A nonlinear analytic function expansion nodal method for transient calculations
Energy Technology Data Exchange (ETDEWEB)
Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)
Critical node treatment in the analytic function expansion method for Pin Power Reconstruction
Energy Technology Data Exchange (ETDEWEB)
Gao, Z. [Rice University, MS 318, 6100 Main Street, Houston, TX 77005 (United States); Xu, Y. [Argonne National Laboratory, 9700 South Case Ave., Argonne, IL 60439 (United States); Downar, T. [Department of Nuclear Engineering, University of Michigan, 2355 Bonisteel blvd., Ann Arbor, MI 48109 (United States)
2013-07-01
Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)
Critical node treatment in the analytic function expansion method for Pin Power Reconstruction
International Nuclear Information System (INIS)
Pin Power Reconstruction (PPR) was implemented in PARCS using the eight term analytic function expansion method (AFEN). This method has been demonstrated to be both accurate and efficient. However, similar to all the methods involving analytic functions, such as the analytic node method (ANM) and AFEN for nodal solution, the use of AFEN for PPR also has potential numerical issue with critical nodes. The conventional analytic functions are trigonometric or hyperbolic sine or cosine functions with an angular frequency proportional to buckling. For a critic al node the buckling is zero and the sine functions becomes zero, and the cosine function become unity. In this case, the eight terms of the analytic functions are no longer distinguishable from ea ch other which makes their corresponding coefficients can no longer be determined uniquely. The mode flux distribution of critical node can be linear while the conventional analytic functions can only express a uniform distribution. If there is critical or near critical node in a plane, the reconstructed pin power distribution is often be shown negative or very large values using the conventional method. In this paper, we propose a new method to avoid the numerical problem wit h critical nodes which uses modified trigonometric or hyperbolic sine functions which are the ratio of trigonometric or hyperbolic sine and its angular frequency. If there are no critical or near critical nodes present, the new pin power reconstruction method with modified analytic functions are equivalent to the conventional analytic functions. The new method is demonstrated using the L336C5 benchmark problem. (authors)
Kukhlevsky, S V; Mechler, M; Samek, O
2006-01-01
We present an analytical model of the resonantly enhanced transmission of light through a subwavelength nm-size slit in a thick metal film. The simple formulae for the transmitted electromagnetic fields and the transmission coefficient are derived by using the thin-slit approximation and the Green function formalism for the solution of Maxwell's equations. The resonance wavelengths are in agreement with the semi-analytical model [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)], which solves the wave equations by using the Rayleigh field expansion. Our formulae, however, show great resonant enhancement of a transmitted wave, while the Rayleigh expansion model predicts attenuation. The difference is attributed to the near-field subwavelength diffraction, which is not considered by the models based on the Rayleigh expansion.
Extended Analytic Device Optimization Employing Asymptotic Expansion
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Asymptotic expansions of Jacobi functions
International Nuclear Information System (INIS)
The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)
An analytical model for the assessment of airline expansion strategies
Mauricio Emboaba Moreira
2014-01-01
Purpose: The purpose of this article is to develop an analytical model to assess airline expansion strategies by combining generic business strategy models with airline business models. Methodology and approach: A number of airline business models are examined, as are Porter’s (1983) industry five forces that drive competition, complemented by Nalebuff/ Brandenburger’s (1996) sixth force, and the basic elements of the general environment in which the expansion process takes place. A system ...
An analytical model for the assessment of airline expansion strategies
Directory of Open Access Journals (Sweden)
Mauricio Emboaba Moreira
2014-01-01
Full Text Available Purpose: The purpose of this article is to develop an analytical model to assess airline expansion strategies by combining generic business strategy models with airline business models. Methodology and approach: A number of airline business models are examined, as are Porter’s (1983 industry five forces that drive competition, complemented by Nalebuff/ Brandenburger’s (1996 sixth force, and the basic elements of the general environment in which the expansion process takes place. A system of points and weights is developed to create a score among the 904,736 possible combinations considered. The model’s outputs are generic expansion strategies with quantitative assessments for each specific combination of elements inputted. Originality and value: The analytical model developed is original because it combines for the first time and explicitly elements of the general environment, industry environment, airline business models and the generic expansion strategy types. Besides it creates a system of scores that may be used to drive the decision process toward the choice of a specific strategic expansion path. Research implications: The analytical model may be adapted to other industries apart from the airline industry by substituting the element “airline business model” by other industries corresponding elements related to the different specific business models.
Normality of Composite Analytic Functions and Sharing an Analytic Function
Xiao Bing; Yuan Wenjun; Wu Qifeng
2010-01-01
A result of Hinchliffe (2003) is extended to transcendental entire function, and an alternative proof is given in this paper. Our main result is as follows: let be an analytic function, a family of analytic functions in a domain , and a transcendental entire function. If and share IM for each pair , and one of the following conditions holds: (1) has at least two distinct zeros for any ; (2) is nonconstant, and there exists such that has only one distinct zero , and su...
Banach spaces of analytic functions
Hoffman, Kenneth
2007-01-01
A classic of pure mathematics, this advanced graduate-level text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc.The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the f
Analytic properties of the electromagnetic Green's function
Gralak, Boris; Soriano, Gabriel
2015-01-01
A general expression of the electromagnetic Green's function is derived from the inverse Helmholtz operator, where a second frequency has been introduced as a new degree of freedom. The first frequency results from the frequency decomposition of the electromagnetic field while the second frequency is associated with the dispersion of the dielectric permittivity. Then, it is shown that the electromagnetic Green's function is analytic with respect to these two complex frequencies as soon as they have positive imaginary part. Such analytic properties are also extended to complex wavevectors. Next, Kramers-Kronig expressions for the inverse Helmholtz operator and the electromagnetic Green's function are derived. In addition, these Kramers-Kronig expressions are shown to correspond to the well-known eigengenmodes expansion of the Green's function established in simple situations. Finally, the second frequency introduced as a new degree of freedom is exploited to characterize non-dispersive systems.
On -Functions for Laguerre Function Expansions of Hermite Type
Indian Academy of Sciences (India)
Błażej Jan Wróbel
2011-02-01
We examine weighted $L^p$ boundedness of -functions based on semi-groups related to multi-dimensional Laguerre function expansions of Hermite type. A technique of vector-valued Calderón–Zygmund operators is used.
ANALYTICAL SOLUTIONS TO EXPANSION OF CYLINDRICAL CAVITY IN LINEAR SOFTENING SOIL
Institute of Scientific and Technical Information of China (English)
ZhengJunjie; PengHong; NieChongjun
2004-01-01
Based on the results of conventional triaxial compression tests for a soil, a trilinear elasto-plastic model is proposed to simulate the stress-strain softening curve. According to this curve, the constitutive relation between the bulk strain and two principal strains is established.By using Mohr-Coulomb's yield criterion as the initial yield function with plastic flow phases stage and constructing the rational yield function for the strain softening phase stage, the analytical solutions to the stress, strain, and displacement fields for the expansion of cylindrical cavity are presented. Finally, a computational example is used to show the radii of different stress zones and the corresponding internal pressure.
Harmonic function expansion of nearly oblate systems
Syer, D
1995-01-01
We show how to develop an expansion of nearly oblate systems in terms of a set of potential-density pairs. A harmonic (multipole) structure is imposed on the potential set at infinity, and the density can be made everywhere regular. We concentrate on a set whose zeroth order functions describe the perfect oblate spheroid of de Zeeuw (1985). This set is not bi-orthogonal, but it can be shown to be complete in a weak sense. Poisson's equation can be solved approximately by truncating the expansion of the potential in such a set. A simple example of a potential which is not one of the basis functions is expanded using the symmetric members of the basis set up to fourth order. The basis functions up to first order are reconstructed approximately using 10,000 particles to show that this set could be used as part of an N-body code.
Analytical high-order post-Newtonian expansions for extreme mass ratio binaries
Kavanagh, Chris; Wardell, Barry
2015-01-01
We present analytic computations of gauge invariant quantities for a point mass in a circular orbit around a Schwarzschild black hole, giving results up to 15.5 post-Newtonian order in this paper and up to 21.5 post-Newtonian order in an online repository. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi (MST) and a recent series of results by Bini and Damour. We develop an optimised method for generating post-Newtonian expansions of the MST series, enabling significantly faster computations. We also clarify the structure of the expansions for large values of $\\ell$, and in doing so develop an efficient new method for generating the MST renormalised angular momentum, $\
1/R expansion for H2 : Analyticity, summability, and asymptotics
Energy Technology Data Exchange (ETDEWEB)
Graffi, S.; Grecchi, V.; Harrell E.M. II; Silverstone, H.J.
1985-12-01
It is proved that the 1/R expansion for H2 is divergent and Borel summable to a complex eigenvalue of a non-self-adjoint operator, which has the same 1/R expansion. The Borel sum is related to the H2 system as follows: its real part agrees with the eigenvalue doublet asymptotically to all orders, and its imaginary part determines the asymptotics of the 1/R expansion coefficients via a dispersion relation. A rigorous estimate of the leading behavior of the imaginary part is obtained, and as a consequence the approximate formula of Brezin and Zinn-Justin relating the square of the eigenvalue gap to the asymptotics of the 1/R expansion is put on a rigorous basis.
A Functional Analytic Approach to Group Psychotherapy
Vandenberghe, Luc
2009-01-01
This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…
Analytical model for intergrain expansion and cleavage: random grain boundaries
International Nuclear Information System (INIS)
A description of rigid-body grain boundary relaxation and cleavage in tungsten is performed using a pair-wise Morse interatomic potential in real and reciprocal spaces. Cleavage energies and grain boundary dilatation of random grain boundaries were formulated and computed using atomic layer interaction energies. These values were determined using a model for a relaxed random grain boundary that consists of rigid grains on either side of the boundary plane that are allowed to float to reach the equilibrium position. Expressions are given that describe in real space the energy of interatomic interaction on random grain boundaries with twist orientation. It was shown that grain-boundary expansion and cleavage energies of the most widespread random grain boundaries are mainly determined by grain boundary atomic density
Edgeworth expansion for functionals of continuous diffusion processes
DEFF Research Database (Denmark)
Podolskij, Mark; Yoshida, Nakahiro
This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes....... Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations....
Discrete expansions of continuum Wave functions. Numerical examples
International Nuclear Information System (INIS)
This work is the end of two series of papers dealing with discrete expansions of continuum wave functions in a finite region. The convergence of the Weinberg expansions for S,K-matrices, continuum wave functions are investigated numerically. The case of continuum single particle states for Wood-Saxon and square well potentials is considered. Some numerical methods for solving the eigenvalue problems, corresponding to different expansions, are discussed
Analytical representations for relaxation functions of glasses
Hilfer, R.
2002-01-01
Analytical representations in the time and frequency domains are derived for the most frequently used phenomenological fit functions for non-Debye relaxation processes. In the time domain the relaxation functions corresponding to the complex frequency dependent Cole-Cole, Cole-Davidson and Havriliak-Negami susceptibilities are also represented in terms of $H$-functions. In the frequency domain the complex frequency dependent susceptibility function corresponding to the time dependent stretche...
Series Expansion of Functions with He's Homotopy Perturbation Method
Khattri, Sanjay Kumar
2012-01-01
Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…
Analytic functions smooth up to the boundary
1988-01-01
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses...
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo;
2010-01-01
In this work, an analytical method, which is referred to as Parameter-expansion Method is used to obtain the exact solution for the problem of nonlinear vibrations of an inextensible beam. It is shown that one term in the series expansion is sufficient to obtain a highly accurate solution, which...... is valid for the whole domain of the problem. A comparison of the obtained the numerical solution demonstrates that PEM is effective and convenient for solving such problems. After validation of the obtained results, the system response and stability are also discussed....
Leble, Sergey
2013-01-01
The model under consideration is based on approximate analytical solution of two dimensional stationary Navier-Stokes and Fourier-Kirchhoff equations. Approximations are based on the typical for natural convection assumptions: the fluid noncompressibility and Bousinesq approximation. We also assume that ortogonal to the plate component (x) of velocity is neglectible small. The solution of the boundary problem is represented as a Taylor Series in $x$ coordinate for velocity and temperature which introduces functions of vertical coordinate (y), as coefficients of the expansion. The correspondent boundary problem formulation depends on parameters specific for the problem: Grashoff number, the plate height (L) and gravity constant. The main result of the paper is the set of equations for the coefficient functions for example choice of expansion terms number. The nonzero velocity at the starting point of a flow appears in such approach as a development of convecntional boundary layer theory formulation.
Promoting Efficacy Research on Functional Analytic Psychotherapy
Maitland, Daniel W. M.; Gaynor, Scott T.
2012-01-01
Functional Analytic Psychotherapy (FAP) is a form of therapy grounded in behavioral principles that utilizes therapist reactions to shape target behavior. Despite a growing literature base, there is a paucity of research to establish the efficacy of FAP. As a general approach to psychotherapy, and how the therapeutic relationship produces change,…
On the analytical development of the lunar and solar disturbing functions
Celletti, Alessandra; Pucacco, Giuseppe; Rosengren, Aaron J
2015-01-01
We provide a detailed derivation of the analytical expansion of the lunar and solar disturbing functions. We start with Kaula's expansion of the disturbing function in terms of the equatorial elements of both the perturbed and perturbing bodies. Then we provide a detailed proof of Lane's expansion, in which the elements of the Moon are referred to the ecliptic plane. Using this approach the inclination of the Moon becomes nearly constant, while the argument of perihelion, the longitude of the ascending node, and the mean anomaly vary linearly with time. We make a comparison between the different expansions and we profit from such discussion to point out some mistakes in the existing literature, which might compromise the correctness of the results. As an application, we analyze the long-term motion of the highly elliptical and critically inclined Molniya orbits subject to quadrupolar gravitational interactions. The analytical expansions presented herein are very powerful with respect to dynamical studies base...
A unified intrinsic functional expansion theory for solitary waves
Institute of Scientific and Technical Information of China (English)
Theodore Yaotsu Wu; John Kao; Jin E. Zhang
2005-01-01
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120° down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokes's formula, F2μπ = tanμπ, relating the wave speed (the Froude number F) and the logarithmic decrement μ of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokes's basic term (singular inμ), such that 2Mμ is just somewhat beyond unity, i.e. 2Mμ (~-) 1. This fundamental criterion is fully validated by solutions for waves Dedicated to Zhemin Zheng for celebration of his Eightieth Anniversary It gives us a great pleasure to dedicate this study to Prof. Zhemin Zheng and join our distinguished colleagues and friends for the jubilant celebration of his Eightieth Anniversary. Warmest tribute is due from us, as from many others unlimited by borders and boundaries, for his contributions of great significance to science, engineering science and engineering, his tremendous influence as a source of inspiration and unerring guide to countless workers in the field, his admirable leadership in fostering the Institute of Mechanics of world renown, as well as for his untiring endeavor in promoting international interaction and cooperation between academies of various nations
Institute of Scientific and Technical Information of China (English)
甄明; 蒋志刚; 宋殿义; 刘飞
2014-01-01
Analytical solutions for the dynamic cylindrical cavity expansion in a com-pressible elastic-plastic cylinder with a finite radius are developed by taking into account of the effect of lateral free boundary, which are different from the traditional cavity expan-sion models for targets with infinite dimensions. The finite cylindrical cavity expansion process begins with an elastic-plastic stage followed by a plastic stage. The elastic-plastic stage ends and the plastic stage starts when the plastic wave front reaches the lateral free boundary. Approximate solutions of radial stress on cavity wall are derived by using the Von-Mise yield criterion and Forrestal’s similarity transformation method. The effects of the lateral free boundary and finite radius on the radial stress on the cavity wall are discussed, and comparisons are also conducted with the finite cylindrical cavity expansion in incompressible elastic-plastic materials. Numerical results show that the lateral free boundary has significant influence on the cavity expansion process and the radial stress on the cavity wall of metal cylinder with a finite radius.
Analytic expansion of the EEG lead field for realistic volume conductors
Energy Technology Data Exchange (ETDEWEB)
Nolte, Guido [Human Motor Control Section, NINDS, NIH, Bethesda, MD (United States); Fraunhofer Gesellschaft First, Berlin (Germany); Dassios, George [Division of Applied Mathematics, Department of Chemical Engineering, University of Patras and ICEHT/FORTH (Greece)
2005-08-21
EEG forward calculation in realistic volume conductors using the boundary element method suffers from the fact that the solutions become inaccurate for superficial sources. Here we propose to correct an analytical approximation of the respective lead fields with series of spherical harmonics with respect to multiple expansion points. The necessary correction depends very much on the chosen analytical approximation. We constructed the latter such that the correction can be modelled adequately within the chosen basis. Simulations for a 3-shell prolate spheroid demonstrate the accurate modelling of the lead fields. Explicit comparison with analytically known solutions was done for the 3-shell spherical volume conductor showing that relative errors are mostly far below 1% even for the most superficial sources placed directly on the innermost surface.
Universality of Correlations for Random Analytic Functions
Starr, Shannon
2011-01-01
We review a result obtained with Andrew Ledoan and Marco Merkli. Consider a random analytic function $f(z) = \\sum_{n=0}^{\\infty} a_n X_n z^n$, where the $X_n$'s are i.i.d., complex valued random variables with mean zero and unit variance, and the coefficients $a_n$ are non-random and chosen so that the variance transforms covariantly under conformal transformations of the domain. If the $X_n$'s are Gaussian, this is called a Gaussian analytic function (GAF). We prove that, even if the coefficients are not Gaussian, the zero set converges in distribution to that of a GAF near the boundary of the domain.
CARATHEODORY INEQUALITY FOR ANALYTIC OPERATOR FUNCTION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Suppose H is a complex Hilbert space, AH(△) denotes the set of all analytic operator functions on △, and the set NH(△)= {f(z)｜f(z) is an analytic operator function on the open uint disk △, f(z)f(ω)=f(ω)f(z),f*(z)f(z)=f(z)f*(z), z,ω∈△}. The note proves that if f(z)∈NH(△),(or AH(△) )‖f(z)‖≤1, z∈△ then ‖f＇(T)‖≤(1-‖T‖2)-1‖I-f*(T)f(T)‖1/2‖I-f(T)f*(T)‖1/2,where T ∈ (H)(orT*T=TT*,respectively),‖T‖＜1,Tf=fT.
Partial sums of arithmetical functions with absolutely convergent Ramanujan expansions
Indian Academy of Sciences (India)
BISWAJYOTI SAHA
2016-08-01
For an arithmetical function $f$ with absolutely convergent Ramanujan expansion, we derive an asymptotic formula for the $\\sum_{n\\leq N}$ f(n)$ with explicit error term. As a corollary we obtain new results about sum-of-divisors functions and Jordan’s totient functions.
Analytical method of load-transfer of single pile under expansive soil swelling
Institute of Scientific and Technical Information of China (English)
FAN Zhen-hui; WANG Yong-he; XIAO Hong-bin; ZHANG Chun-shun
2007-01-01
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established, respectively, based on the theory of pile-soil interaction and the shear-deformation method. The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling. The comparison of two engineering examples was made to prove the credibility of the suggested method. The analyzed results show that this analytic solution can achieve high precision with few parameters required, indicating its' simplicity and practicability in engineering application. The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design. The method can be employed to obtain various distributive curves of axial force, settlements and skin friction along the pile shaft with the changes of active depth, vertical movements of the surface and loads of pile-top.
Approximation of Analytic Functions by Bessel's Functions of Fractional Order
Directory of Open Access Journals (Sweden)
Soon-Mo Jung
2011-01-01
Full Text Available We will solve the inhomogeneous Bessel's differential equation x2y″(x+xy′(x+(x2-ν2y(x=∑m=0∞amxm, where ν is a positive nonintegral number and apply this result for approximating analytic functions of a special type by the Bessel functions of fractional order.
Approximation of Analytic Functions by Bessel's Functions of Fractional Order
Soon-Mo Jung
2011-01-01
We will solve the inhomogeneous Bessel's differential equation x2y″(x)+xy′(x)+(x2-ν2)y(x)=∑m=0∞amxm, where ν is a positive nonintegral number and apply this result for approximating analytic functions of a special type by the Bessel functions of fractional order.
Directory of Open Access Journals (Sweden)
Jiran L.
2016-06-01
Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.
A Secure Hash Function MD-192 With Modified Message Expansion
Harshvardhan Tiwari; Dr. Krishna Asawa
2010-01-01
Cryptographic hash functions play a central role in cryptography. Hash functions were introduced in cryptology to provide message integrity and authentication. MD5, SHA1 and RIPEMD are among the most commonly used message digest algorithm. Recently proposed attacks on well known and widely used hash functions motivate a design of new stronger hash function. In this paper a new approach is presented that produces 192 bit message digest and uses a modified message expansion mechanism which gene...
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
ON STEIN-WEISS CONJUGATEHARMONIC FUNCTION ANDOCTONION ANALYTIC FUNCTION
Institute of Scientific and Technical Information of China (English)
Li Xingmin; Peng Lizhong
2000-01-01
It is shown that the Stein-Weiss conjugate harmonic funciton is the Quarternion and the Octonion analytic function. We find a counter example to show the converse is not ture in the Octonion case, by which we have answered the question proposed in [1].
Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.
Dey, Prasanta Kumar; Ramcharan, Eugene K
2008-09-01
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems
Energy Technology Data Exchange (ETDEWEB)
Warren, T.L.; Tabbara, M.R.
1997-05-01
In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.
V., O; Stoffer, Remco; Hammer, Manfred
2013-01-01
A flexible and efficient method for fully vectorial modal analysis of 3D dielectric optical waveguides with arbitrary 2D cross-sections is proposed. The technique is based on expansion of each modal component in some a priori defined functions defined on one coordinate axis times some unknown coefficient-functions, defined on the other axis. By applying a variational restriction procedure the unknown coefficient-functions are determined, resulting in an optimum approximation of the true vectorial mode profile. This technique can be related to both Effective Index and Mode Matching methods. A couple of examples illustrate the performance of the method.
An Analytic Method for $S$-Expansion involving Resonance and Reduction
Ipinza, M C; Peñafiel, D M; Ravera, L
2016-01-01
In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an $S$-expansion process (with either resonance or $0_S$-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the partitions over the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature.
Expansion Formulae for the Kampe De Feriet Function Involving Bessel Function
Directory of Open Access Journals (Sweden)
A. D. Wadhwa
1971-01-01
Full Text Available In this paper some integrals involving a Kampe de Feriet; function have been evaluated. These have been used to establish some expansion formulae for the Kampe de Feriet function involving Bessel function.
A Secure Hash Function MD-192 With Modified Message Expansion
Tiwari, Harshvardhan
2010-01-01
Cryptographic hash functions play a central role in cryptography. Hash functions were introduced in cryptology to provide message integrity and authentication. MD5, SHA1 and RIPEMD are among the most commonly used message digest algorithm. Recently proposed attacks on well known and widely used hash functions motivate a design of new stronger hash function. In this paper a new approach is presented that produces 192 bit message digest and uses a modified message expansion mechanism which generates more bit difference in each working variable to make the algorithm more secure. This hash function is collision resistant and assures a good compression and preimage resistance.
A Secure Hash Function MD-192 With Modified Message Expansion
Directory of Open Access Journals (Sweden)
Harshvardhan Tiwari
2010-02-01
Full Text Available Cryptographic hash functions play a central role in cryptography. Hash functions were introduced in cryptology to provide message integrity and authentication. MD5, SHA1 and RIPEMD are among the most commonly used message digest algorithm. Recently proposed attacks on well known and widely used hash functions motivate a design of new stronger hash function. In this paper a new approach is presented that produces 192 bit message digest and uses a modified message expansion mechanism which generates more bit difference in each working variable to make the algorithm more secure. This hash function is collision resistant and assures a good compression and preimage resistance.
Celletti, Alessandra; Galeş, Cătălin; Pucacco, Giuseppe; Rosengren, Aaron J.
2016-09-01
We provide a detailed derivation of the analytical expansion of the lunar and solar disturbing functions. Although there exist several papers on this topic, many derivations contain mistakes in the final expansion or rather (just) in the proof, thereby necessitating a recasting and correction of the original derivation. In this work, we provide a self-consistent and definite form of the lunisolar expansion. We start with Kaula's expansion of the disturbing function in terms of the equatorial elements of both the perturbed and perturbing bodies. Then we give a detailed proof of Lane's expansion, in which the elements of the Moon are referred to the ecliptic plane. Using this approach the inclination of the Moon becomes nearly constant, while the argument of perihelion, the longitude of the ascending node, and the mean anomaly vary linearly with time. We make a comparison between the different expansions and we profit from such discussion to point out some mistakes in the existing literature, which might compromise the correctness of the results. As an application, we analyze the long-term motion of the highly elliptical and critically-inclined Molniya orbits subject to quadrupolar gravitational interactions. The analytical expansions presented herein are very powerful with respect to dynamical studies based on Cartesian equations, because they quickly allow for a more holistic and intuitively understandable picture of the dynamics.
Study of the derivative expansions for the nuclear structure functions
Simo, I Ruiz
2008-01-01
We study the convergence of the series expansions sometimes used in the analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced by leptons. The recent advances in statistics and quality of the data, in particular for neutrinos calls for a good control of the theoretical uncertainties of the models used in the analysis. Using realistic nuclear spectral functions which include nucleon correlations, we find that the convergence of the derivative expansions to the full results is poor except at very low values of $x$.
Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma
Camporeale, E; MacDonald, E A
2015-01-01
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979), Korsun and Tverdokhlebova (1997), and Ashkenazy and Fruchtman (2001). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.
Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory
Directory of Open Access Journals (Sweden)
Suman Manandhar
2012-01-01
Full Text Available On the basis of evidence from model tests on increasing the end-bearing behavior of tapered piles at the load-settlement curve, this paper proposes an analytical spherical cavity expansion theory to evaluate the end-bearing capacity. The angle of tapering is inserted in the proposed model to evaluate the end-bearing capacity. The test results of the proposed model in different types of sands and different relative densities show good effects compared to conventional straight piles. The end-bearing capacity increases with increases in the tapering angle. The paper then propounds a model for prototypes and real-type pile tests which predicts and validates to evaluate the end-bearing capacity.
Kunikeev, Sharif D; Kim, Kwang S
2012-11-01
The Monte Carlo (MC) estimates of thermal averages are usually functions of system control parameters λ, such as temperature, volume, and interaction couplings. Given the MC average at a set of prescribed control parameters λ{0}, the problem of analytic continuation of the MC data to λ values in the neighborhood of λ{0} is considered in both classic and quantum domains. The key result is the theorem that links the differential properties of thermal averages to the higher order cumulants. The theorem and analytic continuation formulas expressed via higher order cumulants are numerically tested on the classical Lennard-Jones cluster system of N=13, 55, and 147 neon particles.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
LiuXinhe
2003-01-01
Let r be a given positive number.Denote by D=D the closed disc in the complex plane C whose center is the origin and radius is r.For any subset K of C and any integer m ≥1,write A(Dm,K)={f|f:Dm→Kis a continuous map,and f|(Dm)*is analytic).For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ψH(f)(z)=H(z,f(z)……fm=1(x)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,……,n.In this paper,the system of functional equations {F(z,f(z),f2(ψHz(f)(z))…,fn(ψk2(g)(x))… gn(ψKn(g)(z)))=0 G(z,f(z),f2(ψH2(f)(z))…fn(ψHn(f)(z)),g(z),g2(ψk2(g)(x))…,gn(ψkn(g)(z)))=0(z∈D)is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A（D，D）are given.
General post-Minkowskian expansion of time transfer functions
Teyssandier, Pierre
2008-01-01
Modeling most of the tests of general relativity requires to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant $G$ (general post-Minkowskian expansion). Our method is self-sufficient, in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function are necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation.
Expansion of a class of functions into an integral involving associated Legendre functions
Directory of Open Access Journals (Sweden)
Nanigopal Mandal
1994-01-01
Full Text Available A theorem for expansion of a class of functions into an integral involving associated Legendre functions is obtained in this paper. This is a somewhat general integral expansion formula for a function f(x defined in (x1,x2 where -1
A UNIVERSAL ANALYTIC POTENTIAL-ENERGY FUNCTION BASED ON A PHASE FACTOR
Institute of Scientific and Technical Information of China (English)
C.F. Yu; K. Yan; D.Z. Liu
2006-01-01
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of fuce-centered cubic (fcc) metals - Al, Cu, Ag, etc. Are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
Kampen, Joerg
2010-01-01
Explicit representations of densities for linear parabolic partial differential equations are useful in order to design computation schemes of high accuracy for a considerable class of diffusion models. Approximations of lower order based on the WKB-expansion have been used in order to compute Greeks in standard models of the interest rate market (cf. [2]). However, it turns out that for higher order approximations another related expansion leads to more accurate schemes. We compute a local explicit formula for a class of parabolic problems and determine a lower bound of the time horizon where it holds (given a certain bounded domain). Although the local analytic expansions hold only for strictly elliptic equations we show that the expansions can be used in order to design higher order schemes for various types of (micro)-hypoelliptic and semi-elliptic equations, e.g. the reduced market models considered in [7] or front fixing schemes for multivariate American derivatives [3].
Analytical evaluation of the plasma dispersion function for a Fermi-Dirac distribution
Institute of Scientific and Technical Information of China (English)
B.A. Mamedov
2012-01-01
An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.
Neural substrate expansion for the restoration of brain function
Directory of Open Access Journals (Sweden)
Han-Chiao Isaac Chen
2016-01-01
Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.
Neural Substrate Expansion for the Restoration of Brain Function.
Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H
2016-01-01
Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579
High-Temperature Expansion of Supersymmetric Partition Functions
Ardehali, Arash Arabi; Szepietowski, Phillip
2015-01-01
Di Pietro and Komargodski have recently demonstrated a four-dimensional counterpart of Cardy's formula, which gives the leading high-temperature ($\\beta \\rightarrow 0$) behavior of supersymmetric partition functions $Z^{SUSY}(\\beta)$. Focusing on superconformal theories, we elaborate on the subleading contributions to their formula when applied to free chiral and U(1) vector multiplets. In particular, we see that the high-temperature expansion of $\\ln Z^{SUSY}(\\beta)$ terminates at order $\\beta^0$. We also demonstrate how their formula must be modified when applied to SU($N$) toric quiver gauge theories in the planar ($N \\rightarrow \\infty$) limit. Our method for regularizing the one-loop determinants of chiral and vector multiplets helps to clarify the relation between the 4d $\\mathcal{N} = 1$ superconformal index and its corresponding supersymmetric partition function obtained by path-integration.
International Nuclear Information System (INIS)
Starting from the path-integral representation for the electron propagator without fermion loops in QED, we analytically investigate the strong-coupling behavior in an arbitrary background electromagnetic field through a series expansion in powers of 1/e. Contrary to the perturbation theory expansion in e the new series only contains positive powers of the derivative operator p. Due to infrared singularities in the path integral the series does not exist beyond the lowest orders, although one can build a systematic expansion in powers of p (not 1/e) which can be calculated up to any order. To handle infinities we regularize using a Pauli-Villars approach. The introduction of fermion loops would not correspond to higher orders in 1/e, so a priori our results are only pertinent to the sector of QED we have chosen. 17 refs., 1 fig
Indian Academy of Sciences (India)
A K Chattopadhyay; C V S Rao
2003-07-01
Here we describe the superiority of Bessel function as base function for radial expansion over Zernicke polynomial in the tomographic reconstruction technique. The causes for the superiority have been described in detail. The superiority has been shown both with simulated data for Kadomtsev’s model for saw-tooth oscillation and real experimental x-ray data from W7-AS Stellarator.
On Certain Subclasses of Analytic Functions Defined by Differential Subordination
Directory of Open Access Journals (Sweden)
Hesam Mahzoon
2011-01-01
Full Text Available We introduce and study certain subclasses of analytic functions which are defined by differential subordination. Coefficient inequalities, some properties of neighborhoods, distortion and covering theorems, radius of starlikeness, and convexity for these subclasses are given.
Zero Order Estimates for Analytic Functions
Zorin, Evgeniy
2011-01-01
The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in t...
THE ANALYTICAL PROPERTIES FOR HOMOGENEOUS RANDOM TRANSITION FUNCTIONS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main results in this article are the analytical properties, such as continuity, differentiability, random Kolmogorov backward equation and random Kolmogorov forward equation of homogeneous random transition functions.
