact relation between the measured profile and the real profile is shown, through the analytical resolution of the integral equation for a general type of profile fitting function using Gaussian convolution kernels. (author)

  20. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    International Nuclear Information System (INIS)

    Migliaccio, M.; Natoli, P.; De Troia, G.; Hikage, C.; Komatsu, E.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Contaldi, C.R.; Crill, B.P.; Bernardis, P. de; Gasperis, G. de; Oliveira-Costa, A. de; Di Stefano, G.; Hivon, E.; Kisner, T.S.; Jones, W.C.; Lange, A.E.

    2009-01-01

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f NL as -1020 NL <390 at 95% CL, markedly improving the previous constraints set by [De Troia G. et al., 2007, ApJ, 670, L73] whose analysis was limited to the BOOMERanG 2003 dataset. These limits are the most stringent ever set among suborbital experiments.

  1. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, M.; Natoli, P.; De Troia, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Hikage, C. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Komatsu, E. [Texas Cosmology Center, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Ade, P.A.R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario (Canada); Borrill, J. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boscaleri, A. [IFAC-CNR, Firenze (Italy); Contaldi, C.R. [Theoretical Physics Group, Imperial College, London (United Kingdom); Crill, B.P. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bernardis, P. de [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Gasperis, G. de [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Oliveira-Costa, A. de [Department of Physics, MIT, Cambridge, MA 02139 (United States); Di Stefano, G. [Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome (Italy); Hivon, E. [Institut d' Astrophysique, Paris (France); Kisner, T.S. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jones, W.C. [Department of Physics, Princeton University, Princeton, NJ 0854 (United States); Lange, A.E. [Observational Cosmology, California Institute of Technology, Pasadena, CA (United States)

    2009-10-15

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f{sub NL} as -1020

  2. Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results

    DEFF Research Database (Denmark)

    Kleis, Jesper; Schröder, Elsebeth; Hyldgaard, Per

    2008-01-01

    calculations, the vdW-DF study predicts an intertube vdW bonding with a strength that is consistent with recent observations for the interlayer binding in graphitics. It also produces a nanotube wall-to-wall separation, which is in very good agreement with experiments. Moreover, we find that the vdW-DF result...... for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DR This observation suggests a framework for an efficient implementation of quantum-physical modeling of the carbon nanotube bundling in more general nanotube bundles, including......The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes...

  3. The q-difference operator, the quantum hyperplane, Hilbert spaces of analytic functions and q-oscillators

    International Nuclear Information System (INIS)

    Arik, M.

    1991-01-01

    It is shown that the differential calculus of Wess and Zumino for the quantum hyperplane is intimately related to the q-difference operator acting on the n-dimensional complex space C n . An explicit transformation relates the variables and the q-difference operators on C n to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameter q, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on C n . Physically such a system can be interpreted as the quantum deformation of the n dimensional harmonic oscillator invariant under the unitary quantum group U q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on C n is presented. (orig.)

  4. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Directory of Open Access Journals (Sweden)

    Andrew J. Capel

    2017-01-01

    Full Text Available Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  5. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852

  6. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  7. Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques

    International Nuclear Information System (INIS)

    Saini, G S S; Singh, Sukhwinder; Kumar, Ranjan; Tripathi, S K; Kaur, Sarvpreet; Sathe, Vasant

    2009-01-01

    Thin films of zinc phthalocyanine have been deposited on KBr and glass substrates by the thermal evaporation method and characterized by the x-ray diffraction, optical, infrared and Raman techniques. The observed x-ray diffraction and infrared absorption spectra of as-deposited thin films suggest the presence of an α crystalline phase. Infrared and Raman spectra of thin films after exposure to vapours of ammonia and methanol have also been recorded. Shifts in the position of some IR and Raman bands in the spectra of exposed films have been observed. Some bands also show changes in their intensity on exposure. Increased charge on the phthalocyanine ring and out-of-plane distortion of the core due to interaction between zinc phthalocyanine and vapour molecules involving the fifth coordination site of the central metal ion may be responsible for the band shifts. Changes in the intensity of bands are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v due to doming of the core. Molecular parameters and Mulliken atomic charges of zinc phthalocyanine and its complexes with methanol and ammonia have been calculated from density functional theory. The binding energy of the complexes have also been calculated. Calculated values of the energy for different complexes suggest that axially coordinated vapour molecules form the most stable complex. Calculated Mulliken atomic charges show net charge transfer from vapour molecules to the phthalocyanine ring for the most stable complex.