Strongdeco: Expansion of analytical, strongly correlated quantum states into a many-body basis
Juliá-Díaz, Bruno; Graß, Tobias
2012-03-01
We provide a Mathematica code for decomposing strongly correlated quantum states described by a first-quantized, analytical wave function into many-body Fock states. Within them, the single-particle occupations refer to the subset of Fock-Darwin functions with no nodes. Such states, commonly appearing in two-dimensional systems subjected to gauge fields, were first discussed in the context of quantum Hall physics and are nowadays very relevant in the field of ultracold quantum gases. As important examples, we explicitly apply our decomposition scheme to the prominent Laughlin and Pfaffian states. This allows for easily calculating the overlap between arbitrary states with these highly correlated test states, and thus provides a useful tool to classify correlated quantum systems. Furthermore, we can directly read off the angular momentum distribution of a state from its decomposition. Finally we make use of our code to calculate the normalization factors for Laughlin's famous quasi-particle/quasi-hole excitations, from which we gain insight into the intriguing fractional behavior of these excitations. Program summaryProgram title: Strongdeco Catalogue identifier: AELA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5475 No. of bytes in distributed program, including test data, etc.: 31 071 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which Mathematica can be installed Operating system: Linux, Windows, Mac Classification: 2.9 Nature of problem: Analysis of strongly correlated quantum states. Solution method: The program makes use of the tools developed in Mathematica to deal with multivariate polynomials to decompose analytical strongly correlated states of bosons
The Analytic Structure of Non-Global Logarithms: Convergence of the Dressed Gluon Expansion
Larkoski, Andrew J; Neill, Duff
2016-01-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon expansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-$N_c$ master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of $\\alpha_s$log. We explain this finite radius of convergence using t...
Tree based functional expansions for Feynman--Kac particle models
Del Moral, Pierre; Patras, Frédéric; Rubenthaler, Sylvain
2009-01-01
We design exact polynomial expansions of a class of Feynman–Kac particle distributions. These expansions are finite and are parametrized by coalescent trees and other related combinatorial quantities. The accuracy of the expansions at any order is related naturally to the number of coalescences of the trees. Our results include an extension of the Wick product formula to interacting particle systems. They also provide refined nonasymptotic propagation of chaos-type properties, as well as shar...
International Nuclear Information System (INIS)
Recent axiomatic results on the (non holonomic) analytic structure of the multiparticle S matrix and Green functions are reviewed and related general conjectures are described: (i) formal expansions of Green functions in terms of (holonomic) Feynman-type integrals in which each vertex represents an irreducible kernel, and (ii) ''graph by graph unitarity'' and other discontinuity formulae of the latter. These conjectures are closely linked with unitarity or asymptotic completeness equations, which they yield in a formal sense. In constructive field theory, a direct proof of the first conjecture (together with an independent proof of the second) would thus imply, as a first step, asymptotic completeness in that sense
Subclasses of Analytic Functions Associated with Generalised Multiplier Transformations
Rashidah Omar; Suzeini Abdul Halim
2012-01-01
New subclasses of analytic functions in the open unit disc are introduced which are defined using generalised multiplier transformations. Inclusion theorems are investigated for functions to be in the classes. Furthermore, generalised Bernardi-Libera-Livington integral operator is shown to be preserved for these classes.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
ZHANGJin-Liang; WANGMing-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Analytical Nonlocal Electrostatics Using Eigenfunction Expansions of Boundary-Integral Operators
Bardhan, Jaydeep P; Brune, Peter R
2012-01-01
In this paper, we present an analytical solution to nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for analytical calculations in separable geometries, we rederive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion layer and then a dilute electrolyte (modeled with the linearized Poisson--Boltzmann equation). Our main result, however, is an analytical method for calculating the reaction potential in a protein embedded in a nonlocal-dielectric solvent, the Lorentz model studied by Dogonadze and Kornyshev. The analytical method enables biophysicists to study the new nonlocal theory in a simple, computationally fast way; an open-source MATLAB implementatio...
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the
Explicit Design of Innovation Performance Metrics by Using Analytic Hierarchy Process Expansion
Directory of Open Access Journals (Sweden)
Song-Kyoo Kim
2014-01-01
performance of companies. By applying AHP Expansion framework, the innovation performance measurement factors can be prioritized and descending-order rank list of the performance factors can be made in order to select the best strategies to improve the innovativeness of companies. This new framework of innovation measurement is targeted for implementation at the actual analysis for innovation competitiveness of companies and expected to provide the milestones of measuring the innovation more effectively.
Palma, G
2009-01-01
The probability density function (PDF) of some global average quantity plays a fundamental role in critical and highly correlated systems. We explicitly compute this quantity as a function of the magnetization for the two dimensional XY model in its harmonic approximation. Numerical simulations and perturbative results have shown a Gumbel-like shape of the PDF, in spite of the fact that the average magnetization is not an extreme variable. Our analytical result allows to test both perturbative analytical expansions and also numerical computations performed previously. Perfect agreement is found for the first moments of the PDF. Also for large volume and in the high temperature limit the distribution becomes Gaussian, as it should be. In the low temperature regime its numerical evaluation is compatible with a Gumbel distribution.
Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application
Hoekstra, Renee
2008-01-01
This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…
Linear circuit transfer functions an introduction to fast analytical techniques
Basso, Christophe P
2016-01-01
Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...
Analytic continuation of the Hurwitz Zeta Function with physical application
Barone-Adesi, V; Adesi, Vittorio Barone; Zerbini, Sergio
2001-01-01
A new formula relating the analytic continuation ofthe Hurwitz zeta function to the Euler gamma function and a "Schwinger" type series is presented. In particular, the value of the derivative of the real part of the analytic continuation of the Hurwitz zeta function for even negative integers and the imaginary one for odd negative integers are explicitly given. The result can be of interest both on mathematical and physical side, because we are able to apply our new formulas in the context of the Spectral Zeta Function regularization of one-loop Quantum Field Theory, computing the exact pair production rate per space-time unit of massive Dirac particles interacting with a purely electric background field.
Analytical Operations Relate Structural and Functional Connectivity in the Brain
Saggio, Maria Luisa; Ritter, Petra; Jirsa, Viktor K.
2016-01-01
Resting-state large-scale brain models vary in the amount of biological elements they incorporate and in the way they are being tested. One might expect that the more realistic the model is, the closer it should reproduce real functional data. It has been shown, instead, that when linear correlation across long BOLD fMRI time-series is used as a measure for functional connectivity (FC) to compare simulated and real data, a simple model performs just as well, or even better, than more sophisticated ones. The model in question is a simple linear model, which considers the physiological noise that is pervasively present in our brain while it diffuses across the white-matter connections, that is structural connectivity (SC). We deeply investigate this linear model, providing an analytical solution to straightforwardly compute FC from SC without the need of computationally costly simulations of time-series. We provide a few examples how this analytical solution could be used to perform a fast and detailed parameter exploration or to investigate resting-state non-stationarities. Most importantly, by inverting the analytical solution, we propose a method to retrieve information on the anatomical structure directly from functional data. This simple method can be used to complement or guide DTI/DSI and tractography results, especially for a better assessment of inter-hemispheric connections, or to provide an estimate of SC when only functional data are available. PMID:27536987
Analytical correlation functions for motion through diffusivity landscapes.
Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis
2016-05-28
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states. PMID:27250281
The Adler Function for Light Quarks in Analytic Perturbation Theory
Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.
2001-01-01
The method of analytic perturbation theory, which avoids the problem of ghost-pole type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the "light" Adler function corresponding to the non-strange vector channel of the inclusive decay of the $\\tau$ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is ...
Quantum field theory in the presence of a medium: Green's function expansions
Energy Technology Data Exchange (ETDEWEB)
Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-12-15
Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.
Adler function for light quarks in analytic perturbation theory
International Nuclear Information System (INIS)
The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale
Analytical strategies to assess the functional metabolome of vitamin E.
Torquato, Pierangelo; Ripa, Orsola; Giusepponi, Danilo; Galarini, Roberta; Bartolini, Desirée; Wallert, Maria; Pellegrino, Roberto; Cruciani, Gabriele; Lorkowski, Stefan; Birringer, Marc; Mazzini, Francesco; Galli, Francesco
2016-05-30
After more than 90 years from its discovery and thousands of papers published, the physiological roles of vitamin E (tocopherols and tocotrienols) are still not fully clarified. In the last few decades, the enzymatic metabolism of this vitamin has represented a stimulating subject of research. Its elucidation has opened up new horizons to the interpretation of the biological function of that class of molecules. The identification of specific properties for some of the physiological metabolites and the definition of advanced analytical techniques to assess the human metabolome of this vitamin in vivo, have paved the way to a series of hypotheses on the functional implications that this metabolism may have far beyond its catabolic role. The present review collects the available information on the most relevant analytical strategies employed to assess the status and metabolism of vitamin E in humans as well as in other model systems. A particular focus is dedicated to the analytical methods used to measure vitamin E metabolites, and particularly long-chain metabolites, in biological fluids and tissues. Preliminary information on a new LC-APCI-MS/MS method to measure these metabolites in human serum is reported. PMID:26947319
On the analytic proton structure function with heavy quarks
International Nuclear Information System (INIS)
The analytic proton structure function including quark mass is derived in the framework of color glass condensate. To get the massive proton structure function we keep the quark mass in photon wave function in the derivation process although the calculation is much more complicated than the massless case. It shows that the quark mass plays a key role in the description of the experimental data of proton structure function, and the cross-section of γ*p scattering will be divergent without quark mass regulation. To have the right threshold behavior and a smooth transition in the limit Q2 → 0, the quark mass has to include in the cross-section. (orig.)
On the analytic proton structure function with heavy quarks
Energy Technology Data Exchange (ETDEWEB)
Hu, Y.; Zeng, J.; Li, Q.; Zhou, F. [Guizhou Normal University, College of Physics and Electronics Science, Guiyang (China); Zhou, D. [Huazhong Normal University, Institute of Particle physics, Wuhan (China); Xiang, W. [Guizhou Normal University, College of Physics and Electronics Science, Guiyang (China); South Dakota School of Mines and Technology, Department of Physics, Rapid City, SD (United States)
2015-12-15
The analytic proton structure function including quark mass is derived in the framework of color glass condensate. To get the massive proton structure function we keep the quark mass in photon wave function in the derivation process although the calculation is much more complicated than the massless case. It shows that the quark mass plays a key role in the description of the experimental data of proton structure function, and the cross-section of γ{sup *}p scattering will be divergent without quark mass regulation. To have the right threshold behavior and a smooth transition in the limit Q{sup 2} → 0, the quark mass has to include in the cross-section. (orig.)
Directory of Open Access Journals (Sweden)
Poteete Anthony R
2009-02-01
Full Text Available Abstract Background Previous studies of gene amplification in Escherichia coli have suggested that it occurs in two steps: duplication and expansion. Expansion is thought to result from homologous recombination between the repeated segments created by duplication. To explore the mechanism of expansion, a 7 kbp duplication in the chromosome containing a leaky mutant version of the lac operon was constructed, and its expansion into an amplified array was studied. Results Under selection for lac function, colonies bearing multiple copies of the mutant lac operon appeared at a constant rate of approximately 4 to 5 per million cells plated per day, on days two through seven after plating. Expansion was not seen in a recA strain; null mutations in recBCD and ruvC reduced the rate 100- and 10-fold, respectively; a ruvC recG double mutant reduced the rate 1000-fold. Expansion occurred at an increased rate in cells lacking dam, polA, rnhA, or uvrD functions. Null mutations of various other cellular recombination, repair, and stress response genes had little effect upon expansion. The red recombination genes of phage lambda could substitute for recBCD in mediating expansion. In the red-substituted cells, expansion was only partially dependent upon recA function. Conclusion These observations are consistent with the idea that the expansion step of gene amplification is closely related, mechanistically, to interchromosomal homologous recombination events. They additionally provide support for recently described models of RecA-independent Red-mediated recombination at replication forks.
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2005-01-01
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
Analysis III analytic and differential functions, manifolds and Riemann surfaces
Godement, Roger
2015-01-01
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...
Polymer as a function of monomer: Analytical quantum modeling
Nakhaee, Mohammad
2016-01-01
To identify an analytical relation between the properties of polymers and their's monomer a Metal-Molecule-Metal (MMM) junction has been presented as an interesting and widely used object of research in which the molecule is a polymer which is able to conduct charge. The method used in this study is based on the Green's function approach in the tight-binding approximation using basic properties of matrices. For a polymer base MMM system, transmission, density of states (DOS) and local density of states (LDOS) have been calculated as a function of the hamiltonian of the monomer. After that, we have obtained a frequency for LDOS variations in pass from a subunit to the next one which is a function of energy.
Analytic Beyond-Mean-Field BEC Wave Functions
Dunn, Martin; Laing, W. Blake; Watson, Deborah K.; Loeser, John G.
2006-05-01
We present analytic N-body beyond-mean-field wave functions for Bose-Einstein condensates. This extends our previous beyond-mean-field energy calculations to the substantially more difficult problem of determining correlated N-body wave functions for a confined system. The tools used to achieve this have been carefully chosen to maximize the use of symmetry and minimize the dependence on numerical computation. We handle the huge number of interactions when N is large (˜N^2/2 two-body interactions) by bringing together three theoretical methods. These are dimensional perturbation theory, the FG method of Wilson et al, and the group theory of the symmetric group. The wave function is then used to derive the density profile of a condensate in a cylindrical trap.This method makes no assumptions regarding the form or strength of the interactions and is applicable to both small-N and large-N systems.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process.
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-06-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW. PMID:27066108
Usage of analytical diagnostics when evaluating functional surface material defects
Directory of Open Access Journals (Sweden)
R. Frischer
2015-10-01
Full Text Available There are occurring defects due to defects mechanisms on parts of production devices surfaces. Outer defects pronouncement is changing throw the time with unequal speed. This variability of defect’s mechanism development cause that is impossible to evaluate technical state of the device in any moment, without the necessary underlying information. Proposed model is based on analytical diagnostics basis. Stochastic model with usage of Weibull probability distribution can assign probability of function surface defect occurrence on the operational information in any moment basis. The knowledge of defect range limiting moment, then enable when and in what range will be necessary to make renewal.
Functional Analytic Multisensory Environmental Therapy for People with Dementia
Directory of Open Access Journals (Sweden)
Jason A. Staal
2012-01-01
Full Text Available This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment therapy. The aim of the treatment is to provide a safe and effective framework for reducing the behavioral disturbance of the disease process, increasing elder well-being, and to promote transfer of positive effects to other environments outside of the multisensory treatment room.
On the perturbative expansion of tau hadronic spectral function moments
Boito, Diogo
2013-01-01
In the determination of alpha_s from tau decays several different moments of the hadronic spectral functions have been used. In a recent work, we performed an analysis of their perturbative behaviour under two different assumptions for the higher-order coefficients of the Adler function. We showed that the various moments can be divided in a small number of classes. We concluded that some of the moments commonly employed in alpha_s extractions should be avoided due to their bad perturbative behaviour. Furthermore, for the moments that have a good perturbative behaviour, and under reasonable assumptions for the higher-order behaviour of the Adler function, fixed-order perturbation theory (FOPT) provides the superior framework for the renormalization group improvement. Here we discuss an extension of this analysis where we consider the perturbative series for values of the hadronic invariant mass squared s_0 < m_\\tau^2. Our conclusions are not altered within a reasonable s_0 window.
The Navier-Stokes equations an elementary functional analytic approach
Sohr, Hermann
2001-01-01
The primary objective of this monograph is to develop an elementary and self contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...
On the perturbative expansion of tau hadronic spectral function moments
Boito, Diogo
2013-01-01
In the determination of alpha_s from tau decays several different moments of the hadronic spectral functions have been used. In a recent work, we performed an analysis of their perturbative behaviour under two different assumptions for the higher-order coefficients of the Adler function. We showed that the various moments can be divided in a small number of classes. We concluded that some of the moments commonly employed in alpha_s extractions should be avoided due to their bad perturbative b...
Asymptotic expansions of integral means and applications to the ratio of gamma functions
ELEZOVIĆ, NEVEN; Vukšić, Lenka
2013-01-01
Integral means are important class of bivariate means. In this paper we prove the very general algorithm for calculation of coefficients in asymptotic expansion of integral mean. It is based on explicit solving the equation of the form $B(A(x))=C(x)$, where $B$ and $C$ have known asymptotic expansions. The results are illustrated by calculation of some important integral means connected with gamma and digamma functions.
Error bounds and exponential improvement for Hermite's asymptotic expansion for the Gamma function
Directory of Open Access Journals (Sweden)
Gergő Nemes
2013-04-01
Full Text Available In this paper we reconsider the asymptotic expansion of the Gamma function with shifted argument, which is the generalization of the well-known Stirling series. To our knowledge, no explicit error bounds exist in the literature for this expansion. Therefore, the first aim of this paper is to extend the known error estimates of Stirling's series to this general case. The second aim is to give exponentially-improved asymptotics for this asymptotic series.
Perturbative Expansion of τ Hadronic Spectral Function Moments
Boito, Diogo
2014-12-01
In the extraction of αs from hadronic τ decay data several moments of the spectral functions have been employed. Furthermore, different renormalization group improvement (RGI) frameworks have been advocated, leading to conflicting values of αs. Recently, we performed a systematic study of the perturbative behavior of these moments in the context of the two main-stream RGI frameworks: Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT). The yet unknown higher order coefficients of the perturbative series were modelled using the available knowledge of the renormalon singularities of the QCD Adler function. We were able to show that within these RGI frameworks some of the commonly employed moments should be avoided due to their poor perturbative behavior. Furthermore, under reasonable assumptions about the higher order behavior of the perturbative series FOPT provides the preferred RGI framework.
Perturbative expansion of tau hadronic spectral function moments
Boito, Diogo
2013-01-01
In the extraction of $\\alpha_s$ from hadronic tau decay data several moments of the spectral functions have been employed. Furthermore, different renormalization group improvement (RGI) frameworks have been advocated, leading to conflicting values of $\\alpha_s$. Recently, we performed a systematic study of the perturbative behavior of these moments in the context of the two main-stream RGI frameworks: Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT). The yet unknown higher order coefficients of the perturbative series were modelled using the available knowledge of the renormalon singularities of the QCD Adler function. We were able to show that within these RGI frameworks some of the commonly employed moments should be avoided due to their poor perturbative behavior. Furthermore, under reasonable assumptions about the higher order behavior of the perturbative series FOPT provides the preferred RGI framework.
Perturbative expansion of tau hadronic spectral function moments
Boito, Diogo
2013-01-01
In the extraction of $\\alpha_s$ from hadronic tau decay data several moments of the spectral functions have been employed. Furthermore, different renormalization group improvement (RGI) frameworks have been advocated, leading to conflicting values of $\\alpha_s$. Recently, we performed a systematic study of the perturbative behavior of these moments in the context of the two main-stream RGI frameworks: Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT). The ...
Functional Integrals and Variational-Cumulant Expansion in sine-Gordon-Thirring Model
Institute of Scientific and Technical Information of China (English)
YAN Jun
2008-01-01
The free energy in ID sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals and variational-cumulant expansion methods. Two variational parameters are introduced to evaluate free energy and statistical averages. It is shown that the non-perturbation method of functional integrals can be applied to strong-coupling range of fermion systems.
The Navier-Stokes equations an elementary functional analytic approach
Sohr, Hermann
2001-01-01
The primary objective of this monograph is to develop an elementary and self-contained approach to the mathematical theory of a viscous, incompressible fluid in a domain of the Euclidean space, described by the equations of Navier-Stokes. Moreover, the theory is presented for completely general domains, in particular, for arbitrary unbounded, nonsmooth domains. Therefore, restriction was necessary to space dimensions two and three, which are also the most significant from a physical point of view. For mathematical generality, however, the linearized theory is expounded for general dimensions higher than one. Although the functional analytic approach developed here is, in principle, known to specialists, the present book fills a gap in the literature providing a systematic treatment of a subject that has been documented until now only in fragments. The book is mainly directed to students familiar with basic tools in Hilbert and Banach spaces. However, for the readers’ convenience, some fundamental properties...
An analytic function approach to weak mutually unbiased bases
Olupitan, T.; Lei, C.; Vourdas, A.
2016-08-01
Quantum systems with variables in Z(d) are considered, and three different structures are studied. The first is weak mutually unbiased bases, for which the absolute value of the overlap of any two vectors in two different bases is 1 /√{ k } (where k | d) or 0. The second is maximal lines through the origin in the Z(d) × Z(d) phase space. The third is an analytic representation in the complex plane based on Theta functions, and their zeros. It is shown that there is a correspondence (triality) that links strongly these three apparently different structures. For simplicity, the case where d =p1 ×p2, where p1 ,p2 are odd prime numbers different from each other, is considered.
Capriotti, L
2007-01-01
In this paper we discuss a closed-form approximation of the likelihood functions of an arbitrary diffusion process. The approximation is based on an exponential ansatz of the transition probability for a finite time step $\\Delta t$, and a series expansion of the deviation of its logarithm from that of a Gaussian distribution. Through this procedure, dubbed {\\em exponent expansion}, the transition probability is obtained as a power series in $\\Delta t$. This becomes asymptotically exact if an increasing number of terms is included, and provides remarkably accurate results even when truncated to the first few (say 3) terms. The coefficients of such expansion can be determined straightforwardly through a recursion, and involve simple one-dimensional integrals. We present several examples of financial interest, and we compare our results with the state-of-the-art approximation of discretely sampled diffusions [A\\"it-Sahalia, {\\it Journal of Finance} {\\bf 54}, 1361 (1999)]. We find that the exponent expansion prov...
New analytical potential energy function for doubly charged diatomic molecules
Institute of Scientific and Technical Information of China (English)
Wang Fan-Hou; Yang Chuan-Lu; Zhu Zheng-He; Jing Fu-Qian
2005-01-01
A new analytical potential function for doubly charged diatomic ions is proposed as V(R)=(∑k n=0anRn-1)exp(-ak+1R)+C/R,where an, ak+1 and C are parameters, and R is the nuclear distance. This function can be used to describe the potential curves for doubly charged diatomic ions with both potential minimum and maximum, or without any stationary point. As examples, potential functions of this form for ground states of BH2+, He22+ and HF2+ have been derived.The calculations using the theoretical method QCISD with basis set 6-311++G* have shown that the potential minimum of BH2+is at Rmin=0.147nm, the maximum at Rmax=0.185nm, and ΔE = Emax - Emin=0.062 eV; for He22+Rmin=0.0736nm, Rmax=0.105nm, and ΔE = Emax - Emin=0.71 eV. It is found that the potential curve for HF2+ is one with a singly repulsive branch. The force constants and spectroscopic data for BH2+ and He22+ have also been worked out.
International Nuclear Information System (INIS)
The bulk-scattering properties of dust aerosols and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort of the Joint Center for Satellite Data Assimilation (JCSDA). The delta-fit method is employed to truncate the forward peaks of the scattering phase functions and to compute the Legendre expansion coefficients for re-constructing the truncated phase function. Use of more terms in the expansion gives more accurate re-construction of the phase function, but the issue remains as to how many terms are necessary for different applications. To explore this issue further, the bidirectional reflectances associated with dust aerosols, water clouds, and ice clouds are simulated with various numbers of Legendre expansion terms. To have relative numerical errors smaller than 5%, the present analyses indicate that, in the visible spectrum, 16 Legendre polynomials should be used for dust aerosols, while 32 Legendre expansion terms should be used for both water and ice clouds. In the infrared spectrum, the brightness temperatures at the top of the atmosphere are computed by using the scattering properties of dust aerosols, water clouds and ice clouds. Although small differences of brightness temperatures compared with the counterparts computed with 4, 8, 128 expansion terms are observed at large viewing angles for each layer, it is shown that 4 terms of Legendre polynomials are sufficient in the radiative transfer computation at infrared wavelengths for practical applications.
Active plasma resonance spectroscopy: a functional analytic description
Lapke, M.; Oberrath, J.; Mussenbrock, T.; Brinkmann, R. P.
2013-04-01
The term ‘active plasma resonance spectroscopy’ denotes a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: a signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostic technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism to a symmetric probe design is given, as well as an interpretation in terms of a lumped circuit model consisting of series resonance circuits. We present ideas for an optimized probe design based on geometric and electrical symmetry.
Active plasma resonance spectroscopy: A functional analytic description
Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter
2012-01-01
The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostics technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism for a symmetric probe desing is given, as well as an interpreation...
On uniform approximation by n-analytic functions on closed sets in C
Energy Technology Data Exchange (ETDEWEB)
Boivin, A [Department of Mathematics, University of Western Ontario, London, Ontario (Canada); Gauthier, P M [Universite de Montreal, Quebec (Canada); Paramonov, P V [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2004-06-30
Necessary and (or) sufficient conditions on a closed set F subset of C are given for any function f, continuous on F and n-analytic on F{sup 0}, to be the uniform limit on F of a sequence of n-analytic entire or n-analytic meromorphic functions.
Directory of Open Access Journals (Sweden)
Firas Ghanim
2011-01-01
Full Text Available We introduce a new subclass of meromorphically analytic functions, which is defined by means of a Hadamard product (or convolution. A characterization property such as the coefficient bound is obtained for this class. The other related properties, which are investigated in this paper, include the distortion and the radius of starlikeness. We also consider several applications of our main results to the generalized hypergeometric functions.
The Expansion of the Function with Two Unknowns on the Reproducing Kernel Space
Institute of Scientific and Technical Information of China (English)
吴勃英
2000-01-01
In this paper we make use of a special procedure on the reproducing kernel space to give an expansion theorem for the function with two unknowns and a surface approximation formula. The error of the surface possesses monotonically decreasing and uniformly convergent characteristics in the sense of the norm on the space.
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
Wrapping interactions and the genus expansion of the 2-point function of composite operators
Torrielli, Alessandro; Sieg, Christoph
2005-01-01
We perform a systematic analysis of wrapping interactions for a general class of theories with color degrees of freedom, including N=4 SYM. Wrapping interactions arise in the genus expansion of the 2-point function of composite operators as finite size effects that start to appear at a certain order in the coupling constant at which the range of the interaction is equal to the length of the operators. We analyze in detail the relevant genus expansions, and introduce a strategy to single out t...
Hurwitz integrality of power series expansion of the sigma function for a plane curve
Ônishi, Yoshihiro
2015-01-01
This paper shows Hurwitz integrality of the coefficients of expansion at the origin of the sigma function \\(\\sigma(u)\\) associated to a certain plane curve which should be called a plane telescopic curve. For the prime \\(2\\), the expansion of \\(\\sigma(u)\\) is not Hurwitz integral, but \\(\\sigma(u)^2\\) is. This paper clarifies the precise structure of this phenomenon. Throughout the paper, computational examples for the trigonal genus three curve (\\((3,4)\\)-curve) \\(y^3+(\\mu_1x+\\mu_4)y^2+(\\mu_2...
Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function.
Ding, Xiao; Wang, Aibo; Ma, Xiaopeng; Demarque, Maud; Jin, Wei; Xin, Huawei; Dejean, Anne; Dong, Chen
2016-07-26
Foxp3-expressing regulatory T (Treg) cells are essential for immune tolerance; however, the molecular mechanisms underlying Treg cell expansion and function are still not well understood. SUMOylation is a protein post-translational modification characterized by covalent attachment of SUMO moieties to lysines. UBC9 is the only E2 conjugating enzyme involved in this process, and loss of UBC9 completely abolishes the SUMOylation pathway. Here, we report that selective deletion of Ubc9 within the Treg lineage results in fatal early-onset autoimmunity similar to Foxp3 mutant mice. Ubc9-deficient Treg cells exhibit severe defects in TCR-driven homeostatic proliferation, accompanied by impaired activation and compromised suppressor function. Importantly, TCR ligation enhanced SUMOylation of IRF4, a critical regulator of Treg cell function downstream of TCR signals, which regulates its stability in Treg cells. Our data thus have demonstrated an essential role of SUMOylation in the expansion and function of Treg cells. PMID:27425617
Woo, Seong-Dae; Kim, Tae-Ho; Lim, Jin-Yong
2016-01-01
[Purpose] This study aimed to determine the effects of inspiration- and expiration-oriented breathing on pulmonary function and chest expansion. [Subjects and Methods] Twenty healthy male university students were divided randomly into inspiration-oriented and expiration-oriented breathing groups. Their pulmonary function and chest size during inspiration or expiration were evaluated and then re-evaluated after 15 minutes of breathing exercise five times a week for four weeks. [Results] The br...
Many-body Expanded Analytical Potential Energy Function for Ground State PuOH Molecule
Institute of Scientific and Technical Information of China (English)
LI Yue-Xun; GAO Tao; ZHU Zheng-He
2006-01-01
Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (4∑+, 6∑+, 8∑+) for three structures of PuOH molecule were optimized. The results show that the ground state is X6∑+of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O=0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from Nfunction. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
(G'/G)-Expansion Method Equivalent to Extended Tanh Function Method
Institute of Scientific and Technical Information of China (English)
LIU Chun-Ping
2009-01-01
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G'/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G'/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G'/G)-expansion method is equivalent to the extended tanh function method.
Analytical representation of time correlation functions and application to relaxation problems
International Nuclear Information System (INIS)
Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author)
Institute of Scientific and Technical Information of China (English)
ZHENGZUKANG
1996-01-01
Suppose that Z1,Z2…,Zn are independent normal random variables with common mean μ and variance σ2. Then S2=∑n n=1 (zi-z)2/σ2 and T =（n-1的平方根）-Z/（S2/n的平方根） have x2n-1 distribution and tn-1 distribution respectively. If the normal assumption fails, there will be the remainders of the distribution functions and density functions. This paper gives the direct expansions of distribution functions and density functions of S2 and T up to o(n-1). They are more intuitive and convenient than usual Edgeworth expansions.
Elementary theory of analytic functions of one or several complex variables
Cartan, Henri
1995-01-01
Noted mathematician offers basic treatment of theory of analytic functions of a complex variable, touching on analytic functions of several real or complex variables as well as the existence theorem for solutions of differential systems where data is analytic. Also included is a systematic, though elementary, exposition of theory of abstract complex manifolds of one complex dimension. Topics include power series in one variable, holomorphic functions, Cauchy's integral, more. Exercises. 1973 edition.
Boundary-value problems for x-analytical functions with weighted boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Kapshivyi, A.A. [Kiev Univ. (Ukraine)
1994-11-10
We consider boundary-value problems for x-analytical functions of a complex variable z = x + iy in a number of domains. Limit values with the weight (ln x){sup {minus}1} are given for the real part of the x-analytical function on the sections of the boundary that follow the imaginary axis, and simple limits are given for the real part of the x-analytical functions on the part of the boundary outside the imaginary axis. The apparatus of integral representations of x-analytical functions is applied to obtain a solution of the problem in quadratures.
The molecular structure and the analytical potential energy function of S-2 and S-3
Institute of Scientific and Technical Information of China (English)
Liu Yu-Fang; Li Jun-Yu; Han Xiao-Qin; Sun Jin-Feng
2007-01-01
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S-2 and S-3 have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S-2 ground state is of 2Ⅱg, the S-3 ground state is of 2B1 and S-3 has a bent (C2V) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S-3 ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S-2 has been derived according to the ab initio data through the leastsquares fitting. The force constants and spectroscopic data for S-2 have been calculated, then compared with other theoretical data. The analytical potential energy function of S-3 have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.
Institute of Scientific and Technical Information of China (English)
YANZhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Energy Technology Data Exchange (ETDEWEB)
Olesov, A V [G.I. Nevelskoi Maritime State University, Vladivostok (Russian Federation)
2014-10-31
New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.
Aft-body loading function for penetrators based on the spherical cavity-expansion approximation.
Energy Technology Data Exchange (ETDEWEB)
Longcope, Donald B., Jr.; Warren, Thomas Lynn; Duong, Henry
2009-12-01
In this paper we develop an aft-body loading function for penetration simulations that is based on the spherical cavity-expansion approximation. This loading function assumes that there is a preexisting cavity of radius a{sub o} before the expansion occurs. This causes the radial stress on the cavity surface to be less than what is obtained if the cavity is opened from a zero initial radius. This in turn causes less resistance on the aft body as it penetrates the target which allows for greater rotation of the penetrator. Results from simulations are compared with experimental results for oblique penetration into a concrete target with an unconfined compressive strength of 23 MPa.
Method of Matched Expansions & the Singularity Structure of the Green Function
Casals, Marc; Ottewill, Adrian C; Wardell, Barry
2010-01-01
We present the first successful application of the method of Matched Expansions for the calculation of the self-force on a point particle in a curved spacetime. We investigate the case of a scalar charge in the Nariai spacetime, which serves as a toy model for a point mass moving in the Schwarzschild black hole background. We discuss the singularity structure of the Green function beyond the normal neighbourhood and the interesting effect of caustics on null wave propagation.