  8. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ning; Hennebelle, Patrick [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Chabrier, Gilles, E-mail: yueh-ning.lee@cea.fr [École normale supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, F-69364 Lyon Cedex 07 (France)

    2017-10-01

    Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle and Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is then convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.

  9. Assessing Impairment of Executive Function and Psychomotor Speed in Premanifest and Manifest Huntington's Disease Gene-expansion Carriers

    DEFF Research Database (Denmark)

    Unmack Larsen, Ida; Vinther-Jensen, Tua; Gade, Anders

    2015-01-01

    Executive functions (EF) and psychomotor speed (PMS) has been widely studied in Huntington's disease (HD). Most studies have focused on finding markers of disease progression by comparing group means at different disease stages. Our aim was to investigate performances on nine measures of EF and PMS...

  10. Fractal analytical approach of urban form based on spatial correlation function

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2013-01-01

    Highlights: ► Many fractal parameter relations of cities can be derived by scaling analysis. ► The area-radius scaling of cities suggests a spatial correlation function. ► Spectral analysis can be used to estimate fractal dimension values of urban form. ► The valid range of fractal dimension of urban form comes between 1.5 and 2. ► The traditional scale concept will be replaced by scaling concept in geography. -- Abstract: Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the rational range of fractal dimension value and the relationships between various fractal indicators of cities are not yet revealed in theory. By mathematical deduction and transform (e.g., Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed ‘3S analyses’ of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable extent of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters suggests the proper scale of the fractal dimension of urban patterns, which varies from 1.5 to 2. The fractal dimension equations based on the 3S analysis and the numerical relationships between different fractal parameters are useful for geographers to understand urban evolution and potentially helpful for future city planning

  11. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    Science.gov (United States)

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  12. The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion

    International Nuclear Information System (INIS)

    Dominicis, C. de

    1961-01-01

    The grand partition function Z (α,β) of a quantum system is studied, using diagrammatic representations of the perturbation expansion. For a fermions system, it is possible to show, by proper resummation, without approximations but under some 'regularity hypothesis', that Log Z (α,β) takes a form where, besides trivial dependences, α and β only appear through a statistical factor F k - = [1 + e -α+βε k 0 -βW k ] -1 . W k is a (real) self-consistent potential, generalized to all orders and can be defined by a stationary condition on Log Z (α,β) under variations of F k - . The thermodynamical quantities take a form analogous to the expressions Landau introduced for the Fermi liquids. The zero temperature limit (for isotropic systems) gives back Goldstone expressions for the ground state of a system. (author) [fr

  13. Analytic energies and wave functions of the two-dimensional Schrodinger equation: ground state of two-dimensional quartic potential and classification of solutions

    Czech Academy of Sciences Publication Activity Database

    Tichý, V.; Kuběna, Aleš Antonín; Skála, L.

    2012-01-01

    Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf

  14. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Matthias T Ehebauer

    2015-02-01

    Full Text Available Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key step in lipid biosynthesis that is carried out by multienzyme complexes to extend fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high redundancy of carboxyltransferase genes and biotin carboxylase genes, creating multiple combinations of protein/protein complexes of unknown overall composition and functional readout. By combining pull-down assays with mass spectrometry, we identified nine binary protein/protein interactions and four validated holo acyl-coenzyme A carboxylase complexes. We investigated one of these--the AccD1-AccA1 complex from Mycobacterium tuberculosis with hitherto unknown physiological function. Using genetics, metabolomics and biochemistry we found that this complex is involved in branched amino-acid catabolism with methylcrotonyl coenzyme A as the substrate. We then determined its overall architecture by electron microscopy and found it to be a four-layered dodecameric arrangement that matches the overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our data argue in favor of distinct structural requirements for biotin-mediated γ-carboxylation of α-β unsaturated acid esters and will advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about the underlying structural/functional relationships will be crucial to make the target category amenable for future biomedical applications.

  15. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    Science.gov (United States)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  16. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  17. Semi-analytical solution for electro-magneto-thermoelastic creep response of functionally graded piezoelectric rotating disk

    International Nuclear Information System (INIS)

    Loghman, A.; Abdollahian, M.; Jafarzadeh Jazi, A.; Ghorbanpour Arani, A.

    2013-01-01

    Time-dependent electro-magneto-thermoelastic creep response of rotating disk made of functionally graded piezoelectric materials (FGPM) is studied. The disk is placed in a uniform magnetic and a distributed temperature field and is subjected to an induced electric potential and a centrifugal body force. The material thermal, mechanical, magnetic and electric properties are represented by power-law distributions in radial direction. The creep constitutive model is Norton's law in which the creep parameters are also power functions of radius. Using equations of equilibrium, strain-displacement and stress-strain relations in conjunction with the potential-displacement equation a non-homogeneous differential equation containing time-dependent creep strains for displacement is derived. A semi-analytical solution followed by a numerical procedure has been developed to obtain history of stresses, strains, electric potential and creep-strain rates by using Prandtl-Reuss relations. History of electric potential, Radial, circumferential and effective stresses and strains as well as the creep stress rates and effective creep strain rate histories are presented. It has been found that tensile radial stress distribution decreases during the life of the FGPM rotating disk which is associated with major electric potential redistributions which can be used as a sensor for condition monitoring of the FGPM rotating disk. (authors)

  18. Analytical representation of time correlation functions and application to relaxation problems; Representation analytique des fonctions de correlation temporelle et application a des problemes de relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, departement de physico-chimie, services des isotopes stables

    1971-07-01

    Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author) [French] Deux representations analytiques de la transformee de Laplace de la fonction d'autocorrelation temporelle d'une variable dynamique, le developpement en moments et le developpement en fraction continue recemment introduit par Mori, sont etudiees du point de vue de leurs proprietes de structure et de convergence, en meme temps que la relation qui existe entre elles est etablie. La theorie generale est appliquee, d'une part, a un modele dynamique exactement soluble, celui d'une particule isotopique dans une chaine lineaire d'oscillateurs harmoniques couples, et, d'autre part, a deux modeles stochastiques recemment proposes par Gordon pour la diffusion rotationnelle des molecules. Dans ce dernier cas, la voie de la fraction continue fournit des expressions analytiques simples pour les formes de bande d'absorption infrarouge, montrant que ces modeles possedent les caracteristiques des formes observees dans les gaz comprimes, les liquides ou les solutions. (auteur)

  19. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2018-03-14

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  20. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2018-03-01

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  1. Exploiting on-node heterogeneity for in-situ analytics of climate simulations via a functional partitioning framework

    Science.gov (United States)

    Sapra, Karan; Gupta, Saurabh; Atchley, Scott; Anantharaj, Valentine; Miller, Ross; Vazhkudai, Sudharshan

    2016-04-01

    Efficient resource utilization is critical for improved end-to-end computing and workflow of scientific applications. Heterogeneous node architectures, such as the GPU-enabled Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), present us with further challenges. In many HPC applications on Titan, the accelerators are the primary compute engines while the CPUs orchestrate the offloading of work onto the accelerators, and moving the output back to the main memory. On the other hand, applications that do not exploit GPUs, the CPU usage is dominant while the GPUs idle. We utilized Heterogenous Functional Partitioning (HFP) runtime framework that can optimize usage of resources on a compute node to expedite an application's end-to-end workflow. This approach is different from existing techniques for in-situ analyses in that it provides a framework for on-the-fly analysis on-node by dynamically exploiting under-utilized resources therein. We have implemented in the Community Earth System Model (CESM) a new concurrent diagnostic processing capability enabled by the HFP framework. Various single variate statistics, such as means and distributions, are computed in-situ by launching HFP tasks on the GPU via the node local HFP daemon. Since our current configuration of CESM does not use GPU resources heavily, we can move these tasks to GPU using the HFP framework. Each rank running the atmospheric model in CESM pushes the variables of of interest via HFP function calls to the HFP daemon. This node local daemon is responsible for receiving the data from main program and launching the designated analytics tasks on the GPU. We have implemented these analytics tasks in C and use OpenACC directives to enable GPU acceleration. This methodology is also advantageous while executing GPU-enabled configurations of CESM when the CPUs will be idle during portions of the runtime. In our implementation results, we demonstrate that it is more efficient to use HFP

  2. Effects of Functional Analytic Psychotherapy Therapist Training on Therapist Factors Among Therapist Trainees in Singapore: A Randomized Controlled Trial.