On the high-order topological asymptotic expansion for shape functions
Directory of Open Access Journals (Sweden)
Maatoug Hassine
2016-04-01
Full Text Available This article concerns the topological sensitivity analysis for the Laplace operator with respect to the presence of a Dirichlet geometry perturbation. Two main results are presented in this work. In the first result we discuss the influence of the considered geometry perturbation on the Laplace solution. In the second result we study the high-order topological derivatives. We derive a high-order topological asymptotic expansion for a large class of shape functions.
Effects of Lung Expansion Therapy on Lung Function in Patients with Prolonged Mechanical Ventilation
Yen-Huey Chen; Ming-Chu Yeh; Han-Chung Hu; Chung-Shu Lee; Li-Fu Li; Ning-Hung Chen; Chung-Chi Huang; Kuo-Chin Kao
2016-01-01
Common complications in PMV include changes in the airway clearance mechanism, pulmonary function, and respiratory muscle strength, as well as chest radiological changes such as atelectasis. Lung expansion therapy which includes IPPB and PEEP prevents and treats pulmonary atelectasis and improves lung compliance. Our study presented that patients with PMV have improvements in lung volume and oxygenation after receiving IPPB therapy. The combination of IPPB and PEEP therapy also results in inc...
Cvetič, Gorazd; Kataev, A. L.
2016-07-01
We consider a new form of analytical perturbation theory expansion in the massless S U (Nc) theory, for the nonsinglet part of the e+e--annihilation to hadrons Adler function Dn s and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering Cns B j p, and demonstrate its validity at the O (αs4)-level at least. It is a two-fold series in powers of the conformal anomaly and of S U (Nc) coupling αs. Explicit expressions are obtained for the {β }-expanded perturbation coefficients at O (αs4) level in MS ¯ scheme, for both considered physical quantities. Comparisons of the terms in the {β }-expanded coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or Rδ-scheme motivated expansion in the Principle of Maximal Conformality. Relations between terms of the {β }-expansion for the Dn s- and Cns B j p-functions, which follow from the conformal symmetry limit and its violation, are presented. The relevance to the possible new analyses of the experimental data for the Adler function and Bjorken sum rule is discussed.
Norgren, Martin
2009-01-01
The capacitance of the circular parallel plate capacitor is calculated by expanding the solution to the Love integral equation into a Fourier cosine series. Previously, this kind of expansion has been carried out numerically, resulting in accuracy problems at small plate separations. We show that this bottleneck can be alleviated, by calculating all expansion integrals analytically in terms of the Sine and Cosine integrals. Hence, we can, in the approximation of the kernel, use considerably larger matrices, resulting in improved numerical accuracy for the capacitance. In order to improve the accuracy at the smallest separations, we develop a heuristic extrapolation scheme that takes into account the convergence properties of the algorithm. Our results are compared with other numerical results from the literature and with the Kirchhoff result. Error estimates are presented, from which we conclude that our results is a substantial improvement compared with earlier numerical results.
On differential subordinations for a class of analytic functions defined by a linear operator
Directory of Open Access Journals (Sweden)
V. Ravichandran
2004-01-01
Full Text Available We obtain several results concerning the differential subordination between analytic functions and a linear operator defined for a certain family of analytic functions which are introduced here by means of these linear operators. Also, some special cases are considered.
Gniewek, Piotr
2016-01-01
The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances $R$, all three formulas yield the correct expression $-(2/e)Re^{-R}$, but approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as $3^{-K}$, where $K$ is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as $a^K/(K+1)!$, where $a=\\ln2 -\\tfrac{1}{2}$. The variational formula performs best, its error decays as $K^{1/2} [a^{ K}/(K+1)!]^2$. These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the ...
International Nuclear Information System (INIS)
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes
Energy Technology Data Exchange (ETDEWEB)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)
2015-08-15
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.
Analytic Continuation of Hypergeometric Functions in the Resonant Case
Scheidegger, Emanuel
2016-01-01
We perform the analytic continuation of solutions to the hypergeometric differential equation of order $n$ to the third regular singularity, usually denoted $z=1$, with the help of recurrences of their Mellin--Barnes integral representations. In the resonant case, there are necessarily logarithmic solutions. We apply the result to Picard-Fuchs equations of certain one--parameter families of Calabi--Yau manifolds, known as the mirror quartic and the mirror quintic.
Wrapping interactions and the genus expansion of the 2-point function of composite operators
Sieg, C; Sieg, Christoph; Torrielli, Alessandro
2005-01-01
We perform a systematic analysis of wrapping interactions for a general class of theories with color degrees of freedom, including N=4 SYM. Wrapping interactions arise in the genus expansion of the 2-point function of composite operators as finite size effects that start to appear at a certain order in the coupling constant at which the range of the interaction is equal to the length of the operators. We analyze in detail the relevant genus expansions, and introduce a strategy to single out the wrapping contributions, based on adding spectator fields. We use a toy model to demonstrate our procedure, performing all computations explicitly. Although completely general, our treatment should be particularly useful for applications to the recent problem of wrapping contributions in some checks of the AdS/CFT correspondence.
Institute of Scientific and Technical Information of China (English)
Huo TANG; Erhan DENIZ
2014-01-01
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bcκ+1f(z))′=κBcκf(z)−(κ−1)Bcκ+1f(z), where b, c, p ∈ C and κ = p+(b+1)/2 ∈ C\\Z−0 (Z−0 = {0,−1,−2, · · ·}). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China.
Chen, Jianglong; Gao, Jinlong; Yuan, Feng
2016-01-01
Drawing upon the Landsat satellite images of Nanjing from 1985, 1995, 2001, 2007, and 2013, this paper integrates the convex hull analysis and common edge analysis at double scales, and develops a comprehensive matrix analysis to distinguish the different types of urban land expansion. The results show that Nanjing experienced rapid urban expansion, dominated by a mix of residential and manufacturing land from 1985 to 2013, which in turn has promoted Nanjing's shift from a compact mononuclear city to a polycentric one. Spatial patterns of three specific types of growth, namely infilling, extension, and enclave were quite different in four consecutive periods. These patterns result primarily from the existing topographic constraints, as well as government-oriented urban planning and policies. By intersecting the function maps, we also reveal the functional evolution of newly-developed urban land. Moreover, both self-enhancing and mutual promotion of the newly developed functions are surveyed over the last decade. Our study confirms that the integration of a multi-scale method and multi-perspective analysis, such as the spatiotemporal patterns and functional evolution, helps us to better understand the rapid urban growth in China. PMID:26845155
Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China.
Directory of Open Access Journals (Sweden)
Jianglong Chen
Full Text Available Drawing upon the Landsat satellite images of Nanjing from 1985, 1995, 2001, 2007, and 2013, this paper integrates the convex hull analysis and common edge analysis at double scales, and develops a comprehensive matrix analysis to distinguish the different types of urban land expansion. The results show that Nanjing experienced rapid urban expansion, dominated by a mix of residential and manufacturing land from 1985 to 2013, which in turn has promoted Nanjing's shift from a compact mononuclear city to a polycentric one. Spatial patterns of three specific types of growth, namely infilling, extension, and enclave were quite different in four consecutive periods. These patterns result primarily from the existing topographic constraints, as well as government-oriented urban planning and policies. By intersecting the function maps, we also reveal the functional evolution of newly-developed urban land. Moreover, both self-enhancing and mutual promotion of the newly developed functions are surveyed over the last decade. Our study confirms that the integration of a multi-scale method and multi-perspective analysis, such as the spatiotemporal patterns and functional evolution, helps us to better understand the rapid urban growth in China.
Cvetič, Gorazd; Kataev, A. L.
2016-01-01
We consider a new form of analytical perturbation theory expansion in the massless $SU(N_c)$ theory, for the non-singlet part of the $e^+e^-$-annihilation to hadrons Adler function $D^{ns}$ and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering $C_{ns}^{Bjp}$, and demonstrate its validity at the $O(\\alpha_s^4)$-level at least. It is a two-fold series in terms of powers of the conformal anomaly and of $SU(N_c)$ coupling $\\alpha_s$. Explicit expressions are obtaine...
International Nuclear Information System (INIS)
The fabrication of functional thin films and devices by direct deposition of nanoparticles from the gas phase is a promising approach enabling, for instance, the integration of complex analytical and sensing capabilities on microfabricated platforms. Aerosol-based techniques ensure large-scale nanoparticle production and they are potentially suited for this goal. However, they are not adequate in terms of fine control over the lateral resolution of the coatings, mild processing conditions (avoiding high temperature and aggressive chemicals), low contamination and compatibility with microfabrication processes. Here we report the high-rate and efficient production of functional nanostructured films by nanoparticle assembling obtained by the combination of flame spray pyrolysis and supersonic expansion. Our approach merges the advantages of flame spray pyrolysis for bulk nanopowders such as process stability and wide material library availability with those of supersonic cluster beam deposition in terms of lateral resolution and of direct integration of nanomaterials on devices. We efficiently produced nanostructured films and devices (such as gas sensors) using metal oxide, pure noble metal and oxide-supported noble metal nanoparticles. (paper)
Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.
Qu, Peng; Wang, Li-Zhen; Lin, P Charles
2016-09-28
Myeloid derived suppressor cells (MDSCs) are a group of immature myeloid cells accumulated in most cancer patients and mouse tumor models. MDSCs suppress host immune response and concurrently promote tumor angiogenesis, thereby promote tumor growth and progression. In this review, we discuss recent progresses in expansion and activity of tumor MDSCs, and describe new findings about immunosuppressive function of different subtypes of MDSCs in cancer. We also discussed tumor angiogenic activities and pro-tumor invasion/metastatic roles of MDSCs in tumor progression. PMID:26519756
Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank
2016-01-01
Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption. PMID:27356970
Mo, Yuxiang; Tao, Jianmin
2016-01-01
Recently, Tao and Mo proposed an accurate meta-generalized gradient approximation for the exchange-correlation energy. The exchange part is derived from the density matrix expansion, while the correlation part is obtained by improving the TPSS correlation in the low-density limit. To better understand this exchange functional, in this work, we combine the TM exchange with the original TPSS correlation, which we call TMTPSS, and make a systematic assessment on molecular properties. The test sets include the 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TMTPSS functional is competitive with or even more accurate than TM functional for some properties. In particular, it is the most accurate nonempirical semilocal DFT for the enthalpies of formation and harmonic vibrational frequencies, suggesting the robustness of TM exchange.
Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank
2016-01-01
Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption.
Computing the hadronic vacuum polarization function by analytic continuation
Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B
2013-01-01
We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the space-like and time-like regions. We provide two independent derivations of this method showing that it leads to the desired hadronic vacuum polarization function in Minkowski space-time. We show with the example of the leading- order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.
Computing the hadronic vacuum polarization function by analytic continuation
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Hashimoto, Shoji [KEK National High Energy Physics, Tsukuba (Japan); The Graduate Univ. for Advanced Studies, Tsukuba (Japan). School of High Energy Accelerator Science; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2013-07-15
We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the space-like and time-like regions. We provide two independent derivations of this method showing that it leads to the desired hadronic vacuum polarization function in Minkowski space-time. We show with the example of the leading- order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.
Energy Technology Data Exchange (ETDEWEB)
Heim, Erik [TU Braunschweig, Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)], E-mail: e.heim@tu-bs.de; Ludwig, Frank; Schilling, Meinhard [TU Braunschweig, Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)
2009-05-15
Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.
Analytic flux formulas and tables of shielding functions
Energy Technology Data Exchange (ETDEWEB)
Wallace, O.J.
1981-06-01
Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments.
Analytic flux formulas and tables of shielding functions
International Nuclear Information System (INIS)
Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments
Hypercyclic Behavior of Translation Operators on Spaces of Analytic Functions on Hilbert Spaces
Directory of Open Access Journals (Sweden)
Zoryana Mozhyrovska
2015-01-01
Full Text Available We consider special Hilbert spaces of analytic functions of many infinite variables and examine composition operators on these spaces. In particular, we prove that under some conditions a translation operator is bounded and hypercyclic.
Heavy-quark QCD vacuum polarisation function. Analytical results at four loops
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2006-07-15
The first two moments of the heavy-quark vacuum polarisation function at four loops in quantum chromo-dynamics are found in fully analytical form by evaluating the missing massive four-loop tadpole master integrals. (orig.)
ORBITALES. A program for the calculation of wave functions with an analytical central potential
International Nuclear Information System (INIS)
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs
On Eneström–Kakeya Theorem and Related Analytic Functions
Indian Academy of Sciences (India)
W M Shah; A Liman
2007-08-01
We prove some extensions of the classical results concerning the Eneström–Kakeya theorem and related analytic functions. Besides several consequences, our results considerably improve the bounds by relaxing and weakening the hypothesis in some cases.
Analytic height correlation function of rough surfaces derived from light scattering
Zamani, M; Fazeli, S M; Downer, M C; Jafari, G R
2015-01-01
We obtain an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, solving for the height correlation functions, and comparing them to functions derived from AFM measurements. The results show good agreement. The advantages of this method are its accurate analytical equation for the height correlation function and the simplicity of the experimental setup required to measure it.
Fermi surface in local-density-functional theory and in gradient expansions
Mearns, Daniel; Kohn, Walter
1989-05-01
It has recently been shown that the Kohn-Sham (KS) equations, even with the exact exchange-correlation potential, vxc(r), in general do not yield the exact physical Fermi surface (FS). The latter may be obtained either from the discontinuities of the momentum distribution in the exact ground state or, equally well, from the locus of singularities in q space of the exact density-density response function, χ(q,q) (Kohn effect). The present paper considers approximations in which the exact exchange-correlation energy functional is replaced by a gradient expansion of arbitrary finite order m [e.g., Exc(2)[n] =Fd3 [exc(n(r))n(r)+gxc (n(r))||∇n(r)||2
Function of nuclear analytical techniques in Interuniverinteruniversity research cooperation
International Nuclear Information System (INIS)
The interuniversity institute was established in 1957 with the instruction to use its major research tool - the nuclear research reactor - in cooperation with and for the benefit of all universities in the Netherlands. Developments in the institute have resulted in two forms of neutron activation analysis currently applied on routine basis. A highly sophisticated automated instrumental multi-element analysis is mostly applied to samples containing elements in the ppm-range and in which no strongly dominating activity is formed. These conditions are fulfilled in general for silicous materials as encountered in geological and archeological samples and in soils and sediments. An automated destructive multi-element analysis involving chemical separations is used for samples with element concentrations in the ppb-range containing some type of dominating activities. This occurs in biological and environmental samples where Na, Fe and Br are mostly available in high concentrations. The institute has been asked many times to help in setting up radio-tracer experiments in various fields including analytical chemistry (isotope dilution, radio immuno assay), physical chemistry (adsorption, diffusion and exchange reactions between solids and liquids during crystallization, corrosion), chemical engineering (determination of contact times and their distribution), biomedical engineering (diffusion processes in membranes for artificial kidneys), biology (uptake of chemical by fish, measurement of displacement habits of animals) etc. Special attention is being paid to the behaviour of trace-elements in metabolic processes, which has been initiated by the medical interest in pathological deviations of copper metabolism in Wilson's and Menkes' diseases. (T.G.)
Takahashi, Hirokazu; Takahashi, Kaito; Yabushita, Satoshi
2015-05-21
Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace
Functional calculus for generators of analytic semigroups of operators
Lopushansky O.V.; Sharyn S.V.
2012-01-01
We construct a functional calculus for generators of one-parameter boundedanalytic semigroups of operators on a Banach space. The calculus symbol classconsist of the Laplace image of the convolution algebra $cal S'_+$ of tempereddistributions with supports in $[0, infty)$. Domain of constructed calculus isdense in the Banach space.
Functional calculus for generators of analytic semigroups of operators
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2012-06-01
Full Text Available We construct a functional calculus for generators of one-parameter boundedanalytic semigroups of operators on a Banach space. The calculus symbol classconsist of the Laplace image of the convolution algebra $cal S'_+$ of tempereddistributions with supports in $[0, infty$. Domain of constructed calculus isdense in the Banach space.
Newton Algorithms for Analytic Rotation: An Implicit Function Approach
Boik, Robert J.
2008-01-01
In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…
Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method
Garrido, E.; Kievsky, A.; Viviani, M.
2016-10-01
In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.
Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier
2015-02-01
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.
Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier
2015-02-01
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies. PMID:25155994
Sun, Xiaojun; Zhang, Jingshang
2015-12-01
A new integral formula, which has not been compiled in any integral tables or mathematical softwares, is proposed to obtain the analytical energy-angular spectra of the particles that are sequentially emitted from the discrete energy levels of the residual nuclei in the statistical theory of light nucleus reaction (STLN). In the cases of the neutron induced light nucleus reactions, the demonstration of the kinetic energy conservation in the sequential emission processes becomes straightforward thanks to this new integral formula and it is also helpful to largely reduce the volume of file-6 in nuclear reaction databases. Furthermore, taking p + 9Be reaction at 18 MeV as an example, this integral formula is extended to calculate the energy-angular spectra of the sequentially emitted neutrons for proton induced light nucleus reactions in the frame of STLN.
Analytical theory of the probability distribution function of structure formation
Anderson, Johan; Kim, Eun-Jin
2009-01-01
The probability distribution function (PDF) tails of the zonal flow structure formation and the PDF tails of momentum flux by incorporating effect of a shear flow in ion-temperature-gradient (ITG) turbulence are computed in the present paper. The bipolar vortex soliton (modon) is assumed to be the coherent structure responsible for bursty and intermittent events driving the PDF tails. It is found that stronger zonal flows are generated in ITG turbulence than Hasegawa-Mima (HM) turbulence as w...
Cvetič, Gorazd
2016-01-01
We consider a new form of analytical perturbation theory expansion in the massless $SU(N_c)$ theory, for the $e^+e^-$-annihilation to hadrons Adler function, and the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering, and demonstrate its validity at the $O(\\alpha_s^4)$-level at least. It is expressed through a two-fold series in terms of powers of the conformal anomaly and the coupling constant $\\alpha_s$ of the $SU(N_c)$ gauge model. Subsequently, explicit expressions are obtained for the $\\{\\beta\\}$-expanded perturbation coefficients at $O(\\alpha_s^4)$ level in $\\overline{\\rm MS}$ scheme, for the nonsinglet contribution to the Adler function and the Bjorken polarized sum rule. Comparisons of the obtained terms in the $\\{\\beta\\}$-expanded perturbation coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or $R_{\\delta}$-scheme motivated expansion in the Principle of Maximal Conformality. Relations are pres...
Exchange splitting of the interaction energy and the multipole expansion of the wave function
Gniewek, Piotr
2015-01-01
The exchange splitting $J$ of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula $J_{\\textrm{surf}}[\\varphi]$, the volume-integral formula of the symmetry-adapted perturbation theory $J_{\\textrm{SAPT}}[\\varphi]$, and a variational volume-integral formula $J_{\\textrm{var}}[\\varphi]$. The calculations are based on the multipole expansion of the wave function $\\varphi$, which is divergent for any internuclear distance $R$. Nevertheless, the resulting approximations to the leading coefficient $j_0$ in the large-$R$ asymptotic series $J(R) = 2 e^{-R-1} R ( j_0 + j_1 R^{-1} + j_2 R^{-2} +\\cdots ) $ converge, with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the $J_{\\textrm{var}}[\\varphi]$, $J_{\\textrm{surf}}[\\varphi]$, and $J_{\\textrm{SAPT}}[\\varphi]$ formulas are used, respectively. Additionally, we observe that also the higher $j_k$ coefficients are predicted correctly when the multipole expansion is used in the $J_{...
Exchange splitting of the interaction energy and the multipole expansion of the wave function
International Nuclear Information System (INIS)
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula Jsurf[Φ], the volume-integral formula of the symmetry-adapted perturbation theory JSAPT[Φ], and a variational volume-integral formula Jvar[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j0 in the large-R asymptotic series J(R) = 2e−R−1R(j0 + j1R−1 + j2R−2 + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the Jvar[Φ], Jsurf[Φ], and JSAPT[Φ] formulas are used, respectively. Additionally, we observe that also the higher jk coefficients are predicted correctly when the multipole expansion is used in the Jvar[Φ] and Jsurf[Φ] formulas. The symmetry adapted perturbation theory formula JSAPT[Φ] predicts correctly only the first two coefficients, j0 and j1, gives a wrong value of j2, and diverges for higher jn. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general
Windisch, Andreas; Haase, Gundolf; Liebmann, Manfred
2012-01-01
Graphics Processing Units (GPUs) are employed for a numerical determination of the analytic structure of two-point correlation functions of Quantum Field Theories. These functions are represented through integrals in d-dimensional Euclidean momentum space. Such integrals can in general not be solved analytically, and therefore one has to rely on numerical procedures to extract their analytic structures if needed. After describing the general outline of the corresponding algorithm we demonstrate the procedure by providing a completely worked-out example in four dimensions for which an exact solution exists. We resolve the analytic structure by highly parallel evaluation of the correlation functions momentum space integral in the complex plane. The (logarithmically) divergent integral is regularized by applying a BPHZ-like Taylor subtraction to the integrand. We find perfect agreement with the exact solution. The fact that each point in the complex plane does not need any information from other points makes thi...
Sub-critical reactor kinetics analysis using incomplete gamma functions and binomial expansions
International Nuclear Information System (INIS)
Point reactor kinetics equations with one group of delayed neutrons are solved analytically to determine the neutron population as a function of time for any ramp reactivity insertion in the presence of external neutron source using prompt jump approximation. With the time dependent neutron population the other important kinetic parameters such as the reactor period also can be derived. Analytical solutions are available in the literatures for any ramp reactivity insertion into a critical reactor without considering the source term. Analytical solutions available in the literature by considering the source term also to study sub-critical reactor kinetics. But such a solutions either uses constant source approximation which under predicts the solution, or the available solution is not useful for all kind of sub-critical reactivity and external ramp reactivity insertion combination due to the computer precision incompatibility. In the present work, analyses are carried out to determine the reactivity boundary to which the existing results can converge to a true solution, beyond where the precision incompatibility arises. A new series solution is recommended in the region where existing solution converges to false solution due to precision incompatibility.
Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions.
Moreira, Wendel Lopes; Neves, Antonio Alvaro Ranha; Garbos, Martin K; Euser, Tijmen G; Cesar, Carlos Lenz
2016-02-01
Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of plane-waves, generalizing his analysis for the case of an arbitrary incident wave has been an open question because of the cancellation of the prefactor radial spherical Bessel function. This cancellation was obtained before by our own group for a highly focused beam centered in the objective. In this work, however, we show for the first time how these terms can be canceled out for any arbitrary incident field that satisfies Maxwells equations, and obtain analytical expressions for the beam shape coefficients. We show several examples on how to use our method to obtain analytical beam shape coefficients for: Bessel beams, general hollow waveguide modes and specific geometries such as cylindrical and rectangular. Our method uses the vector potential, which shows the interesting characteristic of being gauge invariant. These results are highly relevant for speeding up numerical calculation of light scattering applications such as the radiation forces acting on spherical particles placed in an arbitrary electromagnetic field, as in an optical tweezers system. PMID:26906812
Bagci, A
2016-01-01
The author in his previous works were presented a numerical integration method, namely, global-adaptive with the Gauss-Kronrod numerical integration extension in order to accurate calculation of molecular auxiliary functions integrals involve power functions with non-integer exponents. They are constitute elements of molecular integrals arising in Dirac equation when Slater-type orbitals with non-integer principal quantum numbers are used. Binomial series representation of power functions method, so far, is used for analytical evaluation of the molecular auxiliary function integrals however, intervals of integration cover areas beyond the condition of convergence. In the present study, analytical evaluation of these integrals is re-examined. They are expressed via prolate spheroidal coordinates. An alternative analytical approximation are derived. Slowly convergent binomial series representation formulae for power functions is investigated through nonlinear sequence transformations for the acceleration of con...
Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants.
Sharma, Manisha; Pandey, Girdhar K
2015-01-01
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205
Effects of smoking on chest expansion, lung function, and respiratory muscle strength of youths.
Tantisuwat, Anong; Thaveeratitham, Premtip
2014-02-01
[Purpose] Smoking has a direct effect on the respiratory system. The rate of cigarette smoking among young people has continued to increase steadily. The present study quantified and compared the respiratory function of smoking and non-smoking youths. [Subjects] Smoking and non-smoking male participants aged between 15 to 18 years were recruited (n=34 per group). [Methods] Participants were asked to complete a questionnaire relating to smoking habits and the Fagerström test for nicotine dependence questionnaire, and their respiratory function was tested (measurement of chest expansion, lung function test with a spirometer, and assessment of respiratory muscle strength). [Results] All respiratory function tests demonstrated significant differences between the smoking and non-smoking groups. Smokers initiated cigarette smoking between the ages of 15 to 18 years. The most common duration of cigarette smoking was 1-3 years and the degree of nicotine dependence among the youths was at a low level. [Conclusion] This study's findings show that the early effects of cigarette smoking found in youths can lead to problems with the respiratory system. Such information can be used to illustrate the harm of smoking and should be used to encourage young people to quit or avoid cigarette smoking. PMID:24648624
International Nuclear Information System (INIS)
The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)
Indian Academy of Sciences (India)
Choong Yong Ung; Teow Chong Teoh
2014-06-01
DARPP-32 (dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.
Search for analytic extensions of combinations of thermal two-point functions at one loop
International Nuclear Information System (INIS)
Full text: In this paper, we study the analytic properties of two and three-point amplitudes at Finite Temperature in the Closed Time Path formalism at one loop. In [Phys. Rev. D 71, 036002 (2005)], Weldon has shown the impossibility of analytic continuation for the 2n different n-points functions that appear in the Real Time Formalism in Quantum Field Theory at Finite Temperature, due to the presence of branch cuts at various energy values. Even though none of these functions alone can be extended to complex regions he has found the particular combination of these n-point functions which admit analytic extension to complex energies. In his work, he has considered general properties of thermal average of field operators to analyse the results. On the other hand, at one loop in the perturbation theory more analytic structures appear inside the loop integrals and it is not clear how these results will appear. Here, we consider the λφ3 and the Schwinger Models and study how these analytic properties manifest specifically inside a loop integral. We explicitly extract the branch cuts of the various amplitudes for the self-energies and vertex corrections and show which combinations of them admit analytic continuation for complex energy values. We will extend this paper of n-point functions. (author)
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
Alpay, Daniel
2015-01-01
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-01-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very CPU-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic cor...
Analytical approach to the current correlation function in dissipative two-state systems
Institute of Scientific and Technical Information of China (English)
Qin WANG; Cheng JIANG; Hang ZHENG
2008-01-01
Using the spin-boson model with coupling to Ohmic bath, an analytical approach is developed to study the dynamics of the current correlation function in dissipa-tive two-state systems with the view of understanding the ef-fects of environment and tunneling on the coherent oscillation and the long-time decay of the current correlation function in these systems. An analytic expression of current correlation function is obtained and the results agree very well with that of numerical simulations.
Energy Technology Data Exchange (ETDEWEB)
Catoni, Francesco; Zampetti, Paolo [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Cannata, Roberto [ENEA, Centro Ricerche Casaccia, Rome (Italy). Funzione Centrale INFO; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione
1997-10-01
Systems of two-dimensional hypercomplex numbers are usually studied in their canonical form, i.e. according to the multiplicative rule for the ``imaginary``versor i{sup 2} = {+-} 1, 0. In this report those systems for which i{sup 2} = {alpha} + {beta}i are studied and expressions are derived for functions given by series expansion as well as for some elementary functions. The results obtained for systems which can be decomposed are then extended to all systems.
Fukushima, Kimichika
2015-01-01
This paper presents analytical eigenenergies for a pair of confined fundamental fermion and antifermion under a linear potential derived from the Wilson loop for the non-Abelian Yang-Mills field. We use basis functions localized in spacetime, and the Hamiltonian matrix of the Dirac equation is analytically diagonalized. The squared system eigenenergies are proportional to the string tension and the absolute value of the Dirac's relativistic quantum number related to the total angular momentum, consistent with the expectation.
Theoretical study of Structural and analytical potential energy functions of GaN
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Using Density Function Theory,the present work has optimized the equilibrium geometry of GaN. Murrell-Sorbie analytical potential energy functions of GaN have been derived by using ab initio data and the least-square fitting method,and harmonic frequency,force constant and spectroscopic data also have been calculated.
The Challenge of Developing a Universal Case Conceptualization for Functional Analytic Psychotherapy
Bonow, Jordan T.; Maragakis, Alexandros; Follette, William C.
2012-01-01
Functional Analytic Psychotherapy (FAP) targets a client's interpersonal behavior for change with the goal of improving his or her quality of life. One question guiding FAP case conceptualization is, "What interpersonal behavioral repertoires will allow a specific client to function optimally?" Previous FAP writings have suggested that a therapist…
Simple analytical expression for work function in the 'nearest neighbour' approximation
Energy Technology Data Exchange (ETDEWEB)
Chrzanowski, J. [Institute of Physics, Maritime University of Szczecin, 1-2 Waly Chrobrego, Szczecin 70-500 (Poland); Kravtsov, Yu.A., E-mail: y.kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, 1-2 Waly Chrobrego, Szczecin 70-500 (Poland); Space Research Institute, Profsoyuznaya St. 82/34, Moscow 117997 (Russian Federation)
2011-01-17
Nonlocal operator of potential is suggested, based on the 'nearest neighbour' approximation (NNA) for single electron wave function in metals. It is shown that Schroedinger equation with nonlocal potential leads to quite simple analytical expression for work function, which surprisingly well fits to experimental data.
Simple analytical expression for work function in the “nearest neighbour” approximation
Chrzanowski, J.; Kravtsov, Yu. A.
2011-01-01
Nonlocal operator of potential is suggested, based on the “nearest neighbour” approximation (NNA) for single electron wave function in metals. It is shown that Schrödinger equation with nonlocal potential leads to quite simple analytical expression for work function, which surprisingly well fits to experimental data.
Majorization for a Class of Analytic Functions Defined by q-Differentiation
Directory of Open Access Journals (Sweden)
K. A. Selvakumaran
2014-01-01
Full Text Available We introduce a new class of multivalent analytic functions defined by using q-differentiation and fractional q-calculus operators. Further, we investigate majorization properties for functions belonging to this class. Also, we point out some new and known consequences of our main result.
International Nuclear Information System (INIS)
This work presents a novel numeric method, based on the finite element method, applied for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. The method is based on the expansion of the variables in almost hierarchical functions. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desired degree. This novel numeric method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature in two dimensions are analyzed. The results show the method capacity in supplying precise results. From the results obtained in this thesis it is possible to conclude that the hierarchical expansion method can be applied successfully for the solution of fluid dynamic problems that involve incompressible fluids. (author)
Stefańska, Patrycja
2016-01-01
The Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\\/~Szmytkowski, J.\\ Phys.\\ B \\textbf{30}, 825 (1997); \\textbf{30}, 2747(E) (1997)] is exploited to derive a closed-form expression for the magnetizability of the relativistic one-electron atom in an arbitrary discrete state, with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric functions ${}_3F_2$ of the unit argument. Our general expression agrees with formulas obtained analytically earlier by other authors for some particular states of the atom. We present also numerical values of the magnetizability for some excited states of selected hydrogenlike ions with $1 \\leqslant Z \\leqslant 137$ and compare them with data available in the literature.
Exchange splitting of the interaction energy and the multipole expansion of the wave function
Energy Technology Data Exchange (ETDEWEB)
Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)
2015-10-21
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.
Energy Technology Data Exchange (ETDEWEB)
Kalmykov, M.Yu.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-07-15
We prove the following theorems: 1) The Laurent expansions in {epsilon} of the Gauss hypergeometric functions {sub 2}F{sub 1}(I{sub 1}+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+(p/q)+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z) and {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+ a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), where I{sub 1},I{sub 2},I{sub 3},p,q are arbitrary integers, a,b,c are arbitrary numbers and {epsilon} is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+c{epsilon};z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums {sigma}{sup {infinity}}{sub j=1}({gamma}(j))/({gamma}(1+j-(p)/(q))) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1) and the multiple rational sums {sigma}{sup {infinity}}{sub j=1} ({gamma}(j+(p)/(q)))/({gamma}(1+j)) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1), where S{sub a}(j)={sigma}{sup j}{sub k=1}(1)/(k{sup a}) is a harmonic series and c is an arbitrary integer, are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions {sub p}F{sub p.1}((vector)A+(vector)a{epsilon};(vector)B+(vector)b{epsilon},(p)/(q)+B{sub p-1};z) and {sub p}F{sub p-1}((vector)A+(vector)a{epsilon},(p)/(q)+A{sub p};(vector)B+(vector)b{epsilon};z) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials. (orig.)