    Science.gov (United States)

    Keng, Shian-Ling; Waddington, Emma; Lin, Xiangting Bernice; Tan, Michelle Su Qing; Henn-Haase, Clare; Kanter, Jonathan W

    2017-07-01

    Functional Analytic Psychotherapy (FAP) is a behavioral psychotherapy intervention that emphasizes the development of an intimate and intense therapeutic relationship as the vehicle of therapeutic change. Recently, research has provided preliminary support for a FAP therapist training (FAPTT) protocol in enhancing FAP competency. The present study aimed to expand on this research by examining the effects of FAPTT on FAP-specific skills and competencies and a set of broadly desirable therapist qualities (labelled awareness, courage and love in FAPTT) in a sample of therapist trainees in Singapore. The study also evaluated the feasibility and acceptability of FAP in the Singaporean context. Twenty-five students enrolled in a master's in clinical psychology program were recruited and randomly assigned to receive either eight weekly sessions of a FAPTT course or to a waitlist condition. All participants completed measures assessing empathy, compassionate love, trait mindfulness, authenticity and FAP-specific skills and competencies pre- and post-training, and at 2-month follow-up. A post-course evaluation was administered to obtain participants' qualitative feedback. Results indicated that compared with the waitlisted group, FAPTT participants reported significant increases in overall empathy, FAP skill and treatment acceptability from pre- to post-training. Improvements were observed on several outcome variables at 2-month follow-up. Participants reported finding the training to be both feasible and acceptable, although several raised issues related to the compatibility of the treatment with the local cultural context. Overall, the findings suggest that FAPTT is effective for improving specific FAP competencies and selected broadly desirable therapist qualities among therapist trainees. Copyright © 2016 John Wiley & Sons, Ltd. Functional Analytic Therapy (FAP) therapist training protocol was effective in improving empathy and FAP skills among Singaporean therapist

  3. The use of the asymptotic expansion to speed up the computation of a series of spherical harmonics

    NARCIS (Netherlands)

    de Munck, J.C.; de Munck, J.C.; Hämäläinen, M.S.; Peters, M.J.

    1991-01-01

    When a function is expressed as an infinite series of spherical harmonics the convergence can be accelerated by subtracting its asymptotic expansion and adding it in analytically closed form. In the present article this technique is applied to two biophysical cases: to the potential distribution in

  4. Optimal separable bases and series expansions

    International Nuclear Information System (INIS)

    Poirier, B.

    1997-01-01

    A method is proposed for the efficient calculation of the Green close-quote s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for instance, all of the first-order energy corrections are zero. In the Green close-quote s function case, we have a distorted-wave Born series with optimized convergence properties. This series may converge even when the usual Born series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic-oscillator system, in the course of which the quantum tanh 2 potential problem is solved exactly. The universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such resonances. copyright 1997 The American Physical Society

  5. Psychometric properties of the Spanish version of the Experiencing of Self Scale (EOSS) for assessment in Functional Analytic Psychotherapy.

    Science.gov (United States)

    Valero-Aguayo, Luis; Ferro-García, Rafael; López-Bermúdez, Miguel Ángel; Selva-López de Huralde, María de los Ángeles

    2014-01-01

    The Experiencing of Self Scale (EOSS) was created to evaluate the experience of the personal self, within the field of Functional Analytic Psychotherapy. This paper presents a study of the reliability and validity of the EOSS in a Spanish sample. The study sample, chosen from 24 different centres, comprised 1,040 participants aged between 18-75, of whom 32% were men and 68% women. The clinical sample was made up of 32.7%, whereas 67.3% had no known problem. To obtain evidence of convergent validity, other questionnaires related to the self (EPQ-R, DES, RSES) were used for comparison. The EOSS showed high internal consistency (Cronbach's α = .941) and significantly high correlations with the EPQ-R Neuroticism scale and the DES Dissociation scale, while showing negative correlations with the Rosenberg Self-Esteem Scale (RSES). The EOSS revealed 4 principal factors: a self in close relationships, a self with casual social relationships, a self in general and a positive self-concept. Significant statistical differences were found between the clinical and standard sample, the former showing a higher average. The EOSS had high internal consistency, showing evidence of convergent validity with similar scales and proving useful for the assessment of people with psychological problems related to the self.

  6. Application of quality function deployment (QFD and analytic hierarchy process (AHP techniques to improve the quality of postgraduate training

    Directory of Open Access Journals (Sweden)

    Antonio Pastor Sanmillán

    2016-05-01

    Full Text Available The importance of ensuring quality in higher education is evident in the number of local, national and transnational organizations dedicated to this end. The impressive volume of works published on quality in education is further testimony to its importance. All university, traditional or on-line, has a department dedicated to the study of quality, and the academic literature in this area is extremely broad in scope. Yet in this abundant wealth of studies, methodologies, techniques, fantasies and realities in which professors and university administrators, teachers, psychologists, marketing experts and quality professionals focus their attention, there is in our opinion something basic and elemental which is frequently forgotten: to ask the student, the end user (who should be the fundamental object of our interest what aspects of postgraduate study he truly values. The goal of the present study will be to verify the usefulness of multi-criteria analysis, and of the analytic hierarchy process (AHP in particular, attached to quality function deployment (QFD, for performing this task in multicultural environments. The population chosen for our study is comprised of the students enrolled in on-site postgraduate programs at the CEF School of Business.

  7. Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function

    Directory of Open Access Journals (Sweden)

    Javier Cubas

    2014-06-01

    Full Text Available Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation..., it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.

  8. Web Analytics

    Science.gov (United States)

    EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.

  9. Variations of the stellar initial mass function in semi-analytical models - II. The impact of cosmic ray regulation

    Science.gov (United States)

    Fontanot, Fabio; De Lucia, Gabriella; Xie, Lizhi; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane

    2018-04-01

    Recent studies proposed that cosmic rays (CRs) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the ultraviolet-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory. Both variable IMF models reproduce the observed increase of α-enhancement as a function of stellar mass and the measured z = 0 excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically derived (M^app_{\\star }) and intrinsic (M⋆) stellar masses, by analysing in detail the evolution of model galaxies with different values of M_{\\star }/M^app_{\\star }. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. In particular, the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF instead implies shorter star formation histories and higher peaks of star formation for objects more massive than 1010.5 M⊙. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

  10. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    International Nuclear Information System (INIS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    Highlights: • Paraxial beams are represented in a series expansion in terms of Bessel wave functions. • The coefficients of the series expansion can be analytically determined by using the pattern in the focal plane. • In particular, Gaussian beams and apertured wave fields have been critically examined. • This representation of the wave field is adequate for scattering problems with shaped beams. - Abstract: The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  11. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  12. On the analyticity of Laguerre series

    International Nuclear Information System (INIS)

    Weniger, Ernst Joachim

    2008-01-01

    The transformation of a Laguerre series f(z) = Σ ∞ n=0 λ (α) n L (α) n (z) to a power series f(z) = Σ ∞ n=0 γ n z n is discussed. Since many nonanalytic functions can be expanded in terms of generalized Laguerre polynomials, success is not guaranteed and such a transformation can easily lead to a mathematically meaningless expansion containing power series coefficients that are infinite in magnitude. Simple sufficient conditions based on the decay rates and sign patterns of the Laguerre series coefficients λ (α) n as n → ∞ can be formulated which guarantee that the resulting power series represents an analytic function. The transformation produces a mathematically meaningful result if the coefficients λ (α) n either decay exponentially or factorially as n → ∞. The situation is much more complicated-but also much more interesting-if the λ (α) n decay only algebraically as n → ∞. If the λ (α) n ultimately have the same sign, the series expansions for the power series coefficients diverge, and the corresponding function is not analytic at the origin. If the λ (α) n ultimately have strictly alternating signs, the series expansions for the power series coefficients still diverge, but are summable to something finite, and the resulting power series represents an analytic function. If algebraically decaying and ultimately alternating Laguerre series coefficients λ (α) n possess sufficiently simple explicit analytical expressions, the summation of the divergent series for the power series coefficients can often be accomplished with the help of analytic continuation formulae for hypergeometric series p+1 F p , but if the λ (α) n have a complicated structure or if only their numerical values are available, numerical summation techniques have to be employed. It is shown that certain nonlinear sequence transformations-in particular the so-called delta transformation (Weniger 1989 Comput. Phys. Rep. 10 189-371 (equation (8.4-4)))-are able to

  13. A mutually profitable alliance - Asymptotic expansions and numerical computations

    Science.gov (United States)

    Euvrard, D.

    Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.

  14. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  15. Relationships among neurocognition, symptoms and functioning in patients with schizophrenia: a path-analytic approach for associations at baseline and following 24 weeks of antipsychotic drug therapy

    Directory of Open Access Journals (Sweden)

    Keefe Richard SE

    2009-07-01

    Full Text Available Abstract Background Neurocognitive impairment and psychiatric symptoms have been associated with deficits in psychosocial and occupational functioning in patients with schizophrenia. This post-hoc analysis evaluates the relationships among cognition, psychopathology, and psychosocial functioning in patients with schizophrenia at baseline and following sustained treatment with antipsychotic drugs. Methods Data were obtained from a clinical trial assessing the cognitive effects of selected antipsychotic drugs in patients with schizophrenia. Patients were randomly assigned to 24 weeks of treatment with olanzapine (n = 159, risperidone (n = 158, or haloperidol (n = 97. Psychosocial functioning was assessed with the Heinrichs-Carpenter Quality of Life Scale [QLS], cognition with a standard battery of neurocognitive tests; and psychiatric symptoms with the Positive and Negative Syndrome Scale [PANSS]. A path-analytic approach was used to evaluate the effects of changes in cognitive functioning on subdomains of quality of life, and to determine whether such effects were direct or mediated via changes in psychiatric symptoms. Results At baseline, processing speed affected functioning mainly indirectly via negative symptoms. Positive symptoms also affected functioning at baseline although independent of cognition. At 24 weeks, changes in processing speed affected changes in functioning both directly and indirectly via PANSS negative subscale scores. Positive symptoms no longer contributed to the path-analytic models. Although a consistent relationship was observed between processing speed and the 3 functional domains, variation existed as to whether the paths were direct and/or indirect. Working memory and verbal memory did not significantly contribute to any of the path-analytic models studied. Conclusion Processing speed demonstrated direct and indirect effects via negative symptoms on three domains of functioning as measured by the QLS at baseline and

  16. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    Directory of Open Access Journals (Sweden)

    Eva Buck

    Full Text Available Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD, one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111 as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  17. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  18. Resonant state expansion applied to three-dimensional open optical systems

    OpenAIRE

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2014-01-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the valid...

  19. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  20. Chromatic Derivatives, Chromatic Expansions and Associated Spaces

    OpenAIRE

    Ignjatovic, Aleksandar

    2009-01-01

    This paper presents the basic properties of chromatic derivatives and chromatic expansions and provides an appropriate motivation for introducing these notions. Chromatic derivatives are special, numerically robust linear differential operators which correspond to certain families of orthogonal polynomials. Chromatic expansions are series of the corresponding special functions, which possess the best features of both the Taylor and the Shannon expansions. This makes chromatic derivatives and ...

  1. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    Science.gov (United States)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  2. Vibronic interactions proceeding from combined analytical and numerical considerations: Covalent functionalization of graphene by benzene, distortions, electronic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V. [Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu (Estonia)

    2016-04-07

    Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that the mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.

  3. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  4. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    Science.gov (United States)

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  5. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  6. Generalization of the Z expansion scheme in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Z J; Maca, F [Czechoslovak Academy of Sciences, Praha, (Czechoslovakia). Inst. of Solid State Physics

    1979-03-01

    A perturbation theory is described which recovers the ordinary Z-expansion scheme in the limit Z ..-->.. infinity. It introduces nonintegral principal quantum numbers and orbitals of analytical form which is more realistic than hydrogen-like orbitals.

  7. A generalization of the Z expansion scheme in atoms

    International Nuclear Information System (INIS)

    Horak, Z.J.; Maca, F.

    1979-01-01

    A perturbation theory is described which recovers the ordinary Z-expansion scheme in the limit Z → infinity. It introduces nonintegral principal quantum numbers and orbitals of analytical form which is more realistic than hydrogen-like orbitals. (Auth.)