Effects of Lung Expansion Therapy on Lung Function in Patients with Prolonged Mechanical Ventilation
Directory of Open Access Journals (Sweden)
Yen-Huey Chen
2016-01-01
Full Text Available Common complications in PMV include changes in the airway clearance mechanism, pulmonary function, and respiratory muscle strength, as well as chest radiological changes such as atelectasis. Lung expansion therapy which includes IPPB and PEEP prevents and treats pulmonary atelectasis and improves lung compliance. Our study presented that patients with PMV have improvements in lung volume and oxygenation after receiving IPPB therapy. The combination of IPPB and PEEP therapy also results in increase in respiratory muscle strength. The application of IPPB facilitates the homogeneous gas distribution in the lung and results in recruitment of collapsed alveoli. PEEP therapy may reduce risk of respiratory muscle fatigue by preventing premature airway collapse during expiration. The physiologic effects of IPPB and PEEP may result in enhancement of pulmonary function and thus increase the possibility of successful weaning from mechanical ventilator during weaning process. For patients with PMV who were under the risk of atelectasis, the application of IPPB may be considered as a supplement therapy for the enhancement of weaning outcome during their stay in the hospital.
Directory of Open Access Journals (Sweden)
Alcalay Myriam
2007-10-01
Full Text Available Abstract Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG, PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a molecular evolution of paralogs correlates with their expression pattern; (b gene diversification is obtained through massive genomic rearrangements; and (c splicing modification contributes to the functional specialization of novel genes.
Analytic Solutions of a Second-Order Iterative Functional Differential Equations
Liu, Lingxia
In this paper, the existence of analytic solutions of an iterative functional differential equation is studied. We reduce this problem to finding analytic solutions of a functional differential equation without iteration of the unknown function. For technical reasons, in previous work the constant α given in Schröder transformation is required to fulfill that α is off the unit circle or lies on the circle with the Diophantine condition. In this paper, we break the restraint of the Diophantine condition and obtain results of analytic solutions in the case of α at resonance, i.e., at a root of the unity and the case of α near resonance under the Brjuno condition.
Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.
Directory of Open Access Journals (Sweden)
Timothy Jegla
Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.
The resonance expansion for the Green's function of the Schroedinger and wave equations
International Nuclear Information System (INIS)
We give a survey of some recent mathematical work on resonances, in particular on perturbation series, low energy expansions and on resonances for point interactions. Expansions of the kernels of esup(-it)√sup(H+) and esup(-itH) in terms of resonances are also given (where Hsub(+) is the positive part of the Hamiltonian). (orig.)
Kamikado, Kazuhiko; Uchino, Shun
2016-01-01
Motivated by experiments with cold atoms, we investigate a mobile impurity immersed in a Fermi sea in three dimensions at zero temperature by means of the functional renormalization group. We first perform the derivative expansion of the effective action to calculate the ground state energy and Tan's contact across the polaron-molecule transition for several mass imbalances. Next we study quasiparticle properties of the impurity by using a real-time method recently developed in nuclear physics, which allows one to go beyond the derivative expansion. We obtain the spectral function of the polaron, the effective mass and quasiparticle weight of attractive and repulsive polarons, and clarify how they are affected by mass imbalances.
Analytic integration of a common set of microwave beam intensity functions
Energy Technology Data Exchange (ETDEWEB)
Potter, S.D. [New York Univ., New York, NY (United States)
1994-12-31
When designing a wireless power transmission system, a virtually limitless number of aperture illumination functions are available. However, a commonly-used set of beam tapers results in received intensities that involve Bessel functions. This family of intensities is convenient to study and compare systematically. A cosntraint on the calculation of reception efficiency is the need to write numerical routines to integrate such functions. It is shown that these functions can be integrated analytically, resulting in a concise formula for reception efficiency as a function of rectifying antenna (rectenna) diameter.
Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach
Directory of Open Access Journals (Sweden)
Fenghua He
2013-01-01
Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.
Borovikov, Dmitry
2012-01-01
Features and parameters of \\boiling" liquid layer, which arises under conditions of isentropic expansion of warm dense matter (WDM), are stud- ied with the use of simplest van der Waals equation of state (EOS). Advan- tage of this EOS is possibility of demonstrable and semi-analytical descrip- tion of thermo- and hydrodynamics of the process. Idealized self-similar case of behavior of matter on interception of equilibrium (not metastable) isoentropic curve and boundary of gas-liquid coexistence curve (binodal) is analyzed. The possibility of formation of such "liquid layer" was studied previously in [1] during solving the problem of ablation of metal surface under the action of strong laser radiation. Peculiarity of such "freezing" of finite portion of expanding matter in the state, which corresponds to the binodal of gas-liquid or/and other phase transitions|so called "phase freezeout"and prospects of applications of this phenomenon for intended generation of uniform and extensive zone of previously unexplor...
Bowen, Sarah; Haworth, Kevin; Grow, Joel; Tsai, Mavis; Kohlenberg, Robert
2012-01-01
Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991) aims to improve interpersonal relationships through skills intended to increase closeness and connection. The current trial assessed a brief mindfulness-based intervention informed by FAP, in which an interpersonal element was added to a traditional intrapersonal mindfulness…
Differential Sandwich Theorems for some Subclasses of Analytic Functions Involving a Linear Operator
Directory of Open Access Journals (Sweden)
S. Sivasubramanian
2007-10-01
Full Text Available By making use of the familiar Carlson-Shaffer operator,the authors derive derive some subordination and superordination results for certain normalized analytic functions in the open unit disk. Relevant connections ofthe results, which are presented in this paper, with various other known results are also pointed out.
An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy
Collis, Peter
2012-01-01
Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…
Closed analytical expressions for some useful sums and integrals involving Legendre function
International Nuclear Information System (INIS)
Simple closed analytical expressions are obtained for some integrals and infinite sums involving Legendre functions. They are lacking in the mathematical literature. The limiting values of these expressions pass into the known ones. The obtained expressions for the above sums and integrals may be useful for the calculation of the magnetic fields with configurations close to the toroidal ones (tokamak devices)
Institute of Scientific and Technical Information of China (English)
LI Zong-tao; GUO Dong
2014-01-01
In this paper, we introduce certain new subclasses of analytic functions defined by generalized multiplier transformation. By using the differential subordination, we study and investigate various inclusion properties of these classes. Also inclusion properties of these classes involving the integral operator are considered.
Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions
Directory of Open Access Journals (Sweden)
Selvaraj C.
2016-07-01
Full Text Available The main object of this paper is to study Fekete-Szegö problem for a certain subclass of p - valent analytic functions. Fekete-Szegö inequality of several classes are obtained as special cases from our results. Applications of the result are also obtained on the class defined by convolution.
Institute of Scientific and Technical Information of China (English)
TsuiChih－Ya
1992-01-01
A set of new gasdynamic functions with varying specific heat are deriveo for the first time.An original analytical solution of normal shock waves is owrked out therewith.This solution is thereafter further improved by not involving total temperature,Illustrative examples of comparison are given,including also some approximate solutions to show the orders of their errors.
Directory of Open Access Journals (Sweden)
Hüseyin Irmak
2014-01-01
Full Text Available By making use of different techniques given in Miller and Mocanu (2000 (and also in Jack (1971, some recent results consisting of certain multivalently analytic functions given both in Irmak (2005 and in Irmak (2010 are firstly restated and some of their applications are then pointed out.
Munoz-Martinez, Amanda; Novoa-Gomez, Monica; Gutierrez, Rochy Vargas
2012-01-01
Functional Analytic Psychotherapy (FAP) has been making an important rise in Ibero-America in recent years. This paper presents a review of different contributions, problems and some proposals. Three principal topics are reviewed: (a) general characteristics and theoretical bases of FAP, (b) the uses of FAP and its relationship with other…
A UNIFIED CLASS OF ANALYTIC FUNCTIONS WITH FIXED ARGUMENT OF COEFFICIENTS
Institute of Scientific and Technical Information of China (English)
J.Dziok
2011-01-01
In this paper we introduce new classes of analytic functions with fixed argument of coefficients defined by subordination.Coefficient estimates,distortion theorems,integral means inequalities,and the radii of convexity and starlikeness are investigated.Convolution properties are also pointed out.
Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)
Institute of Scientific and Technical Information of China (English)
Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia
2006-01-01
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-08-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it
On the analytical evaluation of the partition function for unit hypercubes in four dimensions
International Nuclear Information System (INIS)
The group integrations required for the analytic evaluation of the partition function for unit hypercubes in four dimensions are carried out. Modifications of the graphical rules for SU2 group integrations cited in the literature are developed for this purpose. A complete classification of all surfaces that can be embedded in the unit hypercube is given and their individual contribution to the partition function worked out. Applications are discussed briefly. (orig.)
Ryttov, T A
2016-01-01
We consider an asymptotically free vectorial gauge theory, with gauge group $G$ and $N_f$ fermions in a representation $R$ of $G$, having an infrared (IR) zero in the beta function at $\\alpha_{IR}$. We present general formulas for scheme-independent series expansions of quantities, evaluated at $\\alpha_{IR}$, as powers of an $N_f$-dependent expansion parameter, $\\Delta_f$. First, we apply these to calculate the derivative $d\\beta/d\\alpha$ evaluated at $\\alpha_{IR}$, denoted $\\beta'_{IR}$, which is equal to the anomalous dimension of the ${\\rm Tr}(F_{\\mu\
Institute of Scientific and Technical Information of China (English)
HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
Muñoz-Martínez, Amanda M; Coletti, Juan Pablo
2015-01-01
Abstract Functional Analytic Psychotherapy (FAP) is a therapeutic approach developed in context. FAP is characterized by use therapeutic relationship and the behaviors emit into it to improve clients daily life functioning. This therapeutic model is supported in behavior analysis principles and contextual functionalism philosophy. FAP proposes that clients behavior in session are functional equivalent with those out of session; therefore, when therapists respond to clients behaviors in session contingently, they promote and increase improvements in the natural setting. This article poses main features of FAP, its philosophical roots, achievements and research challenges to establish FAP as an independent treatment based on the evidence.
Edgeworth expansion for the survival function estimator in the Koziol-Green model
Institute of Scientific and Technical Information of China (English)
SUN; Liuquan(孙六全); WU; Guofu(吴国富)
2002-01-01
In the KozioI-Green or proportional hazards random censorship model, the asymptotic accuracy of the estimated one-term Edgeworth expansion and the smoothed bootstrap approximation for the Studen tized Abdushukurov-Cheng-Lin estimator is investigated. It is shown that both the Edgeworth expansion estimate and the bootstrap approximation are asymptotically closer to the exact distribution of the Studentized Abdushukurov-Cheng-Lin estimator than the normal approximation.
Robinson, Jennifer L.; Laird, Angela R.; Glahn, David C.; Blangero, John; Sanghera, Manjit K.; Pessoa, Luiz; Fox, P. Mickle; Uecker, Angela; Friehs, Gerhard; Young, Keith A.; Griffin, Jennifer L.; LOVALLO, WILLIAM R.; Fox, Peter T
2011-01-01
Meta-analysis based techniques are emerging as powerful, robust tools for developing models of connectivity in functional neuroimaging. Here, we apply meta-analytic connectivity modeling to the human caudate to 1) develop a model of functional connectivity, 2) determine if meta-analytic methods are sufficiently sensitive to detect behavioral domain specificity within region-specific functional connectivity networks, and 3) compare meta-analytic driven segmentation to structural connectivity p...
Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions
Directory of Open Access Journals (Sweden)
Saibah Siregar
2012-01-01
Full Text Available In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double zeta functions in the open unit disc U={z:zEC, |z|<1}. The estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function class Σ are obtained in our investigation.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2015-03-28
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.
Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C
2014-06-01
A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function.
Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers
Jiang, Kai; Zhang, Pingwen
2013-01-01
This paper concerns the analytic structure of the self-consistent field theory (SCFT) energy functional of multicomponent block copolymer systems which contain more than two chemically distinct blocks. The SCFT has enjoyed considered success and wide usage in investigation of the complex phase behavior of block copolymers. It is well-known that the physical solutions of the SCFT equations are saddle points, however, the analytic structure of the SCFT energy functional has received little attention over the years. A recent work by Fredrickson and collaborators [see the monograph by Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, (2006), pp. 203-209] has analysed the mathematical structure of the field energy functional for polymeric systems, and clarified the index-1 saddle point nature of the problem produced by the incompressibility constraint. In this paper, our goals are to draw further attention to multicomponent block copolymers utilizing the Hubbard-Stratonovich transformation used by Fre...
Energy Technology Data Exchange (ETDEWEB)
Palma, Daniel A.P., E-mail: dpalmaster@gmail.com [CNEN-Comissao Nacional de Energia Nuclear, 22290-901, Rio de Janeiro (Brazil); Goncalves, Alessandro da C; Martinez, Aquilino S. [COPPE/UFRJ-Programa de Engenharia Nuclear, 21941-972, Rio de Janeiro (Brazil)
2011-10-21
The Voigt function H(a,v) is defined as the convolution of the Gaussian and Lorentzian functions. Recent papers puplished in different areas of physics emphasize the importance of the fast and accurate calculation of the Voigt function for different orders of magnitude of variables a and v. An alternative analytical formulation for the Voigt function is proposed in this paper. This formulation is based on the solution of the non-homogeneous ordinary differential equation, satisfied by the Voigt function, using the Frobenius and parameter variation methods. The functional form of the Voigt function, as proposed, proved simple and precise. Systematic tests are accomplished demonstrating some advantages with other existent methods in the literature and with the numeric method of reference.
Palma, Daniel A. P.; Gonçalves, Alessandro da C.; Martinez, Aquilino S.
2011-10-01
The Voigt function H( a, v) is defined as the convolution of the Gaussian and Lorentzian functions. Recent papers puplished in different areas of physics emphasize the importance of the fast and accurate calculation of the Voigt function for different orders of magnitude of variables a and v. An alternative analytical formulation for the Voigt function is proposed in this paper. This formulation is based on the solution of the non-homogeneous ordinary differential equation, satisfied by the Voigt function, using the Frobenius and parameter variation methods. The functional form of the Voigt function, as proposed, proved simple and precise. Systematic tests are accomplished demonstrating some advantages with other existent methods in the literature and with the numeric method of reference.
Lundengård, Karl; Javor, Vesna; Silvestrov, Sergei
2016-01-01
A multi-peaked form of the analytically extended function (AEF) is used for approximation of lightning current waveforms in this paper. The AEF function's parameters are estimated using the Marquardt least-squares method (MLSM), and the general procedure for fitting the $p$-peaked AEF function to a waveform with an arbitrary (finite) number of peaks is briefly described. This framework is used for obtaining parameters of 2-peaked waveforms typically present when measuring first negative stroke currents. Advantages, disadvantages and possible improvements of the approach are also discussed.
Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
Energy Technology Data Exchange (ETDEWEB)
Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica
1996-07-01
We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.
VECTOR-VALUED HOLOMORPHIC FUNCTIONS ON THE COMPLEX BALL AND THE ANALYTIC RADON-NIKODYM PROPERTY
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The complex Banach spaces X with values in which every bounded holomorphic function in the unit ball B of Cd(d > 1) has boundary limits almost surely are exactly the spaces with the analytic Radon-Nikodym property.The proof is based on inner Hardy martingales introduced here.The inner Hardy martingales are constructed in terms of inner functions in B and are reasonable discrete approximations for the image processes of the holomorphic Brownian motion under X-valued holomorphic functions in B.
Foundations of predictive analytics
Wu, James
2012-01-01
Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o
An analytical approximation of the growth function in Friedmann-Lema\\^itre universes
Kasai, Masumi
2010-01-01
We present an analytical approximation formula for the growth function in a spatially flat cosmology with dust and a cosmological constant. Our approximate formula is written simply in terms of a rational function. We also show the approximate formula in a dust cosmology without a cosmological constant, directly as a function of the scale factor in terms of a rational function. The single rational function applies for all, open, closed and flat universes. Our results involve no elliptic functions, and have very small relative error of less than 0.2 per cent over the range of the scale factor $1/1000 \\la a \\lid 1$ and the density parameter $0.2 \\la \\Omega_{\\rmn{m}} \\lid 1$ for a flat cosmology, and less than $0.4$ per cent over the range $0.2 \\la \\Omega_{\\rmn{m}} \\la 4$ for a cosmology without a cosmological constant.
Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava
Rassias, Michael
2014-01-01
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
Institute of Scientific and Technical Information of China (English)
李建平; 唐远炎; 严中洪; 张万萍
2001-01-01
Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When/N = 2k- 1 and N = 2k , the unified analytic constructions of orthogonal wavelet filters are put forward,respectively. The famous Daubechies filter and some other well-known wavelet filters are tested by the proposed novel method which is very useful for wavelet theory research and many application areas such as pattern recognition.
Analytic Solutions for a Functional Differential Equation Related to a Traffic Flow Model
Directory of Open Access Journals (Sweden)
Houyu Zhao
2012-01-01
Full Text Available We study the existence of analytic solutions of a functional differential equation (z(s+α2z'(s=β(z(s+z(s-z(s which comes from traffic flow model. By reducing the equation with the Schröder transformation to an auxiliary equation, the author discusses not only that the constant λ at resonance, that is, at a root of the unity, but also those λ near resonance under the Brjuno condition.
Edwards, J B; Guilandoust, M
1980-01-01
Partial differential equations and boundary conditions are derived for the large-and-small-signal behaviour of compositions in an ideal, symmetrical spatially-continuous (packed) distillation column separating a binary mixture. A precise paramemtric transfer-function matrix (T.F.M.) for the system is derived completely analytically so allowing the calculation of parameters of the T.F.M. directly from those of the plant. It is shown that the correct choice of input and output vectors yields a ...
Renna Magdalena
2012-01-01
Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming) was used ...
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
SPACES OF ANALYTIC FUNCTIONS REPRESENTED BY DIRICHLET SERIES OF TWO COMPLEX VARIABLES
Institute of Scientific and Technical Information of China (English)
HazemShabaBehnam; G.S.Srivastava
2002-01-01
We consider the space X of all analytic functions f(s1,s2)=∑∞m，n=1 amnexp(s1λm+s2μn) of two complex variables s1 and s2,equipping it with the natural locally convex topology and using the growth parameter,the order of f as defined recently by the authors.Under this topology X becomes a Frechet space.Apart from finding the characterization of continuous linear functionals,linear transformation on X,we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.
Mathematic Model and Analytic Solution for a Cylinder Subject to Exponential Function
Institute of Scientific and Technical Information of China (English)
LIU Wen; SHAN Rui
2009-01-01
Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lamè solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
Constraints on the nuclear energy density functional and new possible analytical forms
International Nuclear Information System (INIS)
The theoretical tool of choice for the microscopic description of all medium- and heavy-mass nuclei is the Energy Density Functional (EDF) method. Such a method relies on the concept of spontaneous symmetry breaking and restoration. In that sense, it is intrinsically a two-step approach. However, the symmetry restoration procedure is only well-defined in the particular case where the energy functional derives from a pseudo-potential. Thereby and as it has been recently shown, existing parameterizations of the energy functional provides unphysical results. Such a problem as well as the lack of predictive power call for developing new families of functionals. The first part of the present work is devoted to a study of the symmetry restoration problem and to the identification of properties that could constrain the analytic form of energy functionals that do not derive from a pseudo-potential. The second part deals with the construction of an energy functional that derives from a pseudo potential. The difficulties of such work are: 1) the identification of the minimal complexity of the pseudo-potential necessary to obtain an energy functional that is flexible enough to provide high-quality EDF parameterizations, 2) the tedious analytical derivation of the functional and of the associated one-body fields, 3) the implementation of the latter in existing codes, and 4) the development of an efficient fitting procedure. Eventually, it seems possible to generate a parameterization that strictly derives from a pseudo-potential and that provides as good results as the state-of-the-art (quasi) bilinear functionals. (author)
Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark
DEFF Research Database (Denmark)
Nord-Larsen, Thomas; Nielsen, Anders Tærø
2015-01-01
Adequate allometric equations are needed for estimating carbon pools of fast growing tree species in relation to international reporting of CO2 emissions and for assessing their possible contribution to increasing forest biomass resources. We developed models for predicting biomass, stem basic...... density and expansion factors of stem to above-ground biomass for five fast growing conifers. Data included destructive measurements of 236 trees from 14 sites, covering a wide range of growth conditions. To ensure model efficiency, models for predicting stem, crown and total above-ground biomass...... and reflected differences in the allometry between tree species. Stem density differed among species but generally declined with increasing site index and dbh. The overall model for predicting stem basic density included dbh, H100 and site index and explained 66% of the total variation. Expansion factors...
Directory of Open Access Journals (Sweden)
Leszek Szczeciński
2005-05-01
Full Text Available Turbo-receivers reduce the effect of the interference-limited propagation channels through the iterative exchange of information between the front-end receiver and the channel decoder. Such an iterative (turbo process is difficult to describe in a closed form so the performance evaluation is often done by means of extensive numerical simulations. Analytical methods for performance evaluation have also been proposed in the literature, based on Gaussian approximation of the output of the linear signal combiner. In this paper, we propose to use mutual information to parameterize the logarithmic-likelihood ratios (LLRs at the input/output of the decoder, casting our approach into the framework of extrinsic information transfer (EXIT analysis. We find the EXIT functions of the front-end (FE receiver analytically, that is, using solely the information about the channel state. This is done, decomposing the FE receiver into elementary blocks described independently. Our method gives an insight into the principle of functioning of the linear turbo-receivers, allows for an accurate calculation of the expected bit error rate in each iteration, and is more flexible than the one previously used in the literature, allowing us to analyze the performance for various FE structures. We compare the proposed analytical method with the results of simulated data transmission in case of multiple antennas transceivers.
Ayala, Alejandro; Sanchez, Angel
2001-01-01
We examine the effects that a confining boundary together with hydrodynamical expansion play on two-pion distributions in relativistic heavy-ion collisions. We show that the effects arise from the introduction of further correlations due both to collective motion and the system's finite size. As is well known, the former leads to a reduction in the apparent source radius with increasing average pair momentum K. However, for small K, the presence of the boundary leads to a decrease of the appa...
Directory of Open Access Journals (Sweden)
A.I.Sokolovsky
2006-01-01
Full Text Available A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid, kinetics of a gas a generalized perturbation theory without divergencies is constructed corresponding to a partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing to study the peculiarities of correlation and Green functions and to solve the convergence problem in the reduced description method.
International Nuclear Information System (INIS)
In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.
Kántor, Tibor; Bartha, András
2015-11-01
The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:
An analytic distribution function for a massless cored stellar system in a cuspy dark matter halo
Breddels, Maarten A
2013-01-01
We demonstrate the existence of distribution functions that can be used to represent spherical massless cored stellar systems embedded in cuspy dark matter halos with constant mildly tangential velocity anisotropy. In particular, we derive analytically the functional form of the distribution function for a Plummer stellar sphere in a Hernquist dark halo, for \\beta_0 = -0.5 and for different degrees of embedding. This particular example satisfies the condition that the central logarithmic slope of the light profile \\gamma_0 > 2 \\beta_0. Our models have velocity dispersion profiles similar to those observed in nearby dwarf spheroidal galaxies. Hence they can be used to generate initial conditions for a variety of problems, including N-body simulations that may represent dwarf galaxies in the Local Group.
International Nuclear Information System (INIS)
We derive new all-purpose methods that involve the Dirac delta distribution. Some of the new methods use derivatives in the argument of the Dirac delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs. (paper)
Analytic function theory of several variables elements of Oka’s coherence
Noguchi, Junjiro
2016-01-01
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...
Jan, Chyan-Deng
2014-01-01
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w
International Nuclear Information System (INIS)
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics
Szmytkowski, Radosław
2016-01-01
The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$-polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825, erratum: 30 (1997) 2747] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities --- the polarizabilities $\\alpha_{L}$, electric-to-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{M}(L\\mp1)}$ and electric-to-toroidal-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{T}L}$ --- are found to be expressible in terms of one or two non-terminating generalized hypergeometric functions ${}_{3}F_{2}$ with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities --- the electric nuclear shielding constants $\\sigma_{\\mathrm{E}L\\to\\m...
Ex Vivo Expansion of Functional Human UCB-HSCs/HPCs by Coculture with AFT024-hkirre Cells
Directory of Open Access Journals (Sweden)
Muti ur Rehman Khan
2014-01-01
Full Text Available Kiaa1867 (human Kirre, hKirre has a critical role in brain development and/or maintenance of the glomerular slit diaphragm in kidneys. Murine homolog of this gene, mKirre expressed in OP9 and AFT024 cells could support hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC expansion in vitro. HKirre is also expressed in human FBMOB-hTERT cell line and fetal liver fibroblast-like cells but its function has remained unclear. In this paper, we cloned a hKirre gene from human fetal liver fibroblast-like cells and established a stably overexpressing hKirre-AFT024 cell line. Resultant cells could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than AFT024-control cells transformed with mock plasmid. The Expanded human umbilical cord blood (hUCB CD34+ cells retained the capacity of multipotent differentiation as long as 8 weeks and successfully repopulated the bone marrow of sublethally irradiated NOD/SCID mice, which demonstrated the expansion of long-term primitive transplantable HSCs/HPCs. Importantly, hkirre could upregulate the expressions of Wnt-5A, BMP4, and SDF-1 and downregulate TGF-β with other hematopoietic growth factors. By SDS-PAGE and Western Blot analysis, a ~89 kDa protein in total lysate of AFT024-hKirre was identified. Supernatants from AFT024-hkirre could also support CD34+CD38− cells expansion. These results demonstrated that the AFT024-hKirre cells have the ability to efficiently expand HSCs/HPCs.
Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui
2016-01-01
The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.
Bruce, William J; Maxwell, E A; Sneddon, I N
1963-01-01
Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions
Kataev, A. L.
2012-02-01
The generalized Crewther relations in the channels of the non-singlet and vector quark currents are considered. These relations follow from the double application of the operator product expansion approach to the same axial vector-vector-vector triangle amplitude in two regions, adjoining to the angle sides ( x, y) (or p 2, q 2). We assume that the generalized Crewther relations in these two kinematic regimes result in the existence of the same perturbation expression for two products of the coefficient functions of annihilation and deepinelastic scattering processes in the non-singlet and vector channels. This feature explains the conformal symmetry motivated cancellations between the singlet α{/s 3} corrections to the Gross-Llewellyn Smith sum rule S GLS of ν N deep inelastic scattering and the singlet α{/s 3} correction to the e + e --annihilation Adler function D {/A V } in the product of the corresponding perturbative series. Taking into account the Baikov-Chetyrkin-Kuhn fourth order result for S GLS and the perturbative effects of the violation of the conformal symmetry in the generalized Crewther relation, we obtain the analytical contribution to the singlet α{/s 4} correction to the D {/A V } function. Its a-posteriori comparison with the recent result of direct diagram-by-diagram evaluation of the singlet fourth order corrections to D {/A V } function demonstrates the coincidence of the predicted and obtained ζ{3/2}-contributions to the singlet term. They can be obtained in the conformal invariant limit from the original Crewther relation. Therefore, on the contrary to previous belief, the appearance of ζ3-terms in the perturbative series in quantum field theory gauge models does not contradict to the property of the conformal symmetry and can be considered as regular feature. The Banks-Zaks motivated relation between our predicted and the obtained directly fourth order corrections is mentioned. It confirms the expectation, previously made by Baikov
Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan
2013-08-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling αs and other QCD parameters from the hadronic decays of the τ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called “reference model,” including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.
Nahas, Suhas; Ghosh, Barun; Bhowmick, Somnath; Agarwal, Amit
2016-04-01
Predicting the ground states for surface adsorption is a challenging problem because the number of degrees of freedom involved in the process is very high. Most of the studies deal with some specific arrangements of adsorbates on a given surface, but very few of them actually attempt to find the ground states for different adatom coverage. In this work, we show the effectiveness of the cluster expansion method to predict the "ground states" resulting from chemisorption of oxygen and fluorine atom on the surface of monolayer black phosphorus or phosphorene. For device applications, we find that in addition to band-gap tuning, controlled chemisorption can change the unique anisotropic carrier effective mass for both the electrons and holes and even rotate them by 90∘, which can be useful for exploring unusual quantum Hall effect and electronic devices based on phosphorene.
Hybrid analytical resolution approach based on ambiguity function for attitude determination
Institute of Scientific and Technical Information of China (English)
Wen-rui JIN; Chuan-run ZHAI; Liduan WANG; Yan-hua ZHANG; Xing-qun ZHAN
2009-01-01
When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered, earth-fixed (ECEF) coordinate, and attitude angles could be obtained through the rotation matrix between the body frame (BF) and the local level frame (LLF). Different from the conventional methods, a hybrid algorithm is presented to resolve attitude parameters utilizing the single differencing (SD) carrier phase equations established in LLF. Assuming that the cycle integer ambiguity is known, the measurement equations have attitude analytical resolutions by using simultaneous single difference equations for two in-view satellites. In addition, the algorithm is capable of reducing the search integer space into countable 2D discrete points and the ambiguity function method (AFM) resolves the ambiguity function within the analytical solutions space. In the case of frequency division multiple access (FDMA) for the Russian Global Orbiting Navigation Satellite System (GLONASS), a receiver clock bias estimation is employed to evaluate its carrier phase. An evaluating variable and a weighted factor are introduced to assess the integer ambiguity initialization. By static and dynamic ground experiments, the results show that the proposed approach is effective, with enough accuracy and low computation. It can satisfy attitude determination in cases of GPS alone and combined with GLONASS.
Analytical function for the flux density due to sunlight reflected from a heliostat
Energy Technology Data Exchange (ETDEWEB)
Collado, F.J.; Gomez, A.; Turegano, J.A.
1986-01-01
An analytical model is presented for the flux density due to a focused heliostat over the receiver plane of a tower solar plant. The main assumptions are: spherical and continuous surface of the mirror, linear conformal transformation in the complex plane equivalent to the reflection mapping between an on-axis aligned heliostat and the objective located on the receiver at the slant range necessary to produce the minimum circle of confusion, circular Gaussian distribution of the effective sunshape and the concentration function constant on the receiver or the image plane. Under the hypotheses presented earlier an exact convolution is obtained. The result, an analytic flux density function, relatively simple and very flexible, is confronted with experimental measurements taken from four heliostat prototypes of second-generation placed at the Central Receiver Test Facility (CRTF), Albuquerque, New Mexico, and compared indirectly with the predictions of the Helios model for the same heliostats. The model is an essential tool in the problem of the determination of collector field parameters by optimization methods.
Analytical potential energy function and spectroscopyparameters for B1Ⅱ state of KH
Institute of Scientific and Technical Information of China (English)
Jingjuan Liang; Chuanlu Yang; Lizhi Wang; Qinggang Zhang
2011-01-01
Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1II state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.%Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1Ⅱ state of KH molecule.To investigate the correlation effect of core-valence electrons,five schemes are employed which include the different correlated electrons and different active spaces.The PECs are fitted into analytical potential energy functions (APEFs).The spectroscopic parameters,ro-vibrational levels,and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data.The molecular properties for B1Ⅱ obtained in this letter,which are better than those available in literature,can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.
Integrasi Taguchi Loss Function dengan Fuzzy Analytical Hierarchy Process dalam Pemilih Pemasok
Directory of Open Access Journals (Sweden)
Ahmad S. Indrapriyatna
2011-01-01
Full Text Available One important issue in the line production is the selection of the company's best supplier. Various criteria should be considered for determining the best supplier. Answering to that challenge, we apply Taguchi loss function- Analytical Hierarchy Process Fuzzy-Linear Programming (Taguchi loss function-Fuzzy AHP to find out the best supplier. Moreover, we also consider multiple criteria, i.e., goods’ completeness, quality, delivery, and quality loss in that analysis. By maximizing the suppliers’ performances based on each criterion and aggregated the suppliers’ performances based on the overall criteria, we selected the best one. Applying this method for selecting the best pressure gauge’s supplier in PT. Coca Cola Bottling Indonesia Central Sumatera (PT. CCBICS, we found out that among three suppliers, the second supplier is the best one.
Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H
2000-01-01
The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435
International Nuclear Information System (INIS)
We present numerical simulations of the solar wind using a fully kinetic model which takes into account the effects of particle's binary collisions in a quasi-neutral plasma in spherical expansion. Starting from an isotropic Maxwellian velocity distribution function for the electrons, we show that the combined effect of expansion and Coulomb collisions leads to the formation of two populations: a collision-dominated cold and dense population almost isotropic in velocity space and a weakly collisional, tenuous field-aligned and antisunward drifting population generated by mirror force focusing in the radially decreasing magnetic field. The relative weights and drift velocities for the two populations observed in our simulations are in excellent agreement with the relative weights and drift velocities for both core and strahl populations observed in the real solar wind. The radial evolution of the main moments of the electron velocity distribution function is in the range observed in the solar wind. The electron temperature anisotropy with respect to the magnetic field direction is found to be related to the ratio between the collisional time and the solar wind expansion time. Even though collisions are found to shape the electron velocity distributions and regulate the properties of the strahl, it is found that the heat flux is conveniently described by a collisionless model where a fraction of the electron thermal energy is advected at the solar wind speed. This reinforces the currently largely admitted fact that collisions in the solar wind are clearly insufficient to force the electron heat flux obey the classical Spitzer-Härm expression where heat flux and temperature gradient are proportional to each other. The presented results show that the electron dynamics in the solar wind cannot be understood without considering the role of collisions.
Schoendorff, Benjamin; Steinwachs, Joanne
2012-01-01
How can therapists be effectively trained in clinical functional contextualism? In this conceptual article we propose a new way of training therapists in Acceptance and Commitment Therapy skills using tools from Functional Analytic Psychotherapy in a training context functionally similar to the therapeutic relationship. FAP has been successfully…
Adib Samin; Erik Lahti; Jinsuo Zhang
2015-01-01
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using th...
On q-extension of Laurent expansion with applications
Directory of Open Access Journals (Sweden)
Ahmed Salem
2014-01-01
Full Text Available In this article, Cauchy’s integral formula for nth q-derivative of analytic functions is established and used to introduce a new proof to q-Taylor series by means of using the residue calculus in the complex analysis. Some theorems related to this formula are presented. A q-extension of a Laurent expansion is derived and proved by means of using Cauchy’s integral formula for a function, which is analytic on a ring-shaped region bounded by two concentric circles. Three illustrative examples are presented to be as applications for a q-Laurent expansion.
Perturbative expansion of tau hadronic spectral function moments and alpha_s extractions
Beneke, Martin; Boito, Diogo; Jamin, Matthias
2012-01-01
Various moments of the hadronic spectral functions have been employed in the determination of the strong coupling alpha_s from tau decays. In this work we study the behaviour of their perturbative series under different assumptions for the large-order behaviour of the Adler function, extending previous work on the tau hadronic width. We find that the moments can be divided into a small number of classes, whose characteristics depend only on generic features of the moment weight function and A...
Non-linear Dynamics and Mass Function of Cosmic Structures; 1, Analytical Results
Audit, E; Teyssier, R; Audit, Edouard; Teyssier, Romain
1997-01-01
We investigate some modifications to the Press & Schechter (1974) (PS) prescription resulting from shear and tidal effects. These modifications rely on more realistic treatments of the collapse process than the standard approach based on the spherical model. First, we show that the mass function resulting from a new approximate Lagrangian dynamic (Audit & Alimi 96), contains more objects at high mass, than the classical PS mass function and is well fitted by a PS-like function with a threshold density of $\\delta_c \\simeq 1.4$. However, such a Lagrangian description can underestimate the epoch of structure formation since it defines it as the collapse of the first principal axis. We therefore suggest some analytical prescriptions, for computing the collapse time along the second and third principal axes, and we deduce the corresponding mass functions. The collapse along the third axis is delayed by the shear and the number of objects of high mass then decreases. Finally, we show that the shear also str...
Generic smooth connection functions: a new analytic approach to Hermite interpolation
International Nuclear Information System (INIS)
We present a new analytic approach to Hermite's interpolation problem in two dimensions. The interpolating curves are the exact solutions of a variational problem that is invariant under translations and rotations. We study the general case of functionals that are given by the integral of the curvature raised to some power ν along the curve. The parameter ν determines the importance of minimal curvature with respect to minimal length. The boundary conditions are given by the initial and final points of the curve and the tangent vectors at these points. In order to find the family of functions that obtain the minimal weight, we use extensively notions that are well known in classical mechanics. The minimization of the weight functional via the Euler-Lagrange formalism leads to a highly non-trivial differential equation. Using the symmetries of the problem it is possible to find conserved quantities that help to simplify the problem to a level where the solution functions can be written in a closed form for any given ν. (author)
Univalence and Starlikeness of Nonlinear Integral Transform of Certain Class of Analytic Functions
Indian Academy of Sciences (India)
M Obradović; S Ponnusamy; P Vasundhra
2009-11-01
Let $\\mathcal{U}(, )$ denote the class of all normalized analytic functions in the unit disk $|z| < 1$ satisfying the condition \\begin{equation*}\\frac{f(z)}{z}≠ 0\\quad\\text{and}\\quad\\left|f'(z)\\left(\\frac{z}{f(z)}\\right)^{ +1}-1\\right| < ,\\quad |z| < 1.\\end{equation*} For $f\\in\\mathcal{U}(, )$ with ≤ 1 and $0≠_1≤ 1$, and for a positive real-valued integrable function defined on [0,1] satisfying the normalized condition $\\int^1_0\\varphi(t)dt=1$, we consider the transform $G_\\varphi f(z)$ defined by \\begin{equation*}G_\\varphi f(z)=z\\left[\\int^1_0\\varphi(t)\\left(\\frac{zt}{f(tz)}\\right)^ dt\\right]^{-1/ 1},\\quad z\\in.\\end{equation*} In this paper, we find conditions on the range of parameters and so that the transform $G_\\varphi f$ is univalent or star-like. In addition, for a given univalent function of certain form, we provide a method of obtaining functions in the class $\\mathcal{U}(, )$.
Institute of Scientific and Technical Information of China (English)
LIU; Guoyue; SUN; Weiguo; FENG; Hao
2004-01-01
A new analytical potential energy function for diatomic molecular ion XY+ is proposed based on the energy consistent method (ECM). The Coulomb potential included in the new ionic potential contains multipole corrections, converges quickly and is variationally changeable. The new potential and the ECM are applied to variationally studying the potential energies of eight electronic states of several diatomic molecular ions: the A2∏ state of CO+, the X2 ∑+g state of Li+2, the X2 ∑+g state of He+2, the 12∏u state of Na+2, the A2∏u state of N+1, the X1∑+ state of KrH+, the X2∑+ state of SiO+ and the A2∏state of SO+ ion. The present results agree excellently with the experiment-based Rydberg-Klein-Rees (RKR) potentials, and are superior to the commonly used Huxley-Murrell-Sorbie (HMS) analytical potentials, and are better in some cases than some quantum mechanical ab initio potentials in the ionic asymptotic and dissociation regions.
Directory of Open Access Journals (Sweden)
Kalezić-Glišović A.
2009-01-01
Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.
Perturbative expansion of tau hadronic spectral function moments and alpha_s extractions
Beneke, Martin; Jamin, Matthias
2012-01-01
Various moments of the hadronic spectral functions have been employed in the determination of the strong coupling alpha_s from tau decays. In this work we study the behaviour of their perturbative series under different assumptions for the large-order behaviour of the Adler function, extending previous work on the tau hadronic width. We find that the moments can be divided into a small number of classes, whose characteristics depend only on generic features of the moment weight function and Adler function series. Some moments that are commonly employed in alpha_s analyses from tau decays should be avoided because of their perturbative instability. This conclusion is corroborated by a simplified alpha_s extraction from individual moments. Furthermore, under reasonable assumptions for the higher-order behaviour of the perturbative series, fixed-order perturbation theory (FOPT) provides the preferred framework for the renormalization group improvement of all moments that show good perturbative behaviour. Finally...
Analytic cubic and quartic force fields using density-functional theory.
Ringholm, Magnus; Jonsson, Dan; Bast, Radovan; Gao, Bin; Thorvaldsen, Andreas J; Ekström, Ulf; Helgaker, Trygve; Ruud, Kenneth
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn-Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange-correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree-Fock results. The Hartree-Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants. PMID:25669359
Gallian, Sara; Mussenbrock, Thomas; Brinkmann, Ralf Peter; Hitchon, William N G
2014-01-01
This paper analyzes a situation which is common for magnetized technical plasmas such as dc magnetron and HiPIMS systems. It presents an analytic calculation of the distribution function of hot electrons which enter a plasma as a monoenergetic beam and which slow down by Coulomb collisions with a Maxwellian distribution of bulk electrons, and by inelastic collisions with neutrals. The results are verified for parameters appropriate to HiPIMS discharges, by means of numerical calculations. This work is expected to be applicable to HiPIMS and other magnetron discharges, as well as dc discharges where secondary electrons enter the plasma after being accelerated in the Cathode Fall and encounter a nearly uniform bulk where they slow down.
Performance Analytical Model of IEEE 802.11 Distributed Coordination Function
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
IEEE 802.11 distributed coordination function (DCF) is a distributed medium access scheme based on carrier sense multiple access with collision avoidance (CSMA/CA) protocol. Many literatures have analyzed the performance of IEEE 802.11 DCF. However, such literatures either used simulation methods or built the analytical models under the assumption that the saturation condition was satisfied. To overcome such a problem, in this paper, a bi-dimensional Markovian model has been introduced to depict the DCF mechanism. The proposed model introduced an idle stage and a discrete time M/G/1 queue to deduce the channel throughput under finite load traffic. Simulation results proved the accuracy of the proposed model.
Directory of Open Access Journals (Sweden)
Stiekema Willem J
2009-04-01
Full Text Available Abstract Background Alternative splicing (AS is a widespread phenomenon in higher eukaryotes but the extent to which it leads to functional protein isoforms and to proteome expansion at large is still a matter of debate. In contrast to animal species, for which AS has been studied extensively at the protein and functional level, protein-centered studies of AS in plant species are scarce. Here we investigate the functional impact of AS in dicot and monocot plant species using a comparative approach. Results Detailed comparison of AS events in alternative spliced orthologs from the dicot Arabidopsis thaliana and the monocot Oryza sativa (rice revealed that the vast majority of AS events in both species do not result from functional conservation. Transcript isoforms that are putative targets for the nonsense-mediated decay (NMD pathway are as likely to contain conserved AS events as isoforms that are translated into proteins. Similar results were obtained when the same comparison was performed between the two more closely related monocot species rice and Zea mays (maize. Genome-wide computational analysis of functional protein domains encoded in alternatively and constitutively spliced genes revealed that only the RNA recognition motif (RRM is overrepresented in alternatively spliced genes in all species analyzed. In contrast, three domain types were overrepresented in constitutively spliced genes. AS events were found to be less frequent within than outside predicted protein domains and no domain type was found to be enriched with AS introns. Analysis of AS events that result in the removal of complete protein domains revealed that only a small number of domain types is spliced-out in all species analyzed. Finally, in a substantial fraction of cases where a domain is completely removed, this domain appeared to be a unit of a tandem repeat. Conclusion The results from the ortholog comparisons suggest that the ability of a gene to produce more than
Resting-brain functional connectivity predicted by analytic measures of network communication
Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf
2014-01-01
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387
Perturbative expansion of τ hadronic spectral function moments and α s extractions
Beneke, Martin; Boito, Diogo; Jamin, Matthias
2013-01-01
Various moments of the hadronic spectral functions have been employed in the determination of the strong coupling α s from tau decays. In this work we study the behaviour of their perturbative series under different assumptions for the large-order behaviour of the Adler function, extending previous work on the tau hadronic width. We find that the moments can be divided into a small number of classes, whose characteristics depend only on generic features of the moment weight function and Adler function series. Some moments that are commonly employed in α s analyses from τ decays should be avoided because of their perturbative instability. This conclusion is corroborated by a simplified α s extraction from individual moments. Furthermore, under reasonable assumptions for the higher-order behaviour of the perturbative series, fixed-order perturbation theory (FOPT) provides the preferred framework for the renormalization group improvement of all moments that show good perturbative behaviour. Finally, we provide further evidence for the plausibility of the description of the Adler function in terms of a small number of leading renormalon singularities.
Berkowitz, Bruce A.; Schmidt, Tiffany; Podolsky, Robert H.; Roberts, Robin
2016-01-01
Purpose In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Methods Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4−/−) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Results Opn4−/− mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4−/− mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4−/− mice were similar to controls. Conclusions First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark. PMID:27727394
Exponential Expansion in Evolutionary Economics
DEFF Research Database (Denmark)
Frederiksen, Peter; Jagtfelt, Tue
2013-01-01
concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light......This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Directory of Open Access Journals (Sweden)
F. Hamzezadeh
2014-01-01
Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.
Manduchi, Katia; Schoendorff, Benjamin
2012-01-01
Practicing Functional Analytic Psychotherapy (FAP) for the first time can seem daunting to therapists. Establishing a deep and intense therapeutic relationship, identifying FAP's therapeutic targets of clinically relevant behaviors, and using contingent reinforcement to help clients emit more functional behavior in the therapeutic relationship all…
Energy Technology Data Exchange (ETDEWEB)
Aguilar, J.; Maurer, R.; Robin, J.J. [Otto Egelhof GmbH, Fellbach (Germany)
2007-07-01
This work reports on the development of a new thermostatic expansion valve, which permits to control the high-pressure of an automotive A/C-System with R744, using the outlet-temperature of the high-pressure line of its internal heat exchanger. At the same time this expansion valve offers a safety function against too high pressures without requiring other mechanically driven bypasses or external control units. (orig.)
Liu, Shubin
1996-12-01
It has been shown previously that under certain circumstances the correlation energy density functional Ec[ρ] and its kinetic Tc[ρ] and potential Vc[ρ] components can be expanded in terms of homogeneous functionals An[ρ], with n=1,2,3,..., and where An[ρ] is homogeneous of degree (1-n) with respect to coordinate scaling. In this paper, we extend the analysis to expand similarly the pair distribution function gxc([ρ]r1,r2) and the second-order density matrix ρ2(r1,r2). It is found that both of them can be expanded under certain circumstances in terms of functionals an([ρ]r1,r2), with n=1,2,3,..., that are homogeneous of degree -n in coordinate scaling. The An[ρ] are explicitly obtained in terms of the an([ρ]r1,r2).
Energy Technology Data Exchange (ETDEWEB)
Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu [Iowa State University, Center for Nondestructive Evaluation, 1915 Scholl Road, Ames, IA 50011 (United States)
2015-03-31
We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.
Sahakian, Eva; Powers, John J.; Chen, Jie; Deng, Susan L.; Cheng, Fengdong; Distler, Allison; Woods, David M.; Rock-Klotz, Jennifer; Laino, Andressa Sodre'; Youn, Je-In; Woan, Karrune V.; Villagra, Alejandro; Gabrilovich, Dmitry,; Sotomayor, Eduardo M.; Pinilla-Ibarz, Javier
2014-01-01
Myeloid-derived suppressor cells (MDSC's), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting ...
Radial expansion for spinning conformal blocks
Costa, Miguel$uPorto U.; Hansen, Tobias; Penedones, João; Trevisani, Emilio
2016-01-01
This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.
Radial expansion for spinning conformal blocks
Costa, Miguel S.; Hansen, Tobias; Penedones, João; Trevisani, Emilio
2016-07-01
This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Hollands, Stefan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, Leipzig, D-04103 (Germany)
2013-07-15
We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE,
An Analytical Model for the Prediction of a Micro-Dosimeter Response Function
Badavi, Francis F.; Xapsos, Mike
2008-01-01
A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCR) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 seconds/ion. The ionizing radiation environment at LEO is represented by O'Neill fs GCR model (2004), covering charged particles in the 1 less than or equal to Z less than or equal to 28. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion
Al-Shanti, Nasser; Aldahoudi, Ziyad
2007-01-01
CD8+ T cells are a critical component of the cellular immune response. They play an important role in the control of viral infection and eliminating cells with malignant potential. However, attempts to generate and expand human CD8+ T cells in vitro for an adoptive immunotherapy have been conducted with limitation of the very low frequency of CD8+ T cells in blood. Therefore, several expansion protocols have been developed to obtain large and efficient numbers of human CD8+ T cells for use in adoptive immunotherapies. In this study various common culture conditions using different cytokines IL-2, IL-4, IL-7, IL-10, IL-12 and IL-15 and autologous feeders and sera were investigated to expand human purified CD8+ T cells. The importance and the influence of these factors on the growth and phenotype of CD8+ T cell were assessed by serially sampling cultures using flow cytometry. We demonstrated that combination of IL-2 (50 U/ml) and autologous feeders induced maximal CD8+ T cell proliferation (40-50 folds) compared to other cytokines. Immunophenotypic analysis of cultured cells showed that expanded CD8+ T cells were activated and differentiated. Furthermore our expansion model also demonstrated that expanded CD8+ T cells are functionally cytotoxic active by killing Allogeneic LCLs cells. In conclusion, we have developed a reliable, simple method that uses minimal cell numbers to generate a high yield of functional cytotoxic CD8+ T cells, which can be used for the development of cellular immunotherapies. PMID:17190652
Directory of Open Access Journals (Sweden)
Vasconcelos Vítor
2010-09-01
Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.
Expansion of the Kano model to identify relevant customer segments and functional requirements
DEFF Research Database (Denmark)
Atlason, Reynir Smari; Stefansson, Arnaldur Smari; Wietz, Miriam;
2016-01-01
, a traditional Kano analysis is conducted for the different segments of interest. Second, for each FR, relationship functions are integrated between x=0 and x=1. Third, integrals are inserted into a combination matrix crossing segments and FRs, where FRs with the highest sum across the chosen segments...... more than one combined customer segment. It further shows which segments provide the highest possibility for high satisfaction of combined sets of FRs. We demonstrate the usefulness of this approach in a case study involving customers’ preference for outdoor sports equipment....
Krasiński, Andrzej
2014-01-01
This is a continuation of the paper published in {\\it Phys. Rev.} {\\bf D89}, 023520 (2014). It is investigated here how the luminosity distance -- redshift relation $D_L(z)$ of the $\\Lambda$CDM model is duplicated in the Lema\\^{\\i}tre -- Tolman (L--T) model with $\\Lambda = 0$, constant bang-time function $t_B$ and the energy function $E(r)$ mimicking accelerated expansion on the observer's past light cone ($r$ is a uniquely defined comoving radial coordinate). Numerical experiments show that $E > 0$ necessarily. The functions $z(r)$ and $E(r)$ are numerically calculated from the initial point at the observer's position; then backward from the initial point at the apparent horizon (AH). Reconciling the results of the two calculations allows one to determine the values of $E/r^2$ at $r = 0$ and at the AH. The problems connected with continuing the calculation through the AH are discussed in detail and solved. Then $z(r)$ and $E(r)$ are continued beyond the AH, up to the numerical crash that signals the contact ...
Dunn, M.; Watson, D. K.; Loeser, J. G.
2006-08-01
In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.
Directory of Open Access Journals (Sweden)
Ya. V. Vasyl’kiv
2011-07-01
Full Text Available The best possible asymptotic estimates for Lebesgue integral means $m_{p}(r,log f, 1 leq p$ of logarithms of analytic functions $f(z$ in the unit disc in terms of their Nevanlinna characteristic $T(r,f$ are obtained. We get sharp relation between the order of $T(r,f$ and the order of $m_{p}(r,log f$ for an analytic function $f(z$ of finite order $alpha(f.$ This generalizes well-known results of L.~R.~Sons and C.~N.~Linden.
Stefańska, Patrycja
2016-01-01
We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless and of charge Ze. Calculations are based on the Sturmian expansion of the generalized Dirac- Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); erratum 30, 2747 (1997)], combined with the theory of hypergeometric functions. The final result is of an elementary form and agrees with corresponding formulas obtained earlier by other authors for some particular states of the atom.
Stefańska, Patrycja
2016-07-01
We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Z e . Calculations are based on the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B 30, 2747(E) (1997), 10.1088/0953-4075/30/11/023], combined with the theory of hypergeometric functions. The final result is of an elementary form and agrees with corresponding formulas obtained earlier by other authors for some particular states of the atom.
Wuttke, Joachim
2009-01-01
An algorithm is described for computing the Laplace transform (one-sided Fourier sine and cosine transform) of the stretched (or compressed) exponential function exp(-t^beta) (also known as Kohlrausch-Williams-Watts function, as characteristic function of a Levy stable distribution, or as complementary cumulative Weibull distribution) for exponents beta between 0.1 and 2. For low and high frequencies, the well-known series expansions are used; for intermediate frequencies, the explicit integration is strongly accelerated by the Ooura-Mori double exponential transformation. The algorithm is implemented in C as library libkww. The source code is available at http://www.messen-und-deuten.de/kww
Abbas, Gauhar; Caprini, Irinel; Fischer, Jan
2013-01-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behaviour of these moments in the framework of a QCD non-power perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large order behaviour. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the required perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved and the renormalization-group-summed non-power perturbation theories have very good con vergence properties for a large class...
Vergos, Georgios S.; Natsiopoulos, Dimitrios A.; Tziavos, Ilias N.; Grigoriadis, Vassilios N.; Tzanou, Eleni A.
2014-05-01
With the availability of an abundance of earth observation data from satellite altimetry missions as well as those from the GOCE satellite, monitoring of the sea level variations and the determination of functionals of the Earth's gravity field are gaining increased importance. One of the main issues of heterogeneous data combination with stochastic methods is the availability of appropriate data and error covariance and cross-covariance matrices. The latter needs to be determined for all input data within a LSC-based combination scheme based on some analytical global covariance function models, which interconnect observations and signals to be predicted. Given the availability of altimetric sea surface heights, GOCE observations of the second-order derivatives of the Earth's potential, geoid height variations from GRACE and marine gravity anomalies, one can employ all such available information within LSC to estimate the mean dynamic ocean topography (DOT) as well as its dynamic, i.e., time-varying part. In this work, we present some analytical covariance function models for the DOT in the Mediterranean Sea based on empirical values from altimetry- and GOCE-derived DOT. Various options for the analytical models are tested, from exponential to the well-known Gauss-Markov ones, along with a model similar to the Tscherning and Rapp model for the Earth's gravity field. All available covariance function model choices are tested within a LSC-based prediction scheme in order to conclude on the one that provides the most rigorous results in terms of prediction error. Moreover, modifications of the standard stationary covariance functions are investigated in order to determine time-varying analytical models which are used to model the sea level anomaly (SLA) and DOT variability within the entire Mediterranean Basin. The analysis is carried out over a period of 5 years (2008-2013), during which Jason-2 SLA data are employed in order to derive analytical covariance functions
Milton, Graeme W
2016-01-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Koo, Jin; Becker, Betsy Jane; Kim, Young-Suk
2014-01-01
In this study, differential item functioning (DIF) trends were examined for English language learners (ELLs) versus non-ELL students in third and tenth grades on a large-scale reading assessment. To facilitate the analyses, a meta-analytic DIF technique was employed. The results revealed that items requiring knowledge of words and phrases in…
Gori-Giorgi, Paola; Perdew, John P.
2002-01-01
We construct analytic formulas that represent the coupling-constant-averaged pair distribution function $\\gxcav(r_s,\\zeta, k_Fu)$ of a uniform electron gas with density parameter $r_s =(9\\pi/4)^{1/3}/k_F$ and relative spin polarization $\\zeta$ over the whole range $0
Weeks, Cristal E.; Kanter, Jonathan W.; Bonow, Jordan T.; Landes, Sara J.; Busch, Andrew M.
2012-01-01
Functional analytic psychotherapy (FAP) provides a behavioral analysis of the psychotherapy relationship that directly applies basic research findings to outpatient psychotherapy settings. Specifically, FAP suggests that a therapist's in vivo (i.e., in-session) contingent responding to targeted client behaviors, particularly positive reinforcement…
Oshiro, Claudia Kami Bastos; Kanter, Jonathan; Meyer, Sonia Beatriz
2012-01-01
Functional Analytic Psychotherapy (FAP) is emerging as an effective psychotherapy for psychiatric clinical cases. However, there is little research demonstrating the process of change of FAP. The present study evaluated the introduction and withdrawal of FAP interventions on therapy-interfering verbal behaviors of two participants who were in…
Grigorenko, Elena L.; Sternberg, Robert J.
2001-01-01
Studied the efficacy of the triarchic theory of intelligence as a basis for predicting adaptive functioning in a rapidly changing society, that of Russia. Results of intelligence measures administered to 452 women and 293 men show that analytical, practical, and creative intelligence all relate in some degree to self-reported everyday adaptive…
Hatzell, Marta C.
2014-12-02
© 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10^{-5}) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g^{-1}) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g^{-1}) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2014-01-01
An analytical expression for the log-amplitude correlation function based on the Rytov approximation is derived for spherical wave propagation through an anisotropic non-Kolmogorov refractive turbulent atmosphere. The expression reduces correctly to the previously published analytic expressions for the case of spherical wave propagation through isotropic Kolmogorov turbulence. These results agree well with a wave-optics simulation based on the more general Fresnel approximation, as well as with numerical evaluations, for low-to-moderate strengths of turbulence. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Directory of Open Access Journals (Sweden)
Xiang-Rong Fu
2013-01-01
Full Text Available This paper presents a novel way to formulate the triangular flat shell element. The basic analytical solutions of membrane and bending plate problem for anisotropy material are studied separately. Combining with the conforming displacement along the sides and hybrid element strategy, the triangular flat shell elements based on the analytical trial functions (ATF for anisotropy material are formulated. By using the explicit integral formulae of the triangular element, the matrices used in proposed shell element are calculated efficiently. The benchmark examples showed the high accuracy and high efficiency.
再生核空间二元函数展开%The Expansion of the Function with Two Unknowns on the Reproducing Kernel Space
Institute of Scientific and Technical Information of China (English)
吴勃英
2000-01-01
In this paper we make use of a special procedure on the reproducing kernel space to give an expansion theorem for the function with two unknowns and a surface approximation formula. The error of the surface possesses monotonically decreasing and uniformly convergent characteristics in the sense of the norm on the space.
International Nuclear Information System (INIS)
Considering the results of recent distinguished analytical calculations of the 5-loop single-fermion loop corrections to the QED β-function we emphasize that to our point of view it is important to perform their independent cross-checks. We propose one of the ways of these cross-check. It is based on the application of the original Crewther relation. We derive the new analytical expressions for the CF4αs4-contributions to the Bjorken polarized sum rule. If results of possible direct calculations will agree with the presented expression, then the appearance of ζ3-term in the 5-loop correction to the QED β-function and in the CF4αs4 contribution into the e+e- annihilation Adler function will get independent support and may be analysed within the framework of the recently introduced concept of 'maximal transcendentality'
Two-loop two-point functions with masses asymptotic expansions and Taylor series, in any dimension
Broadhurst, D J; Tarasov, O V
1993-01-01
In all mass cases needed for quark and gluon self-energies, the two-loop master diagram is expanded at large and small $q^2$, in $d$ dimensions, using identities derived from integration by parts. Expansions are given, in terms of hypergeometric series, for all gluon diagrams and for all but one of the quark diagrams; expansions of the latter are obtained from differential equations. Pad\\'{e} approximants to truncations of the expansions are shown to be of great utility. As an application, we obtain the two-loop photon self-energy, for all $d$, and achieve highly accelerated convergence of its expansions in powers of $q^2/m^2$ or $m^2/q^2$, for $d=4$.
Huijts, Charlotte M; Santegoets, Saskia J; Quiles Del Rey, Maria; de Haas, Richard R; Verheul, Henk M; de Gruijl, Tanja D; van der Vliet, Hans J
2016-07-01
The PI3K/mTOR pathway is commonly deregulated in cancer. mTOR inhibitors are registered for the treatment of several solid tumors and novel inhibitors are explored clinically. Notably, this pathway also plays an important role in immunoregulation. While mTOR inhibitors block cell cycle progression of conventional T cells (Tconv), they also result in the expansion of CD4(+)CD25(hi)FOXP3(+) regulatory T cells (Tregs), and this likely limits their clinical antitumor efficacy. Here, we compared the effects of dual mTOR/PI3K inhibition (using BEZ235) to single PI3K (using BKM120) or mTOR inhibition (using rapamycin and everolimus) on Treg expansion and functionality. Whereas rapamycin, everolimus and BEZ235 effected a relative expansion benefit for Tregs and increased their overall suppressive activity, BKM120 allowed for similar expansion rates of Tregs and Tconv without altering their overall suppressive activity. Therefore, PI3K inhibition alone might offer antitumor efficacy without the detrimental selective expansion of Tregs associated with mTOR inhibition. PMID:27189717
Hari M. Srivastava
2013-01-01
It is indeed a fairly common practice for scientific research journals and scientific research periodicals to publish special issues as well as conference proceedings. Quite frequently, these special issues are devoted exclusively to specific topics and/or are dedicated respectfully to commemorate the celebrated works of renowned research scientists. The following Special Issue: “q-Series and Related Topics in Special Functions and Analytic Number Theory” (see [1–8] below) is an outcome of th...
International Nuclear Information System (INIS)
Two accurate, yet simple, analytic approximations to the integral of the Bessel function J0 are presented. These first and second-order approximations are obtained by improving on the recently developed method known as two-point quasi-rational approximations. The accuracy of the first-order approximant is better than 0.05. The second-order approximant is practically indistinguishable from the true integral, even for very large values of the argument (overall accuracy is better than 0.002 05). Our approximants are, in addition, analytic and therefore replace with significant advantages both the well known power series and the asymptotic formulae of the integral. Approximants to the transmittance function of a plane wave through a circular aperture are derived, a problem which arises in diffraction theory and particle scattering. The second-order approximant to the transmittance is analytic too, and can be evaluated for small and large values of the argument, just with a hand-calculator. Its accuracy is better than 0.0011. As an extension, two first-order approximations to the integrals of the Bessel functions Jν, of fractional order ν, are derived. (author)
The s-ordered expansions of the operator function about the combined quadrature μX + νP
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A general framework applicable to deriving the s-ordered operator expansions is presented in this paper.We firstly deduce the s-ordered operator expansion formula of density operator ρ a?,a and introduce the technique of integration within the sordered product of operators (IWSOP).Based on the deduction and the technique,we derive the s-ordered expansions of operators (μX + νP)n and Hn (μX + νP) (linear combinations of the coordinate operator X and the momentum operator P,Hn (x) is Hermite polynomial),respectively,and discuss some special cases of s=1,0,-1.Some new useful operator identities are obtained as well.
Analytic expression for the proton structure function in deep inelastic scattering
Institute of Scientific and Technical Information of China (English)
XIANG Wen-Chang; ZHOU Dai-Cui; WAN Ren-Zhuo; YUAN Xian-Bao
2009-01-01
The analytic expression of proton in deep inelastic scattering is studied by using the color glass condensate model and the dipole picture. We get a better description of the HERA DIS data than the CBW model which was inspired by the Glauber model. We find that our model satisfies the unitarity limit and Froissart Bound which refers to an energy dependence of the total cross-section rising no more rapidly than ln2s.
EXTREME POINTS AND SUPPORT POINTS OF A CLASS OF ANALYTIC FUNCTIONS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Suppose that {bn} and {cn} are two positive sequences.Let F({bn},{cn})={f(z) :f(z) is analytic in ｜z｜<1,f(z) = z-∑+∞n=2 anzn,an 0,∑+∞n=2 bnan 1 and ∑+∞n=2 cnan ≤1}.This article obtains the extreme points and support points of F({bn},{cn}).
Padhy, Bholanath
2016-01-01
A simple method is outlined for analytic evaluation of the basic 2-electron atomic integral with integrand containing products of atomic s-type Slater orbitals and exponentially correlated function of the form $r_{ij} exp(-\\lambda_{ij}r_{ij})$, by employing the Fourier representation of $exp(-\\lambda_{ij}r_{ij})/r_{ij}$ without the use of either the spherical harmonic addition theorem or the Feynman technique. This method is applied to obtain closed-form expressions, in a simple manner, for certain other 2-,3- and 4-electron atomic integrals with integrands which are products of exponentially correlated functions and atomic s-type Slater orbitals.
二元二次函数逼近的存在性和局部性%The Existence and Local Behavior of the Bivariate Quadratic Function Approximation
Institute of Scientific and Technical Information of China (English)
郑成德
2006-01-01
This paper analysis the local behavior of the bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin. It function and that this function is analytic in a neighborhood of the origin.