  8. Disjoint sum expansion method in FTA

    International Nuclear Information System (INIS)

    Ruan Keqiang

    1987-01-01

    An expansion formula for transforming boolean algebraic expressions into disjoint form was proved. Based on this expansion formula, a method for transforming system failure function into disjoint form was devised. The fact that the expansion can be done for several elements simulatneously makes the method flexible and fast. Some examples from fault tree analysis (FTA) and network analysis were examined by the new method to show its algorithm and its merit. Besides, by means of the proved expansion formula some boolean algebraic relations can proved very easily

  9. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  10. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  11. Auto-Baecklund Transformation and Analytic Solutions of (2+1)-Dimensional Boussinesq Equation

    International Nuclear Information System (INIS)

    Liu Guanting

    2008-01-01

    Using the truncated Painleve expansion, symbolic computation, and direct integration technique, we study analytic solutions of (2+1)-dimensional Boussinesq equation. An auto-Baecklund transformation and a number of exact solutions of this equation have been found. The set of solutions include solitary wave solutions, solitoff solutions, and periodic solutions in terms of elliptic Jacobi functions and Weierstrass wp function. Some of them are novel.

  12. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  13. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    Science.gov (United States)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  14. Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory

    Science.gov (United States)

    Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim

    2017-12-01

    We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.

  15. A summation procedure for expansions in orthogonal polynomials

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Grinstein, F.F.

    1977-01-01

    Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges

  16. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells

    Science.gov (United States)

    Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.

    2008-01-01

    Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038

  17. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  18. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Jonathan Wirsich

    2016-01-01

    In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  19. Wilson expansion in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    1989-01-01

    The small distance expansion of the product of composite fields is constructed for an arbitrary renormalization procedure of the type of minimal subtraction scheme. Coefficient functions of the expansion are expressed explicitly through the Green functions of composite fields. The expansion has the explicity finite form: the ultraviolet (UV) divergences of the coefficient functions and composite fields are removed by the initial renormalization procedure while the infrared (IR) divergences in massless diagrams with nonvanishing contribution into the coefficient functions are removed by the R-operation which is the IR part of the R-operation. The latter is the generalization of the dimensional renormalization in the case when both UV and IR divergences are present. To derive the expansion, a ''pre-subtracting operator'' is introduced and formulas of the counter-term technique are exploited

  20. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  1. Operator expansion at short distance in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hubschmid, W [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik; Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik

    1982-11-01

    We present a method of calculating coefficients of gluon operators in the operator product expansion of two-point functions at short distance. It is based on a short-distance expansion of the singular part of the quark propagator in the gluon field, the latter being treated as external. We verify in full generality that the spin zero, gluon operator of dimension six does not contribute to the two-point functions of quark bilinears.

  2. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  3. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  4. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  5. Analytical studies on the Benney-Luke equation in mathematical physics

    Science.gov (United States)

    Islam, S. M. Rayhanul; Khan, Kamruzzaman; Woadud, K. M. Abdul Al

    2018-04-01

    The enhanced (G‧/G)-expansion method presents wide applicability to handling nonlinear wave equations. In this article, we find the new exact traveling wave solutions of the Benney-Luke equation by using the enhanced (G‧/G)-expansion method. This method is a useful, reliable, and concise method to easily solve the nonlinear evaluation equations (NLEEs). The traveling wave solutions have expressed in term of the hyperbolic and trigonometric functions. We also have plotted the 2D and 3D graphics of some analytical solutions obtained in this paper.

  6. Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities

    International Nuclear Information System (INIS)

    Ishimaru, S.; Utsumi, K.

    1981-01-01

    We propose a fitting formula for the dielectric screening function of the degenerate electron liquids at metallic and lower densities which accurately reproduces the recent Monte Carlo results as well as those of the microscopic calculations, and which satisfies the self-consistency conditions in the compressibility sum rule and the short-range correlation

  7. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  8. Fission gas retention and axial expansion of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1986-05-01

    Out-of-reactor experiments utilizing direct electrical heating and infrared heating techniques were performed on irradiated metallic fuel. The results indicate accelerated expansion can occur during thermal transients and that the accelerated expansion is driven by retained fission gases. The results also demonstrate gas retention and, hence, expansion behavior is a function of axial position within the pin

  9. Applications of Fractional q-Calculus to Certain Subclass of Analytic p-Valent Functions with Negative Coefficients

    Directory of Open Access Journals (Sweden)

    Ben Wongsaijai

    2015-01-01

    Full Text Available By making use of the concept of fractional q-calculus, we firstly define q-extension of the generalization of the generalized Al-Oboudi differential operator. Then, we introduce new class of q-analogue of p-valently closed-to-convex function, and, consequently, new class by means of this new general differential operator. Our main purpose is to determine the general properties on such class and geometric properties for functions belonging to this class with negative coefficient. Further, the q-extension of interesting properties, such as distortion inequalities, inclusion relations, extreme points, radii of generalized starlikeness, convexity and close-to-convexity, quasi-Hadamard properties, and invariant properties, is obtained. Finally, we briefly indicate the relevant connections of our presented results to the former results.

  10. Ex vivo expansion of CD3depleted cord blood-MNCs in the presence of bone marrow stromal cells; an appropriate strategy to provide functional NK cells applicable for cellular therapy

    Directory of Open Access Journals (Sweden)

    Ehteramolsadat Hosseini

    2017-03-01

    Full Text Available Considering umbilical cord blood (UCB as a rich source of hematopoietic stem cells, we introduced a cost-effective approach to expand CD3depleted UCB-MNCs into functional NK cells. CD3depleted UCB-MNCs were expanded in the presence or absence of a feeder [bone marrow stem cells (BMSCs or osteoblasts], with or without cytokines and their differentiation into NK cells was determined by flow cytometry. NK cell function was quantified by LAMP-1/CD107a expression, TNF-α/IFN-γ release, and LDH release/PI staining in targets. Higher expansion of NK cells was observed after two weeks in the presence of BMSCs and cytokines (104 ± 15 compared to osteoblasts and cytokines (84 ± 29, p < 0.05. On day 14, CD3depleted UCB-MNCs in the presence of BMSCs and cytokines showed lower expression of CD3, CD19, CD14, CD15 and CD69 as well as higher expression of CD2 and CD7, which were suggestive of cell differentiation into mature NK cell lineage. Strong cytotoxicity of expanded cells was also identified with higher LDH release and PI% in targets. Significant upregulation of LAMP-1 with decreased release of IFN-γ and TNF-α from effectors were observed. We demonstrate an effective expansion of UCB-NK cells that maintained their functional capabilities applicable for cellular therapies.

  11. Approximate expressions for the period of a simple pendulum using a Taylor series expansion

    International Nuclear Information System (INIS)

    Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi; Arribas, Enrique

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.

  12. Approximate expressions for the period of a simple pendulum using a Taylor series expansion

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Arribas, Enrique, E-mail: a.belendez@ua.es [Departamento de Fisica Aplicada, Escuela Superior de IngenierIa Informatica, Universidad de Castilla-La Mancha, Avda de Espana, s/n, E-02071 Albacete (Spain)

    2011-09-15

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.

  13. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability

    Science.gov (United States)

    Bader, Kenneth B.

    2018-05-01

    Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.

  14. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas

    2018-01-01

    that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison...... to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory...... demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin...

  15. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    Science.gov (United States)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled

  16. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  17. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  18. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  19. Separable expansions for virtual states and resonances

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Fonseca, A.C.; Tomio, L.

    1983-01-01

    Finite rank expansions for two- and three-body t matrices are analytically continued to the unphysical sheet of the complex energy plane associated with the lowest two-body scattering threshold in order to obtain the position and residue of the virtual state and resonance poles. The present method is applied to study the 1 S 0 virtual state of two nucleons, the Efimov virtual states of three identical bosons, and the doublet virtual state of three nucleons

  20. Simple analytic formula for the period of the nonlinear pendulum via the Struve function: connection to acoustical impedance matching

    International Nuclear Information System (INIS)

    Douvropoulos, Theodosios G

    2012-01-01

    An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic formula that is met in many previous works is produced, while the second and main result contains the Struve function which is further approximated by a simple sinusoidal expression based on its maximum value. The accuracy of the final formula gives a relative error of less than 0.2% for angles up to 140°. In addition, a simple relation between the Struve function and the complete elliptic integral of the first kind is produced, since they both constitute solutions of the pendulum period. This relation makes it possible for someone to connect different areas in physics and solve a difficult task by comparison with another much more simple one. As an example, a connection between the pendulum period and the acoustical radiation impedance is proposed through impedance matching and some interesting relations are produced. This paper is intended for undergraduate students to be useful for analysing pendulum experiments in introductory physics labs and it is also believed to offer valuable insight into some properties of the simple pendulum in undergraduate courses on general physics. (paper)