Multipole expansions in magnetostatics
International Nuclear Information System (INIS)
Multipole expansions of the magnetic field of a spatially restricted system of stationary currents and those for the potential function of such currents in an external magnetic field are studied using angular momentum algebraic techniques. It is found that the expansion for the magnetic induction vector is made identical to that for the electric field strength of a neutral system of charges by substituting electric for magnetic multipole moments. The toroidal part of the multipole expansion for the magnetic field vector potential can, due to its potential nature, be omitted in the static case. Also, the potential function of a system of currents in an external magnetic field and the potential energy of a neutral system of charges in an external electric field have identical multipole expansions. For axisymmetric systems, the expressions for the field and those for the potential energy of electric and magnetic multipoles are reduced to simple forms, with symmetry axis orientation dependence separated out. (methodological notes)
Multipole expansions in magnetostatics
Energy Technology Data Exchange (ETDEWEB)
Agre, Mark Ya [National University of ' Kyiv-Mohyla Academy' , Kyiv (Ukraine)
2011-02-28
Multipole expansions of the magnetic field of a spatially restricted system of stationary currents and those for the potential function of such currents in an external magnetic field are studied using angular momentum algebraic techniques. It is found that the expansion for the magnetic induction vector is made identical to that for the electric field strength of a neutral system of charges by substituting electric for magnetic multipole moments. The toroidal part of the multipole expansion for the magnetic field vector potential can, due to its potential nature, be omitted in the static case. Also, the potential function of a system of currents in an external magnetic field and the potential energy of a neutral system of charges in an external electric field have identical multipole expansions. For axisymmetric systems, the expressions for the field and those for the potential energy of electric and magnetic multipoles are reduced to simple forms, with symmetry axis orientation dependence separated out. (methodological notes)
Liu, Jie; Liang, WanZhen
2011-07-01
We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values. PMID:21744894
Ustinov, Eugene A.
2006-01-01
In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.
Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement
Alliès, Laurent; Nadi, M
2008-01-01
This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.
Functional-analytical capabilities of GIS technology in the study of water use risks
Nevidimova, O. G.; Yankovich, E. P.; Yankovich, K. S.
2015-02-01
Regional security aspects of economic activities are of great importance for legal regulation in environmental management. This has become a critical issue due to climate change, especially in regions where severe climate conditions have a great impact on almost all types of natural resource uses. A detailed analysis of climate and hydrological situation in Tomsk Oblast considering water use risks was carried out. Based on developed author's techniques an informational and analytical database was created using ArcGIS software platform, which combines statistical (quantitative) and spatial characteristics of natural hazards and socio-economic factors. This system was employed to perform areal zoning according to the degree of water use risks involved.
Dobson, John F.; Rubio, Angel
2005-01-01
We highlight the non-universality of the asymptotic behavior of dispersion forces, such that a sum of inverse sixth power contributions is often inadequate. We analytically evaluate the cross-correlation energy Ec between two pi-conjugated layers separated by a large distance D within the electromagnetically non-retarded Random Phase Approximation, via a tight-binding model. For two perfect semimetallic graphene sheets at T=0K we find Ec = C D^{-3}, in contrast to the "insulating" D^{-4} depe...
SPACES OF ANALYTIC FUNCTIONS REPRESENTED BY DIRICHLET SERIES OF TWo COMPLEX VARIABLES
Institute of Scientific and Technical Information of China (English)
Hazem Shaba Behnam; G.S. Srivastava
2002-01-01
We consider the space X of all analytic functionsf(s1 ,s2) = ∞∑aminexp(s1λm+s2μtn)of two complex variables s1 and s2, equipping it with the natural locally convex topology and using thegrowth parmeter, the order of f as defined recently by the authors. Under this topology X becomes aFrechet space. Apart from finding the characterization of continuous linear functiors, linear transforma-tion on X, we have obtained the necesary and sufficient conditions for a double sequence in X to be a properbases.
dM Vivanco, María; Stingl, John; Clarke, Robert B.; Bentires-Alj, Mohamed
2011-01-01
The meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' has become an annual international rendezvous for scientists with interests in the normal and neoplastic breast. The third meeting in this series, held in April-May 2011 in Weggis, Switzerland, focussed on functional screens and sequencing, hormones, lineage tracing, tumor-stroma interactions and the expansion of human breast tumours as xenografts.
Simplex and duplex event-specific analytical methods for functional biotech maize.
Lee, Seong-Hun; Kim, Su-Jeong; Yi, Bu-Young
2009-08-26
Analytical methods are very important in the control of genetically modified organism (GMO) labeling systems or living modified organism (LMO) management for biotech crops. Event-specific primers and probes were developed for qualitative and quantitative analysis for biotech maize event 3272 and LY 038 on the basis of the 3' flanking regions, respectively. The qualitative primers confirmed the specificity by a single PCR product and sensitivity to 0.05% as a limit of detection (LOD). Simplex and duplex quantitative methods were also developed using TaqMan real-time PCR. One synthetic plasmid was constructed from two taxon-specific DNA sequences of maize and two event-specific 3' flanking DNA sequences of event 3272 and LY 038 as reference molecules. In-house validation of the quantitative methods was performed using six levels of mixing samples, from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-30%. Limits of quantitation (LOQs) of the quantitative methods were all 0.1% for simplex real-time PCRs of event 3272 and LY 038 and 0.5% for duplex real-time PCR of LY 038. This study reports that event-specific analytical methods were applicable for qualitative and quantitative analysis for biotech maize event 3272 and LY 038.
On the Equisummability of Hermite and Fourier Expansions
Indian Academy of Sciences (India)
E K Narayanan; S Thangavelu
2001-02-01
We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived.The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
DEFF Research Database (Denmark)
DING, YI; Wang, Peng; Goel, Lalit;
2010-01-01
In a power system with high wind power penetration, reliability based reserve expansion is a major problem of system planning and operation due to the uncertainty and fast fluctuation of wind speeds. This paper studied the impact of high wind power penetration on the system reserve and reliability...... reliabilities. The effect of transmission network on customer reliabilities is also considered in the system UGF. The power output models of wind turbine generators in a wind farm considering wind speed correlation and un-correlation are developed, respectively. A reliability-based reserve expansion method...... is proposed to determine the conventional reserve required for power systems with high wind power penetration. The IEEE-RTS has been modified to illustrate the applications of the proposed method....
Li, W.; Cai, X.
2000-12-01
Starting from the master equation for the hierarchical structure of avalanches of a different kind within the frame of the Bak-Sneppen evolution model, we derive the exact formula of the scaling function describing the probability distribution of avalanches. The scaling function displays features required by the scaling ansatz and verified by simulations. Using the scaling function we investigate the avalanche moment, denoted by Δf¯. It is found that for any non-negative integer k, Δf¯ diverges as Δf¯-k, which gives an infinite group of exact critical exponents. Simulation outcomes of avalanche moments with k=1,2,3, are found to be consistent with the corresponding analytical results.
Functional-analytical capabilities of GIS technology in the study of water use risks
International Nuclear Information System (INIS)
Regional security aspects of economic activities are of great importance for legal regulation in environmental management. This has become a critical issue due to climate change, especially in regions where severe climate conditions have a great impact on almost all types of natural resource uses. A detailed analysis of climate and hydrological situation in Tomsk Oblast considering water use risks was carried out. Based on developed author's techniques an informational and analytical database was created using ArcGIS software platform, which combines statistical (quantitative) and spatial characteristics of natural hazards and socio-economic factors. This system was employed to perform areal zoning according to the degree of water use risks involved
Analytical Derivation of Three Dimensional Vorticity Function for wave breaking in Surf Zone
Dutta, R
2015-01-01
In this report, Mathematical model for generalized nonlinear three dimensional wave breaking equations was de- veloped analytically using fully nonlinear extended Boussinesq equations to encompass rotational dynamics in wave breaking zone. The three dimensional equations for vorticity distributions are developed from Reynold based stress equations. Vorticity transport equations are also developed for wave breaking zone. This equations are basic model tools for numerical simulation of surf zone to explain wave breaking phenomena. The model reproduces most of the dynamics in the surf zone. Non linearity for wave height predictions is also shown close to the breaking both in shoaling as well as surf zone. Keyword Wave breaking, Boussinesq equation, shallow water, surf zone. PACS : 47.32-y
Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai
2016-01-01
Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks. PMID:26787975
Lundengård, Karl; Javor, Vesna; Silvestrov, Sergei
2016-01-01
A multi-peaked version of the analytically extended function (AEF) intended for approximation of multi-peaked lightning current wave-forms will be presented along with some of its basic properties. A general framework for estimating the parameters of the AEF using the Marquardt least-squares method (MLSM) for a waveform with an arbitrary (finite) number of peaks as well as a given charge trans-fer and specific energy will also be described. This framework is used to find parameters for some common single-peak wave-forms and some advantages and disadvantages of the approach will be discussed.
Institute of Scientific and Technical Information of China (English)
Peng Zhigang
2012-01-01
Let ζ=(0,z1,z2,...,zn)with|zj|＜≤ 1for 1≤j ≤n,ω=(1,w1,w2,...,wn),and P(ζ,w) denote the set of functions p(z) that are analytic in D ={z:|z| ＜ 1} and satisfy Rep(z) ≥ 0 (|z| ＜ 1),p(0) =1,p(zj) =wj,j =1,2,…,n.In this article we investigate the extreme points of P(ζ,w).
Bandyopadhyay, Aritra
2016-01-01
We evaluate the electromagnetic spectral function in QCD plasma in a nonperturbative background of in-medium quark and gluon condensates by incorporating the leading order power corrections in a systematic framework within the ambit of the operator product expansion in D=4 dimension. We explicitly show that the mixing of the composite operators removes mass singularities and renders Wilson coefficients finite and well defined. As a spectral property, we then obtain the nonperturbative dilepton production rate from QCD plasma. The operator product expansion automatically restricts the dilepton rate to the intermediate mass range, which is found to be enhanced due to the power corrections. We also compare our result with those from nonperturbative calculations, e.g., lattice QCD and effective QCD models based on Polyakov loop.
Analytical formulation of the single-visit completeness joint probability density function
Garrett, Daniel
2016-01-01
We derive an exact formulation of the multivariate integral representing the single-visit obscurational and photometric completeness joint probability density function for arbitrary distributions for planetary parameters. We present a derivation of the region of nonzero values of this function which extends previous work, and discuss time and computational complexity costs and benefits of the method. We present a working implementation, and demonstrate excellent agreement between this approach and Monte Carlo simulation results
Analytical Formulation of the Single-visit Completeness Joint Probability Density Function
Garrett, Daniel; Savransky, Dmitry
2016-09-01
We derive an exact formulation of the multivariate integral representing the single-visit obscurational and photometric completeness joint probability density function for arbitrary distributions for planetary parameters. We present a derivation of the region of nonzero values of this function, which extends previous work, and discuss the time and computational complexity costs and benefits of the method. We present a working implementation and demonstrate excellent agreement between this approach and Monte Carlo simulation results.
Application of ANFIS for analytical modeling of tensile strength of functionally graded steels
Directory of Open Access Journals (Sweden)
Ali Nazari
2012-06-01
Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.
Oh, Ju-Hwan; Park, Do Hyun; Joo, Jang Ho; Lee, Jae-Seung
2015-11-01
The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve "smart" nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.
Energy Technology Data Exchange (ETDEWEB)
Yunta Carretero; Rodriguez Mayquez, E.
1974-07-01
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs.
Institute of Scientific and Technical Information of China (English)
Sergey Volkov; Sergey Aizikovich; Yue-Sheng Wang; Igor Fedotov
2013-01-01
The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.
Directory of Open Access Journals (Sweden)
Yasir Ahmad
2014-11-01
Full Text Available This article uses analytical hierarchy process (AHP to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management by small and medium enterprises (SMEs operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally family-owned businesses, and this study provides concrete insights into the mind-set of owners toward different functional strategies. The AHP implementation steps are performed using commercially available software “Expert Choice®.” Marketing strategy is considered to be the most important strategy, while manufacturing management strategy is the second most important strategy. There is little emphasis on the financial and human resource management which is a serious cause of concern. The study would help policy makers to understand the business behaviors of this sector and consequently formulate policies to enhance their performance.
Federalism. Theory and Neo-Functionalism: Elements for an analytical framework
DEFF Research Database (Denmark)
Dosenrode, Søren
2010-01-01
-McKayian way, is able to explain the cases of ‘big bang’ integration (USA, Australia, Canada), but not an ‘organic’ integration process. Neo-functionalism, on the other hand, is not able to explain this relatively fast form of integration, but it is – in its new version - able to analyze and explain...
Pain beliefs and problems in functioning among people with arthritis: a meta-analytic review.
Jia, Xiaojun; Jackson, Todd
2016-10-01
In this meta-analysis, we evaluated overall strengths of relation between beliefs about pain, health, or illness and problems in functioning (i.e., functional impairment, affective distress, pain severity) in osteoarthritis and rheumatoid arthritis samples as well as moderators of these associations. In sum, 111 samples (N = 17,365 patients) met inclusion criteria. On average, highly significant, medium effect sizes were observed for associations between beliefs and problems in functioning but heterogeneity was also inflated. Effect sizes were not affected by arthritis subtype, gender, or age. However, pain belief content emerged as a significant moderator, with larger effect sizes for studies in which personal incapacity or ineffectiveness in controlling pain was a content theme of belief indices (i.e., pain catastrophizing, helplessness, self-efficacy) compared to those examining locus of control and fear/threat/harm beliefs. Furthermore, analyses of longitudinal study subsets supported the status of pain beliefs risk factors for later problems in functioning in these groups. PMID:27506911
On Certain Class of Analytic Functions Related to Cho-Kwon-Srivastava Operator
Directory of Open Access Journals (Sweden)
F. Ghanim
2011-01-01
Full Text Available Motivated by a multiplier transformation and some subclasses of meromorphic functions which were defined by means of the Hadamard product of the Cho-Kwon-Srivastava operator, we define here a similar transformation by means of the Ghanim and Darus operator. A class related to this transformation will be introduced and the properties will be discussed.
Bermudez, Miguel Angel Lopez; Garcia, Rafael Ferro; Calvillo, Manuel
2010-01-01
Traditional methods of diagnosis are of little therapeutic use when diagnostic criteria are based upon topographical rather than functional aspects of behavior. Also, this sentence in the original seemed rather awkward and a bit unclear. In contrast to this, several authors have put forward experience avoidance disorders as an alternative which…
Weakly Non-Linear Gaussian Fluctuations and the Edgeworth Expansion
Juszkiewicz, R.; Weinberg, D; Amsterdamski, P.; Chodorowski, M.; Bouchet, F.
1993-01-01
We calculate the cosmological evolution of the 1-point probability distribution function (PDF), using an analytic approximation that combines gravitational perturbation theory with the Edgeworth expansion of the PDF. Our method applies directly to a smoothed mass density field or to the divergence of a smoothed peculiar velocity field, provided that rms fluctuations are small compared to unity on the smoothing scale, and that the primordial fluctuations that seed the growth of structure are G...
An Analytical Approach to Document Clustering Based on Internal Criterion Function
Ranjan, Alok; Kandpal, Eatesh; Dhar, Joydip
2010-01-01
Fast and high quality document clustering is an important task in organizing information, search engine results obtaining from user query, enhancing web crawling and information retrieval. With the large amount of data available and with a goal of creating good quality clusters, a variety of algorithms have been developed having quality-complexity trade-offs. Among these, some algorithms seek to minimize the computational complexity using certain criterion functions which are defined for the whole set of clustering solution. In this paper, we are proposing a novel document clustering algorithm based on an internal criterion function. Most commonly used partitioning clustering algorithms (e.g. k-means) have some drawbacks as they suffer from local optimum solutions and creation of empty clusters as a clustering solution. The proposed algorithm usually does not suffer from these problems and converge to a global optimum, its performance enhances with the increase in number of clusters. We have checked our algor...
Institute of Scientific and Technical Information of China (English)
JIANG Ai-min; DING Hao-jiang
2005-01-01
In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.
Fractional Calculus of Analytic Functions Concerned with Möbius Transformations
Directory of Open Access Journals (Sweden)
Nicoleta Breaz
2016-01-01
Full Text Available Let A be the class of functions f(z in the open unit disk U with f(0=0 and f′(0=1. Also, let w(ζ be a Möbius transformation in U for some z∈U. Applying the Möbius transformations, we consider some properties of fractional calculus (fractional derivatives and fractional integrals of f(z∈A. Also, some interesting examples for fractional calculus are given.
A semi-analytical three-dimensional free vibration analysis of functionally graded curved panels
Energy Technology Data Exchange (ETDEWEB)
Zahedinejad, P. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Persian Gulf University Boulevard, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Farid, M. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Karami, G. [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105-5285 (United States)
2010-08-15
Based on the three-dimensional elasticity theory, free vibration analysis of functionally graded (FG) curved thick panels under various boundary conditions is studied. Panel with two opposite edges simply supported and arbitrary boundary conditions at the other edges are considered. Two different models of material properties variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential distribution of the material properties through the thickness are considered. Differential quadrature method in conjunction with the trigonometric functions is used to discretize the governing equations. With a continuous material properties variation assumption through the thickness of the curved panel, differential quadrature method is efficiently used to discretize the governing equations and to implement the related boundary conditions at the top and bottom surfaces of the curved panel and in strong form. The convergence of the method is demonstrated and to validate the results, comparisons are made with the solutions for isotropic and FG curved panels. By examining the results of thick FG curved panels for various geometrical and material parameters and subjected to different boundary conditions, the influence of these parameters and in particular, those due to functionally graded material parameters are studied.
An analytical model for resistivity tools
Energy Technology Data Exchange (ETDEWEB)
Hovgaard, J.
1991-04-01
An analytical model for resistivity tools is developed. It takes into account the effect of the borehole and the actual shape of the electrodes. The model is two-dimensional, i.e. the model does not deal with eccentricity. The electrical potential around a current source satisfies Poisson`s equation. The method used here to solve Poisson`s equation is the expansion fo the potential function in terms of a complete set of functions involving one of the coordinates with coefficients which are undetermined functions of the other coordinate. Numerical examples of the use of the model are presented. The results are compared with results given in the literature. (au).
Gori-Giorgi, Paola; Perdew, John P.
2002-10-01
We construct analytic formulas that represent the coupling-constant-averaged pair distribution function gxc(rs,ζ,kFu) of a three-dimensional nonrelativistic ground-state electron gas constrained to a uniform density with density parameter rs=(9π/4)1/3/kF and relative spin polarization ζ over the whole range 0∞) oscillations averaged out. The pair distribution function gxc at the physical coupling constant is then given by differentiation with respect to rs. Our formulas are constructed using only known theoretical constraints plus the correlation energy ɛc(rs,ζ), and accurately reproduce the gxc of the quantum Monte Carlo method and of the fluctuation-dissipation theorem with the Richardson-Ashcroft dynamical local-field factor. Our gxc is correct even in the high-density (rs-->0) and low-density (rs-->∞) limits. When the spin resolution of ɛc into ↑↑, ↓↓, and ↑↓ contributions is known, as it is in the high- and low-density limits, our formulas also yield the spin resolution of gxc. Because of these features, our formulas may be useful for the construction of density functionals for nonuniform systems. We also analyze the kinetic energy of correlation into contributions from density fluctuations of various wave vectors. The exchange and long-range correlation parts of our gxc(rs,ζ,kFu)-1 are analytically Fourier transformable, so that the static structure factor Sxc(rs,ζ,k/kF) is easily evaluated.
Fröhlich, Monika; Gogishvili, Tea; Langenhorst, Daniela; Lühder, Fred; Hünig, Thomas
2016-07-01
The role of CD28-mediated costimulation in secondary CD8(+) T-cell responses remains controversial. Here, we have used two tools - blocking mouse anti-mouse CD28-specific antibodies and inducible CD28-deleting mice - to obtain definitive answers in mice infected with ovalbumin-secreting Listeria monocytogenes. We report that both blockade and global deletion of CD28 reveal its requirement for full clonal expansion and effector functions such as degranulation and IFN-γ production during the secondary immune response. In contrast, cell-intrinsic deletion of CD28 in transferred TCR-transgenic CD8(+) T cells before primary infection leads to impaired clonal expansion but an increase in cells able to express effector functions in both primary and secondary responses. We suggest that the proliferation-impaired CD8(+) T cells respond to CD28-dependent help from their environment by enhanced functional differentiation. Finally, we report that cell-intrinsic deletion of CD28 after the peak of the primary response does not affect the establishment, maintenance, or recall of long-term memory. Thus, if given sufficient time, the progeny of primed CD8(+) T cells adapt to the absence of this costimulator. PMID:27122236
Directory of Open Access Journals (Sweden)
Devesh Kishore
Full Text Available BACKGROUND: β-Galactosidase is a vital enzyme with diverse application in molecular biology and industries. It was covalently attached onto functionalized graphene nano-sheets for various analytical applications based on lactose reduction. METHODOLOGY/PRINCIPAL FINDINGS: Response surface methodology based on Box-Behnken design of experiment was used for determination of optimal immobilization conditions, which resulted in 84.2% immobilization efficiency. Native and immobilized functionalized graphene was characterized with the help of transmission and scanning electron microscopy, followed by Fourier transform infrared (FTIR spectroscopy. Functionalized graphene sheets decorated with islands of immobilized enzyme were evidently visualized under both transmission and scanning electron microscopy after immobilization. FTIR spectra provided insight on various chemical interactions and bonding, involved during and after immobilization. Optimum temperature and energy of activation (E(a remains unchanged whereas optimum pH and K(m were changed after immobilization. Increased thermal stability of enzyme was observed after conjugating the enzyme with functionalized graphene. SIGNIFICANCE: Immobilized β-galactosidase showed excellent reusability with a retention of more than 92% enzymatic activity after 10 reuses and an ideal performance at broad ranges of industrial environment.
Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws
Hayes, Robert
When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.
Angulo, Diego A; Schneider, Cyril; Oliver, James H; Charpak, Nathalie; Hernandez, Jose T
2016-01-01
Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data.
The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications
Directory of Open Access Journals (Sweden)
D. S. Gilliam
2009-01-01
analytic function of a bounded operator, tangentially to the space of all bounded operators. Some applied problems from statistics and numerical analysis are included as a motivation for this study. The perturbation operator (increment is not of any special form and is not supposed to commute with the operator at which the derivative is evaluated. This generality is important for the applications. In the Hermitian case, moreover, some results on perturbation of an isolated eigenvalue, its eigenprojection, and its eigenvector if the eigenvalue is simple, are also included. Although these results are known in principle, they are not in general formulated in terms of arbitrary perturbations as required for the applications. Moreover, these results are presented as corollaries to the main theorem, so that this paper also provides a short, essentially self-contained review of these aspects of perturbation theory.
Huang, Weidong; Hu, Peng; Chen, Zeshao
2011-01-01
Parabolic solar dish concentrator with sphere receiver is less studied. We present an analytic function to calculate the intercept factor of the system with real sun bright distribution and Gaussian distribution, the results indicate that the intercept factor is related to the rim angle of reflector and the ratio of open angle of receiver at the top of reflector to optical error when the optical error is larger than or equal to 5 mrad, but is related to the rim angle, open angle and optical error in less than 5 mrad optical error. Furthermore we propose a quick process to optimize the system to provide the maximum solar energy to net heat efficiency for different optical error under typical condition. The results indicate that the parabolic solar dish concentrator with sphere receiver has rather high solar energy to net heat efficiency which is 20% more than solar trough and tower system including higher cosine factor and lower heat loss of the receiver.
Energy Technology Data Exchange (ETDEWEB)
Atai, Ali Asghar [University of Tehran, Tehran (Iran, Islamic Republic of); Lak, Davaod [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)
2016-01-15
In this work, the effect of electric potential on the mechanical (Stresses, strains, displacement) and electrical (electrical displacement and intensity) response of a Functionally graded piezoelectric (FGP) hollow sphere is analytically investigated. The sphere is under the action of internal/external pressure and temperature gradient as well. The inhomogeneity is based on power law in radial direction. The analysis is done in two parts: elastic response and plastic response, using Tresca yield criterion. It is shown by illustrative example that under internal pressure and assumed model parameters, the commencement of plastic region is from outside surface towards inside in the plastic zone is extended with the increase of electric potential. Interestingly, radial stress and displacement have an extreme not on the boundaries, but on the inside.
Functional data analytic approach of modeling ECG T-wave shape to measure cardiovascular behavior
Zhou, Yingchun; 10.1214/09-AOAS273
2010-01-01
The T-wave of an electrocardiogram (ECG) represents the ventricular repolarization that is critical in restoration of the heart muscle to a pre-contractile state prior to the next beat. Alterations in the T-wave reflect various cardiac conditions; and links between abnormal (prolonged) ventricular repolarization and malignant arrhythmias have been documented. Cardiac safety testing prior to approval of any new drug currently relies on two points of the ECG waveform: onset of the Q-wave and termination of the T-wave; and only a few beats are measured. Using functional data analysis, a statistical approach extracts a common shape for each subject (reference curve) from a sequence of beats, and then models the deviation of each curve in the sequence from that reference curve as a four-dimensional vector. The representation can be used to distinguish differences between beats or to model shape changes in a subject's T-wave over time. This model provides physically interpretable parameters characterizing T-wave sh...
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean and...
Liu, Na; Ma, Zhanfang
2014-01-15
In this work, an Au-ionic liquid functionalized reduced graphene oxide nanocomposite (IL-rGO-Au) was fabricated via the self-assembly of ionic liquid functionalized reduced graphene oxide (IL-rGO) and gold nanoparticles (AuNPs) by electrostatic interaction. The IL-rGO can be synthesized and stabilized by introducing the cations of the amine-terminated ionic liquids (IL-NH2) into the graphene oxide (GO). With the assistance of IL-NH2, AuNPs were uniformly and densely absorbed on the surfaces of the IL-rGO. The proposed IL-rGO-Au nanocomposite can be used as an immunosensing platform because it can not only facilitate the electrons transfer of the electrode surface but also provide a large accessible surface area for the immobilization of abundant antibody. To assess the performance of the IL-rGO-Au nanocomposite, a sandwich-type electrochemical immunosensor was designed for simultaneous multianalyte detection (carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) as model analytes). The chitosan (CS) coated prussian blue nanoparticles (PBNPs) or cadmium hexacyanoferrate nanoparticles (CdNPs) and loaded with AuNPs were used as distinguishable signal tags. The resulting immunosensor exhibited high selectivity and sensitivity in simultaneous determination of CEA and AFP in a single run. The linear ranges were from 0.01 to 100 ng mL(-1) for both CEA and AFP. The detection limits reached 0.01 ng mL(-1) for CEA and 0.006 ng mL(-1) for AFP, respectively. No obvious nonspecific adsorption and cross-talk was observed during a series of analyses to detect target analytes. In addition, for the detection of clinical serum samples, it is well consistent with the data determined by the ELISA, indicating that the immunosensor provides a possible application for the simultaneous multianalyte determination of CEA and AFP in clinical diagnostics. PMID:23962704
Laricchia, S; Fabiano, E; Della Sala, F
2014-01-01
We test Laplacian-level meta-generalized gradient approximation (meta-GGA) non-interacting kinetic energy functionals based on the fourth-order gradient expansion (GE4). We consider several well known Laplacian-level meta-GGAs from literature (bare GE4, modified GE4, and the MGGA functional of Perdew and Constantin [Phys. Rev. B \\textbf{75},155109 (2007)]), as well as two newly designed Laplacian-level kinetic energy functionals (named L0.4 and L0.6). First, a general assessment of the different functionals is performed, testing them for model systems (one-electron densities, Hooke's atom and different jellium systems), atomic and molecular kinetic energies as well as for their behavior with respect to density-scaling transformations. Finally, we assess, for the first time, the performance of the different functionals for Subsystem Density Functional Theory (DFT) calculations on non-covalently interacting systems. We find that the different Laplacian-level meta-GGA kinetic functionals may improve the descript...
Discussion on Function Expansion of Internal Audit after Financial Crisis%金融危机后内部审计功能拓展探讨
Institute of Scientific and Technical Information of China (English)
张雨桐
2012-01-01
Combining with background of social economic envimrmaent of later global financial crisis period, specific contents of function expansion of internal audit were discussed. It was thought that internal audit should break through the limit of traditional value keeping activities and work center should transfer to activities of helping enterprises realize value increasing. Three challenges that the expansion function of internal audit will meet when it plays its role were proposed, including status, personnel and technology.%结合全球金融危机后期的经济环境背景，讨论了内部审计功能拓展的具体内容．认为内部审计应当突破传统保值活动的界限，将工作重心转移到帮助企业实现增值的活动中，并指出内部审计拓展功能的发挥面临着地位、人员和技术方面的三大挑战．
Garrabos, Yves; Lecoutre, Carole; Marre, Samuel; LeNeindre, Bernard
2016-08-01
A non-analytical scaling determination of the Ising-like crossover parameter is proposed considering the critical isochore of a simple fluid at finite distance from its critical temperature. The mean crossover functions, estimated from the bounded results of the massive renormalization scheme in field theory applied to the ( Φ 2) d2( n) model in three dimensions (d=3) and scalar order parameter (n=1), are used to formulate the corresponding scaling equations valid in two well-defined temperature ranges from the critical temperature. The validity range and the Ising-like nature of the corresponding crossover description are discussed in terms of a single Ising-like scale factor characterizing the critical isochore. The asymptotic value of this scale factor can be predicted within the Ising-like preasymptotic domain. Unfortunately, the absence of precise experimental data in such a close vicinity of the critical point leads the direct testing impossible. A contrario, from our scaling equations and the use of precise measurements performed at finite distance from the critical point, its local value can be estimated beyond the Ising-like preasymptotic domain. This non-analytical scaling determination only needs to make reference to the universal features estimated from the mean crossover functions and to introduce a single master dimensionless length common to all the simple fluids. This latter parameter guaranties the uniqueness of the physical length unit used for the theoretical crossover functions and the fluid singular properties when the generalized critical coordinates of the vapor-liquid critical point of each fluid are known. Xenon case along its critical isochore is considered as a typical example to demonstrate the singleness of the Ising-like crossover parameter. With the measurements at finite temperature range of the effective singular behaviors of the isothermal compressibility in the homogeneous domain, and the vapor-liquid coexisting densities in the
On genus expansion of superpolynomials
Mironov, A; Sleptsov, A; Smirnov, A
2013-01-01
Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis:the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is rather straightforward only for the thin knots. Beyond this family additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpol...
Abrarov, S M
2012-01-01
In our recent publication [1] we presented an exponential series approximation suitable for highly accurate computation of the complex error function in a rapid algorithm. In this Short Communication we describe how a simplified representation of the proposed complex error function approximation makes possible further algorithmic optimization resulting in a considerable computational acceleration without compromise on accuracy.
Stefańska, Patrycja
2016-01-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
Stefańska, Patrycja
2011-01-01
The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive closed-form expressions for electric ($\\sigma_{\\mathrm{E}}$) and magnetic ($\\sigma_{\\mathrm{M}}$) dipole shielding constants for the ground state of the relativistic hydrogen-like atom with a point-like and spinless nucleus of charge $Ze$. It is found that $\\sigma_{\\mathrm{E}}=Z^{-1}$ (as it should be) and $$\\sigma_{\\mathrm{M}}=-(2Z\\alpha^{2}/27)(4\\gamma_{1}^{3}+6\\gamma_{1}^{2}-7\\gamma_{1}-12) /[\\gamma_{1}(\\gamma_{1}+1)(2\\gamma_{1}-1)],$$ where $\\gamma_{1}=\\sqrt{1-(Z\\alpha)^{2}}$ ($\\alpha$ is the fine-structure constant). This expression for $\\sigma_{\\mathrm{M}}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng \\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler'...
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.
2016-08-01
A cumulant-based G W approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. Qualitative aspects of this method are explored within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. However, its quasiparticle properties and correlation energies are more accurate than both previous cumulant methods and standard G0W0 . Our results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based G W approaches.
DEFF Research Database (Denmark)
Unmack Larsen, Ida; Vinther-Jensen, Tua; Gade, Anders;
2015-01-01
Executive functions (EF) and psychomotor speed (PMS) has been widely studied in Huntington's disease (HD). Most studies have focused on finding markers of disease progression by comparing group means at different disease stages. Our aim was to investigate performances on nine measures of EF and PMS...
Analytic structure of QCD propagators in Minkowski space
Siringo, Fabio
2016-01-01
Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, deep in the infrared. By analytic continuation, the spectral functions are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles.The dynamical breaking of chiral symmetry is described on the same footing of gluon mass generation, providing a unified picture. While dealing with the exact Lagrangian, the expansion is based on massive free-particle propagators, is safe in the infrared and is equivalent to the standard perturbation theory in the UV. By dimensional regularization, all diverging mass terms cancel exactly without including mass counterterms that would spoil the gauge and chiral symmetry of the Lagrangian. Universal scaling properties are predicted for the inverse dressing functions and shown to be satisfied by the lattice data. Complex conjugated poles are found for the gluon propagator, in agre...
Institute of Scientific and Technical Information of China (English)
LIU Yu-min; YU Zhong-yuan; YANG Hong-bo; ZHANG Na
2005-01-01
The general analytic expression of the chirped sampled function is derived based on coupled mode theory. This function can be used to describe how to use uniform period fiber Bragg grating to produce the equal chirp at will in the specific reflection channel. As an example,the exact sampled function expression that produces a linear chirped at the +4 channel is given. The simulation results by using the transfer-matrix show that the theory is correct.
Volodymyr Metelytsia
2015-01-01
The article describes the implementation measures of the Development strategy of the accounting profession in the agricultural sector as part of its functional and ethical direction. It grounds the necessity of legislative regulation of the rights of the chief accountant or the person holding the duty of business bookkeeping. It is proved the necessity of introducing the sole responsibility of the person who is entrusted with the task of the organization of accounting at the corporate level (...
Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan
2013-01-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mapp...
Fridjine, S.; Amlouk, M.
In this study, we define a synthetic parameter: optothermal expansivity as a quantitative guide to evaluating and optimizing both the thermal and the optical performance of PV-T functional materials. The definition of this parameter, ψAB (Amlouk-Boubaker parameter), takes into account the thermal diffusivity and the optical effective absorptivity of the material. The values of this parameter, which seems to be a characteristic one, correspond to the total volume that contains a fixed amount of heat per unit time (m3 s-1) and can be considered as a 3D velocity of the transmitted heat inside the material. As the PV-T combined devices need to have simultaneous optical and thermal efficiency, we try to investigate some recently proposed materials (β-SnS2, In2S3, ZnS1-xSex|0 ≤xabacus.
Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.
2014-06-01
Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.
Directory of Open Access Journals (Sweden)
Javier Cubas
2014-06-01
Full Text Available Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation..., it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.
Properties of Certain Multivalent Analytic Functions%某类多叶解析函数的性质
Institute of Scientific and Technical Information of China (English)
刘金林
2002-01-01
Let A(p) (p is an integer, p ≥ 1) be the class of functions f(z) = zp + ap+1zp+1 +… which are analytic in the unit disk E. In this paper a new subclass Hσ(p,α) of A(p) is introduced.We find the extreme point of closed convex hull of the class Hσ(p, α) and then determine the sharp coefficient bounds. Some other interesting properties of the class Hσ (p, α) are also investigated.%设A(p)(p是整数,p≥1)表示在单位圆盘E内形如f(z)=2p+ap+1zp+1+…的解析函数族.本文引进了新的函数子类Hσ(p,α),找出了Hσ(p,α)闭凸包的极值点并给出精确的系数估计,还讨论了Hσ(p,α)其它一些有趣的性质.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS%泛函方程组的解析解
Institute of Scientific and Technical Information of China (English)
刘新和
2003-01-01
Let r be a given positive numberDenote by D=Dr the closed disc in the complexplane C whose center is the origin and radius is rFor any subset K of C and any integer m≥1,write A(Dm,K)= {f|f: Dm→K is a continuous map, and f| (Dm)° is analytic}For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ΨH(f)(z)=H(z,f(z),...,fm-1(z)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,...,n.In this paper,the system of functional equations F(z,f(z),f2(ΨH2(f)(z)),...,fn(ΨHn(f)(z)),g(z),g2(ΨK2(g)(z)),...,gn(ΨKn(g)(z))=0 G(z,f(z),f2(ΨH2(f)(z)),...,fn(ΨHn(f)(z)),g(z),g2(ΨK2(g)(z)),...,gn(ΨKn(g)(z))=0 (z∈D) is studied and some conditions for the system of equations to have a solution or a uniquesolution in A(D,D)×A(D,D) are given.
Affine transformations and analytic capacities
Dowling, Thomas; O'Farrell, Anthony G.
1995-01-01
Analytic capacities are set functions defined on the plane which may be used in the study of removable singularities, boundary smoothness and approximation of analytic functions belonging to some function space. The symmetric concrete Banach spaces form a class of function spaces that include most spaces usually studied. The Beurling transform is a certain singular integral operator that has proved useful in analytic function theory. It is shown that the analytic capacity associated to ...
Completeness relations and resonant state expansions
International Nuclear Information System (INIS)
The completeness properties of the discrete set of bound states, virtual states, and resonant states characterizing the system of a single nonrelativistic particle moving in a central cutoff potential are investigated. We do not limit ourselves to the restricted form of completeness that can be obtained from Mittag-Leffler theory in this case. Instead we will make use of the information contained in the asymptotic behavior of the discrete states to get a new approach to the question of eventual overcompleteness. Using the theory of analytic functions we derive a number of completeness relations in terms of discrete states and complex continuum states and give some criteria for how to use them to form resonant state expansions of functions, matrix elements, and Green's functions. In cases where the integral contribution vanishes, the discrete part of the expansions is of the same form as that given by Mittag-Leffler theory but with regularized inner products. We also consider the possibility of using the discrete states as basis in a matrix representation
Directory of Open Access Journals (Sweden)
Haifeng Song
Full Text Available Natural killer (NK cells play critical roles in innate immunity and in bridging innate and adaptive immune responses against viral infection. However, the response of NK cells to monkeypox virus (MPXV infection is not well characterized. In this intravenous challenge study of MPXV infection in rhesus macaques (Macaca mulatta, we analyzed blood and lymph node NK cell changes in absolute cell numbers, cell proliferation, chemokine receptor expression, and cellular functions. Our results showed that the absolute number of total NK cells in the blood increased in response to MPXV infection at a magnitude of 23-fold, manifested by increases in CD56+, CD16+, CD16-CD56- double negative, and CD16+CD56+ double positive NK cell subsets. Similarly, the frequency and NK cell numbers in the lymph nodes also largely increased with the total NK cell number increasing 46.1-fold. NK cells both in the blood and lymph nodes massively proliferated in response to MPXV infection as measured by Ki67 expression. Chemokine receptor analysis revealed reduced expression of CXCR3, CCR7, and CCR6 on NK cells at early time points (days 2 and 4 after virus inoculation, followed by an increased expression of CXCR3 and CCR5 at later time points (days 7-8 of infection. In addition, MPXV infection impaired NK cell degranulation and ablated secretion of interferon-γ and tumor necrosis factor-α. Our data suggest a dynamic model by which NK cells respond to MPXV infection of rhesus macaques. Upon virus infection, NK cells proliferated robustly, resulting in massive increases in NK cell numbers. However, the migrating capacity of NK cells to tissues at early time points might be reduced, and the functions of cytotoxicity and cytokine secretion were largely compromised. Collectively, the data may explain, at least partially, the pathogenesis of MPXV infection in rhesus macaques.
Energy Technology Data Exchange (ETDEWEB)
Cvetic, G. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. of Physics; Illarionov, A.Yu. [International School for Advanced Studies SISSA, Trieste (Italy); Kniehl, B.A.; Kotikov, A.V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-06-15
Using the leading-twist approximation of the Wilson operator product expansion with ''frozen'' and analytic versions of the strong-coupling constant, we show that the Bessel-inspired behavior of the structure function F{sub 2} and its slope {partial_derivative}lnF{sub 2}/{partial_derivative}ln(1/x) at small values of x, obtained for a at initial condition in the DGLAP evolution equations, leads to good agreement with experimental data of deep-inelastic scattering at DESY HERA. (orig.)
Institute of Scientific and Technical Information of China (English)
LI Wei-yan; ZHOU Zhi-qiang; JI Jun-feng; LI Ze-qing; YANG Jian-jun; SHANG Ruo-jing
2007-01-01
Background Epinephrine infiltration of the nasal mucosa causes hypotension during functional endoscopic sinus surgery (FESS) under general anesthesia. A prospective randomized-controlled study was designed to determine whether relatively light general anesthesia is superior to fluid expansion in reducing epinephrine-induced hypotension during FESS.Methods Ninety patients undergoing elective FESS under general anesthesia were randomly assigned to three groups with 30 patients in each. Each patient received local infiltration with adrenaline-containing (5 μg/ml) lidocaine (1%,4 ml) under different conditions. For Group Ⅰ, anesthesia was maintained with propofol 2 μg/ml and rimifentanil 2 ng/ml by TCI. Group Ⅱ (control group) and Group Ⅲ received propofol 4 μg/ml and rimifentanil 4 ng/ml, respectively. In Groups Ⅰ and Ⅱ, fluid expansion was performed with hetastarch 5 mi/kg within 20 minutes; hetastarch 10 ml/kg was used in Group Ⅲ. Mean arterial pressure (MAP) and heart rate (HR) were recorded at 30-second-intervals for 5 minutes after the beginning of local infiltration. Simultaneously, the lowest and the highest MAP were recorded to calculate the mean maximum increase or decrease percent in MAP for all patients in each group. Data analysis was performed by χ2 test,one-way analysis of variance, or one-way analysis of covariance.Results Hemodynamic changes, particularly a decrease in MAP accompanied by an increase in HR at 1.5 minutes(P＜0.05), were observed in all groups. The mean maximum decrease in MAP below baseline was 14% in Group Ⅰ, 24% in Group Ⅲ and 26% in Group Ⅱ. There were statistically significant differences between Group Ⅰ and Groups Ⅱ and Ⅲ(P＜0.05). The mean maximum increase in MAP above baseline was 9% in Group Ⅰ, 6% in Group Ⅲ and 2% in Group Ⅱ.Conclusion Relatively light general anesthesia can reduce the severity of epinephrine-induced hypotension more effectively than fluid expansion during FESS under general
Pedersen, Eric R.; Callaghan, Glenn M.; Prins, Annabel; Nguyen, Hong; Tsai, Mavis
2012-01-01
Evidence-based treatments for Posttraumatic Stress Disorder (PTSD) may be enhanced by Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991; Tsai et al., 2009). As PTSD can include a variety of problems with interpersonal relationships (e.g., trust of others), manualized treatments may not afford clinicians enough time and flexibility to…
Directory of Open Access Journals (Sweden)
M. M. Sheremeta
2012-03-01
Full Text Available For a function analytic in the unit disc the concepts of Gelfond-Leont'ev-Salagen and Gelfond-Leont'ev-Ruscheweyh derivatives of n-th order are introduced and the asymptotic behaviour of the maximal terms of their power development as n→+∞ is investigated.
Plasma expansion into vacuum assuming a steplike electron energy distribution.
Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C
2013-04-01
The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)
Argument Estimate of Analytic Functions Defined by Linear Operator%由算子定义的解析函数的辐角估计
Institute of Scientific and Technical Information of China (English)
陈建兰
2011-01-01
The paper defines the operator transformation by means of Hadamard product. It introduces a novel class of analytic functions in the open unit disk and studies the argument estimate of the new functions.%通过Hadamard卷积定义了算子变换,利用其得到了单位开圆内解析函数类的新子类并研究了新函数类的辐角估计性质.
António, Julieta; Tadeu, António
2002-01-01
This paper presents analytical solutions for computing the 3D displacements in a flat solid elastic stratum bounded by a rigid base, when it is subjected to spatially sinusoidal harmonic line loads. These functions are also used as Greens functions in a boundary element method code that simulates the seismic wave propagation in a confined or semi-confined 2D valley, avoiding the discretization of the free and rigid horizontal boundaries.
Directory of Open Access Journals (Sweden)
C. D. Jan
2012-10-01
Full Text Available The equation of one-dimensional gradually-varied flow (GVF in sustaining and non-sustaining open channels is normalized using the critical depth, h_{c}, and then analytically solved by the direct integration method with the use of the Gaussian hypergeometric function (GHF. The GHF-based solution so obtained from the h_{c}-based dimensionless GVF equation is more useful and versatile than its counterpart from the GVF equation normalized by the normal depth, h_{n}, because the GHF-based solutions of the h_{c}-based dimensionless GVF equation for the mild (M and adverse (A profiles can asymptotically reduce to the h_{c}-based dimensionless horizontal (H profiles as h_{c}/h_{n} → 0. An in-depth analysis of the h_{c}-based dimensionless profiles expressed in terms of the GHF for GVF in sustaining and adverse wide channels has been conducted to discuss the effects of h_{c}/h_{n} and the hydraulic exponent N on the profiles This paper has laid the foundation to compute at one sweep the h_{c}-based dimensionless GVF profiles in a series of sustaining and adverse channels, which have horizontal slopes sandwiched in between them, by using the GHF-based solutions.
Genus expansion of HOMFLY polynomials
Mironov, A; Sleptsov, A
2013-01-01
In the planar limit of the 't Hooft expansion, the Wilson-loop average in 3d Chern-Simons theory (i.e. the HOMFLY polynomial) depends in a very simple way on representation (the Young diagram), so that the (knot-dependent) Ooguri-Vafa partition function becomes a trivial KP tau-function. We study higher genus corrections to this formula in the form of expansion in powers of z = q-q^{-1}. Expansion coefficients are expressed through the eigenvalues of the cut-and-join operators, i.e. symmetric group characters. Moreover, the z-expansion is naturally exponentiated. Representation through cut-and-join operators makes contact with Hurwitz theory and its sophisticated integrability properties. Our formulas describe the shape of genus expansion for the HOMFLY polynomials, which for their matrix model counterparts is usually controlled by Virasoro like constraints and AMM/EO topological recursion. The genus expansion differs from the better studied weak coupling expansion at finite number of colors N, which is descr...
Sidorov, A
2014-01-01
We discuss the application of an analytic approach called the analytic perturbation theory (APT) to the QCD analysis of DIS data. In particular, the results of the QCD analysis of a set of `fake' data on the polarized nonsinglet Delta{q3} and the nonsinglet fragmentation function D^{pi+}_{u_v} by using the Q^2-evolution within the APT are considered. The `fake' data are constructed based on parametrization of the polarized PDF and nonsinglet combination of the pion fragmentation functions. We confirm that APT can be successfully applied to QCD analysis of Delta{q_3}(x,Q^2) and D^{pi+}_{u_v}(z,Q^2) and that the inequality Lambda_{APT} > Lambda_{PT} obtained previously for the xF3(x) structure function takes place.
Institute of Scientific and Technical Information of China (English)
姜海波; 赵云鹏
2013-01-01
复杂翼型几何形状的解析表达对叶片的优化设计有重要的意义,文章研究了用解析函数构造复杂翼型形状的方法.通过对儒科夫斯基翼型函数的简化,得到用中弧线-厚度函数表示翼型型线的解析表达式,对式中的相关系数和指数进行重新定义和变换,构造出包括儒科夫斯基翼型的一般翼型型线的解析表达式；通过进一步分离上、下型线并进行重新组合的方法可构造出更复杂翼型的形状；再通过增加一个独立的厚度函数项的方法,可构造出具有光滑尾缘形状的翼型.研究表明,复杂翼型的几何形状可通过有限个参数的解析函数表达,这些参数不仅具有明确的几何意义,而且使用方便,便于调整翼型的局部形状.文中给出了用翼型、弦长和扭角函数构造风力机叶片解析函数的应用示例.%It is important that the geometric shape of a complex airfoil contour be expressed by an analytic formula, In this paper, the method to construct airfoil contour by analytic functions is discussed. Joukowsky airfoil contour function is simplified to a straightforward expression with mean camber function and thickness function. Many airfoil contours can be constructed by redefining and transforming the coefficients and indexes in the expansion, and more complex airfoil contours can be obtained through separating and resetting the upper and lower contours. Also, the contour function of any airfoil with smooth trailing edge is obtained by adding an independent thickness function. It is shown that a complex airfoil contour can be expressed by an analytic function with limited parameters which have clear geometric meaning, and can be used to adjust the local shape easily. As an example of application, the paper also gives a method to construct analytic function of blade with an airfoil contour, a chord and a twist functions.
Moraes, P H R S; Correa, R A C
2016-01-01
In this work we present cosmological solutions from the simplest non-trivial $T$-dependence in $f(R,T)$ theory of gravity, with $R$ and $T$ standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Although such an approach yields a highly non-linear differential equation for the scale factor, we show that it is possible to obtain analytical solutions for the cosmological parameters. For some values of the free parameters, the model is able to predict a transition from a decelerated to an accelerated expansion of the universe.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Ultracold neutral plasma expansion in two dimensions
Cummings, E A; Durfee, D S; Bergeson, S D
2005-01-01
We extend an isothermal thermal model of ultracold neutral plasma expansion to systems without spherical symmetry, and use this model to interpret new fluorescence measurements on these plasmas. By assuming a self-similar expansion, it is possible to solve the fluid equations analytically and to include velocity effects to predict the fluorescence signals. In spite of the simplicity of this approach, the model reproduces the major features of the experimental data.
Robinson, Jennifer L; Salibi, Nouha; Deshpande, Gopikrishna
2016-07-15
Theories regarding the functional specialization of the hippocampus date back to over a century ago. Two main theories have dominated the field. First, evidence has supported the notion of hemispheric specialization, which appears to be preserved across species. Second, an emergent and mounting set of data has suggested an anterior-posterior neurofunctional gradient. However, no study has examined these theories, and their potential interaction, using objective, robust methodological approaches. Here, we employed an established meta-analytic technique and use ultra-high field, high-resolution functional and structural neuroimaging to examine hippocampal lateralization with consideration for a long-axis differentiation. Data revealed strong support for an evolutionarily preserved hemispheric specialization. Specifically, we found intra- and interhemispheric differences with regard to anterior and posterior functional and structural connectivity, between the right and left hippocampi. For task-independent functional connectivity, we found the right anterior hippocampus to have functional connectivity with a large, distributed network, whereas the left anterior hippocampus demonstrated primarily fronto-limbic connectivity. These patterns were reversed for the posterior segmentations. Not surprisingly, for task-dependent connectivity, we found interhemispheric differences within key ipsilateral structures (i.e., parahippocampal gyrus) for both anterior and posterior segmentations. Furthermore, we identified pivotal neural hubs that share connectivity across behavioral domains, and are supported by structural connectivity (i.e., posterior cingulate cortex). Thus, our data provide evidence for a hemisphere-specific, anterior-posterior specialization of the hippocampal formation. PMID:27132046
On genus expansion of superpolynomials
Energy Technology Data Exchange (ETDEWEB)
Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)
2014-12-15
Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.
Institute of Scientific and Technical Information of China (English)
陈刚; 王梦婕
2014-01-01
通过对χ2分布概率密度函数的自变量进行标准化变换,将其展开成如下形式：2nχ2( x；n)=1+r1(t)n +r2(t)n +r3(t)n n +r4(t)n2éëùûφ(t)+o 1n2(),其中n为自由度,φ(t)为标准正态分布的密度函数,ri(t)(1≤i≤4)均为关于t的多项式。从该展开式得到χ2分布密度函数的一个近似计算公式。进一步建立φ( t)的幂系数积分递推关系,得到χ2分布函数的渐近展开式。最后通过数值计算验证了这些结果在实际应用中的有效性。%Through the transformation of the independent variable of χ2 distribution probability density function,degree of freedom of which is n,the equation can be expanded as follows: 2nχ2(x;n)=f(t;n)= 1+r1(t)n +r2(t)n +r3(t)n n +r4(t)n2éë ùûφ(t)+o 1n2( ) ,here,φ(t) is a density function of standard normal distribution;ri(t) is a 3i order polynomial of t(1≤i≤4). An approximate formula can be obtained from the expansion of the distribution density function. We further establish the integral recurrence relations of the power coefficients of the standard normal density function and obtain the asymptotic expansion of the distribution function ofχ2 . Finally,the effectiveness of these results in practical application was verified by the numerical calculations.
Quantum chemical study on the structure and the analytic potential energy function of PS2 (X2A1)
Zhao, Jun; Zeng, Hui
2015-04-01
The equilibrium geometry of the ground electronic state of PS2 are calculated using B3LYP, B3P86, CCSD(T), and QCISD(T) methods with 6-311G** and cc-pVTZ basis sets. Compared with the experimental values and other available theoretical results, B3P86/cc-pVTZ method can give best energy calculations for PS2 molecule. Based on the principle of atomic and molecular reaction statics, the possible electronic states and their reasonable dissociation limits of PS2 molecule are determined. Then the contour potential lines of PS2 molecule is first derived in many-body expansion method form. The potential curves correctly reproduce the configurations and the dissociation energy for the PS2 molecule.
Institute of Scientific and Technical Information of China (English)
Wang Jian-Kun; Wu Zhen-Sen
2008-01-01
This paper calculates the equilibrium structure and the potential energy functions of the ground state (X2∑+) and the low lying excited electronic state (A2∏) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klein-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional Schrodinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.
Boyd, John P.; Yu, Fu
2011-02-01
We compare seven different strategies for computing spectrally-accurate approximations or differential equation solutions in a disk. Separation of variables for the Laplace operator yields an analytic solution as a Fourier-Bessel series, but this usually converges at an algebraic (sub-spectral) rate. The cylindrical Robert functions converge geometrically but are horribly ill-conditioned. The Zernike and Logan-Shepp polynomials span the same space, that of Cartesian polynomials of a given total degree, but the former allows partial factorization whereas the latter basis facilitates an efficient algorithm for solving the Poisson equation. The Zernike polynomials were independently rediscovered several times as the product of one-sided Jacobi polynomials in radius with a Fourier series in θ. Generically, the Zernike basis requires only half as many degrees of freedom to represent a complicated function on the disk as does a Chebyshev-Fourier basis, but the latter has the great advantage of being summed and interpolated entirely by the Fast Fourier Transform instead of the slower matrix multiplication transforms needed in radius by the Zernike basis. Conformally mapping a square to the disk and employing a bivariate Chebyshev expansion on the square is spectrally accurate, but clustering of grid points near the four singularities of the mapping makes this method less efficient than the rest, meritorious only as a quick-and-dirty way to adapt a solver-for-the-square to the disk. Radial basis functions can match the best other spectral methods in accuracy, but require slow non-tensor interpolation and summation methods. There is no single “best” basis for the disk, but we have laid out the merits and flaws of each spectral option.
International Nuclear Information System (INIS)
Highlights: • Thermal expansion (TE) coefficients of LLZ found up to 700°. • The aluminum content of LLZ has a small impact on the thermal expansion. • Typical thermal expansion values were around, 16 × 10−6 K−1. • The TE is approximately double other garnet-type structures. - Abstract: The thermal expansion (TE) coefficients of the lithium-stable lithium-ion conducting garnet lithium lanthanum zirconium oxide (LLZ) and the effect of aluminum substitution were measured from room temperature up to 700 °C by a synchrotron-based X-ray diffraction. The typical TE value measured for the most reported composition (LLZ doped with 0.3 wt.% or 0.093 mol% aluminum) was 15.498 × 10−6 K−1, which is approximately twice the value reported for other garnet-type structures. As the Al(III) concentration has been observed to strongly affect the structure observed and the ionic conductivity, we also assessed its role on thermal expansion and noted only a small variation with increasing dopant concentration. The materials implications for using LLZ in a solid state battery are discussed
Institute of Scientific and Technical Information of China (English)
李杰友; 熊学农; 刘秀玉
2001-01-01
应用经验正交函数分析方法，以月平均500hPa，100hPa高度场及月平均海温场为预报因子，对广东省氵翁江流域的月径流进行预报.结果表明，基于EOF迭代的预报方法是一种有效的月径流长期预报新方法，具有明显的应用价值.%Based on the empirical orthogonal function analytical method,500hPa,100hPa and the North Pacific sea surface temperature are used as forecast factors and quantitative model of monthly discharge is established.The forecast results illustrate that the empirical orthogonal fuction repeatedly analytic method is a right way for long range monthly discharge forecast and is of practical value.
Institute of Scientific and Technical Information of China (English)
Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lùe; Yang Xiang-Dong
2006-01-01
The reasonable dissociation limit of the second excited singlet state B1П of 7LiH molecule is obtained. The obtained over the internuclear distance ranging from about 0.10 nm to 0.54 nm, and has a least-square fit to the analytic compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition.comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more theories.
Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)
1995-01-01
Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold
GAUSSIAN WHITE NOISE CALCULUS OF GENERALIZED EXPANSION
Institute of Scientific and Technical Information of China (English)
陈泽乾
2002-01-01
A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being introduced here, which provides the integral kernel operator decomposition of the second quantization of Koopman operators for chaotic dynamical systems, in terms of annihilation operators (e)t and its dual, creation operators (e)*t.
International Nuclear Information System (INIS)
Local cubic vertex functions of three higher even spin fields on AdSD are constructed from the Green function of three conserved currents that are dual to the higher spin fields. Conservation of the currents implies lowest order gauge invariance. These vertex functions appear by the UV divergence as the residue of the highest order pole in the dimensional regularization parameter ϵ. In fact N-point Green functions of such conserved currents produce a series of poles up to the order N−1. The method works for even D and maintains covariance at any step. The resulting formula is quite concise
Directory of Open Access Journals (Sweden)
Jonathan Wirsich
2016-01-01
In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Analytical potential energy function for the ground state (～X1A1) of hydrogen isotopic D2O molecule
Institute of Scientific and Technical Information of China (English)
RUAN Wen; LUO WenLang; ZHANG Li; ZHU ZhengHe
2009-01-01
The present work is to construct the potential energy function of Isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer ap-proximation, in which the nuclear motions (translational, rotational and vibration motions) are not in-cluded, therefore, its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics (AMRS), the reasonable dissociation limits of D2O(～X1A1) are determined, its equilibrium geometry and dissociation energy are calculated by den-sity-functional theory (DFT) B3lyp, and then, using the many-body expansion method the potential en-ergy function of D2O (～X1A1) Is obtained for the first time. The potential contours are drawn, in which It is found that the reactive channel D + OD→D2O has no threshold energy, so it is a free radical reaction. But the reactive channel O + DD→D2P has a saddle point. The study of collision for D2O (～X1A1) is under way.
Analytical potential energy function for the ground state（1A1） of hydrogen isotopic D2O molecule
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Hu, Huayu
2015-01-01
Nonperturbative calculation of QED processes participated by a strong electromagnetic field, especially provided by strong laser facilities at present and in the near future, generally resorts to the Furry picture with the usage of analytical solutions of the particle dynamical equation, such as the Klein-Gordon equation and Dirac equation. However only for limited field configurations such as a plane-wave field could the equations be solved analytically. Studies have shown significant interests in QED processes in a strong field composed of two counter-propagating laser waves, but the exact solutions in such a field is out of reach. In this paper, inspired by the observation of the structure of the solutions in a plane-wave field, we develop a new method and obtain the analytical solution for the Klein-Gordon equation and equivalently the action function of the solution for the Dirac equation in this field, under a largest dynamical parameter condition that there exists an inertial frame in which the particl...
Padhy, B
2016-01-01
The simple method outlined in our earlier paper [B.Padhy, Orissa Journal of Physics, vol.19, No.1, p.1, February 2012] has been utilized here for analytic evaluation of three different five-electron atomic integrals with integrands involving products of s Slater-type orbitals and exponentially correlated functions of the form $r_{ij} exp(-\\lambda_{ij} r_{ij})$. Only products of those $r_{ij}$'s which do not form a closed loop by themselves, are considered.
The Use of Consolidated Expansions in Modeling Anisotropic Turbulence in a Channel Flow
Smith, Sonya; Santy-Ateyaba, Kokomahha
1999-11-01
The diagram expansion method, first applied to isotropic turbulence,is extended to model anisotropic turbulence. Leonard and Cross stresses resulting from the filtering operation are evaluated from the Gaussian property of the filter functions used. The combination of the gradient of these stresses is considered as the anisotropic forcing term. The turbulence model is then assumed to originate from the contribution of the isotropic and anisotropic parts. The model results from a perturbation expansion using diagrams similar to those used in quantum field theory. After identifying new rules for the consolidation to account for anisotropy, all diagrams are summed and the result is a set of consolidated diagrams for the diffusion operator, the pressure effects, and the correlation functions. In this approach all the statistical properties are the function of the second moment only and the model is derived from an analytical approximation of isotropic and anisotropic correlation functions.
Ghosh, Uttam; Sengupta, Srijan; Sarkar, Susmita; Das, Shantanu
2015-01-01
There is no unified method to solve the fractional differential equation. The type of derivative here used in this paper is of Jumarie formulation, for the several differential equations studied. Here we develop an algorithm to solve the linear fractional differential equation composed via Jumarie fractional derivative in terms of Mittag-Leffler function; and show its conjugation with ordinary calculus. In these fractional differential equations the one parameter Mittag-Leffler function plays...
Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...
Virial expansion coefficients in the harmonic approximation
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.;
2012-01-01
The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated...
Institute of Scientific and Technical Information of China (English)
H.Samareh Salavati Pour; F.Berto; Y.Alizadeh
2013-01-01
The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper.The results show that when the notch apex is close to the middle layer,the Charpy impact energy reaches its maximum value.This is due to the increment of the absorbed energy by plastic deformation ahead of the notch tip.On the other hand,when the notch tip is far from the middle layer,the Charpy impact energy strongly decreases.Another fundamental motivation of the present work is that for crack arrester configuration,no accurate mathematical or analytical modelling is available up to now.By considering the relationship between the Charpy impact energy and the plastic volume size,a new theoretical model has been developed to link the Charpy impact energy with the distance from the notch apex to the middle phase.This model is a simplified one and the effect of different shapes of the layers and the effect of microstructure on the mechanical properties and plastic region size will be considered in further investigation.The results of the new developed closed form expression show a sound agreement with some recent experimental results taken from the literature.
ON CONVERGENCE OF WAVELET PACKET EXPANSIONS
Institute of Scientific and Technical Information of China (English)
Morten Nielsen
2002-01-01
It is well known that the-Walsh-Fourier expansion of a function from the block space ([0, 1 ) ), 1 ＜q≤∞, converges pointwise a.e. We prove that the same result is true for the expansion of a function from in certain periodixed smooth periodic non-stationary wavelet packets bases based on the Haar filters. We also consider wavelet packets based on the Shannon filters and show that the expansion of Lp-functions, 1＜p＜∞, converges in norm and pointwise almost everywhere.
某类积分算子解析函数的性质%Some Properties for Certain Integral Operator on Analytic Functions
Institute of Scientific and Technical Information of China (English)
李小飞; 严证
2013-01-01
A is denoted the class of functions which is univalent and analytic in the open unit disc U={z:z 1,β≤0 is introduced.One integral operator In(z) and its special types Ikn(z), Gn(z), Fn(z) are also introduced.Some properties involving these operators are determined by using solutions of inequalities techniques and theories of analytic functions .The sharp results generalize some known re-sults.%设A是单位圆盘U＝｛z： z ＜1，z∈C｝内的单叶解析函数族．给出A的子族．MDg （α，β）＝｛f（ z）∈A：Re｛z（f*g）′（z）（f*g）（z）｝＜βz（f*g）′（z）（f*g）（z）-1＋α，g（z）∈A｝，这里α＞1，β≤0，介绍了一类积分算子函数In（z）及其特殊类型的积分算子函数Ikn（z），Gn（z），Fn（z），利用解不等式的技巧和解析函数理论，研究得到了一些它们的性质，推广了一些已有的结论．
某些积分算子解析函数的性质%Some properties for some integral operators on analytic functions
Institute of Scientific and Technical Information of China (English)
李小飞; 严证
2013-01-01
设 A 表示单位圆盘 U ＝｛z ：｜z ｜＜1，z ∈ C｝内的单叶解析函数族，定义 A 的子族 MD g （α，β）＝f （z）∈ A ：Re z（ f* g）′（z）（ f* g）（z）＜β z（ f* g）′（z）（ f* g）（z）-1＋α，g（z）∈ A ，这里α＞1，β≤0，介绍3类积分算子函数 Fn （z）， Gn （z），In （z），利用解不等式的技巧和解析函数理论，对它们的性质进行探究。%Let A be the class of functions which were univalent and analytic in the open unit disk U={z :|z| 1 ,β≤ 0 , and introduced three integral operators Fn (z) ,Gn (z) ,In (z) .Some properties involving these operators were determined by using solutions of inequalities techniques and theories of analytic functions .
Some properties for some integral operators on analytic functions%某些积分算子解析函数的性质
Institute of Scientific and Technical Information of China (English)
李小飞; 严证
2013-01-01
Let A be the class of functions which were univalent and analytic in the open unit disk U={z :|z| 1 ,β≤ 0 , and introduced three integral operators Fn (z) ,Gn (z) ,In (z) .Some properties involving these operators were determined by using solutions of inequalities techniques and theories of analytic functions .% 设 A 表示单位圆盘 U ＝｛z ：｜z ｜＜1，z ∈ C｝内的单叶解析函数族，定义 A 的子族 MD g （α，β）＝f （z）∈ A ：Re z（ f* g）′（z）（ f* g）（z）＜β z（ f* g）′（z）（ f* g）（z）-1＋α，g（z）∈ A ，这里α＞1，β≤0，介绍3类积分算子函数 Fn （z）， Gn （z），In （z），利用解不等式的技巧和解析函数理论，对它们的性质进行探究。
Institute of Scientific and Technical Information of China (English)
陈彬强; 张周锁; 訾艳阳; 何正嘉
2014-01-01
As the celebrated “mathematical scope”, the multi-resolution analyzing capacity of wavelet transform (WT) plays an important role in condition monitoring and fault diagnosis of mechanical equipment. However, it has proven that the effectiveness of WT is hampered by several negative factors, such as shift-sensitiveness, significant energy leakage, and the fixed dyadic“frequency-sale” paving. Especially, the dyadic “frequency-sale” paving creates inevitable deficiency in identifying mechanical signatures located in transition areas of adjacent wavelet scales. A novel “time-sale” analysis methodology, named as derived ensemble analytic framelet (DEAF), based on overcomplete wavelet tight frame, is proposed. The DEAF is developed based on the existing dual tree complex wavelet transform (DTCWT). The DEAF starts from a selected DTCWT basis, and combines it with a hybrid augmented tree-structured filter-bank, which results in quasi analytic wavelet packet decomposition (QAWPD). With the results of QAWPT, an ensemble wavelet packet generating strategy is applied such that an unprecedented implicit wavelet packet tight frame (IWPTF) containing pseudo dyadic wavelet packets is obtained. With the combination of QAWPD and IWPTF, the proposed DEAF can be derived which possesses the“frequency-sale”paving characterized by continued time-frequency refinement of analysis centers. The proposed technique is applied to the mechanical signature analysis of an engineering application to validate its superiority compared with the existing methods.%小波变换被称为“数学显微镜”，它对机械信号的多尺度分析在机械设备状态监测和故障诊断领域发挥着重要的作用。然而传统二进小波变换在工程应用中存在一些显著的不足，如平移敏感性、小波尺度能量泄漏、固定的二进“频率-尺度”划分网格等。尤其是后者使得经典小波变换对处于二进网格过渡带的特征分析中产
Rapport, Mark D; Orban, Sarah A; Kofler, Michael J; Friedman, Lauren M
2013-12-01
Children with ADHD are characterized frequently as possessing underdeveloped executive functions and sustained attentional abilities, and recent commercial claims suggest that computer-based cognitive training can remediate these impairments and provide significant and lasting improvement in their attention, impulse control, social functioning, academic performance, and complex reasoning skills. The present review critically evaluates these claims through meta-analysis of 25 studies of facilitative intervention training (i.e., cognitive training) for children with ADHD. Random effects models corrected for publication bias and sampling error revealed that studies training short-term memory alone resulted in moderate magnitude improvements in short-term memory (d=0.63), whereas training attention did not significantly improve attention and training mixed executive functions did not significantly improve the targeted executive functions (both nonsignificant: 95% confidence intervals include 0.0). Far transfer effects of cognitive training on academic functioning, blinded ratings of behavior (both nonsignificant), and cognitive tests (d=0.14) were nonsignificant or negligible. Unblinded raters (d=0.48) reported significantly larger benefits relative to blinded raters and objective tests (both pexecutive functions that are (a) most impaired in ADHD, and (b) functionally related to the behavioral and academic outcomes these training programs are intended to ameliorate. Collectively, meta-analytic results indicate that claims regarding the academic, behavioral, and cognitive benefits associated with extant cognitive training programs are unsupported in ADHD. The methodological limitations of the current evidence base, however, leave open the possibility that cognitive training techniques designed to improve empirically documented executive function deficits may benefit children with ADHD.
Croce, Robert A., Jr.
Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled
Spain, Barry; Ulam, S; Stark, M
1960-01-01
Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper studies the problem of a functionally graded piezoelectric circular plate subjected to a uniform electric potential difference between the upper and lower surfaces. By assuming the generalized displacements in appropriate forms,five differential equations governing the generalized displacement functions are derived from the equilibrium equations. These displacement functions are then obtained in an explicit form,which still involve four undetermined integral constants,through a step-by-step integration which properly incorporates the boundary conditions at the upper and lower surfaces. The boundary conditions at the cylindrical surface are then used to determine the integral constants. Hence,three-dimen sional analytical solutions for electrically loaded functionally graded piezoelectric circular plates with free or simply-supported edge are completely determined. These solutions can account for an arbitrary material variation along the thickness,and thus can be readily degenerated into those for a homogenous plate. A numerical example is finally given to show the validity of the analysis,and the effect of material inhomogeneity on the elastic and electric fields is discussed.
Romano, Nunzio; Nasta, Paolo
2015-04-01
Optimal performance of large-scale numerical modeling of the soil-vegetation-atmosphere (SVA) system mandates accurate assessment and description of the soil hydraulic properties, namely the water retention (WRF) and hydraulic conductivity (HCF) functions. These functions are commonly described by simple unimodal analytical relations that guarantee mathematical flexibility with few parameters in the majority of soil types. However, other soils, like volcanic soils, are characterized by a complex structure yielding a bimodal or even a multimodal distribution of pore sizes. In these cases, reliable hydrologic predictions can be obtained resorting to more complex hydraulic functions, yet more accurate and robust ones. To overcome some drawbacks of the classic unimodal hydraulic relationships, Romano et al. (2011) have developed closed-form bimodal lognormal relations for improving the description of both WRF and HCF. However, the reliability of this description of the soil hydraulic behavior is often tested at the curve fitting level only. Comparisons between unimodal and bimodal soil hydraulic relationships are more effective and informative when performed in functional terms. Therefore, as the primary objective of this study, we used a hydrological balance model to quantify and compare soil moisture flow and storage regimes for 14 years (1999-2012), when characterized by unimodal or bimodal approximations of 39 measured soil water retention and hydraulic conductivity characteristics collected in volcanic Vesuvian soil located in the Campania Region Plain (Naples, Southern Italy).
Sontag, A; Ni, X; Althof, S E; Rosen, R C
2014-01-01
Sexual self-confidence has been shown to be associated with erectile function (EF) in men receiving PDE-5 inhibitor therapy; however, few studies have investigated the pathways (for example, sexual satisfaction, communication, time concerns and spontaneity) through which improvements in sexual self-confidence occur. This study examined this relationship using a path analysis model in men with ED enrolled in an open-label clinical trial of 20 mg tadalafil, administered on-demand over 12 weeks. International Index of Erectile Function and Psychological and Interpersonal Relationship Scales data were used to assess improvement in EF, sexual confidence and mediating variables. Controlling for baseline measures and covariates, the model indicated that change in sexual self-confidence was significantly associated with changes in EF (Psexual communication conflict (P=0.01), time concerns (Psexual self-confidence was 0.85, with 0.08 of this relationship indirectly mediated through time concerns and spontaneity. These data suggest that improved sexual confidence in men receiving treatment with a long-acting PDE-5 inhibitor occurs both directly via improved EF and indirectly via improved spontaneity and diminished time concerns. PMID:23864107
The Analytical Method for the Limit of a Function%浅析一元函数极限解法
Institute of Scientific and Technical Information of China (English)
杨芳
2013-01-01
极限的理论和方法是阐述微积分概念和方法的工具，也是微积分学的基本概念之一，同时也是微积分学的理论基础，因此掌握好求极限的方法是至关重要的，全面地探讨与研究一元函数求极限的方法，通过研究极限的计算方法，在计算函数极限的过程中更具有针对性、技巧性。%The theory and method of limit is to describe the concepts and methods of calculus tools, also is one of the basic concepts of calculus, as well as the theoretical basis of calculus, so grasp the limit of the method is of vital importance, the method of monadic function limit makes overall discussion and research, through the study of calculation method, limit makes us more targeted in the process of calculation of function limit.
Fontanot, Fabio; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stephane; Zibetti, Stefano
2016-01-01
In this work, we investigate the implications of the Integrated Galaxy-wide stellar Initial Mass Function (IGIMF) approach in the framework of the semi-analytic model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [$\\alpha$/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of $\\alpha$-enhancement with stellar mass. This is mainly due to the fact that massive galaxies are characterized by larger SFRs at high-redshift, leading to stronger $\\alpha$-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation timescales for more massive galaxies. We argue that in the IGIMF scenario the [$\\alpha$/Fe] ra...
Liang, Xu; Wang, Zhenyu; Wang, Lizhong; Liu, Guohua
2014-06-01
The three-dimensional transient analysis of functionally graded annular plates with arbitrary boundary conditions is carried out in this paper. The material properties of the FGM plate are assumed to vary smoothly in an exponential law along the thickness direction. The plate is assumed to rest on a two parameter viscoelastic foundation. A semi-analytical method, which integrates the state space method (SSM), Laplace transform and its inversion, as well as the one-dimensional differential quadrature method (DQM), is proposed to obtain the transient response of the plate. The state space method is used to obtain the analytical solution in the thickness direction. The differential quadrature method is employed to approximate the solution in the radial direction. The Laplace transform and the numerical inversion are used to obtain the solution in time domain. Numerical results show a good agreement between the response histories obtained by the present method and finite element method. The effects of the boundary conditions at the edges, the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient are studied. Numerical examples show that the peak response decreases as the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient increase. The results obtained in this paper can serve as benchmark data in further research.
Fuel Thermal Expansion (FTHEXP). [BWR; PWR
Energy Technology Data Exchange (ETDEWEB)
Reymann, G. A.
1978-07-01
A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO/sub 2/ and PuO/sub 2/ in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO/sub 2/, and the fraction of fuel which is molten.
Pappas, Marjorie L.
1995-01-01
Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…
A New Definition of Hypercomplex Analyticity
De Leo StefanoDip. di Fisica, INFN, Lecce; Rotelli PietroDip. di Fisica, INFN, Lecce
2014-01-01
Complex analyticity is generalized to hypercomplex functions, quaternion or octonion, in such a manner that it includes the standard complex definition and does not reduce analytic functions to a trivial class. A brief comparison with other definitions is presented.
Maubach, Stefan
2007-01-01
Suppose A\\in GL_n(\\C) has a relation A^p=c_{p-1}A^{p-1}+.... + c_1 A+ c_0I where the c_i in \\C. This article describes how to construct analytic functions c_i(z) such that A^z=c_{p-1}(z)A^{p-1}+... + c_1(z) A+ c_0(z)I . One of the theorems gives a possible description of the c_i(z): c_i(z)=C^z\\alpha where C\\in Mat_p(\\C) is (similar to) the companion matrix of X^p-c_{p-1}X^{p-1}-... -c_1X-c_0I, and \\alpha:= (c_{p-1},...,c_1,c_0)^t.
Accurate Analytic Potential Energy Function and Spectroscopic Study for G1 ∏g State of Dimer 7Li2
Institute of Scientific and Technical Information of China (English)
SHI De-Heng; MA Heng; SUN Jin-Feng; ZHU Zun-Lue
2007-01-01
The reasonable dissociation limit for the G1∏g state of dimer 7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311++G, 6-311++G(2df, 2pd), 6-311++G(2df, p), cc-PVTZ, 6-311++G(3df, 3pd), CEP-121G, 6-311++G(2df, pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df, 2p),6-311++G(2df), 6-311++G(df, pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclusion shows that the basis set 6-311++G(2df, p) is a most suitable one for the G1∏g state. At this basis set, the calculated spectroscopic constants Te, De, Eo, Re, ωe, ωeXe, αe, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm-1, 0.320 15 nm,227.96 cm-1, 1.6928 cm-1, 0.004 436 cm-1, and 0.4689 cm-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.
Analytical calculation of the average scattering cross sections using fourier series
International Nuclear Information System (INIS)
The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)
Diffusion tensor image registration using polynomial expansion
International Nuclear Information System (INIS)
In this paper, we present a deformable registration framework for the diffusion tensor image (DTI) using polynomial expansion. The use of polynomial expansion in image registration has previously been shown to be beneficial due to fast convergence and high accuracy. However, earlier work was developed only for 3D scalar medical image registration. In this work, it is shown how polynomial expansion can be applied to DTI registration. A new measurement is proposed for DTI registration evaluation, which seems to be robust and sensitive in evaluating the result of DTI registration. We present the algorithms for DTI registration using polynomial expansion by the fractional anisotropy image, and an explicit tensor reorientation strategy is inherent to the registration process. Analytic transforms with high accuracy are derived from polynomial expansion and used for transforming the tensor's orientation. Three measurements for DTI registration evaluation are presented and compared in experimental results. The experiments for algorithm validation are designed from simple affine deformation to nonlinear deformation cases, and the algorithms using polynomial expansion give a good performance in both cases. Inter-subject DTI registration results are presented showing the utility of the proposed method. (paper)
The Thermal Expansion Of Feldspars
Hovis, G. L.; Medford, A.; Conlon, M.
2009-12-01
Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in
International Nuclear Information System (INIS)
This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.
Approximate expressions for the period of a simple pendulum using a Taylor series expansion
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Arribas, Enrique, E-mail: a.belendez@ua.es [Departamento de Fisica Aplicada, Escuela Superior de IngenierIa Informatica, Universidad de Castilla-La Mancha, Avda de Espana, s/n, E-02071 Albacete (Spain)
2011-09-15
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.
Geometrical approach to Feynman integrals and the $\\epsilon$-expansion
Davydychev, A I
1999-01-01
Application of the geometrically-inspired representations to the epsilon-expansion of the two-point function with different masses is considered. Explicit result for an arbitrary term of the expansion is obtained in terms of log-sine integrals. Construction of the epsilon-expansion in the three-point case is also discussed.
Analytical formulas for carrier density and Fermi energy in semiconductors with a tight-binding band
International Nuclear Information System (INIS)
Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10−5. (paper)
Adaptive sparse polynomial chaos expansion based on least angle regression
Blatman, Géraud; Sudret, Bruno
2011-03-01
Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin type) or non intrusive) unaffordable when the deterministic finite element model is expensive to evaluate. To address such problems, the paper describes a non intrusive method that builds a sparse PC expansion. First, an original strategy for truncating the PC expansions, based on hyperbolic index sets, is proposed. Then an adaptive algorithm based on least angle regression (LAR) is devised for automatically detecting the significant coefficients of the PC expansion. Beside the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to avoid the overfitting phenomenon. The accuracy of the PC metamodel is checked using an estimate inspired by statistical learning theory, namely the corrected leave-one-out error. As a consequence, a rather small number of PC terms are eventually retained ( sparse representation), which may be obtained at a reduced computational cost compared to the classical "full" PC approximation. The convergence of the algorithm is shown on an analytical function. Then the method is illustrated on three stochastic finite element problems. The first model features 10 input random variables, whereas the two others involve an input random field, which is discretized into 38 and 30 - 500 random variables, respectively.
Matsumoto, Kohji
2002-01-01
The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory
Analyticity and the Holographic S-Matrix
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC
2012-04-03
We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.
Behavior of the x-ray spectrum of multiply charged ions during forced plasma expansion
Energy Technology Data Exchange (ETDEWEB)
Zhidkov, A.G.; Marchenko, V.S.
1982-07-01
The behavior of the x-ray emission spectrum of a dense plasma during forced expansion is studied. The optical transparency of the plasma varies during the expansion. The plasma emission spectrum integrated over the expansion time is calculated from the analytic solutions of the equations. The intensity of the line emission is calculated in the average-ion approximation.
Institute of Scientific and Technical Information of China (English)
Gao Feng; Yang Chuan-Lu; Hu Zhen-Yan; Wang Mei-Shan
2007-01-01
The potential energy curves (PECs) of the ground state (3Π) and three low-lying excited states (1∑, 3∑,1Π) of CdSe dimer have been studied by emploging quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs,the vibrational levels of the four states are determined by solving the Schr(o)dinger equation of nuclear motion, and corresponding spectroscopic contants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the 3Π state, of which the dissociation asymptote is Cd(1S) + Se(3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm-1 above the ground state and the 3∑ state is the highest in the four calculated states.
A two-dimensional analytical model for short channel junctionless double-gate MOSFETs
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-05-01
A physics-based analytical model of electrostatic potential for short-channel junctionless double-gate MOSFETs (JLDGMTs) operated in the subthreshold regime is proposed, in which the full two-dimensional (2-D) Poisson's equation is solved in channel region by a method of series expansion similar to Green's function. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this expression, analytical models of threshold voltage, subthreshold swing, and subthreshold drain current for JLDGMTs were derived. Subthreshold behavior was studied in detail by changing different device parameters and bias conditions, including doping concentration, channel thickness, gate length, gate oxide thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the 2-D simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLDGMTs and to optimize their device performance.
Irreducible Cartesian tensor expansions of scalar fields
International Nuclear Information System (INIS)
It is shown how a scalar function V(parallel R + Σ/sub i equals 1/sup n/ a/sub i/parallel) of a sum of n + 1 vectors can be expanded as a multiple Cartesian tensor series in the vectors a/ sub i/. This expansion is a rearrangement of the multiple Taylor series expansion of such a function. In order to prove the fundamental theorem, generalized Cartesian Legendre polynomials are defined. The theorem is applied to the eigenfunctions of the Laplace operator and to inverse powers. The expansion of the latter type of function leads to forms involving generalized hypergeometric functions in several variables. As a special case, the Cartesian form of the multipole expansion of the electrostatic potential between two linear molecules is derived. A number of sum rules for hypergeometric functions and addition formulas for (standard and modified) spherical Bessel functions are proved by using a reduction property of the generalized Legendre polynomials. The case of the expansion of a tensorial function is also briefly discussed
Hyperspherical harmonics expansion techniques application to problems in physics
Das, Tapan Kumar
2016-01-01
The book provides a generalized theoretical technique for solving the fewbody Schrödinger equation. Straight forward approaches to solve it in terms of position vectors of constituent particles and using standard mathematical techniques become too cumbersome and inconvenient when the system contains more than two particles. The introduction of Jacobi vectors, hyperspherical variables and hyperspherical harmonics as an expansion basis is an elegant way to tackle systematically the problem of an increasing number of interacting particles. Analytic expressions for hyperspherical harmonics, appropriate symmetrisation of the wave function under exchange of identical particles and calculation of matrix elements of the interaction have been presented. Applications of this technique to various problems of physics have been discussed. In spite of straight forward generalization of the mathematical tools for increasing number of particles, the method becomes computationally difficult for more than a few particles. Hen...
Thermal Expansion Coefficients of Thin Crystal Films
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.
Asymptotic and Exact Expansions of Heat Traces
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Michał, E-mail: michal@eckstein.pl [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science (Poland); Zając, Artur, E-mail: artur.zajac@uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland)
2015-12-15
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
Magnetization of concentrated polydisperse ferrofluids: Cluster expansion
Huke, B.; Luecke, M.
2006-01-01
The equilibrium magnetization of concentrated ferrofluids described by a system of polydisperse dipolar hard spheres is calculated as a function of the internal magnetic field using the Born--Mayer or cluster expansion technique. This paper extends the results of Phys. Rev. E 62, 6875 (2000) obtained for monodisperse ferrofluids. The magnetization is given as a power series expansion in two parameters related to the volume fraction and the coupling strength of the dipolar interaction, respect...
Tables of Lommel's functions of two pure imaginary variables
Bark, L S
1965-01-01
Tables of Lommel's Functions of Two Pure Imaginary Variables provide tables on cylinder functions of two pure imaginary variables. These tables are computed on the ""Strela"" electronic computer and are checked and prepared in the Analytic Machine Department. The introductory part describes some properties of the Lommel's functions. This part also contains the integral forms and asymptotic expansions. Lommel's functions of two pure imaginary arguments are defined by the Neumann series. This text is of value to researchers and students.
Fiorillo, Marco; Lamb, Rebecca; Tanowitz, Herbert B.; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E.; Sotgia, Federica; Lisanti, Michael P.
2016-01-01
Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/− CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties. PMID:27344270
Energy Technology Data Exchange (ETDEWEB)
Mangir Murshed, M., E-mail: murshed@uni-bremen.de [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Mendive, Cecilia B.; Curti, Mariano [Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7600AYL Mar del Plata (Argentina); Šehović, Malik [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Friedrich, Alexandra [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany); Fischer, Michael [Kristallographie, FB Geowissenschaften, Universität Bremen, Klagenfurter Straße, D-28359 Bremen (Germany); Gesing, Thorsten M. [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany)
2015-09-15
Polycrystalline Bi{sub 2}Al{sub 4}O{sub 9} powder samples were synthesized using the glycerine method. Single crystals were produced from the powder product in a Bi{sub 2}O{sub 3} melt. The lattice thermal expansion of the mullite-type compound was studied using X-ray diffraction, Raman spectroscopy and density functional theory (DFT). The metric parameters were modeled using Grüneisen approximation for the zero pressure equation of state, where the temperature-dependent vibrational internal energy was calculated from the Debye characteristic frequency. Both the first-order and second-order Grüneisen approximations were applied for modeling the volumetric expansion, and the second-order approach provided physically meaningful axial parameters. The phonon density of states as well as phonon dispersion guided to set the characteristic frequency for simulation. The experimental infrared and Raman phonon bands were compared with those calculate from the DFT calculations. Selective Raman modes were analyzed for the thermal anharmonic behaviors using simplified Klemens model. The respective mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. - Graphical abstract: Crystal structure of mullite-type Bi{sub 2}Al{sub 4}O{sub 9} showing the edge-sharing AlO{sub 6} octahedra running parallel to the c-axis. - Highlights: • Thermal expansion of Bi{sub 2}Al{sub 4}O{sub 9} was studied using XRD, FTIR, Raman and DFT. • Metric parameters were modeled using Grüneisen approximation. • Phonon DOS and phonon dispersion helped to set the Debye frequency. • Mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. • Anharmonicity was analyzed for some selective Raman modes.
解析函数零点位置的某些结果%Some Results on the Location of Zeros of Analytic Functions
Institute of Scientific and Technical Information of China (English)
蔺爱国; 黄炳家; 曹建胜; Robert Gardner
2004-01-01
古典的Enestrom-Kakeya定理指出:如果p(z)=∑mi=0aizi是一个形如0 ≤a0 ≤ a1≤a2≤…≤ an的多项式,则p(z)的所有零点都落在|z|≤1的复平面区域内.多项式的系数加上多种限制条件后(如,系数模的单调性),就存在很多的Enestrom-Kakeya推广的定理.本文中,将介绍当加上Z的偶次幂项和奇次幂项的系数条件限制后的一些结果.%The classical Enestrom-Kakeya Theorem states that if p(z) = ∑mn=0 avzv is a polynomial [z| ≤ 1 in the complex plane. Many generalizations of the Enestrom-Kakeya Theorem exist which put various conditions on the coefficients of the polynomial (such as mononicity of the moduli of the coefficients). In this paper, we will introduce several results which put conditions on the coefficients of even powers of Z and on the coefficients of odd powers of Z.As a consequence, our results will be applicable to some analytic functions to which these related results are not applicable.
Eriksson, Emily M.; Milush, Jeffrey M.; Ho, Emily L.; Batista, Mariana D.; Holditch, Sara J.; Keh, Chris E.; Norris, Philip J.; Keating, Sheila M.; Deeks, Steven G; Hunt, Peter W.; Martin, Jeffrey N.; Rosenberg, Michael G.; Hecht, Frederick M.; Nixon, Douglas F.
2012-01-01
Sema4D, also known as CD100, is a constitutively expressed immune semaphorin on T cells and NK cells. CD100 has important immune regulatory functions that improve antigen-specific priming by antigen-presenting cells, and can also act as a costimulatory molecule on T cells. We investigated the consequence of HIV-1 infection on CD100 expression by T cells, and whether CD100 expression signifies functionally competent effector cells. CD100 expression on T cells from healthy individuals was compa...
Further Notes on the Gaussian Beam Expansion
Institute of Scientific and Technical Information of China (English)
DAI Yu-Rong; DING De-Sheng
2012-01-01
We provide alternatively a simple way of computing the Fresnel field integral, a further extension to the Gaussian-beam expansion. With a known result that the circ function is approximately decomposed into a sum of Gaussian functions, the zero-order Bessel function of the first kind is similarly expanded by the Bessel-Fourior transform. Two expansions are together inserted in this integral, which is then expressible in terms of the simple algebraic functions. The approach is useful in treatment of the field radiation problem for a large and important group of piston sources in acoustics. As examples, the calculation results for the uniform and the simply supported piston sources are presented, in a good agreement with those evaluated by numerical integration.%We provide alternatively a simple way of computing the Fresnel field integral,a further extension to the Gaussianbeam expansion.With a known result that the circ function is approximately decomposed into a sum of Gaussian functions,the zero-order Bessel function of the first kind is similarly expanded by the Bessel-Fourior transform.Two expansions are together inserted in this integral,which is then expressible in terms of the simple algebraic functions.The approach is useful in treatment of the field radiation problem for a large and important group of piston sources in acoustics.As examples,the calculation results for the uniform and the simply supported piston sources are presented,in a good agreement with those evaluated by numerical integration.
Analytical properties of Einasto dark matter haloes
Retana-Montenegro, E; Gentile, G; Baes, M; Frutos-Alfaro, F
2012-01-01
Recent high-resolution N-body CDM simulations indicate that nonsingular three-parameter models such as the Einasto profile perform better than the singular two-parameter models, e.g. the Navarro, Frenk and White, in fitting a wide range of dark matter haloes. While many of the basic properties of the Einasto profile have been discussed in previous studies, a number of analytical properties are still not investigated. In particular, a general analytical formula for the surface density, an important quantity that defines the lensing properties of a dark matter halo, is still lacking to date. To this aim, we used a Mellin integral transform formalism to derive a closed expression for the Einasto surface density and related properties in terms of the Fox H and Meijer G functions, which can be written as series expansions. This enables arbitrary-precision calculations of the surface density and the lensing properties of realistic dark matter halo models. Furthermore, we compared the S\\'ersic and Einasto surface ma...
Constraints on Cardassian Expansion
Frith, W J
2004-01-01
High redshift supernovae and Cosmic Microwave Background data are used to constrain the Cardassian expansion model (Freese & Lewis 2002), a cosmology in which a modification to the Friedmann equation gives rise to a flat, matter-dominated Universe which is currently undergoing a phase of accelerated expansion. In particular, the precision of the positions of the Doppler peaks in the CMB angular power spectrum provided by WMAP tightly constrains the cosmology. The available parameter space is further constrained by various high redshift supernova datasets taken from Tonry et al. (2003), a sample of 230 supernovae collated from the literature, in which fits to the distance and extinction have been recomputed where possible and a consistent zero-point has been applied. In addition, the Cardassian model can also be loosely constrained by inferred upper limits on the epoch at which the Cardassian term in the modified Friedmann equation begins to dominate the expansion (z_eq). Using these methods, a Cardassian ...
Novel Foraminal Expansion Technique
Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer
2016-01-01
The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460
Quasiclassical Calculations of Wigner Functions in Nonlinear Beam Dynamics
Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.
2001-01-01
We present the application of variational-wavelet analysis to numerical/analytical calculations of Wigner functions in (nonlinear) quasiclassical beam dynamics problems. (Naive) deformation quantization and multiresolution representations are the key points. We construct the representation via multiscale expansions in generalized coherent states or high-localized nonlinear eigenmodes in the base of compactly supported wavelets and wavelet packets.
Directory of Open Access Journals (Sweden)
Emad A.-B. Abdel-Salam
2013-01-01
Full Text Available The fractional Riccati expansion method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, space-time fractional Korteweg-de Vries equation, regularized long-wave equation, Boussinesq equation, and Klein-Gordon equation are considered. As a result, abundant types of exact analytical solutions are obtained. These solutions include generalized trigonometric and hyperbolic functions solutions which may be useful for further understanding of the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The periodic and kink solutions are founded as special case.
Energy Technology Data Exchange (ETDEWEB)
Giovannini, Massimo, E-mail: massimo.giovannini@cern.ch [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)
2015-06-30
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High-order topological asymptotic expansion for Stokes equations
Directory of Open Access Journals (Sweden)
Mohamed Abdelwahed
2016-06-01
Full Text Available We use the topological sensitivity analysis method to solve various optimization problems. It consists of studying the asymptotic expansion of the objective function relative to a perturbation of the domain topology. This expansion becomes insufficient in some applications when it is limited to the first order topological derivative. We present a new topological sensitivity analysis for the Stokes equations based on a high order asymptotic expansion. The derived result is valid for different class of shape functions.
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Golec-Biernat, Krzysztof [Rzeszow Univ. (Poland). Inst. of Physics; Polish Academy of Sciences, Krakow (Poland). Inst. of Nuclear Physics; Motkyka, Leszek [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Uniwersytet Jagiellonski, Krakow (Poland). Inst. Fizyki
2009-11-15
Higher twist effects in the deeply inelastic scattering are studied. We start with a short review of the theoretical results on higher twists in QCD. Within the saturation model we perform a twist analysis of the nucleon structure functions F{sub T} and F{sub L} at small value of the Bjorken variable x. The parameters of the model are fitted to the HERA F{sub 2} data, and we derive a prediction for the longitudinal structure function F{sub L}. We conclude that for F{sub L} the higher twist corrections are sizable whereas for F{sub 2}=F{sub T}+F{sub L} there is a nearly complete cancellation of twist-4 corrections in F{sub T} and F{sub L}. We discuss a few consequences for future LHC measurements. (orig.)
Borel summability and the non perturbative $1/N$ expansion of arbitrary quartic tensor models
Delepouve, Thibault; Rivasseau, Vincent
2014-01-01
We extend the proof of Borel summability of melonic quartic tensor models to tensor models with arbitrary quartic interactions. This extension requires a new version of the loop vertex expansion using several species of intermediate fields and new bounds based on Cauchy-Schwarz inequalities. The Borel summability is proven to be uniform as the tensor size becomes large. Furthermore, we show that the $1/N$ expansion of any quartic tensor model can be performed at the constructive level, that is we show that every cumulant is a sum of explicit terms up to some order plus a rest term which is an analytic function in the coupling constant in a cardioid domain of the complex plane and which is suppressed in $1/N$.
α′-Expansion of open string disk integrals via Mellin transformations
Directory of Open Access Journals (Sweden)
Ellis Ye Yuan
2015-02-01
Full Text Available Open string disk integrals are represented as contour integrals of a product of Beta functions using Mellin transformations. This makes the mathematical problem of computing the α′-expansion around the field-theory limit similar to that of the ϵ-expansion in Feynman loop integrals around the four-dimensional limit. More explicitly, the formula in Mellin space obtained directly from the standard Koba–Nielsen-like representation is valid in a region of values of α′ that does not include α′=0. Analytic continuation is therefore needed since contours are pinched by poles as α′→0. Deforming contours that get pinched by poles generates a set of (n−3! multi-dimensional residues left behind which contain all the field theory information. Some analogies between the field theory formulas obtained by this method and those derived recently from using the scattering equations are commented at the end.
Institute of Scientific and Technical Information of China (English)
Zhao Xue-Qin; Zhi Hong-Yan; Zhang Hong-Qing
2006-01-01
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k→1, these solutions reduce to the solitary wave solutions of the equation.
Institute of Scientific and Technical Information of China (English)
周汀洋
2012-01-01
Based on adequate consideration of the characteristics and development tendency of the economy,expressway service areas and logistics in Liaoning,the strengths weaknesses,opportunities threats of the expansion of logistics function in highway service areas in Liaoning are analyzed in this paper with SWOT analysis method for the reference of logistics industry development in Liaoning.%在充分考虑辽宁的经济、高速公路服务区和物流的现状特点与发展趋势基础上,利用SWOT分析法,对辽宁高速公路服务区拓展物流功能的优势、劣势、机会和威胁进行分析,可为辽宁省物流产业发展提供参考。
Encrypting Analytical Web Applications
Fuhry, Benny; Tighzert, Walter; Kerschbaum. Florian
2016-01-01
The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients’ data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing ...
Analytic stacks and hyperbolicity
Borghesi, Simone; Tomassini, Giuseppe
2012-01-01
The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts ...