A nonlinear analytic function expansion nodal method for transient calculations
Energy Technology Data Exchange (ETDEWEB)
Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)
The analytic solution for the power series expansion of Heun function
Energy Technology Data Exchange (ETDEWEB)
Choun, Yoon Seok, E-mail: ychoun@gmail.com
2013-11-15
The Heun function generalizes all well-known special functions such as Spheroidal Wave, Lame, Mathieu, and hypergeometric {sub 2}F{sub 1}, {sub 1}F{sub 1} and {sub 0}F{sub 1} functions. Heun functions are applicable to diverse areas such as theory of black holes, lattice systems in statistical mechanics, solution of the Schrödinger equation of quantum mechanics, and addition of three quantum spins. In this paper I will apply three term recurrence formula (Y.S. Choun, (arXiv:1303.0806), 2013) to the power series expansion in closed forms of Heun function (infinite series and polynomial) including all higher terms of A{sub n}’s. Section 3 contains my analysis on applying the power series expansions of Heun function to a recent paper (R.S. Maier, Math. Comp. 33 (2007) 811–843). Due to space restriction final equations for the 192 Heun functions are not included in the paper, but feel free to contact me for the final solutions. Section 4 contains two additional examples using the power series expansions of Heun function. This paper is 3rd out of 10 in series “Special functions and three term recurrence formula (3TRF)”. See Section 5 for all the papers in the series. The previous paper in series deals with three term recurrence formula (3TRF). The next paper in the series describes the integral forms of Heun function and its asymptotic behaviors analytically. -- Highlights: •Power series expansion for infinite series of Heun function using 3 term rec. form. •Power series for polynomial which makes B{sub n} term terminated of Heun function. •Applicable to areas such as the Teukolsky equation in Kerr–Newman–de Sitter geometries.
Bilinear Expansion For Redistribution Functions
Harutyunian, Haik; Alecian, Georges; Khachatryan, Knarik; Vardanyan, Ani
2016-11-01
We suggest here a method for construction of a bilinear expansion for an angle-averaged redistribution function. This function describes the elementary act of a photon scattering by a model two-level atom with the upper level broadened due to radiation damping. An eigenvalue and eigenvector determination problem is formulated and the relevant matrices are found analytically. Numerical procedures for their computations are elaborated as well. A simple method for the numerical calculations accuracy evaluation is suggested. It is shown that a family of redistribution functions describing the light scattering process within the spectral line frequencies can be constructed if the eigenvalue problem for the considered function is solved. It becomes possible if the eigenvalues and eigenvectors with the appropriate basic functions are used. The Voigt function and its derivatives used as basic functions are studied in detail as well.
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
Banach spaces of analytic functions
Hoffman, Kenneth
2007-01-01
A classic of pure mathematics, this advanced graduate-level text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc.The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the f
The Dark Side of the Propagators: exploring their analytic properties by a massive expansion
Siringo, Fabio
2017-03-01
Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, and are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles. Complex conjugated poles are found for the gluon propagator.
The self consistent expansion applied to the factorial function
Cohen, Alon; Bialy, Shmuel; Schwartz, Moshe
2016-12-01
Most of the interesting systems in statistical physics can be described as nonlinear stochastic field theories. A common feature in the theoretical study of such systems is that ordinary perturbation theory seldom works. On the other hand, there exists a useful tool for the study of systems of that generic nature. That tool, the Self Consistent Expansion (SCE) is technically similar to the ordinary perturbation expansion, in the sense that it is an expansion around a solvable problem. The key point which distinguishes the SCE from an ordinary perturbation expansion, is that the small parameter of the expansion is adjustable and determined inherently by optimization of the expansion. Therefore, it allows the adaptive SCE to remain accurate relative to the inflexible ordinary expansion. The goal of the present paper is to present the SCE by applying it to a well-known zero dimensional problem. We choose the evaluation of the factorial function, x!, as the test case for the SCE, because the Stirling approximation for that function is one of the best known asymptotic expansions, with a very wide use in statistical physics. We show that the SCE approximation holds for small and even negative arguments of the factorial function, where the Stirling expansion fails miserably. It does so without paying any penalty at high values of the argument, where the Stirling formula is excellent. We present numerical as well as analytic SCE approximations of the factorial function.
Functionalized magnetic nanoparticle analyte sensor
Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B
2014-03-25
A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.
Analytic properties of the electromagnetic Green's function
Gralak, Boris; Soriano, Gabriel
2015-01-01
A general expression of the electromagnetic Green's function is derived from the inverse Helmholtz operator, where a second frequency has been introduced as a new degree of freedom. The first frequency results from the frequency decomposition of the electromagnetic field while the second frequency is associated with the dispersion of the dielectric permittivity. Then, it is shown that the electromagnetic Green's function is analytic with respect to these two complex frequencies as soon as they have positive imaginary part. Such analytic properties are also extended to complex wavevectors. Next, Kramers-Kronig expressions for the inverse Helmholtz operator and the electromagnetic Green's function are derived. In addition, these Kramers-Kronig expressions are shown to correspond to the well-known eigengenmodes expansion of the Green's function established in simple situations. Finally, the second frequency introduced as a new degree of freedom is exploited to characterize non-dispersive systems.
On -Functions for Laguerre Function Expansions of Hermite Type
Indian Academy of Sciences (India)
Błażej Jan Wróbel
2011-02-01
We examine weighted $L^p$ boundedness of -functions based on semi-groups related to multi-dimensional Laguerre function expansions of Hermite type. A technique of vector-valued Calderón–Zygmund operators is used.
Optical transfer function optimization based on linear expansions
Schwiegerling, Jim
2015-09-01
The Optical Transfer Function (OTF) and its modulus the Modulation Transfer Function (MTF) are metrics of optical system performance. However in system optimization, calculation times for the OTF are often substantially longer than more traditional optimization targets such as wavefront error or transverse ray error. The OTF is typically calculated as either the autocorrelation of the complex pupil function or as the Fourier transform of the Point Spread Function. We recently demonstrated that the on-axis OTF can be represented as a linear combination of analytical functions where the weighting terms are directly related to the wavefront error coefficients and apodization of the complex pupil function. Here, we extend this technique to the off-axis case. The expansion technique offers a potential for accelerating OTF optimization in lens design, as well as insight into the interaction of aberrations with components of the OTF.
A Functional Analytic Approach to Group Psychotherapy
Vandenberghe, Luc
2009-01-01
This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…
Edgeworth expansion for functionals of continuous diffusion processes
DEFF Research Database (Denmark)
Podolskij, Mark; Yoshida, Nakahiro
2016-01-01
This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the second order Edgeworth expansion for power variation of diffus...... of diffusion processes. Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations....
The analytic structure of non-global logarithms: convergence of the dressed gluon expansion
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-11-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large- N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α s log. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of α s log from the coefficients of the fixed order expansion.
Bytev, Vladimir V; Kniehl, Bernd A
2012-01-01
In this talk, we discuss the algorithm for the construction of analytical coefficients of higher order epsilon expansion of some Horn type hypergeometric functions of two variables around rational values of parameters.
Strictly analytic functions on p-adic analytic open sets
Boussaf, Kamal
1999-01-01
Let K be an algebraically closed complete ultrametric field. M. Krasner and P. Robba defined theories of analytic functions in K, but when K is not spherically complete both theories have the disadvantage of containing functions that may not be expanded in Taylor series in some disks. On other hand, affinoid theories are only defined in a small class of sets (union of affinoid sets) [2], [13] and [17]. Here, we suppose the field K topologically separable (example Cp). Then, we give a new defi...
Series Expansion of Functions with He's Homotopy Perturbation Method
Khattri, Sanjay Kumar
2012-01-01
Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…
Analytical representations for relaxation functions of glasses
Hilfer, R.
2002-01-01
Analytical representations in the time and frequency domains are derived for the most frequently used phenomenological fit functions for non-Debye relaxation processes. In the time domain the relaxation functions corresponding to the complex frequency dependent Cole-Cole, Cole-Davidson and Havriliak-Negami susceptibilities are also represented in terms of $H$-functions. In the frequency domain the complex frequency dependent susceptibility function corresponding to the time dependent stretche...
Analytic complexity of functions of two variables
Beloshapka, V. K.
2007-09-01
The definition of analytic complexity of an analytic function of two variables is given. It is proved that the class of functions of a chosen complexity is a differentialalgebraic set. A differential polynomial defining the functions of first class is constructed. An algorithm for obtaining relations defining an arbitrary class is described. Examples of functions are given whose order of complexity is equal to zero, one, two, and infinity. It is shown that the formal order of complexity of the Cardano and Ferrari formulas is significantly higher than their analytic complexity. The complexity classes turn out to be invariant with respect to a certain infinite-dimensional transformation pseudogroup. In this connection, we describe the orbits of the action of this pseudogroup in the jets of orders one, two, and three. The notion of complexity order is extended to plane (or “planar”) 3-webs. It is discovered that webs of complexity order one are the hexagonal webs. Some problems are posed.
Recent Studies in Functional Analytic Psychotherapy
Garcia, Rafael Ferro
2008-01-01
Functional Analytic Psychotherapy (FAP), based on the principles of radical behaviorism, emphasizes the impact of eventualities that occur during therapeutic sessions, the therapist-client interaction context, functional equivalence between environments, natural reinforcement and shaping by the therapist. This paper reviews recent studies of FAP…
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo;
2010-01-01
In this work, an analytical method, which is referred to as Parameter-expansion Method is used to obtain the exact solution for the problem of nonlinear vibrations of an inextensible beam. It is shown that one term in the series expansion is sufficient to obtain a highly accurate solution, which ...... is valid for the whole domain of the problem. A comparison of the obtained the numerical solution demonstrates that PEM is effective and convenient for solving such problems. After validation of the obtained results, the system response and stability are also discussed....
Leble, Sergey
2013-01-01
The model under consideration is based on approximate analytical solution of two dimensional stationary Navier-Stokes and Fourier-Kirchhoff equations. Approximations are based on the typical for natural convection assumptions: the fluid noncompressibility and Bousinesq approximation. We also assume that ortogonal to the plate component (x) of velocity is neglectible small. The solution of the boundary problem is represented as a Taylor Series in $x$ coordinate for velocity and temperature which introduces functions of vertical coordinate (y), as coefficients of the expansion. The correspondent boundary problem formulation depends on parameters specific for the problem: Grashoff number, the plate height (L) and gravity constant. The main result of the paper is the set of equations for the coefficient functions for example choice of expansion terms number. The nonzero velocity at the starting point of a flow appears in such approach as a development of convecntional boundary layer theory formulation.
Yang-Mills $\\beta$-function from a large-distance expansion of the Schrödinger functional
Mansfield, P; Mansfield, Paul; Sampaio, Marcos
1999-01-01
For slowly varying fields the Yang-Mills Schroedinger functional can be expanded in terms of local functionals. We show how analyticity in a complex scale parameter enables the Schroedinger functional for arbitrarily varying fields to be reconstructed from this expansion. We also construct the form of the Schroedinger equation that determines the coefficients. Solving this in powers of the coupling reproduces the results of the `standard' perturbative solution of the functional Schroedinger equation which we also describe. In particular the usual result for the beta-function is obtained illustrating how analyticity enables the effects of rapidly varying fields to be computed from the behaviour of slowly varying ones.
Analytic functions smooth up to the boundary
1988-01-01
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses...
Uniform Asymptotic Expansion for the Incomplete Beta Function
Nemes, Gergő; Olde Daalhuis, Adri B.
2016-10-01
In [Temme N.M., Special functions. An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, Section 11.3.3.1] a uniform asymptotic expansion for the incomplete beta function was derived. It was not obvious from those results that the expansion is actually an asymptotic expansion. We derive a remainder estimate that clearly shows that the result indeed has an asymptotic property, and we also give a recurrence relation for the coefficients.
On the analytical development of the lunar and solar disturbing functions
Celletti, Alessandra; Pucacco, Giuseppe; Rosengren, Aaron J
2015-01-01
We provide a detailed derivation of the analytical expansion of the lunar and solar disturbing functions. We start with Kaula's expansion of the disturbing function in terms of the equatorial elements of both the perturbed and perturbing bodies. Then we provide a detailed proof of Lane's expansion, in which the elements of the Moon are referred to the ecliptic plane. Using this approach the inclination of the Moon becomes nearly constant, while the argument of perihelion, the longitude of the ascending node, and the mean anomaly vary linearly with time. We make a comparison between the different expansions and we profit from such discussion to point out some mistakes in the existing literature, which might compromise the correctness of the results. As an application, we analyze the long-term motion of the highly elliptical and critically inclined Molniya orbits subject to quadrupolar gravitational interactions. The analytical expansions presented herein are very powerful with respect to dynamical studies base...
Promoting Efficacy Research on Functional Analytic Psychotherapy
Maitland, Daniel W. M.; Gaynor, Scott T.
2012-01-01
Functional Analytic Psychotherapy (FAP) is a form of therapy grounded in behavioral principles that utilizes therapist reactions to shape target behavior. Despite a growing literature base, there is a paucity of research to establish the efficacy of FAP. As a general approach to psychotherapy, and how the therapeutic relationship produces change,…
A unified intrinsic functional expansion theory for solitary waves
Institute of Scientific and Technical Information of China (English)
Theodore Yaotsu Wu; John Kao; Jin E. Zhang
2005-01-01
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120° down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokes's formula, F2μπ = tanμπ, relating the wave speed (the Froude number F) and the logarithmic decrement μ of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokes's basic term (singular inμ), such that 2Mμ is just somewhat beyond unity, i.e. 2Mμ (~-) 1. This fundamental criterion is fully validated by solutions for waves Dedicated to Zhemin Zheng for celebration of his Eightieth Anniversary It gives us a great pleasure to dedicate this study to Prof. Zhemin Zheng and join our distinguished colleagues and friends for the jubilant celebration of his Eightieth Anniversary. Warmest tribute is due from us, as from many others unlimited by borders and boundaries, for his contributions of great significance to science, engineering science and engineering, his tremendous influence as a source of inspiration and unerring guide to countless workers in the field, his admirable leadership in fostering the Institute of Mechanics of world renown, as well as for his untiring endeavor in promoting international interaction and cooperation between academies of various nations
Analytical properties of credibilistic expectation functions.
Wang, Shuming; Wang, Bo; Watada, Junzo
2014-01-01
The expectation function of fuzzy variable is an important and widely used criterion in fuzzy optimization, and sound properties on the expectation function may help in model analysis and solution algorithm design for the fuzzy optimization problems. The present paper deals with some analytical properties of credibilistic expectation functions of fuzzy variables that lie in three aspects. First, some continuity theorems on the continuity and semicontinuity conditions are proved for the expectation functions. Second, a differentiation formula of the expectation function is derived which tells that, under certain conditions, the derivative of the fuzzy expectation function with respect to the parameter equals the expectation of the derivative of the fuzzy function with respect to the parameter. Finally, a law of large numbers for fuzzy variable sequences is obtained leveraging on the Chebyshev Inequality of fuzzy variables. Some examples are provided to verify the results obtained.
Analytical method of load-transfer of single pile under expansive soil swelling
Institute of Scientific and Technical Information of China (English)
FAN Zhen-hui; WANG Yong-he; XIAO Hong-bin; ZHANG Chun-shun
2007-01-01
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established, respectively, based on the theory of pile-soil interaction and the shear-deformation method. The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling. The comparison of two engineering examples was made to prove the credibility of the suggested method. The analyzed results show that this analytic solution can achieve high precision with few parameters required, indicating its' simplicity and practicability in engineering application. The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design. The method can be employed to obtain various distributive curves of axial force, settlements and skin friction along the pile shaft with the changes of active depth, vertical movements of the surface and loads of pile-top.
Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran
2015-06-07
Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.
Partial sums of arithmetical functions with absolutely convergent Ramanujan expansions
Indian Academy of Sciences (India)
BISWAJYOTI SAHA
2016-08-01
For an arithmetical function $f$ with absolutely convergent Ramanujan expansion, we derive an asymptotic formula for the $\\sum_{n\\leq N}$ f(n)$ with explicit error term. As a corollary we obtain new results about sum-of-divisors functions and Jordan’s totient functions.
Analytic example of a free energy functional
Tutschka; Kahl
2000-09-01
We use the ideas of Percus for the construction of classical density functionals for two model interactions: simple hard spheres and adhesive hard spheres (AHSs). The required input, the properties of the uniform fluid, is taken from the analytic mean spherical solution for these two systems. For hard spheres we derive-via a bilinear decomposition of the direct correlation functions-a set of basis functions, which is the same as the one presented by Rosenfeld in his fundamental measure theory framework. For AHSs additional basis functions have to be considered to ensure the bilinear decomposition of the direct correlation functions; we present an expression for the free energy functional for the one-component case.
CARATHEODORY INEQUALITY FOR ANALYTIC OPERATOR FUNCTION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Suppose H is a complex Hilbert space, AH(△) denotes the set of all analytic operator functions on △, and the set NH(△)= {f(z)｜f(z) is an analytic operator function on the open uint disk △, f(z)f(ω)=f(ω)f(z),f*(z)f(z)=f(z)f*(z), z,ω∈△}. The note proves that if f(z)∈NH(△),(or AH(△) )‖f(z)‖≤1, z∈△ then ‖f＇(T)‖≤(1-‖T‖2)-1‖I-f*(T)f(T)‖1/2‖I-f(T)f*(T)‖1/2,where T ∈ (H)(orT*T=TT*,respectively),‖T‖＜1,Tf=fT.
Functional expansion representations of artificial neural networks
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
Directory of Open Access Journals (Sweden)
Jiran L.
2016-06-01
Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.
Expansion schemes for gravitational clustering: computing two-point and three-point functions
Valageas, P
2007-01-01
We describe various expansion schemes that can be used to study gravitational clustering. Obtained from the equations of motion or their path-integral formulation, they provide several perturbative expansions that are organized in different fashion or involve different partial resummations. We focus on the two-point and three-point correlation functions, but these methods also apply to all higher-order correlation and response functions. We present the general formalism, which holds for the gravitational dynamics as well as for similar models, such as the Zeldovich dynamics, that obey similar hydrodynamical equations of motion with a quadratic nonlinearity. We give our explicit analytical results up to one-loop order for the simpler Zeldovich dynamics. For the gravitational dynamics, we compare our one-loop numerical results with numerical simulations. We check that the standard perturbation theory is recovered from the path integral by expanding over Feynman's diagrams. However, the latter expansion is organ...
Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.
Dey, Prasanta Kumar; Ramcharan, Eugene K
2008-09-01
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems
Energy Technology Data Exchange (ETDEWEB)
Warren, T.L.; Tabbara, M.R.
1997-05-01
In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.
An analytic method for S-expansion involving resonance and reduction
Energy Technology Data Exchange (ETDEWEB)
Ipinza, M.C.; Penafiel, D.M. [Departamento de Fisica, Universidad de Concepcion (Chile); DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy); Lingua, F. [DISAT, Politecnico di Torino (Italy); Ravera, L. [DISAT, Politecnico di Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino (Italy)
2016-11-15
In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an S-expansion process (with either resonance or 0{sub S}-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the subset decomposition of the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
An Analytic Method for $S$-Expansion involving Resonance and Reduction
Ipinza, M C; Peñafiel, D M; Ravera, L
2016-01-01
In this paper we describe an analytic method able to give the multiplication table(s) of the set(s) involved in an $S$-expansion process (with either resonance or $0_S$-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after having properly chosen the partitions over subspaces of the considered (super)algebras. This analytic method gives us a simple set of expressions to find the partitions over the set(s) involved in the process. Then, we use the information coming from both the initial (super)algebra and the target one for reaching the multiplication table(s) of the mentioned set(s). Finally, we check associativity with an auxiliary computational algorithm, in order to understand whether the obtained set(s) can describe semigroup(s) or just abelian set(s) connecting two (super)algebras. We also give some interesting examples of application, which check and corroborate our analytic procedure and also generalize some result already presented in the literature.
A Secure Hash Function MD-192 With Modified Message Expansion
Tiwari, Harshvardhan
2010-01-01
Cryptographic hash functions play a central role in cryptography. Hash functions were introduced in cryptology to provide message integrity and authentication. MD5, SHA1 and RIPEMD are among the most commonly used message digest algorithm. Recently proposed attacks on well known and widely used hash functions motivate a design of new stronger hash function. In this paper a new approach is presented that produces 192 bit message digest and uses a modified message expansion mechanism which generates more bit difference in each working variable to make the algorithm more secure. This hash function is collision resistant and assures a good compression and preimage resistance.
Study of the derivative expansions for the nuclear structure functions
Simo, I Ruiz
2008-01-01
We study the convergence of the series expansions sometimes used in the analysis of the nuclear effects in Deep Inelastic Scattering (DIS) proccesses induced by leptons. The recent advances in statistics and quality of the data, in particular for neutrinos calls for a good control of the theoretical uncertainties of the models used in the analysis. Using realistic nuclear spectral functions which include nucleon correlations, we find that the convergence of the derivative expansions to the full results is poor except at very low values of $x$.
Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma
Camporeale, E; MacDonald, E A
2015-01-01
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979), Korsun and Tverdokhlebova (1997), and Ashkenazy and Fruchtman (2001). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.
Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory
Directory of Open Access Journals (Sweden)
Suman Manandhar
2012-01-01
Full Text Available On the basis of evidence from model tests on increasing the end-bearing behavior of tapered piles at the load-settlement curve, this paper proposes an analytical spherical cavity expansion theory to evaluate the end-bearing capacity. The angle of tapering is inserted in the proposed model to evaluate the end-bearing capacity. The test results of the proposed model in different types of sands and different relative densities show good effects compared to conventional straight piles. The end-bearing capacity increases with increases in the tapering angle. The paper then propounds a model for prototypes and real-type pile tests which predicts and validates to evaluate the end-bearing capacity.
Celletti, Alessandra; Galeş, Cătălin; Pucacco, Giuseppe; Rosengren, Aaron J.
2017-03-01
We provide a detailed derivation of the analytical expansion of the lunar and solar disturbing functions. Although there exist several papers on this topic, many derivations contain mistakes in the final expansion or rather (just) in the proof, thereby necessitating a recasting and correction of the original derivation. In this work, we provide a self-consistent and definite form of the lunisolar expansion. We start with Kaula's expansion of the disturbing function in terms of the equatorial elements of both the perturbed and perturbing bodies. Then we give a detailed proof of Lane's expansion, in which the elements of the Moon are referred to the ecliptic plane. Using this approach the inclination of the Moon becomes nearly constant, while the argument of perihelion, the longitude of the ascending node, and the mean anomaly vary linearly with time. We make a comparison between the different expansions and we profit from such discussion to point out some mistakes in the existing literature, which might compromise the correctness of the results. As an application, we analyze the long-term motion of the highly elliptical and critically-inclined Molniya orbits subject to quadrupolar gravitational interactions. The analytical expansions presented herein are very powerful with respect to dynamical studies based on Cartesian equations, because they quickly allow for a more holistic and intuitively understandable picture of the dynamics.
Kunikeev, Sharif D; Kim, Kwang S
2012-11-01
The Monte Carlo (MC) estimates of thermal averages are usually functions of system control parameters λ, such as temperature, volume, and interaction couplings. Given the MC average at a set of prescribed control parameters λ{0}, the problem of analytic continuation of the MC data to λ values in the neighborhood of λ{0} is considered in both classic and quantum domains. The key result is the theorem that links the differential properties of thermal averages to the higher order cumulants. The theorem and analytic continuation formulas expressed via higher order cumulants are numerically tested on the classical Lennard-Jones cluster system of N=13, 55, and 147 neon particles.
On Certain Classes of Multivalent Analytic Functions
Directory of Open Access Journals (Sweden)
Rabha W. Ibrahim
2010-01-01
Full Text Available Problem statement: By means of the Hadamard product (or convolution, new class of function of power order was formed. This class was motivated by many authors namely MacGregor, Umezawa, Darus and Ibrahim and many others. The class indeed extended in the form of integral operator due to the work of Bernardi, Libera and Livingston. Approach: A new class of multivalent analytic functions in the open unit disk U was introduced. An application of this class was posed by using the fractional integral operator. The integral operator of multivalent functions was proposed and defined. The previous well known integral operator was mentioned. Results: Having the integral operator, a class was defined and coefficient bounds established by using standard method. These results reduced to well-known results studied by various authors. The operator was then applied for fractional calculus and obtained the coefficient bounds. Conclusion: Therefore, new operators could be obtained with some earlier results and standard methods. New classes were formed and new results of special cases were obtained.
Institute of Scientific and Technical Information of China (English)
陈媚; 谢琼涛
2011-01-01
The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.
Expansion of Arbitrary Electromagnetic Fields in Terms of Vector Spherical Wave Functions
Moreira, W L; Garbos, M K; Euser, T G; Russell, P St J; Cesar, C L
2010-01-01
Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of an electromagnetic plane-wave, generalizing his analysis to the case of an arbitrary incident wave has proved elusive. This is due to the presence of certain radially-dependent terms in the equation for the beam-shape coefficients of the expansion of the electromagnetic fields in terms of vector spherical wave functions. Here we show for the first time how these terms can be canceled out, allowing analytical expressions for the beam shape coefficients to be found for a completely arbitrary incident field. We give several examples of how this new method, which is well suited to numerical calculation, can be used. Analytical expressions are found for Bessel beams and the modes of rectangular and cylindrical metallic waveguides. The results are highly relevant for speeding up calculation of the radiation forces acting on small spherical particles placed in an arbitrary electromagnetic field, fo...
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
LiuXinhe
2003-01-01
Let r be a given positive number.Denote by D=D the closed disc in the complex plane C whose center is the origin and radius is r.For any subset K of C and any integer m ≥1,write A(Dm,K)={f|f:Dm→Kis a continuous map,and f|(Dm)*is analytic).For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ψH(f)(z)=H(z,f(z)……fm=1(x)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,……,n.In this paper,the system of functional equations {F(z,f(z),f2(ψHz(f)(z))…,fn(ψk2(g)(x))… gn(ψKn(g)(z)))=0 G(z,f(z),f2(ψH2(f)(z))…fn(ψHn(f)(z)),g(z),g2(ψk2(g)(x))…,gn(ψkn(g)(z)))=0(z∈D)is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A（D，D）are given.
Analytical response function for planar Ge detectors
García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.
2016-04-01
We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.
Expansion of a class of functions into an integral involving associated Legendre functions
Directory of Open Access Journals (Sweden)
Nanigopal Mandal
1994-01-01
Full Text Available A theorem for expansion of a class of functions into an integral involving associated Legendre functions is obtained in this paper. This is a somewhat general integral expansion formula for a function f(x defined in (x1,x2 where -1
A UNIVERSAL ANALYTIC POTENTIAL-ENERGY FUNCTION BASED ON A PHASE FACTOR
Institute of Scientific and Technical Information of China (English)
C.F. Yu; K. Yan; D.Z. Liu
2006-01-01
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of fuce-centered cubic (fcc) metals - Al, Cu, Ag, etc. Are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
Analytical evaluation of the plasma dispersion function for a Fermi-Dirac distribution
Institute of Scientific and Technical Information of China (English)
B.A. Mamedov
2012-01-01
An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.
Neural substrate expansion for the restoration of brain function
Directory of Open Access Journals (Sweden)
Han-Chiao Isaac Chen
2016-01-01
Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.
Nonlinear differentiation equation and analytic function spaces
Li, Hao; Li, Songxiao
2015-01-01
In this paper we consider the nonlinear complex differential equation $$(f^{(k)})^{n_{k}}+A_{k-1}(z)(f^{(k-1)})^{n_{k-1}}+\\cdot\\cdot\\cdot+A_{1}(z)(f')^{n_{1}}+A_{0}(z)f^{n_{0}}=0, $$where $ A_{j}(z)$, $ j=0, \\cdots, k-1 $, are analytic in the unit disk $ \\mathbb{D} $, $ n_{j}\\in R^{+} $ for all $ j=0, \\cdots, k $. We investigate this nonlinear differential equation from two aspects. On one hand, we provide some sufficient conditions on coefficients such that all solutions of this equation bel...
Indian Academy of Sciences (India)
A K Chattopadhyay; C V S Rao
2003-07-01
Here we describe the superiority of Bessel function as base function for radial expansion over Zernicke polynomial in the tomographic reconstruction technique. The causes for the superiority have been described in detail. The superiority has been shown both with simulated data for Kadomtsev’s model for saw-tooth oscillation and real experimental x-ray data from W7-AS Stellarator.
The Analytic Structure of Non-Global Logarithms: Convergence of the Dressed Gluon Expansion
Larkoski, Andrew J; Neill, Duff
2016-01-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon expansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-$N_c$ master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of $\\alpha_s$log. We explain this finite radius of convergence using t...
Analytical fits to the synchrotron functions
Institute of Scientific and Technical Information of China (English)
Mourad Fouka; Saad Ouichaoui
2013-01-01
Accurate fitting formulae to the synchrotron function,F(x),and its complementary function,G(x),are performed and presented.The corresponding relative errors are less than 0.26％ and 0.035％ for F(x) and G(x),respectively.To this end we have,first,fitted the modified Bessel functions,K5/3(x) and K2/3(x).For all the fitted functions,the general fit expression is the same,and is based on the well known asymptotic forms for low and large values of x for each function.It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large values of x.Simple formulae are suggested in this paper,depending on adjustable parameters.The latter have been determined by adopting the Levenberg-Marquardt algorithm.The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for synchrotron radiation,both for laboratory and astrophysical applications.
Analytical Fits to the Synchrotron Functions
Fouka, M
2013-01-01
Accurate fitting formulae to the synchrotron function, $F(x)$, and its complementary function, $G(x)$, are performed and presented. The corresponding relative errors are less than $0.26\\%$ and $0.035\\%$ for $F(x) $ and $G(x)$, respectively. To this aim we have, first, fitted the modified Bessel functions, $K_{5/3}(x)$ and $K_{2/3}(x)$. For all the fitted functions, the general fit expression is the same, and is based on the well known asymptotic forms for low and large $x$-values for each function. It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large $x$-values. Simple formulae are suggested in this paper, depending on adjustable parameters. The latter have been determined by adopting the Levenberg-Marquardt algorithm. The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for the synchrotron radiation, both for laboratory and astrophysical applications.
On Certain Subclasses of Analytic Functions Defined by Differential Subordination
Directory of Open Access Journals (Sweden)
Hesam Mahzoon
2011-01-01
Full Text Available We introduce and study certain subclasses of analytic functions which are defined by differential subordination. Coefficient inequalities, some properties of neighborhoods, distortion and covering theorems, radius of starlikeness, and convexity for these subclasses are given.
THE ANALYTICAL PROPERTIES FOR HOMOGENEOUS RANDOM TRANSITION FUNCTIONS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main results in this article are the analytical properties, such as continuity, differentiability, random Kolmogorov backward equation and random Kolmogorov forward equation of homogeneous random transition functions.
Zero Order Estimates for Analytic Functions
Zorin, Evgeniy
2011-01-01
The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in t...
Analytic behavior of the QED polarizability function at finite temperature
Directory of Open Access Journals (Sweden)
A. Bernal
2012-03-01
Full Text Available We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
Analytic behavior of the QED polarizability function at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Bernal, A. [Dept. de Matematica Aplicada i Analisi, Universitat de Barcelona. Av Joan XXIII s/n Edifici A, Escala A, Tercer pis, Matematiques 08028, Barcelona (Spain); Perez, A. [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, Dr. Moliner 50, 46100-Burjassot (Spain)
2012-03-15
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
A new run-up algorithm based on local higher order analytic expansions
Khakimzyanov, Gayaz; Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
The practically important problem of the wave run-up is studied in this article in the framework of Nonlinear Shallow Water Equations (NSWE). The main novelty consists in the usage of high order local asymptotic analytical solutions in the vicinity of the shoreline. Namely, we use the analytical techniques introduced by S. Kovalevskaya and the analogy with the compressible gas dynamics (i.e. gas outflow problem into the vacuum). Our run-up algorithm covers all the possible cases of the wave slope on the shoreline and it incorporates the new analytical information in order to determine the shoreline motion to higher accuracy. The application of this algorithm is illustrated on several important practical examples. Finally, the simulation results are compared with the well-known analytical and experimental predictions.
Analytical Nonlocal Electrostatics Using Eigenfunction Expansions of Boundary-Integral Operators
Bardhan, Jaydeep P; Brune, Peter R
2012-01-01
In this paper, we present an analytical solution to nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for analytical calculations in separable geometries, we rederive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion layer and then a dilute electrolyte (modeled with the linearized Poisson--Boltzmann equation). Our main result, however, is an analytical method for calculating the reaction potential in a protein embedded in a nonlocal-dielectric solvent, the Lorentz model studied by Dogonadze and Kornyshev. The analytical method enables biophysicists to study the new nonlocal theory in a simple, computationally fast way; an open-source MATLAB implementatio...
On the Beam Functions Spectral Expansions for Fourth-Order Boundary Value Problems
Papanicolaou, N. C.; Christov, C. I.
2007-10-01
In this paper we develop further the Galerkin technique based on the so-called beam functions with application to nonlinear problems. We make use of the formulas expressing a product of two beam functions into a series with respect to the system. First we prove that the overall convergence rate for a fourth-order linear b.v.p is algebraic fifth order, provided that the derivatives of the sought function up to fifth order exist. It is then shown that the inclusion of a quadratic nonlinear term in the equation does not degrade the fifth-order convergence. We validate our findings on a model problem which possesses analytical solution in the linear case. The agreement between the beam-Galerkin solution and the analytical solution for the linear problem is better than 10-12 for 200 terms. We also show that the error introduced by the expansion of the nonlinear term is lesser than 10-9. The beam-Galerkin method outperforms finite differences due to its superior accuracy whilst its advantage over the Chebyshev-tau method is attributed to the smaller condition number of the matrices involved in the former.
Vieru, Andrei
2016-01-01
The renormalization of MZV was until now carried out by algebraic means. In this paper, we show that renormalization in general, and in particular of the multiple zeta functions, is more than just a pure algebraic convention. We give a simple analytic method of computing the regularized values of multiple zeta functions in any dimension for arguments of the form (1,...,1), where the series do not converge. These values happen to be the coefficients of the asymptotic expansion of the inverse G...
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Institute of Scientific and Technical Information of China (English)
ZHANGJin-Liang; WANGMing-Liang
2004-01-01
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Explicit Design of Innovation Performance Metrics by Using Analytic Hierarchy Process Expansion
Directory of Open Access Journals (Sweden)
Song-Kyoo Kim
2014-01-01
performance of companies. By applying AHP Expansion framework, the innovation performance measurement factors can be prioritized and descending-order rank list of the performance factors can be made in order to select the best strategies to improve the innovativeness of companies. This new framework of innovation measurement is targeted for implementation at the actual analysis for innovation competitiveness of companies and expected to provide the milestones of measuring the innovation more effectively.
An analytic hydrodynamical model of rotating 3D expansion in heavy-ion collisions
Nagy, M I
2015-01-01
A new exact and analytic solution of non-relativistic fireball hydrodynamics is presented. It describes an expanding triaxial ellipsoid that rotates around one of its principal axes. The observables are calculated using simple analytic formulas. Azimuthal oscillation of the off-diagonal Bertsch-Pratt radii of Bose-Einstein correlations as well as rapidity dependent directed and third flow measurements provide means to determine the magnitude of the rotation of the fireball. Observing this rotation and its dependence on collision energy may lead to new information on the equation of state of the strongly interacting quark gluon plasma produced in high energy heavy ion collisions.
Three Semi-empirical Analytic Expressions for the Radial Distribution Function of Hard Spheres
Institute of Scientific and Technical Information of China (English)
SUN Jiu-Xun; CAI Ling-Cang; WU Qiang; JING Fu-Qian
2004-01-01
Three simple analytic expressions satisfying the limitation condition at low densities for the radial distribution function of hard spheres are developed in terms of a polynomial expansion of nonlinear base functions and the Carnahan-Starling equation of state. The simplicity and precision for these expressions are superior to the well-known Percus-Yevick expression. The coefficients contained in these expressions have been determined by fitting the Monte Carlo data for the first coordination shell, and by fitting both the Monte Carlo data and the numerical results of PercusYevick expression for the second coordination shell. One of the expressions has been applied to develop an analytic equation of state for the square-well fluid, and the numerical results are in good agreement with the computer simulation data.
Palma, G
2009-01-01
The probability density function (PDF) of some global average quantity plays a fundamental role in critical and highly correlated systems. We explicitly compute this quantity as a function of the magnetization for the two dimensional XY model in its harmonic approximation. Numerical simulations and perturbative results have shown a Gumbel-like shape of the PDF, in spite of the fact that the average magnetization is not an extreme variable. Our analytical result allows to test both perturbative analytical expansions and also numerical computations performed previously. Perfect agreement is found for the first moments of the PDF. Also for large volume and in the high temperature limit the distribution becomes Gaussian, as it should be. In the low temperature regime its numerical evaluation is compatible with a Gumbel distribution.
GENERALIZATION OF THE SHANNON EXPANSION FOR INCOMPLETELY SPECIFIED FUNCTIONS: THEORY AND APPLICATION
Directory of Open Access Journals (Sweden)
A. A. Prikhozhy
2013-01-01
Full Text Available The well known Shannon expansion is not applicable to incompletely specified functions. We propose a theory that merges Boolean and partial algebras and provides creation of new representations and expansions of partially specified functions. A powerful property of the expansions is the reduction of definiteness level of expansion products. This is a source of enlargement of possibilities for synthesis, parallelization and optimization of completely and incompletely specified logical software/hardware systems. A result of proposed theory is a new type of decision diagram. It is shown on the parallelization of adders that the throughput of the system grows rapidly while the system complexity grows slowly.
Chen, C. -P.; Paris, R. B.
2016-01-01
In this paper, we present series representations of the remainders in the expansions for certain trigonometric and hyperbolic functions. By using the obtained results, we establish some inequalities for trigonometric and hyperbolic functions.
Energy Technology Data Exchange (ETDEWEB)
Edward A. Startsev; Ronald C. Davidson
2004-04-09
To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.
Functional Analytic Psychotherapy with Juveniles Who Have Committed Sexual Offenses
Newring, Kirk A. B.; Wheeler, Jennifer G.
2012-01-01
We have previously discussed the application of Functional Analytic Psychotherapy (FAP) with adults who have committed sexual offense behaviors (Newring & Wheeler, 2010). The present entry borrows heavily from the foundation presented in that chapter, and extends this approach to working with adolescents, youth, and juveniles with sexual offense…
On the radius constants for classes of analytic functions
Ali, Rosihan M.; Jain, Naveen; Ravichandran, V.
2012-01-01
Radius constants for several classes of analytic functions on the unit disk are obtained. These include the radius of starlikeness of a positive order, radius of parabolic starlikeness, radius of Bernoulli lemniscate starlikeness, and radius of uniform convexity. In the main, the radius constants obtained are sharp. Conjectures on the non-sharp constants are given.
Equifinality in Functional Analytic Psychotherapy: Different Strokes for Different Folks
Darrow, Sabrina M.; Dalto, Georgia; Follette, William C.
2012-01-01
Functional Analytic Psychotherapy (FAP) is an interpersonal behavior therapy that relies on a therapist's ability to contingently respond to in-session client behavior. Valued behavior change in clients results from the therapist shaping more effective client interpersonal behaviors by providing effective social reinforcement when these behaviors…
Pre-Calculus Instructional Guide for Elementary Functions, Analytic Geometry.
Montgomery County Public Schools, Rockville, MD.
This is a guide for use in semester-long courses in Elementary Functions and Analytic Geometry. A list of entry-level skills and a list of approved textbooks is provided. Each of the 18 units consists of: (1) overview, suggestions for teachers, and suggested time; (2) list of objectives; (3) cross-references guide to approved textbooks; (4) sample…
ON CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY DIFFERENTIAL SUBORDINATION
Institute of Scientific and Technical Information of China (English)
刘名生
2002-01-01
In this paper, the new subclass Bn(λ,α,A,B) of analytic functions is introduced. Its subordination relations, inclusion relations, the inequality properties and convering theorem are discussed. The results obtained in this paper are sharp, which generalize the related works of some authors and some other new results are obtained.
Subordination and superordination for certain analytic functions containing fractional integral
Directory of Open Access Journals (Sweden)
Shaher Momani
2009-11-01
Full Text Available The purpose of the present article is to derive some subordination and superordination results for certain normalized analytic functions involving fractional integral operator. Moreover, this result is applied to find a relation between univalent solutions for fractional differential equation.
RESEARCH ANNOUNCEMENTS On a Spectrum Problem for Analytic Function
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@ 1 Introduction Let Ω be the unit disk {z: |z| ＜ 1} in the complex plane C. In this paper, we consider the following boundary value problem: Find out a λ and the analytic function u(z) in the unit disk Ω such that they satisfy the boundary condition
Directory of Open Access Journals (Sweden)
Emad A-B. Abdel-Salam
2015-06-01
Full Text Available In this paper, the improved fractional Riccati expansion method is proposed to solve fractional differential equations. The method is applied to solve space–time fractional modified Korteweg–de Vries equation, space–time fractional modified regularized long-wave equation, time fractional biological population model, and space–time fractional Klein–Gordon equation. The obtained solutions include generalized trigonometric and hyperbolic functions solutions. Among these solutions, some are found for the first time.
Linear circuit transfer functions an introduction to fast analytical techniques
Basso, Christophe P
2016-01-01
Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...
Analytic continuation of the Hurwitz Zeta Function with physical application
Barone-Adesi, V; Adesi, Vittorio Barone; Zerbini, Sergio
2001-01-01
A new formula relating the analytic continuation ofthe Hurwitz zeta function to the Euler gamma function and a "Schwinger" type series is presented. In particular, the value of the derivative of the real part of the analytic continuation of the Hurwitz zeta function for even negative integers and the imaginary one for odd negative integers are explicitly given. The result can be of interest both on mathematical and physical side, because we are able to apply our new formulas in the context of the Spectral Zeta Function regularization of one-loop Quantum Field Theory, computing the exact pair production rate per space-time unit of massive Dirac particles interacting with a purely electric background field.
Ritschel, Gerhard; Eisfeld, Alexander
2014-09-01
We present a scheme to express a bath correlation function (BCF) corresponding to a given spectral density (SD) as a sum of damped harmonic oscillations. Such a representation is needed, for example, in many open quantum system approaches. To this end we introduce a class of fit functions that enables us to model ohmic as well as superohmic behavior. We show that these functions allow for an analytic calculation of the BCF using pole expansions of the temperature dependent hyperbolic cotangent. We demonstrate how to use these functions to fit spectral densities exemplarily for cases encountered in the description of photosynthetic light harvesting complexes. Finally, we compare absorption spectra obtained for different fits with exact spectra and show that it is crucial to take properly into account the behavior at small frequencies when fitting a given SD.
Quantum field theory in the presence of a medium: Green's function expansions
Energy Technology Data Exchange (ETDEWEB)
Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-12-15
Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.
Construction and use of numerical-analytical approximating functions
Serazutdinov, M. N.
2016-11-01
The article goes over the methodology of constructing numerical-analytical approximating functions, satisfying the given boundary conditions for the function of its derivatives in the circuit areas of various shapes. The methodology is based on presenting the unknown function as a series in a complete set of functions that do not satisfy the given boundary conditions on the contour of the area, but additionally numerically defined near the contour to satisfy the boundary conditions. The additional definition of the functions near the area contour is performed numerically based on finite-difference relations. The main advantage of the stated method is the ability to build a relatively simple approximating functions satisfying the given boundary conditions on the boundary of complex shaped areas. The examples of applying the described method for solving the boundary value problem of a plate of different shapes. The possibility of using numerical-analytical functions for solving boundary value problems that contain higher derivatives up to fourth order is shown.
On New Bijective Convolution Operator Act for Analytic Functions
Directory of Open Access Journals (Sweden)
Oqlah Al-Refai
2009-01-01
Full Text Available Problem statement: We introduced a new bijective convolution linear operator defined on the class of normalized analytic functions. This operator was motivated by many researchers namely Srivastava, Owa, Ruscheweyh and many others. The operator was essential to obtain new classes of analytic functions. Approach: Simple technique of Ruscheweyh was used in our preliminary approach to create new bijective convolution linear operator. The preliminary concept of Hadamard products was mentioned and the concept of subordination was given to give sharp proofs for certain sufficient conditions of the linear operator aforementioned. In fact, the subordinating factor sequence was used to derive different types of subordination results. Results: Having the linear operator, subordination theorems were established by using standard concept of subordination. The results reduced to well-known results studied by various researchers. Coefficient bounds and inclusion properties, growth and closure theorems for some subclasses were also obtained. Conclusion: Therefore, many interesting results could be obtained and some applications could be gathered.
Analytical correlation functions for motion through diffusivity landscapes.
Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis
2016-05-28
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.
Exact values of Kolmogorov widths of classes of analytic functions
Serdyuk, A. S.; Bodenchuk, V. V.
2014-01-01
We prove that kernels of analytic functions of kind $H_{h,\\beta}(t)=\\sum\\limits_{k=1}^{\\infty}\\frac{1}{\\cosh kh}\\cos\\Big(kt-\\frac{\\beta\\pi}{2}\\Big)$, $h>0$, ${\\beta\\in\\mathbb{R}}$, satisfies Kushpel's condition $C_{y,2n}$ beginning with some number $n_h$ which is explicitly expressed by parameter $h$ of smoothness of the kernel. As a consequence, for all $n\\geqslant n_h$ we obtain lower bounds for Kolmogorov widths $d_{2n}$ of functional classes that are representable as convolutions of kerne...
Expansion of Infinite Series Containing Modified Bessel Functions of the Second Kind
Fucci, Guglielmo
2014-01-01
The aim of this work is to analyze general infinite sums containing modified Bessel functions of the second kind. In particular we present a method for the construction of a proper asymptotic expansion for such series valid when one of the parameters in the argument of the modified Bessel function of the second kind is small compared to the others. We apply the results obtained for the asymptotic expansion to specific problems that arise in the ambit of quantum field theory.
Directory of Open Access Journals (Sweden)
Poteete Anthony R
2009-02-01
Full Text Available Abstract Background Previous studies of gene amplification in Escherichia coli have suggested that it occurs in two steps: duplication and expansion. Expansion is thought to result from homologous recombination between the repeated segments created by duplication. To explore the mechanism of expansion, a 7 kbp duplication in the chromosome containing a leaky mutant version of the lac operon was constructed, and its expansion into an amplified array was studied. Results Under selection for lac function, colonies bearing multiple copies of the mutant lac operon appeared at a constant rate of approximately 4 to 5 per million cells plated per day, on days two through seven after plating. Expansion was not seen in a recA strain; null mutations in recBCD and ruvC reduced the rate 100- and 10-fold, respectively; a ruvC recG double mutant reduced the rate 1000-fold. Expansion occurred at an increased rate in cells lacking dam, polA, rnhA, or uvrD functions. Null mutations of various other cellular recombination, repair, and stress response genes had little effect upon expansion. The red recombination genes of phage lambda could substitute for recBCD in mediating expansion. In the red-substituted cells, expansion was only partially dependent upon recA function. Conclusion These observations are consistent with the idea that the expansion step of gene amplification is closely related, mechanistically, to interchromosomal homologous recombination events. They additionally provide support for recently described models of RecA-independent Red-mediated recombination at replication forks.
Tasbozan, Orkun; Çenesiz, Yücel; Kurt, Ali
2016-07-01
In this paper, the Jacobi elliptic function expansion method is proposed for the first time to construct the exact solutions of the time conformable fractional two-dimensional Boussinesq equation and the combined KdV-mKdV equation. New exact solutions are found. This method is based on Jacobi elliptic functions. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2005-01-01
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
Reducing inadvertent clinical errors: Guidelines from functional analytic psychotherapy.
Tsai, Mavis; Mandell, Tien; Maitland, Daniel; Kanter, Jonathan; Kohlenberg, Robert J
2016-09-01
Two common types of clinical errors, inadvertently reinforcing client problem behaviors or inadvertently punishing client improvements, are conceptualized from the viewpoint of Functional Analytic Psychotherapy (FAP), a treatment that harnesses the power of the therapeutic relationship. Understanding the functions of client behaviors such as incessant talking and over compliance can lead to more compassionate and effective intervention, and a functional analysis of seemingly problematic behaviors such as silence and lack of cooperation indicate how they may be client improvements. Suggestions are provided for how to more accurately conceptualize whether client behaviors are problems or improvements, and to increase awareness of therapist vulnerabilities that can lead to errors. While FAP is rooted in a functional contextual philosophy, the goal of this article is to offer a framework that crosses theoretical boundaries to decrease the likelihood of clinical errors and to facilitate client growth. (PsycINFO Database Record
The molecular structure and analytical potential energy function of HCO (X2A')
Institute of Scientific and Technical Information of China (English)
Wu Dong-Lan; Cheng Xin-Lu; Yang Xiang-Dong; Xie An-Dong; Ruan Wen; Yu Xiao-Guang; Wan Hui-Jun
2007-01-01
In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X2A') is reasonable and very satisfactory.
Comparison between methods of analytical continuation for bosonic functions
Schött, J.; van Loon, E. G. C. P.; Locht, I. L. M.; Katsnelson, M. I.; Di Marco, I.
2016-12-01
In this paper we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-negative Tikhonov method, the Padé approximant method, and a stochastic sampling method. Four functions of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] is shown to be the most reliable tool for input data whose numerical precision is not known. For high-precision input data, this approach is slightly outperformed by the Padé approximant method, which combines a good-resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.
A basis in an invariant subspace of analytic functions
Energy Technology Data Exchange (ETDEWEB)
Krivosheev, A S [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation); Krivosheeva, O A [Bashkir State University, Ufa (Russian Federation)
2013-12-31
The existence problem for a basis in a differentiation-invariant subspace of analytic functions defined in a bounded convex domain in the complex plane is investigated. Conditions are found for the solvability of a certain special interpolation problem in the space of entire functions of exponential type with conjugate diagrams lying in a fixed convex domain. These underlie sufficient conditions for the existence of a basis in the invariant subspace. This basis consists of linear combinations of eigenfunctions and associated functions of the differentiation operator, whose exponents are combined into relatively small clusters. Necessary conditions for the existence of a basis are also found. Under a natural constraint on the number of points in the groups, these coincide with the sufficient conditions. That is, a criterion is found under this constraint that a basis constructed from relatively small clusters exists in an invariant subspace of analytic functions in a bounded convex domain in the complex plane. Bibliography: 25 titles.
On the Power Series Expansion of the Reciprocal Gamma Function
Fekih-Ahmed, Lazhar
2014-01-01
Corrected a sign in equation (3.21) due to a minor error in (3.19) where the fraction was inadvertently inverted. Now the rough approximation provides an elementary proof that the order of the reciprocal gamma function is 1 and that its type is maximal.; Using the reflection formula of the Gamma function, we derive a new formula for the Taylor coefficients of the reciprocal Gamma function. The new formula provides effective asymptotic values for the coefficients even for very small values of ...
Analysis III analytic and differential functions, manifolds and Riemann surfaces
Godement, Roger
2015-01-01
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...
Polymer as a function of monomer: Analytical quantum modeling
Nakhaee, Mohammad
2016-01-01
To identify an analytical relation between the properties of polymers and their's monomer a Metal-Molecule-Metal (MMM) junction has been presented as an interesting and widely used object of research in which the molecule is a polymer which is able to conduct charge. The method used in this study is based on the Green's function approach in the tight-binding approximation using basic properties of matrices. For a polymer base MMM system, transmission, density of states (DOS) and local density of states (LDOS) have been calculated as a function of the hamiltonian of the monomer. After that, we have obtained a frequency for LDOS variations in pass from a subunit to the next one which is a function of energy.
Analytic Beyond-Mean-Field BEC Wave Functions
Dunn, Martin; Laing, W. Blake; Watson, Deborah K.; Loeser, John G.
2006-05-01
We present analytic N-body beyond-mean-field wave functions for Bose-Einstein condensates. This extends our previous beyond-mean-field energy calculations to the substantially more difficult problem of determining correlated N-body wave functions for a confined system. The tools used to achieve this have been carefully chosen to maximize the use of symmetry and minimize the dependence on numerical computation. We handle the huge number of interactions when N is large (˜N^2/2 two-body interactions) by bringing together three theoretical methods. These are dimensional perturbation theory, the FG method of Wilson et al, and the group theory of the symmetric group. The wave function is then used to derive the density profile of a condensate in a cylindrical trap.This method makes no assumptions regarding the form or strength of the interactions and is applicable to both small-N and large-N systems.
Distributional asymptotic expansions of spectral functions and of the associated Green kernels
Directory of Open Access Journals (Sweden)
R. Estrada
1999-03-01
Full Text Available Asymptotic expansions of Green functions and spectral densities associated with partial differential operators are widely applied in quantum field theory and elsewhere. The mathematical properties of these expansions can be clarified and more precisely determined by means of tools from distribution theory and summability theory. (These are the same, insofar as recently the classic Cesaro--Riesz theory of summability of series and integrals has been given a distributional interpretation. When applied to the spectral analysis of Green functions (which are then to be expanded as series in a parameter, usually the time,these methods show: (1 The ``local'' or ``global'' dependence of the expansion coefficients on the background geometry, etc., is determined by the regularity of the asymptotic expansion of the integrand at the origin (in ``frequency space''; this marks the difference between a heat kernel and a Wightman two-point function, for instance. (2 The behavior of the integrand at infinity determines whether the expansion of the Green function is genuinely asymptotic in the literal, pointwise sense, or is merely valid in a distributional (Cesaro-averaged sense; this is the difference between the heat kernel and the Schrodinger kernel. (3 The high-frequency expansion of the spectral density itself is local in a distributional sense (but not pointwise. These observations make rigorous sense out of calculations in the physics literature that are sometimes dismissed as merely formal.
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-06-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process.
Petermann, Simon; Kniesburges, Stefan; Ziethe, Anke; Schützenberger, Anne; Döllinger, Michael
2016-01-01
The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO), called the voice onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
Evaluation of Analytical Modeling Functions for the Phonation Onset Process
Directory of Open Access Journals (Sweden)
Simon Petermann
2016-01-01
Full Text Available The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO, called the voice onset time (VOT, is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1 reliability of the fit function for a correct approximation of VO; (2 consistency represented by the standard deviation of VOT; and (3 accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.
Usage of analytical diagnostics when evaluating functional surface material defects
Directory of Open Access Journals (Sweden)
R. Frischer
2015-10-01
Full Text Available There are occurring defects due to defects mechanisms on parts of production devices surfaces. Outer defects pronouncement is changing throw the time with unequal speed. This variability of defect’s mechanism development cause that is impossible to evaluate technical state of the device in any moment, without the necessary underlying information. Proposed model is based on analytical diagnostics basis. Stochastic model with usage of Weibull probability distribution can assign probability of function surface defect occurrence on the operational information in any moment basis. The knowledge of defect range limiting moment, then enable when and in what range will be necessary to make renewal.
Elements of a function analytic approach to probability.
Energy Technology Data Exchange (ETDEWEB)
Ghanem, Roger Georges (University of Southern California, Los Angeles, CA); Red-Horse, John Robert
2008-02-01
We first provide a detailed motivation for using probability theory as a mathematical context in which to analyze engineering and scientific systems that possess uncertainties. We then present introductory notes on the function analytic approach to probabilistic analysis, emphasizing the connections to various classical deterministic mathematical analysis elements. Lastly, we describe how to use the approach as a means to augment deterministic analysis methods in a particular Hilbert space context, and thus enable a rigorous framework for commingling deterministic and probabilistic analysis tools in an application setting.
The Navier-Stokes equations an elementary functional analytic approach
Sohr, Hermann
2001-01-01
The primary objective of this monograph is to develop an elementary and self contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...
Loop expansion of the average effective action in the functional renormalization group approach
Lavrov, Peter M.; Merzlikin, Boris S.
2015-10-01
We formulate a perturbation expansion for the effective action in a new approach to the functional renormalization group method based on the concept of composite fields for regulator functions being their most essential ingredients. We demonstrate explicitly the principal difference between the properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.
Loop expansion of average effective action in functional renormalization group approach
Lavrov, Peter M
2015-01-01
We formulate a perturbation expansion for the effective action in new approach to the functional renormalization group (FRG) method based on concept of composite fields for regulator functions being therein most essential ingredients. We demonstrate explicitly the principal difference between properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.
The Navier-Stokes equations an elementary functional analytic approach
Sohr, Hermann
2001-01-01
The primary objective of this monograph is to develop an elementary and self-contained approach to the mathematical theory of a viscous, incompressible fluid in a domain of the Euclidean space, described by the equations of Navier-Stokes. Moreover, the theory is presented for completely general domains, in particular, for arbitrary unbounded, nonsmooth domains. Therefore, restriction was necessary to space dimensions two and three, which are also the most significant from a physical point of view. For mathematical generality, however, the linearized theory is expounded for general dimensions higher than one. Although the functional analytic approach developed here is, in principle, known to specialists, the present book fills a gap in the literature providing a systematic treatment of a subject that has been documented until now only in fragments. The book is mainly directed to students familiar with basic tools in Hilbert and Banach spaces. However, for the readers’ convenience, some fundamental properties...
An analytic function approach to weak mutually unbiased bases
Olupitan, T.; Lei, C.; Vourdas, A.
2016-08-01
Quantum systems with variables in Z(d) are considered, and three different structures are studied. The first is weak mutually unbiased bases, for which the absolute value of the overlap of any two vectors in two different bases is 1 /√{ k } (where k | d) or 0. The second is maximal lines through the origin in the Z(d) × Z(d) phase space. The third is an analytic representation in the complex plane based on Theta functions, and their zeros. It is shown that there is a correspondence (triality) that links strongly these three apparently different structures. For simplicity, the case where d =p1 ×p2, where p1 ,p2 are odd prime numbers different from each other, is considered.
Active plasma resonance spectroscopy: a functional analytic description
Lapke, M.; Oberrath, J.; Mussenbrock, T.; Brinkmann, R. P.
2013-04-01
The term ‘active plasma resonance spectroscopy’ denotes a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: a signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostic technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism to a symmetric probe design is given, as well as an interpretation in terms of a lumped circuit model consisting of series resonance circuits. We present ideas for an optimized probe design based on geometric and electrical symmetry.
Active plasma resonance spectroscopy: A functional analytic description
Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter
2012-01-01
The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostics technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism for a symmetric probe desing is given, as well as an interpreation...
Parametrization of analytic interatomic potential functions using neural networks.
Malshe, M; Narulkar, R; Raff, L M; Hagan, M; Bukkapatnam, S; Komanduri, R
2008-07-28
A generalized method that permits the parameters of an arbitrary empirical potential to be efficiently and accurately fitted to a database is presented. The method permits the values of a subset of the potential parameters to be considered as general functions of the internal coordinates that define the instantaneous configuration of the system. The parameters in this subset are computed by a generalized neural network (NN) with one or more hidden layers and an input vector with at least 3n-6 elements, where n is the number of atoms in the system. The Levenberg-Marquardt algorithm is employed to efficiently affect the optimization of the weights and biases of the NN as well as all other potential parameters being treated as constants rather than as functions of the input coordinates. In order to effect this minimization, the usual Jacobian employed in NN operations is modified to include the Jacobian of the computed errors with respect to the parameters of the potential function. The total Jacobian employed in each epoch of minimization is the concatenation of two Jacobians, one containing derivatives of the errors with respect to the weights and biases of the network, and the other with respect to the constant parameters of the potential function. The method provides three principal advantages. First, it obviates the problem of selecting the form of the functional dependence of the parameters upon the system's coordinates by employing a NN. If this network contains a sufficient number of neurons, it will automatically find something close to the best functional form. This is the case since Hornik et al., [Neural Networks 2, 359 (1989)] have shown that two-layer NNs with sigmoid transfer functions in the first hidden layer and linear functions in the output layer are universal approximators for analytic functions. Second, the entire fitting procedure is automated so that excellent fits are obtained rapidly with little human effort. Third, the method provides a
(G'/G)-Expansion Method Equivalent to Extended Tanh Function Method
Institute of Scientific and Technical Information of China (English)
LIU Chun-Ping
2009-01-01
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G'/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G'/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G'/G)-expansion method is equivalent to the extended tanh function method.
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from Nfunction. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
Directory of Open Access Journals (Sweden)
Firas Ghanim
2011-01-01
Full Text Available We introduce a new subclass of meromorphically analytic functions, which is defined by means of a Hadamard product (or convolution. A characterization property such as the coefficient bound is obtained for this class. The other related properties, which are investigated in this paper, include the distortion and the radius of starlikeness. We also consider several applications of our main results to the generalized hypergeometric functions.
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
Many-body Expanded Analytical Potential Energy Function for Ground State PuOH Molecule
Institute of Scientific and Technical Information of China (English)
LI Yue-Xun; GAO Tao; ZHU Zheng-He
2006-01-01
Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (4∑+, 6∑+, 8∑+) for three structures of PuOH molecule were optimized. The results show that the ground state is X6∑+of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O=0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.
Gniewek, Piotr; Jeziorski, Bogumił
2016-10-01
The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances R , all three formulas yield the correct expression -(2 /e ) R e-R , but they approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as 3-K, where K is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as aK/(K +1 ) , where a =ln2 - 1/2. The variational formula performs best, its error decays as K1 /2[aK/(K+1 ) ] 2 . These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the efficiency of the partial resummation of the multipole series effected by the polarization expansion. Our results demonstrate also the benefits of incorporating the variational principle into the perturbation theory of molecular interactions.
Institute of Scientific and Technical Information of China (English)
ZHENGZUKANG
1996-01-01
Suppose that Z1,Z2…,Zn are independent normal random variables with common mean μ and variance σ2. Then S2=∑n n=1 (zi-z)2/σ2 and T =（n-1的平方根）-Z/（S2/n的平方根） have x2n-1 distribution and tn-1 distribution respectively. If the normal assumption fails, there will be the remainders of the distribution functions and density functions. This paper gives the direct expansions of distribution functions and density functions of S2 and T up to o(n-1). They are more intuitive and convenient than usual Edgeworth expansions.
Elementary theory of analytic functions of one or several complex variables
Cartan, Henri
1995-01-01
Noted mathematician offers basic treatment of theory of analytic functions of a complex variable, touching on analytic functions of several real or complex variables as well as the existence theorem for solutions of differential systems where data is analytic. Also included is a systematic, though elementary, exposition of theory of abstract complex manifolds of one complex dimension. Topics include power series in one variable, holomorphic functions, Cauchy's integral, more. Exercises. 1973 edition.
Institute of Scientific and Technical Information of China (English)
YAN Zhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Institute of Scientific and Technical Information of China (English)
YANZhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
An extension of the compression-expansion fixed point theorem of functional type
Directory of Open Access Journals (Sweden)
Richard I. Avery
2016-09-01
Full Text Available In this article we use an interval of functional type as the underlying set in our compression-expansion fixed point theorem argument which can be used to exploit properties of the operator to improve conditions that will guarantee the existence of a fixed point in applications. An example is provided to demonstrate how intervals of functional type can improve conditions in applications to boundary value problems. We also show how one can use suitable $k$-contractive conditions to prove that a fixed point in a functional-type interval is unique.
Aft-body loading function for penetrators based on the spherical cavity-expansion approximation.
Energy Technology Data Exchange (ETDEWEB)
Longcope, Donald B., Jr.; Warren, Thomas Lynn; Duong, Henry
2009-12-01
In this paper we develop an aft-body loading function for penetration simulations that is based on the spherical cavity-expansion approximation. This loading function assumes that there is a preexisting cavity of radius a{sub o} before the expansion occurs. This causes the radial stress on the cavity surface to be less than what is obtained if the cavity is opened from a zero initial radius. This in turn causes less resistance on the aft body as it penetrates the target which allows for greater rotation of the penetrator. Results from simulations are compared with experimental results for oblique penetration into a concrete target with an unconfined compressive strength of 23 MPa.
Norgren, Martin
2009-01-01
The capacitance of the circular parallel plate capacitor is calculated by expanding the solution to the Love integral equation into a Fourier cosine series. Previously, this kind of expansion has been carried out numerically, resulting in accuracy problems at small plate separations. We show that this bottleneck can be alleviated, by calculating all expansion integrals analytically in terms of the Sine and Cosine integrals. Hence, we can, in the approximation of the kernel, use considerably larger matrices, resulting in improved numerical accuracy for the capacitance. In order to improve the accuracy at the smallest separations, we develop a heuristic extrapolation scheme that takes into account the convergence properties of the algorithm. Our results are compared with other numerical results from the literature and with the Kirchhoff result. Error estimates are presented, from which we conclude that our results is a substantial improvement compared with earlier numerical results.
The molecular structure and the analytical potential energy function of S-2 and S-3
Institute of Scientific and Technical Information of China (English)
Liu Yu-Fang; Li Jun-Yu; Han Xiao-Qin; Sun Jin-Feng
2007-01-01
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S-2 and S-3 have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S-2 ground state is of 2Ⅱg, the S-3 ground state is of 2B1 and S-3 has a bent (C2V) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S-3 ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S-2 has been derived according to the ab initio data through the leastsquares fitting. The force constants and spectroscopic data for S-2 have been calculated, then compared with other theoretical data. The analytical potential energy function of S-3 have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.
Cvetič, Gorazd; Kataev, A. L.
2016-07-01
We consider a new form of analytical perturbation theory expansion in the massless S U (Nc) theory, for the nonsinglet part of the e+e--annihilation to hadrons Adler function Dn s and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering Cns B j p, and demonstrate its validity at the O (αs4)-level at least. It is a two-fold series in powers of the conformal anomaly and of S U (Nc) coupling αs. Explicit expressions are obtained for the {β }-expanded perturbation coefficients at O (αs4) level in MS ¯ scheme, for both considered physical quantities. Comparisons of the terms in the {β }-expanded coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or Rδ-scheme motivated expansion in the Principle of Maximal Conformality. Relations between terms of the {β }-expansion for the Dn s- and Cns B j p-functions, which follow from the conformal symmetry limit and its violation, are presented. The relevance to the possible new analyses of the experimental data for the Adler function and Bjorken sum rule is discussed.
Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.
2017-01-01
In this paper we propose a method to study the functional renormalization group (FRG) at finite chemical potential. The method consists of mapping the FRG equations within the Fermi surface into a differential equation defined on a rectangle with zero boundary conditions. To solve this equation we use an expansion of the potential in a harmonic basis. With this method we determined the phase diagram of a simple Yukawa-type model; as expected, the bosonic fluctuations decrease the strength of the transition.
On the high-order topological asymptotic expansion for shape functions
Directory of Open Access Journals (Sweden)
Maatoug Hassine
2016-04-01
Full Text Available This article concerns the topological sensitivity analysis for the Laplace operator with respect to the presence of a Dirichlet geometry perturbation. Two main results are presented in this work. In the first result we discuss the influence of the considered geometry perturbation on the Laplace solution. In the second result we study the high-order topological derivatives. We derive a high-order topological asymptotic expansion for a large class of shape functions.
Method of Matched Expansions & the Singularity Structure of the Green Function
Casals, Marc; Ottewill, Adrian C; Wardell, Barry
2010-01-01
We present the first successful application of the method of Matched Expansions for the calculation of the self-force on a point particle in a curved spacetime. We investigate the case of a scalar charge in the Nariai spacetime, which serves as a toy model for a point mass moving in the Schwarzschild black hole background. We discuss the singularity structure of the Green function beyond the normal neighbourhood and the interesting effect of caustics on null wave propagation.
A new analytical edge spread function fitting model for modulation transfer function measurement
Institute of Scientific and Technical Information of China (English)
Tiecheng Li; Huajun Feng; Zhihai Xu
2011-01-01
@@ We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method.The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF.Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference.A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.%We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF). The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method. The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF. Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference. A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.
Heredero, Rafael Hernandez; Petrera, Matteo; Scimiterna, Christian
2007-01-01
We present a discrete multiscale expansion of the lattice potential Korteweg-de Vries (lpKdV) equation on functions of infinite order of slow-varyness. To do so we introduce a formal expansion of the shift operator on many lattices holding at all orders. The lowest secularity condition from the expansion of the lpKdV equation gives a nonlinear lattice equation, depending on shifts of all orders, of the form of the nonlinear Schr\\"odinger (NLS) equation
Energy Technology Data Exchange (ETDEWEB)
Olesov, A V [G.I. Nevelskoi Maritime State University, Vladivostok (Russian Federation)
2014-10-31
New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.
Multipole expansion of Green's function for guided waves in a transversely isotropic plate
Energy Technology Data Exchange (ETDEWEB)
Lee, Heung Son; Kim, Yoon Young [Seoul National University, Seoul (Korea, Republic of)
2015-05-15
The multipole expansion of Green's function in a transversely isotropic plate is derived based on the eigenfunction expansion method. For the derivation, Green's function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal) wave eigenfunctions. The specific form of the derived Green's function facilitates the handling of general scattering problems in an elastic plate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integral transform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work as the kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformed space, Green's function is explicitly derived by using the orthogonality. As an application of the derived Green's function, a scattering problem is solved by the transition matrix method.
Gniewek, Piotr
2016-01-01
The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances $R$, all three formulas yield the correct expression $-(2/e)Re^{-R}$, but approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as $3^{-K}$, where $K$ is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as $a^K/(K+1)!$, where $a=\\ln2 -\\tfrac{1}{2}$. The variational formula performs best, its error decays as $K^{1/2} [a^{ K}/(K+1)!]^2$. These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the ...
Ghasemi, Hamid; Rajabpour, Ali
2017-01-01
In this paper, we studied the thermal expansion coefficient (TEC) of pristine graphene sheets (GSs) using molecular dynamics (MD) simulation. We validated our model with previous studies employing AIREBO potential function and repeated the same simulation with the optimized Tersoff potential function. We also discussed the differences of the results and the corresponding reasons: evaluating the negative TEC of graphene by measuring the C-C bond length and out-of-plane vibrations of the GS. We finally showed that the ripples and wrinkles are more represented over the GS during the simulation with the AIREBO potential function rather than the optimized Tersoff. Comparing the results of both potential functions; it is seen that the results obtained by AIREBO potential function are in better agreement with those reported by previous scholars.
Yoo, Ji Ho; Köckert, Hansjochen; Mullaney, John C.; Stephens, Susanna L.; Evans, Corey J.; Walker, Nicholas R.; Le Roy, Robert. J.
2016-12-01
Pure rotational spectra of PbI and InI are interpreted to yield a full analytic potential energy function for each molecule. Rotational spectra for PbI have been retrieved from literature sources to perform the analysis. Rotational transition frequencies for excited vibrational states of InI (0 program, dPOTFIT. The well-depth parameter, De , is fixed at a literature value, while values of the equilibrium distance re and EMO exponent-coefficient expansion (potential-shape) parameters are determined from the fits. Comparison with potential functions determined after including older mid-IR and visible electronic transition data shows that our analysis of the pure microwave data alone yields potential energy functions that accurately predict (to better than 1%) the overtone vibrational energies far beyond the range spanned by the levels for which the microwave data is available.
On differential subordinations for a class of analytic functions defined by a linear operator
Directory of Open Access Journals (Sweden)
V. Ravichandran
2004-01-01
Full Text Available We obtain several results concerning the differential subordination between analytic functions and a linear operator defined for a certain family of analytic functions which are introduced here by means of these linear operators. Also, some special cases are considered.
Efficient Recursive Methods for Partial Fraction Expansion of General Rational Functions
Directory of Open Access Journals (Sweden)
Youneng Ma
2014-01-01
Full Text Available Partial fraction expansion (pfe is a classic technique used in many fields of pure or applied mathematics. The paper focuses on the pfe of general rational functions in both factorized and expanded form. Novel, simple, and recursive formulas for the computation of residues and residual polynomial coefficients are derived. The proposed pfe methods require only simple pure-algebraic operations in the whole computation process. They do not involve derivatives when tackling proper functions and require no polynomial division when dealing with improper functions. The methods are efficient and very easy to apply for both computer and manual calculation. Various numerical experiments confirm that the proposed methods can achieve quite desirable accuracy even for pfe of rational functions with multiple high-order poles or some tricky ill-conditioned poles.
Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China.
Directory of Open Access Journals (Sweden)
Jianglong Chen
Full Text Available Drawing upon the Landsat satellite images of Nanjing from 1985, 1995, 2001, 2007, and 2013, this paper integrates the convex hull analysis and common edge analysis at double scales, and develops a comprehensive matrix analysis to distinguish the different types of urban land expansion. The results show that Nanjing experienced rapid urban expansion, dominated by a mix of residential and manufacturing land from 1985 to 2013, which in turn has promoted Nanjing's shift from a compact mononuclear city to a polycentric one. Spatial patterns of three specific types of growth, namely infilling, extension, and enclave were quite different in four consecutive periods. These patterns result primarily from the existing topographic constraints, as well as government-oriented urban planning and policies. By intersecting the function maps, we also reveal the functional evolution of newly-developed urban land. Moreover, both self-enhancing and mutual promotion of the newly developed functions are surveyed over the last decade. Our study confirms that the integration of a multi-scale method and multi-perspective analysis, such as the spatiotemporal patterns and functional evolution, helps us to better understand the rapid urban growth in China.
Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China.
Chen, Jianglong; Gao, Jinlong; Yuan, Feng
2016-01-01
Drawing upon the Landsat satellite images of Nanjing from 1985, 1995, 2001, 2007, and 2013, this paper integrates the convex hull analysis and common edge analysis at double scales, and develops a comprehensive matrix analysis to distinguish the different types of urban land expansion. The results show that Nanjing experienced rapid urban expansion, dominated by a mix of residential and manufacturing land from 1985 to 2013, which in turn has promoted Nanjing's shift from a compact mononuclear city to a polycentric one. Spatial patterns of three specific types of growth, namely infilling, extension, and enclave were quite different in four consecutive periods. These patterns result primarily from the existing topographic constraints, as well as government-oriented urban planning and policies. By intersecting the function maps, we also reveal the functional evolution of newly-developed urban land. Moreover, both self-enhancing and mutual promotion of the newly developed functions are surveyed over the last decade. Our study confirms that the integration of a multi-scale method and multi-perspective analysis, such as the spatiotemporal patterns and functional evolution, helps us to better understand the rapid urban growth in China.
Institute of Scientific and Technical Information of China (English)
Huo TANG; Erhan DENIZ
2014-01-01
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bcκ+1f(z))′=κBcκf(z)−(κ−1)Bcκ+1f(z), where b, c, p ∈ C and κ = p+(b+1)/2 ∈ C\\Z−0 (Z−0 = {0,−1,−2, · · ·}). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
Wegner, K; Vinati, S; Piseri, P; Antonini, A; Zelioli, A; Barborini, E; Ducati, C; Milani, P
2012-05-11
The fabrication of functional thin films and devices by direct deposition of nanoparticles from the gas phase is a promising approach enabling, for instance, the integration of complex analytical and sensing capabilities on microfabricated platforms. Aerosol-based techniques ensure large-scale nanoparticle production and they are potentially suited for this goal. However, they are not adequate in terms of fine control over the lateral resolution of the coatings, mild processing conditions (avoiding high temperature and aggressive chemicals), low contamination and compatibility with microfabrication processes. Here we report the high-rate and efficient production of functional nanostructured films by nanoparticle assembling obtained by the combination of flame spray pyrolysis and supersonic expansion. Our approach merges the advantages of flame spray pyrolysis for bulk nanopowders such as process stability and wide material library availability with those of supersonic cluster beam deposition in terms of lateral resolution and of direct integration of nanomaterials on devices. We efficiently produced nanostructured films and devices (such as gas sensors) using metal oxide, pure noble metal and oxide-supported noble metal nanoparticles.
Asymptotic expansion of a partition function related to the sinh-model
Borot, Gaëtan; Kozlowski, Karol K
2016-01-01
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integra...
Analytical structure and properties of Coulomb wave functions for real and complex energies
Humblet, J.
1984-07-01
The radical Coulomb wave functions are analysed in their dependence on the energy E considered as a complex parameter. Repulsive and attractive fields are both considered. First turning to the function Φl ∝ r- l-1 Fl introduced by Briet, slightly modifying its definition, and assuming that the angular momentum is also a complex parameter, for which the notation L is used, it is proved that ΦL is an entire function of both E and L. From an expansion of the regular Whittaker function given by Buchholz, the Taylor expansion of ΦL in powers of E and a simple recurrence relation for its coefficients are easily obtained. The expansion of the regular function Fl is readily obtained from that of ΦL for L = l, but the irregular function Gl contains Φl and ∂Φ L/∂L for L = l and - l-1. Having proved that the expansion obtained for ΦL in powers of E can also be regarded as a uniformly convergent series of entire functions of L, the derivative ∂Φ L/∂L can be obtained by term-by-term derivation. This method for obtaining the expansion of Gl is straightforward and leads to a final result involving essentially: (i) the conventional function h(η) = 1/2ψ(1 + iη) + 1/2ψ(1 - iη) - ln η which is singular at η = ∞, i.e., at k = 0; (ii) two entire functions of E, namely Φl and Ψl; the terms of the expansion of the latter in powers of E contain only Bessel functions multiplied by Bernoulli numbers and coefficients easily obtained from a simple recurrence relation. As an application of the above results, the last sections contain: (i) an alternate from of Gl expansion useful in numerical computations; (ii) the definition and expansion of two linearly independent solutions of the Coulomb equation which are entire in E; (iii) the expansion and threshold properties of the outgoing and incoming solutions, Ol and Il, corresponding to those we have obtained for Fl and Gl.
Multivariable Lagrange expansion and generalization of Carlitz-Srivastava mixed generating functions
Energy Technology Data Exchange (ETDEWEB)
Dattoli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Lorenzutta, S. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Innovazione; Sacchetti, D. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Statistica, Probabilita' e Stat. Applicate
1999-07-01
Families of mixed generating functions, generalizing those of the Carlitz-Srivastava type, are derived by exploiting methods based on the multivariable extension of the Lagrange expansion. It is also shown that the combination with techniques of operational nature offers a wide flexibility to explore a wealth of mixed bilateral generating functions for special functions with many variables. [Italian] In questo lavoro si derivano famiglie di funzioni generatrici che generalizzano quelle del tipo Carlitz-Srivastava. I metodi utilizzati sono basati su una estensione a piu' variabili della espansione di Lagrange. Si dimostra anche che una opportuna combinazione con tecniche di natura operatoriale offre un'ampia flessibilita' per lo studio di funzioni generatrici viste per funzioni speciali con piu' variabili.
Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank
2016-06-30
Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption.
Mo, Yuxiang; Tao, Jianmin
2016-01-01
Recently, Tao and Mo proposed an accurate meta-generalized gradient approximation for the exchange-correlation energy. The exchange part is derived from the density matrix expansion, while the correlation part is obtained by improving the TPSS correlation in the low-density limit. To better understand this exchange functional, in this work, we combine the TM exchange with the original TPSS correlation, which we call TMTPSS, and make a systematic assessment on molecular properties. The test sets include the 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TMTPSS functional is competitive with or even more accurate than TM functional for some properties. In particular, it is the most accurate nonempirical semilocal DFT for the enthalpies of formation and harmonic vibrational frequencies, suggesting the robustness of TM exchange.
Simple analytic functions for modeling three-dimensional flow in layered aquifers
Fitts, Charles R.
1989-05-01
Analytic functions are presented for modeling three-dimensional steady groundwater flow in stratified aquifers. The functions create discontinuity in the potential across an infinite plane while maintaining continuity of the potential gradient across the plane. These functions may be superimposed with other analytic functions to model three-dimensional flow in stratified aquifers under a variety of boundary conditions. An interface between two layers of different hydraulic conductivity, an impermeable boundary, or a thin leaky layer may be modeled using such functions. These functions are simple compared to functions for doublet distributions over finite plane panels and are suitable for efficient modeling.
Troch, P.A.A.; Loon, van A.H.; Hilberts, A.G.J.
2004-01-01
This technical note presents an analytical solution to the linearized hillslope-storage Boussinesq equation for subsurface flow along complex hillslopes with exponential width functions and discusses the application of analytical solutions to storage-based subsurface flow equations in catchment stud
Energy Technology Data Exchange (ETDEWEB)
Heim, Erik [TU Braunschweig, Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)], E-mail: e.heim@tu-bs.de; Ludwig, Frank; Schilling, Meinhard [TU Braunschweig, Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)
2009-05-15
Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.
Sun, Xiaojun; Zhang, Jingshang
2015-12-01
A new integral formula, which has not been compiled in any integral tables or mathematical softwares, is proposed to obtain the analytical energy-angular spectra of the particles that are sequentially emitted from the discrete energy levels of the residual nuclei in the statistical theory of light nucleus reaction (STLN). In the cases of the neutron induced light nucleus reactions, the demonstration of the kinetic energy conservation in the sequential emission processes becomes straightforward thanks to this new integral formula and it is also helpful to largely reduce the volume of file-6 in nuclear reaction databases. Furthermore, taking p + 9Be reaction at 18 MeV as an example, this integral formula is extended to calculate the energy-angular spectra of the sequentially emitted neutrons for proton induced light nucleus reactions in the frame of STLN.
Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier
2015-02-01
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.
Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method
Garrido, E.; Kievsky, A.; Viviani, M.
2016-10-01
In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.
Asymptotic expansions of Feynman integrals of exponentials with polynomial exponent
Kravtseva, A. K.; Smolyanov, O. G.; Shavgulidze, E. T.
2016-10-01
In the paper, an asymptotic expansion of path integrals of functionals having exponential form with polynomials in the exponent is constructed. The definition of the path integral in the sense of analytic continuation is considered.
Takahashi, Hirokazu; Takahashi, Kaito; Yabushita, Satoshi
2015-05-21
Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace
Cvetič, Gorazd
2016-01-01
We consider a new form of analytical perturbation theory expansion in the massless $SU(N_c)$ theory, for the $e^+e^-$-annihilation to hadrons Adler function, and the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering, and demonstrate its validity at the $O(\\alpha_s^4)$-level at least. It is expressed through a two-fold series in terms of powers of the conformal anomaly and the coupling constant $\\alpha_s$ of the $SU(N_c)$ gauge model. Subsequently, explicit expressions are obtained for the $\\{\\beta\\}$-expanded perturbation coefficients at $O(\\alpha_s^4)$ level in $\\overline{\\rm MS}$ scheme, for the nonsinglet contribution to the Adler function and the Bjorken polarized sum rule. Comparisons of the obtained terms in the $\\{\\beta\\}$-expanded perturbation coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or $R_{\\delta}$-scheme motivated expansion in the Principle of Maximal Conformality. Relations are pres...
Heavy-quark QCD vacuum polarisation function. Analytical results at four loops
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2006-07-15
The first two moments of the heavy-quark vacuum polarisation function at four loops in quantum chromo-dynamics are found in fully analytical form by evaluating the missing massive four-loop tadpole master integrals. (orig.)
Hypercyclic Behavior of Translation Operators on Spaces of Analytic Functions on Hilbert Spaces
Directory of Open Access Journals (Sweden)
Zoryana Mozhyrovska
2015-01-01
Full Text Available We consider special Hilbert spaces of analytic functions of many infinite variables and examine composition operators on these spaces. In particular, we prove that under some conditions a translation operator is bounded and hypercyclic.
On Eneström–Kakeya Theorem and Related Analytic Functions
Indian Academy of Sciences (India)
W M Shah; A Liman
2007-08-01
We prove some extensions of the classical results concerning the Eneström–Kakeya theorem and related analytic functions. Besides several consequences, our results considerably improve the bounds by relaxing and weakening the hypothesis in some cases.
A Reverse Analytic Inequality for the Elementary Symmetric Function with Applications
Directory of Open Access Journals (Sweden)
Huan-Nan Shi
2013-01-01
Full Text Available We give a reverse inequality involving the elementary symmetric function by use of the Schur harmonic convexity theory. As applications, several new analytic inequalities for the n-dimensional simplex are established.
Analytic height correlation function of rough surfaces derived from light scattering
Zamani, M; Fazeli, S M; Downer, M C; Jafari, G R
2015-01-01
We obtain an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, solving for the height correlation functions, and comparing them to functions derived from AFM measurements. The results show good agreement. The advantages of this method are its accurate analytical equation for the height correlation function and the simplicity of the experimental setup required to measure it.
Constructing analytically mode functions of inflation with trans-Planckian physics
Zhu, Tao; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin
2013-01-01
We present a technique, {\\em the uniform asymptotic approximation}, to construct analytically solutions of the mode functions of inflation with trans-Planckian physics, in which the dispersion relations are nonlinear and have various turning points (zeros). Each turning point can be a single, double or higher multiple zero. Error bounds are constructed explicitly. It is shown that the analytical solutions describe the exact evolution of the mode function extremely well even only to the first-order approximations.
Exchange splitting of the interaction energy and the multipole expansion of the wave function
Gniewek, Piotr
2015-01-01
The exchange splitting $J$ of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula $J_{\\textrm{surf}}[\\varphi]$, the volume-integral formula of the symmetry-adapted perturbation theory $J_{\\textrm{SAPT}}[\\varphi]$, and a variational volume-integral formula $J_{\\textrm{var}}[\\varphi]$. The calculations are based on the multipole expansion of the wave function $\\varphi$, which is divergent for any internuclear distance $R$. Nevertheless, the resulting approximations to the leading coefficient $j_0$ in the large-$R$ asymptotic series $J(R) = 2 e^{-R-1} R ( j_0 + j_1 R^{-1} + j_2 R^{-2} +\\cdots ) $ converge, with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the $J_{\\textrm{var}}[\\varphi]$, $J_{\\textrm{surf}}[\\varphi]$, and $J_{\\textrm{SAPT}}[\\varphi]$ formulas are used, respectively. Additionally, we observe that also the higher $j_k$ coefficients are predicted correctly when the multipole expansion is used in the $J_{...
Cytokine-based log-scale expansion of functional murine dendritic cells.
Directory of Open Access Journals (Sweden)
Yui Harada
Full Text Available BACKGROUND: Limitations of the clinical efficacy of dendritic cell (DC-based immunotherapy, as well as difficulties in their industrial production, are largely related to the limited number of autologous DCs from each patient. We here established a possible breakthrough, a simple and cytokine-based culture method to realize a log-scale order of functional murine DCs (>1,000-fold, which cells were used as a model before moving to human studies. METHODOLOGY/PRINCIPAL FINDINGS: Floating cultivation of lineage-negative hematopoietic progenitors from bone marrow in an optimized cytokine cocktail (FLT3-L, IL-3, IL-6, and SCF led to a stable log-scale proliferation of these cells, and a subsequent differentiation study using IL-4/GM-CSF revealed that 3-weeks of expansion was optimal to produce CD11b+/CD11c+ DC-like cells. The expanded DCs had typical features of conventional myeloid DCs in vitro and in vivo, including identical efficacy as tumor vaccines. CONCLUSIONS/SIGNIFICANCE: The concept of DC expansion should make a significant contribution to the progress of DC-based immunotherapy.
Newton Algorithms for Analytic Rotation: An Implicit Function Approach
Boik, Robert J.
2008-01-01
In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…
Executive Functioning in Adult ADHD: A Meta-Analytic Review
A.M. Boonstra (Marije); J. Oosterlaan (Jaap); J.A. Sergeant (Joseph); J.K. Buitelaar (Jan)
2005-01-01
textabstractBackground: Several theoretical explanations of ADHD in children have focused on executive functioning as the main explanatory neuropsychological domain for the disorder. In order to establish if these theoretical accounts are supported by research data for adults with ADHD, we compared
Executive functioning in adult ADHD: a meta-analytic review.
Boonstra, A.M.; Oosterlaan, J.; Sergeant, J.A.; Buitelaar, J.K.
2005-01-01
BACKGROUND: Several theoretical explanations of ADHD in children have focused on executive functioning as the main explanatory neuropsychological domain for the disorder. In order to establish if these theoretical accounts are supported by research data for adults with ADHD, we compared neuropsychol
Constructing and Deriving Reciprocal Trigonometric Relations: A Functional Analytic Approach
Ninness, Chris; Dixon, Mark; Barnes-Holmes, Dermot; Rehfeldt, Ruth Anne; Rumph, Robin; McCuller, Glen; Holland, James; Smith, Ronald; Ninness, Sharon K.; McGinty, Jennifer
2009-01-01
Participants were pretrained and tested on mutually entailed trigonometric relations and combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine, secant, and cosecant. Experiment 1 focused on training and testing transformations of these mathematical functions in terms of amplitude and frequency followed…
Representation of spectra of algebras of block-symmetric analytic functions of bounded type
Directory of Open Access Journals (Sweden)
V. V. Kravtsiv
2016-12-01
Full Text Available The paper contains a description of symmetric convolution of the algebra of block-symmetric analytic functions of bounded type on $\\ell_{1}$-sum of the space $\\mathbb{C}^{2}.$ We show that the specrum of such algebra does not coincide of point evaluation functionals and described characters of the algebra as functions of exponential type with plane zeros.
A method of calculating the Jost function for analytic potentials
Energy Technology Data Exchange (ETDEWEB)
Rakityansky, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics; Sofianos, S.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Amos, K. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1995-05-10
A combination of the variable-constant and complex coordinate rotation methods is used to solve the two-body Schroedinger equation. The equation is replaced by a system of linear first-order differential equations, which enables one to perform direct calculation of the Jost function for all complex momenta of physical interest including the spectral points corresponding to bound and resonance states. 16 refs., 2 tabs., 2 figs.
Indian Academy of Sciences (India)
Choong Yong Ung; Teow Chong Teoh
2014-06-01
DARPP-32 (dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.
Predictive functional control of an expansion valve for minimizing the superheat of an evaporator
Energy Technology Data Exchange (ETDEWEB)
Fallahsohi, H.; Place, S. [EDF R and D, Av. des Renardieres, 77818 Moret-sur-Loing (France); Changenet, C. [Universite de Lyon, ECAM, Laboratoire d' Energetique, 40 Montee Saint-Barthelemy, 69321 Lyon cedex 05 (France); Ligeret, C. [Schneider-Electric, 37 Quai Paul Louis Merlin, 38050 Grenoble (France); Lin-Shi, X. [Universite de Lyon, INSA-Lyon, Ampere, CNRS UMR5005, 24 avenue Jean Capelle, 69621 Villeurbanne cedex (France)
2010-03-15
In a previous paper, a Predictive Functional Control (PFC) method was proposed to control the evaporator superheat with an electronic expansion valve. It has been shown that superheat may be more accurately controlled by PFC than the conventional Proportional-Integral-Derivative (PID) control. In this paper, the proposed methodology is extended to regulate the condensing pressure. In order to study the influence of this control method on the Coefficient of Performance (COP), experiments are conducted on a refrigerating machine by changing the cooling capacity from 120 to 30 kW. As PFC improves disturbance rejection compared to a PID control, it is possible to reduce the superheat setting value and to prevent any unevaporated refrigerant liquid from reaching the compressor. As a consequence the use of PFC leads to an increase of COP which depends on operating conditions. (author)
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
Bagci, A
2016-01-01
The author in his previous works were presented a numerical integration method, namely, global-adaptive with the Gauss-Kronrod numerical integration extension in order to accurate calculation of molecular auxiliary functions integrals involve power functions with non-integer exponents. They are constitute elements of molecular integrals arising in Dirac equation when Slater-type orbitals with non-integer principal quantum numbers are used. Binomial series representation of power functions method, so far, is used for analytical evaluation of the molecular auxiliary function integrals however, intervals of integration cover areas beyond the condition of convergence. In the present study, analytical evaluation of these integrals is re-examined. They are expressed via prolate spheroidal coordinates. An alternative analytical approximation are derived. Slowly convergent binomial series representation formulae for power functions is investigated through nonlinear sequence transformations for the acceleration of con...
Stefańska, Patrycja
2016-01-01
The Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\\/~Szmytkowski, J.\\ Phys.\\ B \\textbf{30}, 825 (1997); \\textbf{30}, 2747(E) (1997)] is exploited to derive a closed-form expression for the magnetizability of the relativistic one-electron atom in an arbitrary discrete state, with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric functions ${}_3F_2$ of the unit argument. Our general expression agrees with formulas obtained analytically earlier by other authors for some particular states of the atom. We present also numerical values of the magnetizability for some excited states of selected hydrogenlike ions with $1 \\leqslant Z \\leqslant 137$ and compare them with data available in the literature.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-01-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very CPU-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic cor...
Energy Technology Data Exchange (ETDEWEB)
Catoni, Francesco; Zampetti, Paolo [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Cannata, Roberto [ENEA, Centro Ricerche Casaccia, Rome (Italy). Funzione Centrale INFO; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione
1997-10-01
Systems of two-dimensional hypercomplex numbers are usually studied in their canonical form, i.e. according to the multiplicative rule for the ``imaginary``versor i{sup 2} = {+-} 1, 0. In this report those systems for which i{sup 2} = {alpha} + {beta}i are studied and expressions are derived for functions given by series expansion as well as for some elementary functions. The results obtained for systems which can be decomposed are then extended to all systems.
THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
Institute of Scientific and Technical Information of China (English)
Zhongwei SI; Jinyuan DU
2013-01-01
Let R0,n be the real Clifford algebra generated by e1,e2,…,en satisfying eiej +ejei =-2δij,i,j =1,2,…,n.e0 is the unit element.Let Ω be an open set.A function f is called left generalized analytic in Ω if f satisfies the equation Lf =0,(0.1)where L =q0e0(δ)x0 + q1e1(δ)x1 + … +qnen(δ)xn,qi ＞ 0,i =0,1,…,n.In this article,we first give the kernel function.for the generalized analytic function.Further,the Hilbert boundary value problem for generalized analytic functions in Rn+1+ will be investigated.
Alpay, Daniel
2015-01-01
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.
Fukushima, Kimichika
2015-01-01
This paper presents analytical eigenenergies for a pair of confined fundamental fermion and antifermion under a linear potential derived from the Wilson loop for the non-Abelian Yang-Mills field. We use basis functions localized in spacetime, and the Hamiltonian matrix of the Dirac equation is analytically diagonalized. The squared system eigenenergies are proportional to the string tension and the absolute value of the Dirac's relativistic quantum number related to the total angular momentum, consistent with the expectation.
Energy Technology Data Exchange (ETDEWEB)
Kalmykov, M.Yu.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-07-15
We prove the following theorems: 1) The Laurent expansions in {epsilon} of the Gauss hypergeometric functions {sub 2}F{sub 1}(I{sub 1}+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+(p/q)+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z) and {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+ a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), where I{sub 1},I{sub 2},I{sub 3},p,q are arbitrary integers, a,b,c are arbitrary numbers and {epsilon} is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+c{epsilon};z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums {sigma}{sup {infinity}}{sub j=1}({gamma}(j))/({gamma}(1+j-(p)/(q))) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1) and the multiple rational sums {sigma}{sup {infinity}}{sub j=1} ({gamma}(j+(p)/(q)))/({gamma}(1+j)) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1), where S{sub a}(j)={sigma}{sup j}{sub k=1}(1)/(k{sup a}) is a harmonic series and c is an arbitrary integer, are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions {sub p}F{sub p.1}((vector)A+(vector)a{epsilon};(vector)B+(vector)b{epsilon},(p)/(q)+B{sub p-1};z) and {sub p}F{sub p-1}((vector)A+(vector)a{epsilon},(p)/(q)+A{sub p};(vector)B+(vector)b{epsilon};z) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials. (orig.)
Kishore Prajapat, Jugal
2008-01-01
2000 Math. Subject Classification: 30C45 A known family of fractional integral operators is used here to define some new subclasses of analytic functions in the open unit disk U. For each of these new function classes, several inclusion relationships are established.
Theoretical study of Structural and analytical potential energy functions of GaN
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Using Density Function Theory,the present work has optimized the equilibrium geometry of GaN. Murrell-Sorbie analytical potential energy functions of GaN have been derived by using ab initio data and the least-square fitting method,and harmonic frequency,force constant and spectroscopic data also have been calculated.
Analytical solutions for spin response functions in model storage rings with Siberian Snakes
Energy Technology Data Exchange (ETDEWEB)
Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net
2009-03-01
I present analytical solutions for the spin response functions for radial field rf dipole spin flippers in models of storage rings with one Siberian Snake or two diametrically opposed orthogonal Siberian Snakes. The solutions can serve as benchmarks tests for computer programs. The spin response functions can be used to calculate the resonance strengths for radial field rf dipole spin flippers in storage rings.
Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.
Directory of Open Access Journals (Sweden)
Timothy Jegla
Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.
Analytic Solutions of a Polynomial-Like Iterative Functional Equation near Resonance
Institute of Scientific and Technical Information of China (English)
LIU Ling Xia; SI Jian Guo
2009-01-01
In this paper existence of local analytic solutions of a polynomial-like iterative functional equation is studied. As well as in previous work, we reduce this problem with the Schroder transformation to finding analytic solutions of a functional equation without iteration of the unknown function f. For technical reasons, in previous work the constant α given in the Schr(o)der transformation, i.e., the eigenvalue of the linearized f at its fixed point O, is required to fulfill that α is off the unit circle S1 or lies on the circle with the Diophantine condition. In this paper,we obtain results of analytic solutions in the case of α at resonance, i.e., at a root of the unity and the case of α near resonance under the Brjuno condition.
Borovikov, Dmitry
2012-01-01
Features and parameters of \\boiling" liquid layer, which arises under conditions of isentropic expansion of warm dense matter (WDM), are stud- ied with the use of simplest van der Waals equation of state (EOS). Advan- tage of this EOS is possibility of demonstrable and semi-analytical descrip- tion of thermo- and hydrodynamics of the process. Idealized self-similar case of behavior of matter on interception of equilibrium (not metastable) isoentropic curve and boundary of gas-liquid coexistence curve (binodal) is analyzed. The possibility of formation of such "liquid layer" was studied previously in [1] during solving the problem of ablation of metal surface under the action of strong laser radiation. Peculiarity of such "freezing" of finite portion of expanding matter in the state, which corresponds to the binodal of gas-liquid or/and other phase transitions|so called "phase freezeout"and prospects of applications of this phenomenon for intended generation of uniform and extensive zone of previously unexplor...
Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations
Kudryashov, N. A.
2015-01-01
The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution
Wong, Raymond M; Scotland, Ron R; Lau, Roy L; Wang, Changyu; Korman, Alan J; Kast, W M; Weber, Jeffrey S
2007-10-01
Negative co-stimulatory signaling mediated via cell surface programmed death (PD)-1 expression modulates T and B cell activation and is involved in maintaining peripheral tolerance. In this study, we examined the effects of a fully human PD-1-abrogating antibody on the in vitro expansion and function of human vaccine-induced CD8+ T cells (CTLs) specific for the melanoma-associated antigens glycoprotein 100 (gp100) and melanoma antigen recognized by T cells (MART)-1. PD-1 blockade during peptide stimulation augmented the absolute numbers of CD3+, CD4+, CD8+ and gp100/MART-1 MHC:peptide tetramer+ CTLs. This correlated with increased frequencies of IFN-gamma-secreting antigen-specific cells and augmented lysis of gp100+/MART-1+ melanoma targets. PD-1 blockade also increased the fraction of antigen-specific CTLs that recognized melanoma targets by degranulation, suggesting increased recognition efficiency for cognate peptide. The increased frequencies and absolute numbers of antigen-specific CTLs by PD-1 blockade resulted from augmented proliferation, not decreased apoptosis. Kinetic analysis of cytokine secretion demonstrated that PD-1 blockade increased both type-1 and type-2 cytokine accumulation in culture without any apparent skewing of the cytokine repertoire. These findings have implications for developing new cancer immunotherapy strategies.
Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach
Directory of Open Access Journals (Sweden)
Fenghua He
2013-01-01
Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.
Kamikado, Kazuhiko; Uchino, Shun
2016-01-01
Motivated by experiments with cold atoms, we investigate a mobile impurity immersed in a Fermi sea in three dimensions at zero temperature by means of the functional renormalization group. We first perform the derivative expansion of the effective action to calculate the ground state energy and Tan's contact across the polaron-molecule transition for several mass imbalances. Next we study quasiparticle properties of the impurity by using a real-time method recently developed in nuclear physics, which allows one to go beyond the derivative expansion. We obtain the spectral function of the polaron, the effective mass and quasiparticle weight of attractive and repulsive polarons, and clarify how they are affected by mass imbalances.
Kamikado, Kazuhiko; Kanazawa, Takuya; Uchino, Shun
2017-01-01
Motivated by experiments with cold atoms, we investigate a mobile impurity immersed in a Fermi sea in three dimensions at zero temperature by means of the functional renormalization group. We first perform the derivative expansion of the effective action to calculate the ground-state energy and Tan's contact across the polaron-molecule transition for several mass imbalances. Next we study quasiparticle properties of the impurity by using a real-time method recently developed in nuclear physics, which allows one to go beyond the derivative expansion. We obtain the spectral function of the polaron and the effective mass and quasiparticle weight of attractive and repulsive polarons, and clarify how they are affected by mass imbalances.
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi
2016-01-15
The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations.
Ryttov, T A
2016-01-01
We consider an asymptotically free vectorial gauge theory, with gauge group $G$ and $N_f$ fermions in a representation $R$ of $G$, having an infrared (IR) zero in the beta function at $\\alpha_{IR}$. We present general formulas for scheme-independent series expansions of quantities, evaluated at $\\alpha_{IR}$, as powers of an $N_f$-dependent expansion parameter, $\\Delta_f$. First, we apply these to calculate the derivative $d\\beta/d\\alpha$ evaluated at $\\alpha_{IR}$, denoted $\\beta'_{IR}$, which is equal to the anomalous dimension of the ${\\rm Tr}(F_{\\mu\
Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig
2011-03-01
Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!
Edgeworth expansion for the survival function estimator in the Koziol-Green model
Institute of Scientific and Technical Information of China (English)
SUN; Liuquan(孙六全); WU; Guofu(吴国富)
2002-01-01
In the KozioI-Green or proportional hazards random censorship model, the asymptotic accuracy of the estimated one-term Edgeworth expansion and the smoothed bootstrap approximation for the Studen tized Abdushukurov-Cheng-Lin estimator is investigated. It is shown that both the Edgeworth expansion estimate and the bootstrap approximation are asymptotically closer to the exact distribution of the Studentized Abdushukurov-Cheng-Lin estimator than the normal approximation.
Elgohary, Tarek A.; Turner, James D.; Junkins, John L.
2015-06-01
A symmetric flexible rotating spacecraft can be modeled as a distributed parameter system of a rigid hub attached to two flexible appendages with tip masses. First, Hamilton's extended principle is utilized to establish a general treatment for deriving the dynamics of multi-body dynamical systems to establish a hybrid system of integro-partial differential equations that model the evolution of the system in space and time. A Generalized State Space (GSS) system of equations is constructed in the frequency domain to obtain analytic transfer functions for the rotating spacecraft. This model does not include spatial discretization. The frequency response of the generally modeled spacecraft and a special case with no tip masses are presented. Numerical results for the system frequency response obtained from the analytic transfer functions are presented and compared against the classical assumed modes numerical method with two choices of admissible functions. The truncation-error-free analytic results are used to validate the numerical approximations and to agree well with the classical widely used finite dimensional numerical solutions. Fundamentally, we show that the rigorous transfer function, without introduction of spatial discretization, can be directly used in control law design with a guarantee of Lyapunov stable closed loop dynamics. The frequency response of the system is used in a classical control problem where the Lyapunov stable controller is derived and tested for gain selection. The correlation between the controller design in the frequency domain utilizing the analytic transfer functions and the system response is analyzed and verified. The derived analytic transfer functions provide a powerful tool to test various control schemes in the frequency domain and a validation platform for existing numerical methods for distributed parameters models. The same platform has been used to obtain the frequency response of more complex beam models following
Institute of Scientific and Technical Information of China (English)
SONG Li-Na; ZHANG Hong-Qing
2007-01-01
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
Munoz-Martinez, Amanda; Novoa-Gomez, Monica; Gutierrez, Rochy Vargas
2012-01-01
Functional Analytic Psychotherapy (FAP) has been making an important rise in Ibero-America in recent years. This paper presents a review of different contributions, problems and some proposals. Three principal topics are reviewed: (a) general characteristics and theoretical bases of FAP, (b) the uses of FAP and its relationship with other…
An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy
Collis, Peter
2012-01-01
Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…
Bowen, Sarah; Haworth, Kevin; Grow, Joel; Tsai, Mavis; Kohlenberg, Robert
2012-01-01
Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991) aims to improve interpersonal relationships through skills intended to increase closeness and connection. The current trial assessed a brief mindfulness-based intervention informed by FAP, in which an interpersonal element was added to a traditional intrapersonal mindfulness…
Institute of Scientific and Technical Information of China (English)
TsuiChih－Ya
1992-01-01
A set of new gasdynamic functions with varying specific heat are deriveo for the first time.An original analytical solution of normal shock waves is owrked out therewith.This solution is thereafter further improved by not involving total temperature,Illustrative examples of comparison are given,including also some approximate solutions to show the orders of their errors.
Chebrakov, Yu. V.
2014-01-01
In this paper we discuss techniques suitable for translating the verbal descriptions of computative algorithms into a set of mathematical formulae and demonstrate that logical functions can be used eﬀectively in order to create non-linear analytical formulae, describing a set of combinatorial and number-theoretic computative algorithms.
Directory of Open Access Journals (Sweden)
Hüseyin Irmak
2014-01-01
Full Text Available By making use of different techniques given in Miller and Mocanu (2000 (and also in Jack (1971, some recent results consisting of certain multivalently analytic functions given both in Irmak (2005 and in Irmak (2010 are firstly restated and some of their applications are then pointed out.
Functional Analytic Psychotherapy (FAP): A Review of Publications from 1990 to 2010
Mangabeira, Victor; Kanter, Jonathan; Del Prette, Giovana
2012-01-01
Functional Analytic Psychotherapy (FAP), a therapy based on radical behaviorism, establishes the priority of the therapeutic interaction as a mechanism of change in psychotherapy. Since the first book on FAP appeared in 1991, it has been the focus of many papers and has been incorporated by the community of behavior therapists. This paper is a…
Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions
Directory of Open Access Journals (Sweden)
Selvaraj C.
2016-07-01
Full Text Available The main object of this paper is to study Fekete-Szegö problem for a certain subclass of p - valent analytic functions. Fekete-Szegö inequality of several classes are obtained as special cases from our results. Applications of the result are also obtained on the class defined by convolution.
Directory of Open Access Journals (Sweden)
Mengkun Zhu
2015-01-01
Full Text Available Some sharp estimates of coefficients, distortion, and growth for harmonic mappings with analytic parts convex or starlike functions of order β are obtained. We also give area estimates and covering theorems. Our main results generalise those of Klimek and Michalski.
Differential Sandwich Theorems for some Subclasses of Analytic Functions Involving a Linear Operator
Directory of Open Access Journals (Sweden)
S. Sivasubramanian
2007-10-01
Full Text Available By making use of the familiar Carlson-Shaffer operator,the authors derive derive some subordination and superordination results for certain normalized analytic functions in the open unit disk. Relevant connections ofthe results, which are presented in this paper, with various other known results are also pointed out.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-08-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it
Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)
Institute of Scientific and Technical Information of China (English)
Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia
2006-01-01
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.
betaFIT: A computer program to fit pointwise potentials to selected analytic functions
Le Roy, Robert J.; Pashov, Asen
2017-01-01
This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.
Muñoz-Martínez, Amanda M; Coletti, Juan P
2015-01-01
Functional Analytic Psychotherapy (FAP) is a therapeutic approach developed in 'third wave therapies' context. FAP is characterized by use therapeutic relationship and the behaviors emit into it to improve clients daily life functioning. This therapeutic model is supported in behavior analysis principles and contextual functionalism philosophy. FAP proposes that clients behavior in session are functional equivalent with those out of session; therefore, when therapists respond to clients behaviors in session contingently, they promote and increase improvements in the natural setting. This article poses main features of FAP, its philosophical roots, achievements and research challenges to establish FAP as an independent treatment based on the evidence.
Institute of Scientific and Technical Information of China (English)
HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
Muñoz-Martínez, Amanda M; Coletti, Juan Pablo
2015-01-01
Abstract Functional Analytic Psychotherapy (FAP) is a therapeutic approach developed in context. FAP is characterized by use therapeutic relationship and the behaviors emit into it to improve clients daily life functioning. This therapeutic model is supported in behavior analysis principles and contextual functionalism philosophy. FAP proposes that clients behavior in session are functional equivalent with those out of session; therefore, when therapists respond to clients behaviors in session contingently, they promote and increase improvements in the natural setting. This article poses main features of FAP, its philosophical roots, achievements and research challenges to establish FAP as an independent treatment based on the evidence.
Janssen, Lukas; Herbut, Igor F.
2017-02-01
Several materials in the regime of strong spin-orbit interaction such as HgTe, the pyrochlore iridate Pr2Ir2O7 , and the half-Heusler compound LaPtBi, as well as various systems related to these three prototype materials, are believed to host a quadratic band touching point at the Fermi level. Recently, it has been proposed that such a three-dimensional gapless state is unstable to a Mott-insulating ground state at low temperatures when the number of band touching points N at the Fermi level is smaller than a certain critical number Nc. We further substantiate and quantify this scenario by various approaches. Using ɛ expansion near two spatial dimensions, we show that Nc=64 /(25 ɛ2) +O (1 /ɛ ) and demonstrate that the instability for N
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2015-03-28
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Directory of Open Access Journals (Sweden)
Ovchintsev Mikhail Petrovich
2014-04-01
Full Text Available This paper considers the problem of optimal recovery of bounded analytic functions. Namely, the values of these functions are determined at the point from their values at n given points lying in the unit circle. At first, we recall the necessary basic concepts: error of approximation by some method (which is a complex function of n complex variables, the best approximation method. Some theorems from the works of K.U. Osipenko are discussed: on the existence of a best linear approximation method and on calculating the error of best recovery method. After that we write out the formula for finding the error of best approximation method of bounded analytic functions in a unit circle. The lemma of conformal invariance of optimal recovery problem of these functions follows. We prove that under conformal mapping of the unit circle onto itself the error of the best approximation method before mapping coincides with the error of the best approximation method after mapping. It is also proved that a linear best method after conformal mapping coincides with the linear best restore method before this mapping (wherein the problem of optimal recovery after mapping is considered on the images of n given points lying in the original unit circle. Finally, we consider the problem of optimal recovery of bounded analytic functions in a circle in special case when the given points coincide with the vertices of a regular n-gon, and the point itself coincides with its center (which coincides with the origin. We prove that all the coefficients of the best linear method in this case are identical (wherein we apply the lemma of conformal invariance of optimal recovery problem of bounded analytic functions. The formulas for calculating these coefficients are given (for this purpose we write out an integral. The result is the smart, simple formulas for calculating the coefficients of the best linear approximation method for this particular case.
Foundations of predictive analytics
Wu, James
2012-01-01
Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o
Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C
2014-06-01
A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function.
Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions
Directory of Open Access Journals (Sweden)
Saibah Siregar
2012-01-01
Full Text Available In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double zeta functions in the open unit disc U={z:zEC, |z|<1}. The estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function class Σ are obtained in our investigation.
Lundengård, Karl; Javor, Vesna; Silvestrov, Sergei
2016-01-01
A multi-peaked form of the analytically extended function (AEF) is used for approximation of lightning current waveforms in this paper. The AEF function's parameters are estimated using the Marquardt least-squares method (MLSM), and the general procedure for fitting the $p$-peaked AEF function to a waveform with an arbitrary (finite) number of peaks is briefly described. This framework is used for obtaining parameters of 2-peaked waveforms typically present when measuring first negative stroke currents. Advantages, disadvantages and possible improvements of the approach are also discussed.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G.; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V.
2017-01-01
Background Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
An analytical approximation of the growth function in Friedmann-Lema\\^itre universes
Kasai, Masumi
2010-01-01
We present an analytical approximation formula for the growth function in a spatially flat cosmology with dust and a cosmological constant. Our approximate formula is written simply in terms of a rational function. We also show the approximate formula in a dust cosmology without a cosmological constant, directly as a function of the scale factor in terms of a rational function. The single rational function applies for all, open, closed and flat universes. Our results involve no elliptic functions, and have very small relative error of less than 0.2 per cent over the range of the scale factor $1/1000 \\la a \\lid 1$ and the density parameter $0.2 \\la \\Omega_{\\rmn{m}} \\lid 1$ for a flat cosmology, and less than $0.4$ per cent over the range $0.2 \\la \\Omega_{\\rmn{m}} \\la 4$ for a cosmology without a cosmological constant.
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth
2014-10-01
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
A micro-process analysis of Functional Analytic Psychotherapy's mechanism of change.
Busch, Andrew M; Kanter, Jonathan W; Callaghan, Glenn M; Baruch, David E; Weeks, Cristal E; Berlin, Kristoffer S
2009-09-01
This study sought to clarify the micro-process of Functional Analytic Psychotherapy (FAP) by using the Functional Analytic Psychotherapy Rating Scale (FAPRS) to code every client and therapist turn of speech over the course of successful treatment of an individual meeting diagnostic criteria for depression and histrionic personality disorder. Treatment consisted of cognitive behavioral therapy alone followed by the addition of FAP techniques in a unique A / A+B design. In-session client behavior improved following the shift to FAP techniques, and micro-process data suggested that client behavior was effectively shaped by in-vivo FAP procedures. These results support FAP's purported mechanisms of change and highlight the advantages of utilizing molecular coding systems to explore these mechanisms.
Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava
Rassias, Michael
2014-01-01
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.
Janssen, Lukas
2016-01-01
Several materials in the regime of strong spin-orbit interaction such as HgTe, the pyrochlore iridate Pr$_2$Ir$_2$O$_7$, and the half-Heusler compound LaPtBi, as well as various systems related to these three prototype materials, are believed to host a quadratic band touching point at the Fermi level. Recently, it has been proposed that such a three-dimensional gapless state is unstable to a Mott-insulating ground state at low temperatures when the number of band touching points $N$ at the Fermi level is smaller than a certain critical number $N_c$. We further substantiate and quantify this scenario by various approaches. Using $\\epsilon$ expansion near two spatial dimensions, we show that $N_c = 64/(25 \\epsilon^2) + O(1/\\epsilon)$ and demonstrate that the instability for $N < N_c$ is towards a nematic ground state that can be understood as if the system were under (dynamically generated) uniaxial strain. We also propose a truncation of the functional renormalization group equations in the dynamical bosoni...
Bagci, A.
2016-01-01
In this work, analytical solutions to relativistic molecular integrals are proposed for use in ab-initio molecular electronic structure calculations. They are expressed through molecular auxiliary functions integrals in prolate spheroidal coordinates. Recurrence relations and new convergent series representation formulae are derived. They involve Slater-type orbitals basis set with non-integer principal quantum numbers. The comparison is made with the benchmark results of use numerical global...
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-01-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numericall...
Institute of Scientific and Technical Information of China (English)
李建平; 唐远炎; 严中洪; 张万萍
2001-01-01
Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When/N = 2k- 1 and N = 2k , the unified analytic constructions of orthogonal wavelet filters are put forward,respectively. The famous Daubechies filter and some other well-known wavelet filters are tested by the proposed novel method which is very useful for wavelet theory research and many application areas such as pattern recognition.
Multi-peaked analytically extended function representing electrostatic discharge (ESD) currents
Lundengârd, Karl; Rančić, Milica; Javor, Vesna; Silvestrov, Sergei
2017-01-01
A multi-peaked analytically extended function (AEF), previously applied by the authors to modeling of lightning discharge currents, is used in this paper for representation of the electrostatic discharge (ESD) currents. In order to estimate its non-linear parameters, the Marquardt least-squares method (MLSM) is used. ESD currents' modelling is illustrated through an essential example corresponding to approximation of the IEC Standard 61000-4-2 waveshape.
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
Indian Academy of Sciences (India)
AYYAZ ALI; MUHAMMAD ASAD IQBAL; SYED TAUSEEF MOHYUD-DIN
2016-11-01
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp$(−\\psi(\\eta)$)-expansion method is implemented tofind exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effectiveand can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method providesadditional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order andcould be protracted to other physical phenomena.
Institute of Scientific and Technical Information of China (English)
Zeng Hui; Zhao Jun
2012-01-01
In this paper,the energy,equilibrium geometry,and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP,B3P86,CCSD(T),and QCISD(T) methods in conjunction with the 6-311++G(3df,3pd) and cc-pVTZ basis sets.A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df,3pd) method can give better energy calculation results for the PO2 molecule.It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1.The equilibrium parameters of the structure are Rp-O =0.1465 nm,∠OPO =134.96°,and the dissociation energy is Ed =19.218 eV.The bent vibrational frequency v1 =386 cm-1,symmetric stretching frequency v2 =1095 cm-1,and asymmetric stretching frequency v3 =1333 cm-1 are obtained.On the basis of atomic and molecular reaction statics,a reasonable dissociation limit for the ground state of the PO2 molecule is determined.Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory.The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.
Directory of Open Access Journals (Sweden)
Vinod Babu .K
2015-06-01
Full Text Available Background: PNF stretching and chest mobility exercises found to be effective in elder patients, however the combined effectiveness of these techniques were unknown. The purpose of this study is to find the effect of Hold-relax PNF stretching technique for pectoralis muscle combined with chest mobility exercises on improvement of chest expansion and pulmonary function for elderly subjects. Method: An Experimental study design, 30 subjects with age group above 60 years were randomized 15 subjects each into Study and Control group. Control group received Supervised Active Assisted Exercise Program while Study group received Hold-relax PNF Stretching for pectoralis muscle, Chest Mobility Exercises Program and supervised Active Assisted Exercise Program for a period of one week. Outcome measures such as chest expansion at axilla and xiphisternum and pulmonary function test such as FEV1, FVC and FEV1/FVC were measured before and after one week of treatment. Results: Analysis using paired ‘t’ test within the group found that there is no statistically significant difference within control group where as there is a statistical significant difference within study group. Comparative analysis of pre-intervention means shown that there is no statistically significant difference between the groups. Comparative analysis of post-intervention means shown that there is a statistically significant difference in means of Chest expansion, FEV1/FVC and there is no statistical significant difference in FEV1 and FVC between study and control groups. Conclusion: It is concluded that one week of combined Hold-relax PNF stretching for pectoralis muscle with chest mobility exercises shown significant improvement in chest expansion and pulmonary function test such as forced expiratory volume and forced vital capacity than only active assisted exercise program for elderly subjects.
Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product
Directory of Open Access Journals (Sweden)
Mbaitiga Zacharie
2010-01-01
Full Text Available Problem statement: In the prime number the Riemann zeta function is unquestionable and undisputable one of the most important questions in mathematics whose many researchers are still trying to find answer to some unsolved problems such as Riemann Hypothesis. In this study we proposed a new method that proves the analytic extension theorem for zeta function. Approach: Abel transformation was used to prove that the extension theorem is true for the real part of the complex variable that is strictly greater than one and consequently provides the required analytic extension of the zeta function to the real part greater than zero and Euler product was used to prove the real part of the complex that are less than zero and greater or equal to one. Results: From this proposed study we noted that the real values of the complex variable are lying between zero and one which may help to understand the relation between zeta function and its properties and consequently can pay the way to solve some complex arithmetic problems including the Riemann Hypothesis. Conclusion: The combination of Abel transformation and Euler product is a powerful tool for proving theorems and functions related to Zeta function including other subjects such as radio atmospheric occultation.
Institute of Scientific and Technical Information of China (English)
CHEN Jiang-ying; CHEN Wei-qiu
2007-01-01
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media.The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.
Directory of Open Access Journals (Sweden)
Eskandari Jam Jafar
2014-12-01
Full Text Available In this paper, by using a semi-analytical solution based on multi-layered approach, the authors present the solutions of temperature, displacements, and transient thermal stresses in functionally graded circular hollow cylinders subjected to transient thermal boundary conditions. The cylinder has finite length and is subjected to axisymmetric thermal loads. It is assumed that the functionally graded circular hollow cylinder is composed of N fictitious layers and the properties of each layer are assumed to be homogeneous and isotropic. Time variations of the temperature, displacements, and stresses are obtained by employing series solving method for ordinary differential equation, Laplace transform techniques and a numerical Laplace inversion.
On a class of analytic functions generated by fractional integral operator
Directory of Open Access Journals (Sweden)
Ibrahim Rabha W.
2017-01-01
Full Text Available In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander. We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.
SPACES OF ANALYTIC FUNCTIONS REPRESENTED BY DIRICHLET SERIES OF TWO COMPLEX VARIABLES
Institute of Scientific and Technical Information of China (English)
HazemShabaBehnam; G.S.Srivastava
2002-01-01
We consider the space X of all analytic functions f(s1,s2)=∑∞m，n=1 amnexp(s1λm+s2μn) of two complex variables s1 and s2,equipping it with the natural locally convex topology and using the growth parameter,the order of f as defined recently by the authors.Under this topology X becomes a Frechet space.Apart from finding the characterization of continuous linear functionals,linear transformation on X,we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.
Shepherd, James J.; Grüneis, Andreas; Booth, George H.; Kresse, Georg; Alavi, Ali
2012-07-01
Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Møller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.
Mathematic Model and Analytic Solution for a Cylinder Subject to Exponential Function
Institute of Scientific and Technical Information of China (English)
LIU Wen; SHAN Rui
2009-01-01
Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lamè solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
DEFF Research Database (Denmark)
Unmack Larsen, Ida; Vinther-Jensen, Tua; Gade, Anders;
2015-01-01
Executive functions (EF) and psychomotor speed (PMS) has been widely studied in Huntington's disease (HD). Most studies have focused on finding markers of disease progression by comparing group means at different disease stages. Our aim was to investigate performances on nine measures of EF and PMS...... and as controls 39 healthy gene-expansion negative individuals. All participants underwent neurological examination and neuropsychological testing with nine cognitive measures. The frequency of impairment was investigated using cutoff scores. In group comparisons the manifest HD gene-expansion carriers scored...... significantly worse than controls on all tests and in classification of individual scores the majority of scores were classified as probably impaired (10th percentile) or impaired (5th percentile) with Symbol Digit Modalities Test (SDMT) being the most frequently impaired. Group comparisons of premanifest HD...
Directory of Open Access Journals (Sweden)
Leszek Szczeciński
2005-05-01
Full Text Available Turbo-receivers reduce the effect of the interference-limited propagation channels through the iterative exchange of information between the front-end receiver and the channel decoder. Such an iterative (turbo process is difficult to describe in a closed form so the performance evaluation is often done by means of extensive numerical simulations. Analytical methods for performance evaluation have also been proposed in the literature, based on Gaussian approximation of the output of the linear signal combiner. In this paper, we propose to use mutual information to parameterize the logarithmic-likelihood ratios (LLRs at the input/output of the decoder, casting our approach into the framework of extrinsic information transfer (EXIT analysis. We find the EXIT functions of the front-end (FE receiver analytically, that is, using solely the information about the channel state. This is done, decomposing the FE receiver into elementary blocks described independently. Our method gives an insight into the principle of functioning of the linear turbo-receivers, allows for an accurate calculation of the expected bit error rate in each iteration, and is more flexible than the one previously used in the literature, allowing us to analyze the performance for various FE structures. We compare the proposed analytical method with the results of simulated data transmission in case of multiple antennas transceivers.
Directory of Open Access Journals (Sweden)
A.I.Sokolovsky
2006-01-01
Full Text Available A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid, kinetics of a gas a generalized perturbation theory without divergencies is constructed corresponding to a partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing to study the peculiarities of correlation and Green functions and to solve the convergence problem in the reduced description method.
Alvermann, A.; Edwards, D. M.; Fehske, H.
2010-04-01
In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.
Szmytkowski, Radosław
2016-01-01
The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$-polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825, erratum: 30 (1997) 2747] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities --- the polarizabilities $\\alpha_{L}$, electric-to-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{M}(L\\mp1)}$ and electric-to-toroidal-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{T}L}$ --- are found to be expressible in terms of one or two non-terminating generalized hypergeometric functions ${}_{3}F_{2}$ with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities --- the electric nuclear shielding constants $\\sigma_{\\mathrm{E}L\\to\\m...
Kocifaj, Miroslav
2011-06-10
The approximate bulk-scattering phase function of a polydisperse system of dust particles is derived in an analytical form. In the theoretical solution, the particle size distribution is modeled by a modified gamma function that can satisfy various media differing in modal radii. Unlike the frequently applied power law, the modified gamma distribution shows no singularity when the particle radius approaches zero. The approximate scattering phase function is related to the parameters of the size distribution function. This is an important advantage compared to the empirical Henyey-Greenstein (HG) approximation, which is a simple function of the average cosine. However, any optimized value of average cosine of the HG function cannot provide the information on particle microphysical characteristics, such as the size distribution function. In this paper, the mapping between average cosine and the parameters of size distribution function is given by a semianalytical expression that is applicable in rapid numerical simulations on various dust populations. In particular, the modal radius and half-width can be quickly estimated using the presented formulas.
Ex Vivo Expansion of Functional Human UCB-HSCs/HPCs by Coculture with AFT024-hkirre Cells
Directory of Open Access Journals (Sweden)
Muti ur Rehman Khan
2014-01-01
Full Text Available Kiaa1867 (human Kirre, hKirre has a critical role in brain development and/or maintenance of the glomerular slit diaphragm in kidneys. Murine homolog of this gene, mKirre expressed in OP9 and AFT024 cells could support hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC expansion in vitro. HKirre is also expressed in human FBMOB-hTERT cell line and fetal liver fibroblast-like cells but its function has remained unclear. In this paper, we cloned a hKirre gene from human fetal liver fibroblast-like cells and established a stably overexpressing hKirre-AFT024 cell line. Resultant cells could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than AFT024-control cells transformed with mock plasmid. The Expanded human umbilical cord blood (hUCB CD34+ cells retained the capacity of multipotent differentiation as long as 8 weeks and successfully repopulated the bone marrow of sublethally irradiated NOD/SCID mice, which demonstrated the expansion of long-term primitive transplantable HSCs/HPCs. Importantly, hkirre could upregulate the expressions of Wnt-5A, BMP4, and SDF-1 and downregulate TGF-β with other hematopoietic growth factors. By SDS-PAGE and Western Blot analysis, a ~89 kDa protein in total lysate of AFT024-hKirre was identified. Supernatants from AFT024-hkirre could also support CD34+CD38− cells expansion. These results demonstrated that the AFT024-hKirre cells have the ability to efficiently expand HSCs/HPCs.
A meta-analytic review of the influence of pediatric cancer on parent and family functioning.
Pai, Ahna L H; Greenley, Rachel Neff; Lewandowski, Amy; Drotar, Dennis; Youngstrom, Eric; Peterson, Catherine Cant
2007-09-01
This study used meta-analytic methods to compare the functioning of parents of children with cancer to parents of physically healthy children or normative samples. A meta-analysis using fixed effects, weighted least squares methods was conducted on 29 studies examining psychological distress and marital and family functioning among parents of children with cancer. Mothers and fathers of children newly diagnosed with cancer reported significantly greater distress than comparison samples. Mothers reported greater distress than fathers up to 12 months postdiagnosis. Mothers of children with cancer reported higher levels of family conflict than mothers of healthy children. Findings suggest that pediatric cancer impacts parents' perceptions of self- and family functioning, especially within the 1st year following diagnosis.
Analytic model of energy-absorption response functions in compound X-ray detector materials.
Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A
2013-10-01
The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.
Directory of Open Access Journals (Sweden)
Pengkai Wang
2016-09-01
Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.
Analytic function theory of several variables elements of Oka’s coherence
Noguchi, Junjiro
2016-01-01
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...
Neese, Frank; Schwabe, Tobias; Grimme, Stefan
2007-03-28
A recently proposed new family of density functionals [S. Grimme, J. Chem. Phys. 124, 34108 (2006)] adds a fraction of nonlocal correlation as a new ingredient to density functional theory (DFT). This fractional correlation energy is calculated at the level of second-order many-body perturbation theory (PT2) and replaces some of the semilocal DFT correlation of standard hybrid DFT methods. The new "double hybrid" functionals (termed, e.g., B2-PLYP) contain only two empirical parameters that have been adjusted in thermochemical calculations on parts of the G2/3 benchmark set. The methods have provided the lowest errors ever obtained by any DFT method for the full G3 set of molecules. In this work, the applicability of the new functionals is extended to the exploration of potential energy surfaces with analytic gradients. The theory of the analytic gradient largely follows the standard theory of PT2 gradients with some additional subtleties due to the presence of the exchange-correlation terms in the self-consistent field operator. An implementation is reported for closed-shell as well as spin-unrestricted reference determinants. Furthermore, the implementation includes external point charge fields and also accommodates continuum solvation models at the level of the conductor like screening model. The density fitting resolution of the identity (RI) approximation can be applied to the evaluation of the PT2 part with large gains in computational efficiency. For systems with approximately 500-600 basis functions the evaluation of the double hybrid gradient is approximately four times more expensive than the calculation of the standard hybrid DFT gradient. Extensive test calculations are provided for main group elements and transition metal containing species. The results reveal that the B2-PLYP functional provides excellent molecular geometries that are superior compared to those from standard DFT and MP2.
Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.
Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella
2013-05-01
Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and
Jan, Chyan-Deng
2014-01-01
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w
Chowdhury, Nadim; Azim, Zubair Al; Alam, Md Hasibul; Niaz, Iftikhar Ahmad; Khosru, Quazi D M
2014-01-01
We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.
Energy Technology Data Exchange (ETDEWEB)
Moawad, S. M., E-mail: smmoawad@hotmail.com [Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)
2015-02-15
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.
DEFF Research Database (Denmark)
DING, YI; Wang, Peng; Goel, Lalit
2010-01-01
from long term planning point of view utilizing universal generating function (UGF) methods. The reliability models of wind farms and conventional generators are represented as the correspondin UGFs and the special operators for these UGFs are defined to evaluate the customer and the system...... reliabilities. The effect of transmission network on customer reliabilities is also considered in the system UGF. The power output models of wind turbine generators in a wind farm considering wind speed correlation and un-correlation are developed, respectively. A reliability-based reserve expansion method...
Bruce, William J; Maxwell, E A; Sneddon, I N
1963-01-01
Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions
On q-extension of Laurent expansion with applications
Directory of Open Access Journals (Sweden)
Ahmed Salem
2014-01-01
Full Text Available In this article, Cauchy’s integral formula for nth q-derivative of analytic functions is established and used to introduce a new proof to q-Taylor series by means of using the residue calculus in the complex analysis. Some theorems related to this formula are presented. A q-extension of a Laurent expansion is derived and proved by means of using Cauchy’s integral formula for a function, which is analytic on a ring-shaped region bounded by two concentric circles. Three illustrative examples are presented to be as applications for a q-Laurent expansion.
Kataev, A. L.
2012-02-01
The generalized Crewther relations in the channels of the non-singlet and vector quark currents are considered. These relations follow from the double application of the operator product expansion approach to the same axial vector-vector-vector triangle amplitude in two regions, adjoining to the angle sides ( x, y) (or p 2, q 2). We assume that the generalized Crewther relations in these two kinematic regimes result in the existence of the same perturbation expression for two products of the coefficient functions of annihilation and deepinelastic scattering processes in the non-singlet and vector channels. This feature explains the conformal symmetry motivated cancellations between the singlet α{/s 3} corrections to the Gross-Llewellyn Smith sum rule S GLS of ν N deep inelastic scattering and the singlet α{/s 3} correction to the e + e --annihilation Adler function D {/A V } in the product of the corresponding perturbative series. Taking into account the Baikov-Chetyrkin-Kuhn fourth order result for S GLS and the perturbative effects of the violation of the conformal symmetry in the generalized Crewther relation, we obtain the analytical contribution to the singlet α{/s 4} correction to the D {/A V } function. Its a-posteriori comparison with the recent result of direct diagram-by-diagram evaluation of the singlet fourth order corrections to D {/A V } function demonstrates the coincidence of the predicted and obtained ζ{3/2}-contributions to the singlet term. They can be obtained in the conformal invariant limit from the original Crewther relation. Therefore, on the contrary to previous belief, the appearance of ζ3-terms in the perturbative series in quantum field theory gauge models does not contradict to the property of the conformal symmetry and can be considered as regular feature. The Banks-Zaks motivated relation between our predicted and the obtained directly fourth order corrections is mentioned. It confirms the expectation, previously made by Baikov
Analytical function for the flux density due to sunlight reflected from a heliostat
Energy Technology Data Exchange (ETDEWEB)
Collado, F.J.; Gomez, A.; Turegano, J.A.
1986-01-01
An analytical model is presented for the flux density due to a focused heliostat over the receiver plane of a tower solar plant. The main assumptions are: spherical and continuous surface of the mirror, linear conformal transformation in the complex plane equivalent to the reflection mapping between an on-axis aligned heliostat and the objective located on the receiver at the slant range necessary to produce the minimum circle of confusion, circular Gaussian distribution of the effective sunshape and the concentration function constant on the receiver or the image plane. Under the hypotheses presented earlier an exact convolution is obtained. The result, an analytic flux density function, relatively simple and very flexible, is confronted with experimental measurements taken from four heliostat prototypes of second-generation placed at the Central Receiver Test Facility (CRTF), Albuquerque, New Mexico, and compared indirectly with the predictions of the Helios model for the same heliostats. The model is an essential tool in the problem of the determination of collector field parameters by optimization methods.
Analytical exploration of γ-function explicit method for pseudodynamic testing of nonlinear systems
Institute of Scientific and Technical Information of China (English)
Shuenn-Yih Chang; Yu-Chi Sung
2005-01-01
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.
Analytical potential energy function and spectroscopyparameters for B1Ⅱ state of KH
Institute of Scientific and Technical Information of China (English)
Jingjuan Liang; Chuanlu Yang; Lizhi Wang; Qinggang Zhang
2011-01-01
Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1II state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.%Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1Ⅱ state of KH molecule.To investigate the correlation effect of core-valence electrons,five schemes are employed which include the different correlated electrons and different active spaces.The PECs are fitted into analytical potential energy functions (APEFs).The spectroscopic parameters,ro-vibrational levels,and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data.The molecular properties for B1Ⅱ obtained in this letter,which are better than those available in literature,can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.
Institute of Scientific and Technical Information of China (English)
崔秋珍
2012-01-01
利用MATLAB实现空间解析几何二次曲面伸缩法的设计和演示，力图从直观的、立体的和运动的角度揭示二次曲面的图像特征和方程之间的对应关系。%In this paper, we implement the design and demonstration of quadric surface expansion and contraction method in space analytic geometry using matlab, trying to reveal the corresponding relation about image characteristics and equation from the intuitive and stereo and motion view.
Integrasi Taguchi Loss Function dengan Fuzzy Analytical Hierarchy Process dalam Pemilih Pemasok
Directory of Open Access Journals (Sweden)
Ahmad S. Indrapriyatna
2011-01-01
Full Text Available One important issue in the line production is the selection of the company's best supplier. Various criteria should be considered for determining the best supplier. Answering to that challenge, we apply Taguchi loss function- Analytical Hierarchy Process Fuzzy-Linear Programming (Taguchi loss function-Fuzzy AHP to find out the best supplier. Moreover, we also consider multiple criteria, i.e., goods’ completeness, quality, delivery, and quality loss in that analysis. By maximizing the suppliers’ performances based on each criterion and aggregated the suppliers’ performances based on the overall criteria, we selected the best one. Applying this method for selecting the best pressure gauge’s supplier in PT. Coca Cola Bottling Indonesia Central Sumatera (PT. CCBICS, we found out that among three suppliers, the second supplier is the best one.
Directory of Open Access Journals (Sweden)
Renna Magdalena
2012-09-01
Full Text Available Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming was used to determine the best supplier. In this analysis, several suppliers’ criteria were considered, namely quality, delivery, completeness, quality loss and environmental management. By maximizing the suppliers’ performances based on each criterion and aggregating the suppliers’ performances based on the overall criteria, the best supplier was determined. Keywords: supplier selection, taguchi loss function, AHP, fuzzy linear programming,environment
Institute of Scientific and Technical Information of China (English)
DOU Fu-Quan; SUN Jian-An; DUAN Wen-Shan; SHI Yu-Ren; L(U) Ke-Pu; HONG Xue-Ren
2006-01-01
With the aid of computerized symbolic computation, the new modified Jacobi elliptic function expansion method for constructing exact periodic solutions of nonlinear mathematical physics equation is presented by a new general ansatz. The proposed method is more powerful than most of the existing methods. By use of the method, we not only can successfully recover the previously known formal solutions but also can construct new and more general formal solutions for some nonlinear evolution equations. We choose the (3+1)-dimensional Kadomtsev-Petviashvili equation to illustrate our method. As a result, twenty families of periodic solutions are obtained. Of course, more solitary wave solutions, shock wave solutions or triangular function formal solutions can be obtained at their limit condition.
Schoendorff, Benjamin; Steinwachs, Joanne
2012-01-01
How can therapists be effectively trained in clinical functional contextualism? In this conceptual article we propose a new way of training therapists in Acceptance and Commitment Therapy skills using tools from Functional Analytic Psychotherapy in a training context functionally similar to the therapeutic relationship. FAP has been successfully…
Exponential Expansion in Evolutionary Economics
DEFF Research Database (Denmark)
Frederiksen, Peter; Jagtfelt, Tue
2013-01-01
concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...... of Thomas Kuhn’s notion of scientific paradigms and criteria for a good theory (1977, 1996). The paper thus aims to augment and assimilate the fragmented and scattered body of concepts presently residing within the field of evolutionary economics, by presenting an intuitive framework, applicable within...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...
Directory of Open Access Journals (Sweden)
Kalezić-Glišović A.
2009-01-01
Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.
Univalence and Starlikeness of Nonlinear Integral Transform of Certain Class of Analytic Functions
Indian Academy of Sciences (India)
M Obradović; S Ponnusamy; P Vasundhra
2009-11-01
Let $\\mathcal{U}(, )$ denote the class of all normalized analytic functions in the unit disk $|z| < 1$ satisfying the condition \\begin{equation*}\\frac{f(z)}{z}≠ 0\\quad\\text{and}\\quad\\left|f'(z)\\left(\\frac{z}{f(z)}\\right)^{ +1}-1\\right| < ,\\quad |z| < 1.\\end{equation*} For $f\\in\\mathcal{U}(, )$ with ≤ 1 and $0≠_1≤ 1$, and for a positive real-valued integrable function defined on [0,1] satisfying the normalized condition $\\int^1_0\\varphi(t)dt=1$, we consider the transform $G_\\varphi f(z)$ defined by \\begin{equation*}G_\\varphi f(z)=z\\left[\\int^1_0\\varphi(t)\\left(\\frac{zt}{f(tz)}\\right)^ dt\\right]^{-1/ 1},\\quad z\\in.\\end{equation*} In this paper, we find conditions on the range of parameters and so that the transform $G_\\varphi f$ is univalent or star-like. In addition, for a given univalent function of certain form, we provide a method of obtaining functions in the class $\\mathcal{U}(, )$.
Li, Peng; Zang, Weidong; Li, Yuhua; Xu, Feng; Wang, Jigang; Shi, Tieliu
2011-01-01
Protein interactions are involved in important cellular functions and biological processes that are the fundamentals of all life activities. With improvements in experimental techniques and progress in research, the overall protein interaction network frameworks of several model organisms have been created through data collection and integration. However, most of the networks processed only show simple relationships without boundary, weight or direction, which do not truly reflect the biological reality. In vivo, different types of protein interactions, such as the assembly of protein complexes or phosphorylation, often have their specific functions and qualifications. Ignorance of these features will bring much bias to the network analysis and application. Therefore, we annotate the Arabidopsis proteins in the AtPID database with further information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways. The latest updated AtPID database is available at http://www.megabionet.org/atpid/.
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Hollands, Stefan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, Leipzig, D-04103 (Germany)
2013-07-15
We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE,
Radial expansion for spinning conformal blocks
Costa, Miguel; Hansen, Tobias; Penedones, João; Trevisani, Emilio
2016-01-01
This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.
Berkowitz, Bruce A.; Schmidt, Tiffany; Podolsky, Robert H.; Roberts, Robin
2016-01-01
Purpose In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Methods Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4−/−) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Results Opn4−/− mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4−/− mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4−/− mice were similar to controls. Conclusions First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark. PMID:27727394
Analytic cubic and quartic force fields using density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
Performance Analytical Model of IEEE 802.11 Distributed Coordination Function
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
IEEE 802.11 distributed coordination function (DCF) is a distributed medium access scheme based on carrier sense multiple access with collision avoidance (CSMA/CA) protocol. Many literatures have analyzed the performance of IEEE 802.11 DCF. However, such literatures either used simulation methods or built the analytical models under the assumption that the saturation condition was satisfied. To overcome such a problem, in this paper, a bi-dimensional Markovian model has been introduced to depict the DCF mechanism. The proposed model introduced an idle stage and a discrete time M/G/1 queue to deduce the channel throughput under finite load traffic. Simulation results proved the accuracy of the proposed model.
Energy Technology Data Exchange (ETDEWEB)
Liu, Jian; Miller, William H.
2008-08-01
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. The LSC-IVR provides a very effective 'prior' for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25K and 14K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR, for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T = 25K, but the MEAC procedure produces a significant correction at the lower temperature (T = 14K). Comparisons are also made to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
Resting-brain functional connectivity predicted by analytic measures of network communication
Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf
2014-01-01
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387
Expansion of the Kano model to identify relevant customer segments and functional requirements
DEFF Research Database (Denmark)
Atlason, Reynir Smari; Stefansson, Arnaldur Smari; Wietz, Miriam
2017-01-01
or a service. A current limitation of the Kano model is that it does not allow developers to visualise which combined sets of FRs would provide the highest satisfaction between different customer segments. In this paper, a stepwise method to address this particular shortcoming is presented. First......The Kano model of customer satisfaction has been widely used to analyse perceived needs of customers. The model provides product developers valuable information about if, and then how much a given functional requirement (FR) will impact customer satisfaction if implemented within a product, system...... are identified. At last, the functions of the chosen segments with the smallest interval, define the FRs appealing to the biggest target group. The proposed extension to the model should assist product developers within various fields to more effectively evaluate which FRs should be implemented when considering...
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Taylor-Laplace Expansions of the Yukawa and Related Potential Energy Functions.
1981-08-01
thle ’Yukawa po tenilt iaI i tseIf. Inl thle I iiit a,, thle 20 continued e xponei’i t 3 van is hes , t he Yu kawa pot en t i a I trains f’ rms i l the...analyses of nuclear models . The Woods-Saxon potential has a simple form: _-VO 1 l ’Ws 1+ exp[(r-rO)/p]. This function does not easily admit a Fourier
Directory of Open Access Journals (Sweden)
Anamika Krishanpal
2009-12-01
Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.
Directory of Open Access Journals (Sweden)
Vasconcelos Vítor
2010-09-01
Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.
Institute of Scientific and Technical Information of China (English)
张解放; 刘宇陆
2003-01-01
The truncated expansion method for finding explicit and exact soliton- like solution of variable coefficient nonlinear evolution equation was described. The crucial idea of the method was first the assumption that coefficients of the truncated expansion formal solution are functions of time satisfying a set of algebraic equations, and then a set of ordinary different equations of undetermined functions that can be easily integrated were obtained. The simplicity and effectiveness of the method by application to a general variable coefficient KdV-MKdV equation with three arbitrary functions of time is illustrated.
Manduchi, Katia; Schoendorff, Benjamin
2012-01-01
Practicing Functional Analytic Psychotherapy (FAP) for the first time can seem daunting to therapists. Establishing a deep and intense therapeutic relationship, identifying FAP's therapeutic targets of clinically relevant behaviors, and using contingent reinforcement to help clients emit more functional behavior in the therapeutic relationship all…
Finite temperature spectral function of the $\\sigma$ meson from large N expansion
Patkós, András; Szépfalusy, P; Szep, Zs.
2003-01-01
The spectral function of the scalar-isoscalar channel of the O(N) symmetric linear $\\sigma$ model is studied in the broken symmetry phase. The investigation is based on the leading order evaluation of the self-energy in the limit of large number of Goldstone bosons. We describe its temperature dependent variation in the whole low temperature phase. This variation closely reflects the trajectory of the scalar-isoscalar quasiparticle pole. In the model with no explicit chiral symmetry breaking we have studied near the critical point also the corresponding dynamical exponent.
O'Leary, Nuala A.; Wright, Mathew W.; Brister, J. Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M.; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S.; Kodali, Vamsi K.; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M.; Murphy, Michael R.; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H.; Rausch, Daniel; Riddick, Lillian D.; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S.; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E.; Vatsan, Anjana R.; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J.; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D.; Pruitt, Kim D.
2016-01-01
The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. PMID:26553804
O'Leary, Nuala A; Wright, Mathew W; Brister, J Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S; Kodali, Vamsi K; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M; Murphy, Michael R; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H; Rausch, Daniel; Riddick, Lillian D; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E; Vatsan, Anjana R; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D; Pruitt, Kim D
2016-01-04
The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.
Analytical Potential Energy Function for the Ground State X1∑+ of Lanthanum Monofluoride
Institute of Scientific and Technical Information of China (English)
CHEN Lin-Hong; SHANG Ren-Cheng
2003-01-01
The equilibrium geometry, harmonic frequency and bond dissociation energy of lanthanum monofluoride have been calculated using Density-Functional Theory (DFT), post-HF methods MP2 and CCSD(T) with the energyconsistent relativistic effective core potentials. The possible electronic state and reasonable dissociation limit of the ground state of LaF are determined based on atomic and molecular reaction statics. Potential energy curve scans for the ground state X 1∑+ have been performed at B3LYP and CCSD(T) levels, due to their better results of harmonic frequency and bond dissociation energy. We find that the potential energy calculated with CCSD(T) is about 0.6 eV larger than the bond dissociation energy, when the internuclear distance is as large as 0.8 nm. The problem that single-reference ab initio methods do not meet dissociation limit during calculations of lanthanide heavy-metal elements is analyzed. We propose the calculation scheme to derive the analytical Murrell-Sorbie potential energy function. Vibrotational spectroscopic constants Be, ωe, ωeχe, αe, βe, De and He obtained by the standard Dunham treatment coincide well with the results of rotational analyses on spectroscopic experiments.
The Functional-Analytic Properties of the Limit q-Bernstein Operator
Directory of Open Access Journals (Sweden)
Sofiya Ostrovska
2012-01-01
Full Text Available The limit q-Bernstein operator Bq, 0function have been examined. In this paper, the functional-analytic properties of Bq are studied. Our main result states that there exists an infinite-dimensional subspace M of C[0,1] such that the restriction Bq|M is an isomorphic embedding. Also we show that each such subspace M contains an isomorphic copy of the Banach space c0.
Explanatory Factors of the Expansion of Recreation Function on the Bank of Danube River in Budapest
Directory of Open Access Journals (Sweden)
Pál Szabó
2015-10-01
Full Text Available In a city's development a river and riverbank played important role, however in recent decades the functions of them have changed, transformed, especially in major cities in the more developed countries, so the city administration was faced with a new phenomenon and geographical space: the changing riverbanks, and the utilization, development, revitalization of them has become a key issue. The various real processes showed the direction that these areas should be provided to the people, and the recreation service will be important for the local residents and tourists. Overall, the urban waterfront development is an increasingly important researched topic and policy. The question is: can we realize it in Budapest also nowadays? In recent years, those processes took place in Budapest, which resulted in an increasing utilization of the Danube and its banks for recreational functions. On the one hand, local social and economic processes have led to the waterfront sites released, on the other hand the needs of the residential population and tourists using the river and the riverside for recreational purposes have increased, and thirdly, the new city administration decided to renew the banks of the Danube, mainly to create new recreational areas. In this paper, we analyze these three factors, focusing on a past short period, because there is an exceptional cohesion between the processes, the needs and the new development goals. Two case studies are in the paper also: the Margaret Island as the oldest traditional recreational area in Budapest, and the Kopaszi-dam, as the newest and successful recreational area of Budapest. The analysis of the processes is based on data and literature, the analysis of the needs is based on a survey, and the analysis of the goals is based on the different development documents.
Energy Technology Data Exchange (ETDEWEB)
Elsaidi, Sameh K.; Mohamed, Mona H.; Loring, John S.; McGrail, Bernard. Pete; Thallapally, Praveen K.
2016-10-26
The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the last decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemis-try and surface area for myriad possible applications. Herein, we present a new class of porous materials called Covalent Coordination Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerization of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were non-porous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities which would not be possible using the traditional one step approach
Dunn, M.; Watson, D. K.; Loeser, J. G.
2006-08-01
In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.
Directory of Open Access Journals (Sweden)
Ya. V. Vasyl’kiv
2011-07-01
Full Text Available The best possible asymptotic estimates for Lebesgue integral means $m_{p}(r,log f, 1 leq p$ of logarithms of analytic functions $f(z$ in the unit disc in terms of their Nevanlinna characteristic $T(r,f$ are obtained. We get sharp relation between the order of $T(r,f$ and the order of $m_{p}(r,log f$ for an analytic function $f(z$ of finite order $alpha(f.$ This generalizes well-known results of L.~R.~Sons and C.~N.~Linden.
Wuttke, Joachim
2009-01-01
An algorithm is described for computing the Laplace transform (one-sided Fourier sine and cosine transform) of the stretched (or compressed) exponential function exp(-t^beta) (also known as Kohlrausch-Williams-Watts function, as characteristic function of a Levy stable distribution, or as complementary cumulative Weibull distribution) for exponents beta between 0.1 and 2. For low and high frequencies, the well-known series expansions are used; for intermediate frequencies, the explicit integration is strongly accelerated by the Ooura-Mori double exponential transformation. The algorithm is implemented in C as library libkww. The source code is available at http://www.messen-und-deuten.de/kww
Milton, Graeme W
2016-01-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Hatzell, Marta C.
2014-12-02
© 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10^{-5}) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g^{-1}) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g^{-1}) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.
Koo, Jin; Becker, Betsy Jane; Kim, Young-Suk
2014-01-01
In this study, differential item functioning (DIF) trends were examined for English language learners (ELLs) versus non-ELL students in third and tenth grades on a large-scale reading assessment. To facilitate the analyses, a meta-analytic DIF technique was employed. The results revealed that items requiring knowledge of words and phrases in…
Kadantsev, Eugene S.; Klooster, Rob; De Boeij, Paul L.; Ziegler, Tom
2007-01-01
Analytic energy gradients with respect to atomic coordinates for systems with translational invariance are formulated within the framework of Kohn-Sham Density Functional Theory. The energy gradients are implemented in the BAND program for periodic DFT calculations which directly employs a Bloch bas
Weeks, Cristal E.; Kanter, Jonathan W.; Bonow, Jordan T.; Landes, Sara J.; Busch, Andrew M.
2012-01-01
Functional analytic psychotherapy (FAP) provides a behavioral analysis of the psychotherapy relationship that directly applies basic research findings to outpatient psychotherapy settings. Specifically, FAP suggests that a therapist's in vivo (i.e., in-session) contingent responding to targeted client behaviors, particularly positive reinforcement…
Oshiro, Claudia Kami Bastos; Kanter, Jonathan; Meyer, Sonia Beatriz
2012-01-01
Functional Analytic Psychotherapy (FAP) is emerging as an effective psychotherapy for psychiatric clinical cases. However, there is little research demonstrating the process of change of FAP. The present study evaluated the introduction and withdrawal of FAP interventions on therapy-interfering verbal behaviors of two participants who were in…
Grigorenko, Elena L.; Sternberg, Robert J.
2001-01-01
Studied the efficacy of the triarchic theory of intelligence as a basis for predicting adaptive functioning in a rapidly changing society, that of Russia. Results of intelligence measures administered to 452 women and 293 men show that analytical, practical, and creative intelligence all relate in some degree to self-reported everyday adaptive…
Directory of Open Access Journals (Sweden)
Xiang-Rong Fu
2013-01-01
Full Text Available This paper presents a novel way to formulate the triangular flat shell element. The basic analytical solutions of membrane and bending plate problem for anisotropy material are studied separately. Combining with the conforming displacement along the sides and hybrid element strategy, the triangular flat shell elements based on the analytical trial functions (ATF for anisotropy material are formulated. By using the explicit integral formulae of the triangular element, the matrices used in proposed shell element are calculated efficiently. The benchmark examples showed the high accuracy and high efficiency.
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2014-01-01
An analytical expression for the log-amplitude correlation function based on the Rytov approximation is derived for spherical wave propagation through an anisotropic non-Kolmogorov refractive turbulent atmosphere. The expression reduces correctly to the previously published analytic expressions for the case of spherical wave propagation through isotropic Kolmogorov turbulence. These results agree well with a wave-optics simulation based on the more general Fresnel approximation, as well as with numerical evaluations, for low-to-moderate strengths of turbulence. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Two-loop two-point functions with masses asymptotic expansions and Taylor series, in any dimension
Broadhurst, D J; Tarasov, O V
1993-01-01
In all mass cases needed for quark and gluon self-energies, the two-loop master diagram is expanded at large and small $q^2$, in $d$ dimensions, using identities derived from integration by parts. Expansions are given, in terms of hypergeometric series, for all gluon diagrams and for all but one of the quark diagrams; expansions of the latter are obtained from differential equations. Pad\\'{e} approximants to truncations of the expansions are shown to be of great utility. As an application, we obtain the two-loop photon self-energy, for all $d$, and achieve highly accelerated convergence of its expansions in powers of $q^2/m^2$ or $m^2/q^2$, for $d=4$.
Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.
Liu, Quanhua; Simmer, C.; Ruprecht, E.
1991-05-01
An analytical expression has been derived for the radiation source function for a thermally emitting and scattering medium within the Matrix-Operator-Method (MOM). The final formulation is equivalent to the one found by Aronson and Yarmush (1966), who applied the transfer matrix to gamma-ray and neutron penetration and to transport problems in slab geometry. For the thermal infrared case, the general analytical expression reduces to a simple formula, which depends only on the zenith angle. The formula is incorporated in the MOM together with analytical expressions of the transmission and reflection operators following Liu (1990). With the aid of these formulations, expressions are derived as parameterizations of the scattering effects of clouds in nonscattering radiative transfer models by a modification of the emissivity and transmittance of clouds. The accuracy is better than 0.5 percent in the 11.5 micron window region for clouds of arbitrary optical depths.
Koc, Ramazan; Olgar, Eser
2010-01-01
A novel method is proposed to determine an analytical expression for eigenfunctions and numerical result for eigenvalues of the Schr\\"odinger type equations, within the context of Taylor expansion of a function. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical result for eigenvalues.
Zhang, Xing; Herbert, John M
2014-08-14
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H3 near its D(3h) geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.
Thermal expansion of glassy polymers.
Davy, K W; Braden, M
1992-01-01
The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.
Singh, Sunny; Kaur, Harsimran; Sharma, Shivalika; Aggarwal, Priyanka; Hazra, Ram Kuntal
2017-04-01
The understanding of the physics of exciton, bi-exciton, tri-exciton and the subsequent insight into controlling the properties of mesoscopic systems holds the key to various exotic optical, electrical and magnetic phenomena like superconductivity, Mott insulation, Quantum Hall effect etc. Many of exciton properties are similar to atomic hydrogen that attracts researchers to explore electronic structure of exciton in quantum dots, but nontriviality arises due to coulombic interactions among electrons and holes. We propose an exact integral of coulomb (exchange) correlation in terms of finitely summed Lauricella functions to examine 3-D exciton of harmonic dots confined in zero and non-zero arbitrary magnetic field. The highlight of our work is the use of exact variational solution for coloumbic interaction between the hole and the electron and evaluation of the cross terms arising out of the coupling among centre-of-mass and relative coordinates. We also have extended the size of the system to generalized N-body problem with N=3,4 for tri-exciton (e-e-h/e-h-h)
DEFF Research Database (Denmark)
Kleis, Jesper; Schröder, Elsebeth; Hyldgaard, Per
2008-01-01
The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes...... for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DR This observation suggests a framework for an efficient implementation of quantum-physical modeling of the carbon nanotube bundling in more general nanotube bundles, including...... as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we further compare results of our ab initio calculations to a simple analytical result,that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory...
Energy Technology Data Exchange (ETDEWEB)
Rastgoo, A. [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, F. [lmam Khomeini International University, Qazvin (Iran, Islamic Republic of); Kargarnovin, M. H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2008-06-15
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach
The s-ordered expansions of the operator function about the combined quadrature μX + νP
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A general framework applicable to deriving the s-ordered operator expansions is presented in this paper.We firstly deduce the s-ordered operator expansion formula of density operator ρ a?,a and introduce the technique of integration within the sordered product of operators (IWSOP).Based on the deduction and the technique,we derive the s-ordered expansions of operators (μX + νP)n and Hn (μX + νP) (linear combinations of the coordinate operator X and the momentum operator P,Hn (x) is Hermite polynomial),respectively,and discuss some special cases of s=1,0,-1.Some new useful operator identities are obtained as well.
A 2-D Analytical Threshold Voltage Model for Symmetric Double Gate MOSFET's Using Green’s Function
Directory of Open Access Journals (Sweden)
Anoop Garg
2011-01-01
Full Text Available We propose a new two dimensional (2D analytical solution of Threshold Voltage for undoped (or lightly doped Double Gate MOSFETs. We have used Green’s function technique to solve the 2D Poisson equation, and derived the threshold voltage model using minimum surface potential concept. This model is assumed uniform doping profile in Si region. The proposed model compared with existing literature and experimental data and we obtain excellent agreements with previous techniques.
Wagner, Edward Dishman
2002-01-01
This paper compares two technologies, Public Key Infrastructure (PKI) and Virtual Private Network (VPN). PKI and VPN are two approaches currently in use to resolve the problem of securing data in computer networks. Making this comparison difficult is the lack of available data. Additionally, an organization will make their decision based on circumstances unique to their information security needs. Therefore, this paper will illustrate a method using a utility function and the Analytic Hie...
Directory of Open Access Journals (Sweden)
Hrubý J.
2013-04-01
Full Text Available A re-evaluation of the second virial coefficient of steam is presented in the paper. The work is a part of broader effort to develop a formulation of the properties of dry and metastable steam suitable for CFD computations. The re-evaluation follows up previous work by Harvey and Lemmon [1], however with a special care for the lower temperature region close to the triple point and including more experimental data. The second virial coefficient was evaluated from volumetric (pvT data, calorimetric measurements for saturated vapor, steam expansion experiments (measurements of the Joule–Thomson coefficient and the isothermal throttling coefficient and measurements of the speed of sound. To accurately evaluate the uncertainty of calorimetric measurements, the uncertainty of the temperature derivative of the saturation pressure was determined based on refitting of the IAPWS saturation pressure formula to the experimental data. In the second step, the evaluated data and their uncertainties were used to develop an analytical formula to compute the second virial coefficient as function of internal energy in a range corresponding to the ideal-gas temperatures from 273.16 K to 1073.15 K. The choice of internal energy and density as independent variables is required for the CFD computations to avoid time-consuming iterations.
Duška, M.; Hrubý, J.
2013-04-01
A re-evaluation of the second virial coefficient of steam is presented in the paper. The work is a part of broader effort to develop a formulation of the properties of dry and metastable steam suitable for CFD computations. The re-evaluation follows up previous work by Harvey and Lemmon [1], however with a special care for the lower temperature region close to the triple point and including more experimental data. The second virial coefficient was evaluated from volumetric (pvT) data, calorimetric measurements for saturated vapor, steam expansion experiments (measurements of the Joule-Thomson coefficient and the isothermal throttling coefficient) and measurements of the speed of sound. To accurately evaluate the uncertainty of calorimetric measurements, the uncertainty of the temperature derivative of the saturation pressure was determined based on refitting of the IAPWS saturation pressure formula to the experimental data. In the second step, the evaluated data and their uncertainties were used to develop an analytical formula to compute the second virial coefficient as function of internal energy in a range corresponding to the ideal-gas temperatures from 273.16 K to 1073.15 K. The choice of internal energy and density as independent variables is required for the CFD computations to avoid time-consuming iterations.
二元二次函数逼近的存在性和局部性%The Existence and Local Behavior of the Bivariate Quadratic Function Approximation
Institute of Scientific and Technical Information of China (English)
郑成德
2006-01-01
This paper analysis the local behavior of the bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin. It function and that this function is analytic in a neighborhood of the origin.
Indian Academy of Sciences (India)
Abhishek Sanskrityayn; Naveen Kumar
2016-12-01
Some analytical solutions of one-dimensional advection–diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green’s function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant’s mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.
On the Equisummability of Hermite and Fourier Expansions
Indian Academy of Sciences (India)
E K Narayanan; S Thangavelu
2001-02-01
We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.
Analytic expression for the proton structure function in deep inelastic scattering
Institute of Scientific and Technical Information of China (English)
XIANG Wen-Chang; ZHOU Dai-Cui; WAN Ren-Zhuo; YUAN Xian-Bao
2009-01-01
The analytic expression of proton in deep inelastic scattering is studied by using the color glass condensate model and the dipole picture. We get a better description of the HERA DIS data than the CBW model which was inspired by the Glauber model. We find that our model satisfies the unitarity limit and Froissart Bound which refers to an energy dependence of the total cross-section rising no more rapidly than ln2s.
Padhy, Bholanath
2016-01-01
A simple method is outlined for analytic evaluation of the basic 2-electron atomic integral with integrand containing products of atomic s-type Slater orbitals and exponentially correlated function of the form $r_{ij} exp(-\\lambda_{ij}r_{ij})$, by employing the Fourier representation of $exp(-\\lambda_{ij}r_{ij})/r_{ij}$ without the use of either the spherical harmonic addition theorem or the Feynman technique. This method is applied to obtain closed-form expressions, in a simple manner, for certain other 2-,3- and 4-electron atomic integrals with integrands which are products of exponentially correlated functions and atomic s-type Slater orbitals.
E1 strength function for two-neutron halo nuclei in an analytical three-body approach
Energy Technology Data Exchange (ETDEWEB)
Pushkin, A. [SENTEF, Department of Physics, University of Bergen (Norway); Jonson, B.; Zhukov, M.V. [Department of Physics, Chalmers University of Technology and University of Gothenburg, S - 412 96 Goeteborg (Sweden)
1996-08-01
An analytical expression for the E1 strength function for two-neutron halo nuclei is derived in a three-body model. Yukawa type wavefunctions for the ground state and three-body plane waves for the final state were used. The expression reproduces the shape and the position of the maximum of the experimental strength function for {sup 11}Li well. It is shown that the exact expression can be approximated over a large energy range with a simple function by introducing an effective two-neutron separation energy. This provides a theoretical approach for quick estimates of the E1 strength function for two-body halo nuclei. (author). Letter-to-the-editor.
Ustinov, Eugene A.
2006-01-01
In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.
Cosmological Expansion and Its Effect on Small Systems
Institute of Scientific and Technical Information of China (English)
B. Mirza; M. Zamani-Nasab
2006-01-01
In order to study the effect of large scale cosmological expansion on small systems, we assume a FriedmannRobertson-Walker type coordinate system in presence of a nonzero cosmological constant and derive a non-static Reissner-Nrdstr(o)m metric. It is an analytic function of r for all values except at r = 0, which is singular. By determining the equation of motion in this metric we can estimate how expansion of the universe may affect Pioneer'smotion. Because the metric does not have any event horizon and so high potential regions are accessible, this may help us in better understanding AGN phenomenon.
SPACES OF ANALYTIC FUNCTIONS REPRESENTED BY DIRICHLET SERIES OF TWo COMPLEX VARIABLES
Institute of Scientific and Technical Information of China (English)
Hazem Shaba Behnam; G.S. Srivastava
2002-01-01
We consider the space X of all analytic functionsf(s1 ,s2) = ∞∑aminexp(s1λm+s2μtn)of two complex variables s1 and s2, equipping it with the natural locally convex topology and using thegrowth parmeter, the order of f as defined recently by the authors. Under this topology X becomes aFrechet space. Apart from finding the characterization of continuous linear functiors, linear transforma-tion on X, we have obtained the necesary and sufficient conditions for a double sequence in X to be a properbases.
Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement
Alliès, Laurent; Nadi, M
2008-01-01
This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai
2016-01-01
Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.
Sharma, Pankaj; Parashar, Sandeep Kumar
2016-05-01
The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.
Simplex and duplex event-specific analytical methods for functional biotech maize.
Lee, Seong-Hun; Kim, Su-Jeong; Yi, Bu-Young
2009-08-26
Analytical methods are very important in the control of genetically modified organism (GMO) labeling systems or living modified organism (LMO) management for biotech crops. Event-specific primers and probes were developed for qualitative and quantitative analysis for biotech maize event 3272 and LY 038 on the basis of the 3' flanking regions, respectively. The qualitative primers confirmed the specificity by a single PCR product and sensitivity to 0.05% as a limit of detection (LOD). Simplex and duplex quantitative methods were also developed using TaqMan real-time PCR. One synthetic plasmid was constructed from two taxon-specific DNA sequences of maize and two event-specific 3' flanking DNA sequences of event 3272 and LY 038 as reference molecules. In-house validation of the quantitative methods was performed using six levels of mixing samples, from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-30%. Limits of quantitation (LOQs) of the quantitative methods were all 0.1% for simplex real-time PCRs of event 3272 and LY 038 and 0.5% for duplex real-time PCR of LY 038. This study reports that event-specific analytical methods were applicable for qualitative and quantitative analysis for biotech maize event 3272 and LY 038.
1970-10-01
sale: is disributici is unlimited = F’)RIWRD Seior Ignacio Soto, Rrecutive President, Instituto Mexicano del Cementc y Concreto , invited Mr. Bryant... Concreto , a.c., Kwidco, D. F., Mexico. Based on info.mation largely obtained from ACT Committee 223, Expansive ’ement. Concretes, ACI Journal, August 1Q70
Bandyopadhyay, Aritra
2016-01-01
We evaluate the electromagnetic spectral function in QCD plasma in a nonperturbative background of in-medium quark and gluon condensates by incorporating the leading order power corrections in a systematic framework within the ambit of the operator product expansion in D=4 dimension. We explicitly show that the mixing of the composite operators removes mass singularities and renders Wilson coefficients finite and well defined. As a spectral property, we then obtain the nonperturbative dilepton production rate from QCD plasma. The operator product expansion automatically restricts the dilepton rate to the intermediate mass range, which is found to be enhanced due to the power corrections. We also compare our result with those from nonperturbative calculations, e.g., lattice QCD and effective QCD models based on Polyakov loop.
Composite asymptotic expansions
Fruchard, Augustin
2013-01-01
The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance pro...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived.The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc.
THE EXISTENCE OF RADIAL LIMITS OF ANALYTIC FUNCTIONS IN BANACH SPACES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Let X be a complex Banach space without the analytic Radon-Nikodym property. The author shows that G = {f ∈ H∞(D,X): there exists e ＞ 0, such that for almost all θ ∈ [0, 2π], limsup ‖f(rei) - f(sei)‖ ＞ ∈ } is a dense open subset of H (D, X). It is also shown r,s↑1 that for every open subset B of T, there exists F ∈ H∞(D,X), such that F has boundary values everywhere on Bc and F has radial limits nowhere on B. When A is a measurable subset of T with positive measure, there exists f ∈ H∞(D, X), such that f has nontangential limits almost eyerywhere on Ac and f has radial limits almost nowhere on A.
Analytical Derivation of Three Dimensional Vorticity Function for wave breaking in Surf Zone
Dutta, R
2015-01-01
In this report, Mathematical model for generalized nonlinear three dimensional wave breaking equations was de- veloped analytically using fully nonlinear extended Boussinesq equations to encompass rotational dynamics in wave breaking zone. The three dimensional equations for vorticity distributions are developed from Reynold based stress equations. Vorticity transport equations are also developed for wave breaking zone. This equations are basic model tools for numerical simulation of surf zone to explain wave breaking phenomena. The model reproduces most of the dynamics in the surf zone. Non linearity for wave height predictions is also shown close to the breaking both in shoaling as well as surf zone. Keyword Wave breaking, Boussinesq equation, shallow water, surf zone. PACS : 47.32-y
Kanter, Jonathan W.; Landes, Sara J.; Busch, Andrew M.; Rusch, Laura C.; Brown, Keri R.; Baruch, David E.; Holman, Gareth I.
2006-01-01
The current study investigated a behavior-analytic treatment, functional analytic psychotherapy (FAP), for outpatient depression utilizing two single-subject A/A+B designs. The baseline condition was cognitive behavioral therapy. Results demonstrated treatment success in 1 client after the addition of FAP and treatment failure in the 2nd. This…
Lundengård, Karl; Javor, Vesna; Silvestrov, Sergei
2016-01-01
A multi-peaked version of the analytically extended function (AEF) intended for approximation of multi-peaked lightning current wave-forms will be presented along with some of its basic properties. A general framework for estimating the parameters of the AEF using the Marquardt least-squares method (MLSM) for a waveform with an arbitrary (finite) number of peaks as well as a given charge trans-fer and specific energy will also be described. This framework is used to find parameters for some common single-peak wave-forms and some advantages and disadvantages of the approach will be discussed.
On the Rational Approximation of Analytic Functions Having Generalized Types of Rate of Growth
Directory of Open Access Journals (Sweden)
Devendra Kumar
2012-01-01
Full Text Available The present paper is concerned with the rational approximation of functions holomorphic on a domain G⊂C, having generalized types of rates of growth. Moreover, we obtain the characterization of the rate of decay of product of the best approximation errors for functions f having fast and slow rates of growth of the maximum modulus.
Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai
2015-01-01
Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92–17.80 % (wb) and protein from 5.03 % (wb) to 5.46–13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33–33.53 and 5.30–11.53 fold increase in the ...
汉语表体副词的扩容功能和强调功能%On Expansibility and Emphasis Function of Chinese Aspectual Adverbs
Institute of Scientific and Technical Information of China (English)
邵洪亮
2014-01-01
同为体标记，谓语前位的表体副词和谓词末位的表体助词由于句位不同，功能有明显差别。相对于表体助词，表体副词具有句法上的扩容功能和表达上的强调功能。表体副词的扩容功能主要是指它具有蕴含另一种体标记，从而组配成一个复合态的功能。表体副词的强调功能会对句子的语义或语用义产生影响。%Both bein g aspect markers, aspectual adverbs and aspectual particles are obviously different in functions because of their different syntactic positions. Compared with aspectual particles, aspectual adverbs have syntactically expansibility and semantically emphasis function. Syntactically expansibility refers to the function that enables the domain of an aspectual adverb to contain another aspect marker so as to generate an aspect complex. What’s more, emphasis function of an aspectual adverb exerts an impact on the semantic or pragmatic meaning of a sentence.
The acoustics of short circular holes with finite expansion ratio
Yang, Dong; Morgans, Aimee
2016-11-01
The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated liners, perforated plates and many other engineering applications. Analytical models for the acoustic response of these holes often ignore the impact of a finite expansion ratio either side, or account for it simply by adding an end mass inertial correction derived from the no mean flow assumption. The vortex-sound interaction within a short hole has been recently shown to strongly affect the acoustic response in the low frequency region. The present study uses an analytical model based on the Green's function method to investigate how the expansion ratios either side of a short hole affect the vortex-sound interaction within it - something neglected by previous models. This model is then incorporated into a Helmholtz resonator model, allowing us to consider the effect of a finite neck-to-cavity expansion ratio and the vortex-sound interaction within the finite length neck. Large resistance and acoustic energy absorption performance variations are seen even for small changes in the resonator neck length. Reducing the neck-to-cavity expansion ratio is found to decrease the resonator's sound absorption when the expansion ratio is low. CSC-Imperial PhD Scholarship; ERC Starting Grant, ACOULOMODE (2013-18).
Directory of Open Access Journals (Sweden)
A. Beléndez
2012-01-01
Full Text Available Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.
Analytical formulation of the single-visit completeness joint probability density function
Garrett, Daniel
2016-01-01
We derive an exact formulation of the multivariate integral representing the single-visit obscurational and photometric completeness joint probability density function for arbitrary distributions for planetary parameters. We present a derivation of the region of nonzero values of this function which extends previous work, and discuss time and computational complexity costs and benefits of the method. We present a working implementation, and demonstrate excellent agreement between this approach and Monte Carlo simulation results
Analytic methods for the Percus-Yevick hard sphere correlation functions
Directory of Open Access Journals (Sweden)
D. Henderson
2009-01-01
Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.
Campellone, Timothy R; Sanchez, Amy H; Kring, Ann M
2016-11-01
Negative symptoms are a strong predictor of poor functional outcome in people with schizophrenia. Unfortunately there are few effective interventions for either negative symptoms or functional outcome, despite the identification of potential mechanisms. Recent research, however, has elucidated a new potential mechanism for negative symptoms and poor functional outcome: defeatist performance beliefs (DPB), or negative thoughts about one's ability to successfully perform goal-directed behavior that can prevent behavior initiation and engagement. We conducted 2 meta-analyses examining the relationship between DPB and both negative symptoms (n = 10 studies) and functional outcome (n = 8 studies) in people with schizophrenia. We found a small effect size for the relationship between DPB and negative symptoms, regardless of how negative symptoms were measured. We also found a small effect size for the relationship between DPB and functional outcome, which was significantly moderated by the method of assessing DPB and moderated by the sex composition of the study at a trend level. These findings highlight the potential of targeting DPB in psychosocial interventions for both negative symptoms and functional outcome.
Energy Technology Data Exchange (ETDEWEB)
Yunta Carretero; Rodriguez Mayquez, E.
1974-07-01
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs.
Application of ANFIS for analytical modeling of tensile strength of functionally graded steels
Directory of Open Access Journals (Sweden)
Ali Nazari
2012-06-01
Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.
An analytical model for resistivity tools
Energy Technology Data Exchange (ETDEWEB)
Hovgaard, J.
1991-04-01
An analytical model for resistivity tools is developed. It takes into account the effect of the borehole and the actual shape of the electrodes. The model is two-dimensional, i.e. the model does not deal with eccentricity. The electrical potential around a current source satisfies Poisson`s equation. The method used here to solve Poisson`s equation is the expansion fo the potential function in terms of a complete set of functions involving one of the coordinates with coefficients which are undetermined functions of the other coordinate. Numerical examples of the use of the model are presented. The results are compared with results given in the literature. (au).
Institute of Scientific and Technical Information of China (English)
Sergey Volkov; Sergey Aizikovich; Yue-Sheng Wang; Igor Fedotov
2013-01-01
The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.
Directory of Open Access Journals (Sweden)
Yasir Ahmad
2014-11-01
Full Text Available This article uses analytical hierarchy process (AHP to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management by small and medium enterprises (SMEs operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally family-owned businesses, and this study provides concrete insights into the mind-set of owners toward different functional strategies. The AHP implementation steps are performed using commercially available software “Expert Choice®.” Marketing strategy is considered to be the most important strategy, while manufacturing management strategy is the second most important strategy. There is little emphasis on the financial and human resource management which is a serious cause of concern. The study would help policy makers to understand the business behaviors of this sector and consequently formulate policies to enhance their performance.
Oh, Ju-Hwan; Park, Do Hyun; Joo, Jang Ho; Lee, Jae-Seung
2015-11-01
The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve "smart" nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.
Impacts of a new analytical stretching function for terrain following vertical coordinates
Furner, Rachel; Siddorn, John; O'Dea, Enda
2013-04-01
Terrain following vertical coordinates are commonly used in coastal ocean models as they allow an accurate representation of the bottom boundary layer. However, the depth dependence of these coordinates results in horizontal variation in grid cell heights, with these variations becoming large in model domains which span large depth ranges. In the surface layer in particular this causes problems. Inconsistencies in the depth of the surface layer results in non physically-justifiable differences in the way atmospheric fluxes are applied to the ocean model. Also, when coupling to atmospheric models the depth variation of the surface grid cell leads to discrepancy in what is meant by 'sea surface values' meaning the boundary conditions provided to the atmospheric model are inconsistent. Stretching functions are commonly used to limit the horizontal variation of vertical resolution in parts of the water column. However in models spanning large depth ranges, such as the Met Office's Forecasting Ocean Assimilation Model (FOAM) Atlantic Margin Model (AMM7), commonly used stretching functions cannot suitably limit this variation near the surface without causing unacceptable loss of resolution in other parts of the water column. A new stretching function for terrain following coordinates is presented. The new stretching function allows a user-prescribed, constant surface (and bottom) cell height whilst maintaining resolution throughout the water column, and allowing increased resolution at the surface or sea bed as required. The impact of this is tested on simulations of FOAM AMM7 and results presented.
Bermudez, Miguel Angel Lopez; Garcia, Rafael Ferro; Calvillo, Manuel
2010-01-01
Traditional methods of diagnosis are of little therapeutic use when diagnostic criteria are based upon topographical rather than functional aspects of behavior. Also, this sentence in the original seemed rather awkward and a bit unclear. In contrast to this, several authors have put forward experience avoidance disorders as an alternative which…
TRANSFINITE DIAMETER AND ANALYTIC CONTINUATION OF FUNCTIONS OF TWO COMPLEX VARIABLES
of domains in the complex z-plane whose boundary has a given transfinite diameter. Some asymptotic results whichALLOW THE C LCULATION OF THE TR NSFI I...DI R OF A PLAN R DOMAIN BY MEANS OF THE KERNEL FUNCTION OF THIS DOMAIN IS OBTAINED. The definitions of a transfinite diameter of produc s s
Federalism. Theory and Neo-Functionalism: Elements for an analytical framework
DEFF Research Database (Denmark)
Dosenrode, Søren
2010-01-01
-McKayian way, is able to explain the cases of ‘big bang’ integration (USA, Australia, Canada), but not an ‘organic’ integration process. Neo-functionalism, on the other hand, is not able to explain this relatively fast form of integration, but it is – in its new version - able to analyze and explain...
On Certain Class of Analytic Functions Related to Cho-Kwon-Srivastava Operator
Directory of Open Access Journals (Sweden)
F. Ghanim
2011-01-01
Full Text Available Motivated by a multiplier transformation and some subclasses of meromorphic functions which were defined by means of the Hadamard product of the Cho-Kwon-Srivastava operator, we define here a similar transformation by means of the Ghanim and Darus operator. A class related to this transformation will be introduced and the properties will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Carboni, Andrea, E-mail: A.carboni@uva.nl [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Emke, Erik [KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands); Parsons, John R.; Kalbitz, Karsten [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Voogt, Pim de [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands)
2014-01-07
Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg{sup −1} and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L{sup −1} and 15–24 μg L{sup −1} respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg{sup −1} and 10 μg kg{sup −1} respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of
Fractional Calculus of Analytic Functions Concerned with Möbius Transformations
Nicoleta Breaz; Daniel Breaz; Shigeyoshi Owa
2016-01-01
Let A be the class of functions f(z) in the open unit disk U with f(0)=0 and f′(0)=1. Also, let w(ζ) be a Möbius transformation in U for some z∈U. Applying the Möbius transformations, we consider some properties of fractional calculus (fractional derivatives and fractional integrals) of f(z)∈A. Also, some interesting examples for fractional calculus are given.
Fractional Calculus of Analytic Functions Concerned with Möbius Transformations
Directory of Open Access Journals (Sweden)
Nicoleta Breaz
2016-01-01
Full Text Available Let A be the class of functions f(z in the open unit disk U with f(0=0 and f′(0=1. Also, let w(ζ be a Möbius transformation in U for some z∈U. Applying the Möbius transformations, we consider some properties of fractional calculus (fractional derivatives and fractional integrals of f(z∈A. Also, some interesting examples for fractional calculus are given.
Analytic expression for epithermal neutron spectra amplitudes as a function of water content
Drake, Darrell
1993-01-01
The epithermal portion of an equilibrium neutron spectrum in a planetary body is a function of the water content of its material. The neutrons are produced at high energies but are moderated by elastic and inelastic scattering until they either are captured by surrounding nuclei or escape. We have derived an expression that explicitly shows the dependance of epithermal neutron spectra on water content. Additionally, we compared its predictions to calculations done by Boltzman transport code for infinite media for silicon, oxygen, and a possible lunar composition, and we have obtained very good agreement.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Directory of Open Access Journals (Sweden)
Devesh Kishore
Full Text Available BACKGROUND: β-Galactosidase is a vital enzyme with diverse application in molecular biology and industries. It was covalently attached onto functionalized graphene nano-sheets for various analytical applications based on lactose reduction. METHODOLOGY/PRINCIPAL FINDINGS: Response surface methodology based on Box-Behnken design of experiment was used for determination of optimal immobilization conditions, which resulted in 84.2% immobilization efficiency. Native and immobilized functionalized graphene was characterized with the help of transmission and scanning electron microscopy, followed by Fourier transform infrared (FTIR spectroscopy. Functionalized graphene sheets decorated with islands of immobilized enzyme were evidently visualized under both transmission and scanning electron microscopy after immobilization. FTIR spectra provided insight on various chemical interactions and bonding, involved during and after immobilization. Optimum temperature and energy of activation (E(a remains unchanged whereas optimum pH and K(m were changed after immobilization. Increased thermal stability of enzyme was observed after conjugating the enzyme with functionalized graphene. SIGNIFICANCE: Immobilized β-galactosidase showed excellent reusability with a retention of more than 92% enzymatic activity after 10 reuses and an ideal performance at broad ranges of industrial environment.
Laricchia, S; Fabiano, E; Della Sala, F
2014-01-01
We test Laplacian-level meta-generalized gradient approximation (meta-GGA) non-interacting kinetic energy functionals based on the fourth-order gradient expansion (GE4). We consider several well known Laplacian-level meta-GGAs from literature (bare GE4, modified GE4, and the MGGA functional of Perdew and Constantin [Phys. Rev. B \\textbf{75},155109 (2007)]), as well as two newly designed Laplacian-level kinetic energy functionals (named L0.4 and L0.6). First, a general assessment of the different functionals is performed, testing them for model systems (one-electron densities, Hooke's atom and different jellium systems), atomic and molecular kinetic energies as well as for their behavior with respect to density-scaling transformations. Finally, we assess, for the first time, the performance of the different functionals for Subsystem Density Functional Theory (DFT) calculations on non-covalently interacting systems. We find that the different Laplacian-level meta-GGA kinetic functionals may improve the descript...
Directory of Open Access Journals (Sweden)
Zhi-Ying Zheng
2013-01-01
Full Text Available Through embedding an in-house subroutine into FLUENT code by utilizing the functionalization of user-defined function provided by the software, a new numerical simulation methodology on viscoelastic fluid flows has been established. In order to benchmark this methodology, numerical simulations under different viscoelastic fluid solution concentrations (with solvent viscosity ratio varied from 0.2 to 0.9, extensibility parameters (100≤L2≤500, Reynolds numbers (0.1 ≤ Re ≤ 100, and Weissenberg numbers (0 ≤ Wi ≤ 20 are conducted on unsteady laminar flows through a symmetric planar sudden expansion with expansion ratio of 1: 3 for viscoelastic fluid flows. The constitutive model used to describe the viscoelastic effect of viscoelastic fluid flow is FENE-P (finitely extensive nonlinear elastic-Peterlin model. The numerical simulation results show that the influences of elasticity, inertia, and concentration on the flow bifurcation characteristics are more significant than those of extensibility. The present simulation results including the critical Reynolds number for which the flow becomes asymmetric, vortex size, bifurcation diagram, velocity distribution, streamline, and pressure loss show good agreements with some published results. That means the newly established method based on FLUENT software platform for simulating peculiar flow behaviors of viscoelastic fluid is credible and suitable for the study of viscoelastic fluid flows.
Discussion on Function Expansion of Internal Audit after Financial Crisis%金融危机后内部审计功能拓展探讨
Institute of Scientific and Technical Information of China (English)
张雨桐
2012-01-01
Combining with background of social economic envimrmaent of later global financial crisis period, specific contents of function expansion of internal audit were discussed. It was thought that internal audit should break through the limit of traditional value keeping activities and work center should transfer to activities of helping enterprises realize value increasing. Three challenges that the expansion function of internal audit will meet when it plays its role were proposed, including status, personnel and technology.%结合全球金融危机后期的经济环境背景，讨论了内部审计功能拓展的具体内容．认为内部审计应当突破传统保值活动的界限，将工作重心转移到帮助企业实现增值的活动中，并指出内部审计拓展功能的发挥面临着地位、人员和技术方面的三大挑战．
Angulo, Diego A; Schneider, Cyril; Oliver, James H; Charpak, Nathalie; Hernandez, Jose T
2016-01-01
Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data.
Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo
2016-02-25
This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts.
Huang, Weidong; Hu, Peng; Chen, Zeshao
2011-01-01
Parabolic solar dish concentrator with sphere receiver is less studied. We present an analytic function to calculate the intercept factor of the system with real sun bright distribution and Gaussian distribution, the results indicate that the intercept factor is related to the rim angle of reflector and the ratio of open angle of receiver at the top of reflector to optical error when the optical error is larger than or equal to 5 mrad, but is related to the rim angle, open angle and optical error in less than 5 mrad optical error. Furthermore we propose a quick process to optimize the system to provide the maximum solar energy to net heat efficiency for different optical error under typical condition. The results indicate that the parabolic solar dish concentrator with sphere receiver has rather high solar energy to net heat efficiency which is 20% more than solar trough and tower system including higher cosine factor and lower heat loss of the receiver.
Energy Technology Data Exchange (ETDEWEB)
Migliaccio, M.; Natoli, P.; De Troia, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Hikage, C. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Komatsu, E. [Texas Cosmology Center, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Ade, P.A.R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario (Canada); Borrill, J. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boscaleri, A. [IFAC-CNR, Firenze (Italy); Contaldi, C.R. [Theoretical Physics Group, Imperial College, London (United Kingdom); Crill, B.P. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bernardis, P. de [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Gasperis, G. de [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Oliveira-Costa, A. de [Department of Physics, MIT, Cambridge, MA 02139 (United States); Di Stefano, G. [Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome (Italy); Hivon, E. [Institut d' Astrophysique, Paris (France); Kisner, T.S. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jones, W.C. [Department of Physics, Princeton University, Princeton, NJ 0854 (United States); Lange, A.E. [Observational Cosmology, California Institute of Technology, Pasadena, CA (United States)
2009-10-15
Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f{sub NL} as -1020
Energy Technology Data Exchange (ETDEWEB)
Atai, Ali Asghar [University of Tehran, Tehran (Iran, Islamic Republic of); Lak, Davaod [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)
2016-01-15
In this work, the effect of electric potential on the mechanical (Stresses, strains, displacement) and electrical (electrical displacement and intensity) response of a Functionally graded piezoelectric (FGP) hollow sphere is analytically investigated. The sphere is under the action of internal/external pressure and temperature gradient as well. The inhomogeneity is based on power law in radial direction. The analysis is done in two parts: elastic response and plastic response, using Tresca yield criterion. It is shown by illustrative example that under internal pressure and assumed model parameters, the commencement of plastic region is from outside surface towards inside in the plastic zone is extended with the increase of electric potential. Interestingly, radial stress and displacement have an extreme not on the boundaries, but on the inside.
The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications
Directory of Open Access Journals (Sweden)
D. S. Gilliam
2009-01-01
analytic function of a bounded operator, tangentially to the space of all bounded operators. Some applied problems from statistics and numerical analysis are included as a motivation for this study. The perturbation operator (increment is not of any special form and is not supposed to commute with the operator at which the derivative is evaluated. This generality is important for the applications. In the Hermitian case, moreover, some results on perturbation of an isolated eigenvalue, its eigenprojection, and its eigenvector if the eigenvalue is simple, are also included. Although these results are known in principle, they are not in general formulated in terms of arbitrary perturbations as required for the applications. Moreover, these results are presented as corollaries to the main theorem, so that this paper also provides a short, essentially self-contained review of these aspects of perturbation theory.
Free Analysis Questions II: The Grassmannian Completion and The Series Expansions at the Origin
Voiculescu, Dan-Virgil
2008-01-01
The fully matricial generalization in part I, of the difference quotient derivation on holomorphic functions, in which ${\\mathbb C}$ is replaced by a Banach algebra $B$, is extended from the affine case to a Grassmannian completion. The infinitesimal bialgebra duality, the duality transform generalizing the Stieltjes transform and the spectral theory with non-commuting scalars all extend to this completion. The series expansions of fully matricial analytic functions are characterized, providing a new way to generate fully matricial functions.
Stefańska, Patrycja
2011-01-01
The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive closed-form expressions for electric ($\\sigma_{\\mathrm{E}}$) and magnetic ($\\sigma_{\\mathrm{M}}$) dipole shielding constants for the ground state of the relativistic hydrogen-like atom with a point-like and spinless nucleus of charge $Ze$. It is found that $\\sigma_{\\mathrm{E}}=Z^{-1}$ (as it should be) and $$\\sigma_{\\mathrm{M}}=-(2Z\\alpha^{2}/27)(4\\gamma_{1}^{3}+6\\gamma_{1}^{2}-7\\gamma_{1}-12) /[\\gamma_{1}(\\gamma_{1}+1)(2\\gamma_{1}-1)],$$ where $\\gamma_{1}=\\sqrt{1-(Z\\alpha)^{2}}$ ($\\alpha$ is the fine-structure constant). This expression for $\\sigma_{\\mathrm{M}}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng \\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler'...
Stefańska, Patrycja
2016-02-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; J. Phys. B 30, 2747 (1997), 10.1088/0953-4075/30/11/023], We derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
Stefańska, Patrycja
2016-01-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
3D printed fluidics with embedded analytic functionality for automated reaction optimisation
Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D
2017-01-01
Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852
Saini, G S S; Singh, Sukhwinder; Kaur, Sarvpreet; Kumar, Ranjan; Sathe, Vasant; Tripathi, S K
2009-06-03
Thin films of zinc phthalocyanine have been deposited on KBr and glass substrates by the thermal evaporation method and characterized by the x-ray diffraction, optical, infrared and Raman techniques. The observed x-ray diffraction and infrared absorption spectra of as-deposited thin films suggest the presence of an α crystalline phase. Infrared and Raman spectra of thin films after exposure to vapours of ammonia and methanol have also been recorded. Shifts in the position of some IR and Raman bands in the spectra of exposed films have been observed. Some bands also show changes in their intensity on exposure. Increased charge on the phthalocyanine ring and out-of-plane distortion of the core due to interaction between zinc phthalocyanine and vapour molecules involving the fifth coordination site of the central metal ion may be responsible for the band shifts. Changes in the intensity of bands are interpreted in terms of the lowering of molecular symmetry from D(4h) to C(4v) due to doming of the core. Molecular parameters and Mulliken atomic charges of zinc phthalocyanine and its complexes with methanol and ammonia have been calculated from density functional theory. The binding energy of the complexes have also been calculated. Calculated values of the energy for different complexes suggest that axially coordinated vapour molecules form the most stable complex. Calculated Mulliken atomic charges show net charge transfer from vapour molecules to the phthalocyanine ring for the most stable complex.
Functional data analytic approach of modeling ECG T-wave shape to measure cardiovascular behavior
Zhou, Yingchun; 10.1214/09-AOAS273
2010-01-01
The T-wave of an electrocardiogram (ECG) represents the ventricular repolarization that is critical in restoration of the heart muscle to a pre-contractile state prior to the next beat. Alterations in the T-wave reflect various cardiac conditions; and links between abnormal (prolonged) ventricular repolarization and malignant arrhythmias have been documented. Cardiac safety testing prior to approval of any new drug currently relies on two points of the ECG waveform: onset of the Q-wave and termination of the T-wave; and only a few beats are measured. Using functional data analysis, a statistical approach extracts a common shape for each subject (reference curve) from a sequence of beats, and then models the deviation of each curve in the sequence from that reference curve as a four-dimensional vector. The representation can be used to distinguish differences between beats or to model shape changes in a subject's T-wave over time. This model provides physically interpretable parameters characterizing T-wave sh...
von Wegner, F; Tagliazucchi, E; Brodbeck, V; Laufs, H
2016-11-01
We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H ≈ 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models.
Analytic structure of QCD propagators in Minkowski space
Siringo, Fabio
2016-01-01
Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, deep in the infrared. By analytic continuation, the spectral functions are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles.The dynamical breaking of chiral symmetry is described on the same footing of gluon mass generation, providing a unified picture. While dealing with the exact Lagrangian, the expansion is based on massive free-particle propagators, is safe in the infrared and is equivalent to the standard perturbation theory in the UV. By dimensional regularization, all diverging mass terms cancel exactly without including mass counterterms that would spoil the gauge and chiral symmetry of the Lagrangian. Universal scaling properties are predicted for the inverse dressing functions and shown to be satisfied by the lattice data. Complex conjugated poles are found for the gluon propagator, in agre...
Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.
2016-08-01
A cumulant-based G W approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. Qualitative aspects of this method are explored within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. However, its quasiparticle properties and correlation energies are more accurate than both previous cumulant methods and standard G0W0 . Our results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based G W approaches.
Ibragimov, A.
2012-11-01
The relations for the Seebeck coefficient in a semiconductor with the isotropic density of states given by a power function are introduced within the scope of a semi-analytical model, which is based on the theoretical relations given by the foundations of the semiconductor physics as well as on experimentally defined temperature dependences of various semiconductor characteristics, but does not include any adjustable parameters. Between those characteristics the major role plays the intrinsic carrier concentration. It was demonstrated that although the introduced model is based on the simplified Maxwell-Boltzmann statistic, it is not compromised by this choice. A comparison with experimental data for five different semiconductors proves its ability to provide reliable predictions over a wide range of parameters (temperature, dopant type and concentration) not only for non-degenerated wide bandgap semiconductors (Si, Ge) but also for InAs, which represents partly degenerated narrow bandgap semiconductors with a non-parabolic density of states. Even in the case of a HgCdTe, with its extremely narrow bandgap and complex temperature dependence of the carrier concentration, the model is in good agreement with experimental data. The semi-analytical nature of the introduced model and its dependence on the abundance and reliability of the used experimental data were discussed on the example of Bi2Te3. Although the relative deficiency and controversy of the experimental results in this case significantly impede the model's applicability, it is still able to give at least qualitative predictions, which are nevertheless better than the results of the calculation of the thermopower from first principles. Being primarily addressed to the experimental community, the model provides simple relations in the case of the parabolic non-intrinsic semiconductor for thermoelectric voltage and for optimal dopant concentration for the thermogenerator within the known working temperature
Fridjine, S.; Amlouk, M.
In this study, we define a synthetic parameter: optothermal expansivity as a quantitative guide to evaluating and optimizing both the thermal and the optical performance of PV-T functional materials. The definition of this parameter, ψAB (Amlouk-Boubaker parameter), takes into account the thermal diffusivity and the optical effective absorptivity of the material. The values of this parameter, which seems to be a characteristic one, correspond to the total volume that contains a fixed amount of heat per unit time (m3 s-1) and can be considered as a 3D velocity of the transmitted heat inside the material. As the PV-T combined devices need to have simultaneous optical and thermal efficiency, we try to investigate some recently proposed materials (β-SnS2, In2S3, ZnS1-xSex|0 ≤xabacus.
Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr
2016-10-01
In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.
Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.
2014-06-01
Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.
Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr
2016-10-10
In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.
2015-01-01
The article describes the implementation measures of the Development strategy of the accounting profession in the agricultural sector as part of its functional and ethical direction. It grounds the necessity of legislative regulation of the rights of the chief accountant or the person holding the duty of business bookkeeping. It is proved the necessity of introducing the sole responsibility of the person who is entrusted with the task of the organization of accounting at the corporate level (...
Sapra, Karan; Gupta, Saurabh; Atchley, Scott; Anantharaj, Valentine; Miller, Ross; Vazhkudai, Sudharshan
2016-04-01
Efficient resource utilization is critical for improved end-to-end computing and workflow of scientific applications. Heterogeneous node architectures, such as the GPU-enabled Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), present us with further challenges. In many HPC applications on Titan, the accelerators are the primary compute engines while the CPUs orchestrate the offloading of work onto the accelerators, and moving the output back to the main memory. On the other hand, applications that do not exploit GPUs, the CPU usage is dominant while the GPUs idle. We utilized Heterogenous Functional Partitioning (HFP) runtime framework that can optimize usage of resources on a compute node to expedite an application's end-to-end workflow. This approach is different from existing techniques for in-situ analyses in that it provides a framework for on-the-fly analysis on-node by dynamically exploiting under-utilized resources therein. We have implemented in the Community Earth System Model (CESM) a new concurrent diagnostic processing capability enabled by the HFP framework. Various single variate statistics, such as means and distributions, are computed in-situ by launching HFP tasks on the GPU via the node local HFP daemon. Since our current configuration of CESM does not use GPU resources heavily, we can move these tasks to GPU using the HFP framework. Each rank running the atmospheric model in CESM pushes the variables of of interest via HFP function calls to the HFP daemon. This node local daemon is responsible for receiving the data from main program and launching the designated analytics tasks on the GPU. We have implemented these analytics tasks in C and use OpenACC directives to enable GPU acceleration. This methodology is also advantageous while executing GPU-enabled configurations of CESM when the CPUs will be idle during portions of the runtime. In our implementation results, we demonstrate that it is more efficient to use HFP
Directory of Open Access Journals (Sweden)
Serap Bulut
2014-01-01
Full Text Available A new subclass of analytic functions is introduced. For this class, firstly the Fekete-Szegö type coefficient inequalities are derived. Various known or new special cases of our results are also pointed out. Secondly some applications of our main results involving the Owa-Srivastava fractional operator are considered. Thus, as one of these applications of our result, we obtain the Fekete-Szegö type inequality for a class of normalized analytic functions, which is defined here by means of the Hadamard product (or convolution and the Owa-Srivastava fractional operator.
Bobev, Svilen; Williams, Darrick J.; Thompson, J.D.; Sarrao, J L
2004-01-01
Thermal expansion and magnetic susceptibility measurements as a function of temperature are reported for YbGaGe. Despite the fact that this material has been claimed to show zero thermal expansion over a wide temperature range, we observe thermal expansion typical of metals and Pauli paramagnetic behavior, which perhaps indicates strong sample dependence in this system.
Interpolating function and Stokes Phenomena
Honda, Masazumi
2015-01-01
When we have two expansions of physical quantity around two different points in parameter space, we can usually construct a family of functions, which interpolates the both expansions. In this paper we study analytic structures of such interpolating functions and discuss their physical implications. We propose that the analytic structures of the interpolating functions provide information on analytic property and Stokes phenomena of the physical quantity, which we approximate by the interpolating functions. We explicitly check our proposal for partition functions of zero-dimensional $\\varphi^4$ theory and Sine-Gordon model. In the zero dimensional Sine-Gordon model, we compare our result with a recent result from resurgence analysis. We also comment on construction of interpolating function in Borel plane.
Plasma expansion into vacuum assuming a steplike electron energy distribution.
Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C
2013-04-01
The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)Maxwellian electron distribution is assumed.
Directory of Open Access Journals (Sweden)
Haifeng Song
Full Text Available Natural killer (NK cells play critical roles in innate immunity and in bridging innate and adaptive immune responses against viral infection. However, the response of NK cells to monkeypox virus (MPXV infection is not well characterized. In this intravenous challenge study of MPXV infection in rhesus macaques (Macaca mulatta, we analyzed blood and lymph node NK cell changes in absolute cell numbers, cell proliferation, chemokine receptor expression, and cellular functions. Our results showed that the absolute number of total NK cells in the blood increased in response to MPXV infection at a magnitude of 23-fold, manifested by increases in CD56+, CD16+, CD16-CD56- double negative, and CD16+CD56+ double positive NK cell subsets. Similarly, the frequency and NK cell numbers in the lymph nodes also largely increased with the total NK cell number increasing 46.1-fold. NK cells both in the blood and lymph nodes massively proliferated in response to MPXV infection as measured by Ki67 expression. Chemokine receptor analysis revealed reduced expression of CXCR3, CCR7, and CCR6 on NK cells at early time points (days 2 and 4 after virus inoculation, followed by an increased expression of CXCR3 and CCR5 at later time points (days 7-8 of infection. In addition, MPXV infection impaired NK cell degranulation and ablated secretion of interferon-γ and tumor necrosis factor-α. Our data suggest a dynamic model by which NK cells respond to MPXV infection of rhesus macaques. Upon virus infection, NK cells proliferated robustly, resulting in massive increases in NK cell numbers. However, the migrating capacity of NK cells to tissues at early time points might be reduced, and the functions of cytotoxicity and cytokine secretion were largely compromised. Collectively, the data may explain, at least partially, the pathogenesis of MPXV infection in rhesus macaques.
Qian, Shengzhan; Wang, Yingxiang; Ma, Hong; Zhang, Liangsheng
2015-08-01
Histone modifications, such as methylation and demethylation, are crucial mechanisms altering chromatin structure and gene expression. Recent biochemical and molecular studies have uncovered a group of histone demethylases called Jumonji C (JmjC) domain proteins. However, their evolutionary history and patterns have not been examined systematically. Here, we report extensive analyses of eukaryotic JmjC genes and define 14 subfamilies, including the Lysine-Specific Demethylase3 (KDM3), KDM5, JMJD6, Putative-Lysine-Specific Demethylase11 (PKDM11), and PKDM13 subfamilies, shared by plants, animals, and fungi. Other subfamilies are detected in plants and animals but not in fungi (PKDM12) or in animals and fungi but not in plants (KDM2 and KDM4). PKDM7, PKDM8, and PKDM9 are plant-specific groups, whereas Jumonji, AT-Rich Interactive Domain2, KDM6, and PKDM10 are animal specific. In addition to known domains, most subfamilies have characteristic conserved amino acid motifs. Whole-genome duplication (WGD) was likely an important mechanism for JmjC duplications, with four pairs from an angiosperm-wide WGD and others from subsequent WGDs. Vertebrates also experienced JmjC duplications associated with the vertebrate ancestral WGDs, with additional mammalian paralogs from tandem duplication and possible transposition. The sequences of paralogs have diverged in both known functional domains and other regions, showing evidence of selection pressure. The increases of JmjC copy number and the divergences in sequence and expression might have contributed to the divergent functions of JmjC genes, allowing the angiosperms and vertebrates to adapt to a great number of ecological niches and contributing to their evolutionary successes.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS%泛函方程组的解析解
Institute of Scientific and Technical Information of China (English)
刘新和
2003-01-01
Let r be a given positive numberDenote by D=Dr the closed disc in the complexplane C whose center is the origin and radius is rFor any subset K of C and any integer m≥1,write A(Dm,K)= {f|f: Dm→K is a continuous map, and f| (Dm)° is analytic}For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ΨH(f)(z)=H(z,f(z),...,fm-1(z)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,...,n.In this paper,the system of functional equations F(z,f(z),f2(ΨH2(f)(z)),...,fn(ΨHn(f)(z)),g(z),g2(ΨK2(g)(z)),...,gn(ΨKn(g)(z))=0 G(z,f(z),f2(ΨH2(f)(z)),...,fn(ΨHn(f)(z)),g(z),g2(ΨK2(g)(z)),...,gn(ΨKn(g)(z))=0 (z∈D) is studied and some conditions for the system of equations to have a solution or a uniquesolution in A(D,D)×A(D,D) are given.
Properties of Certain Multivalent Analytic Functions%某类多叶解析函数的性质
Institute of Scientific and Technical Information of China (English)
刘金林
2002-01-01
Let A(p) (p is an integer, p ≥ 1) be the class of functions f(z) = zp + ap+1zp+1 +… which are analytic in the unit disk E. In this paper a new subclass Hσ(p,α) of A(p) is introduced.We find the extreme point of closed convex hull of the class Hσ(p, α) and then determine the sharp coefficient bounds. Some other interesting properties of the class Hσ (p, α) are also investigated.%设A(p)(p是整数,p≥1)表示在单位圆盘E内形如f(z)=2p+ap+1zp+1+…的解析函数族.本文引进了新的函数子类Hσ(p,α),找出了Hσ(p,α)闭凸包的极值点并给出精确的系数估计,还讨论了Hσ(p,α)其它一些有趣的性质.
Zhang, Xing; Herbert, John M
2015-02-14
We revisit the formalism for analytic derivative couplings between excited states in time-dependent density functional theory (TDDFT). We derive and implement these couplings using quadratic response theory, then numerically compare this response-theory formulation to couplings implemented previously based on a pseudo-wavefunction formalism and direct differentiation of the Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction calculations, suggest that the two approaches perform equally well for many molecular systems, provided that the underlying DFT method affords accurate potential energy surfaces. The response contributions are found to be important for certain systems with high symmetry, but can be calculated with only a moderate increase in computational cost beyond what is required for the pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that the derivative couplings obtained using response theory are identical to those obtained from the pseudo-wavefunction formulation, which validates our previous implementation based on the latter formalism.
Rohart, François
2017-01-01
In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.
Directory of Open Access Journals (Sweden)
Javier Cubas
2014-06-01
Full Text Available Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation..., it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.
Energy Technology Data Exchange (ETDEWEB)
Cvetic, G. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. of Physics; Illarionov, A.Yu. [International School for Advanced Studies SISSA, Trieste (Italy); Kniehl, B.A.; Kotikov, A.V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-06-15
Using the leading-twist approximation of the Wilson operator product expansion with ''frozen'' and analytic versions of the strong-coupling constant, we show that the Bessel-inspired behavior of the structure function F{sub 2} and its slope {partial_derivative}lnF{sub 2}/{partial_derivative}ln(1/x) at small values of x, obtained for a at initial condition in the DGLAP evolution equations, leads to good agreement with experimental data of deep-inelastic scattering at DESY HERA. (orig.)
Institute of Scientific and Technical Information of China (English)
LI Wei-yan; ZHOU Zhi-qiang; JI Jun-feng; LI Ze-qing; YANG Jian-jun; SHANG Ruo-jing
2007-01-01
Background Epinephrine infiltration of the nasal mucosa causes hypotension during functional endoscopic sinus surgery (FESS) under general anesthesia. A prospective randomized-controlled study was designed to determine whether relatively light general anesthesia is superior to fluid expansion in reducing epinephrine-induced hypotension during FESS.Methods Ninety patients undergoing elective FESS under general anesthesia were randomly assigned to three groups with 30 patients in each. Each patient received local infiltration with adrenaline-containing (5 μg/ml) lidocaine (1%,4 ml) under different conditions. For Group Ⅰ, anesthesia was maintained with propofol 2 μg/ml and rimifentanil 2 ng/ml by TCI. Group Ⅱ (control group) and Group Ⅲ received propofol 4 μg/ml and rimifentanil 4 ng/ml, respectively. In Groups Ⅰ and Ⅱ, fluid expansion was performed with hetastarch 5 mi/kg within 20 minutes; hetastarch 10 ml/kg was used in Group Ⅲ. Mean arterial pressure (MAP) and heart rate (HR) were recorded at 30-second-intervals for 5 minutes after the beginning of local infiltration. Simultaneously, the lowest and the highest MAP were recorded to calculate the mean maximum increase or decrease percent in MAP for all patients in each group. Data analysis was performed by χ2 test,one-way analysis of variance, or one-way analysis of covariance.Results Hemodynamic changes, particularly a decrease in MAP accompanied by an increase in HR at 1.5 minutes(P＜0.05), were observed in all groups. The mean maximum decrease in MAP below baseline was 14% in Group Ⅰ, 24% in Group Ⅲ and 26% in Group Ⅱ. There were statistically significant differences between Group Ⅰ and Groups Ⅱ and Ⅲ(P＜0.05). The mean maximum increase in MAP above baseline was 9% in Group Ⅰ, 6% in Group Ⅲ and 2% in Group Ⅱ.Conclusion Relatively light general anesthesia can reduce the severity of epinephrine-induced hypotension more effectively than fluid expansion during FESS under general
Pedersen, Eric R.; Callaghan, Glenn M.; Prins, Annabel; Nguyen, Hong; Tsai, Mavis
2012-01-01
Evidence-based treatments for Posttraumatic Stress Disorder (PTSD) may be enhanced by Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991; Tsai et al., 2009). As PTSD can include a variety of problems with interpersonal relationships (e.g., trust of others), manualized treatments may not afford clinicians enough time and flexibility to…
基于函数展开与超混沌系统的图像加密%Image Encryption Based on Function Expansion and Hyperchaotic System
Institute of Scientific and Technical Information of China (English)
迟春见; 于万波; 魏小鹏
2011-01-01
In order to protect the security of a digital image effectively, this paper proposes an image encryption algorithm based on wavelet expansion function and hyperchaotic system. The pixel locations of the image are scrambled with a wavelet function, and the relationship between the original image and the encrypted image is disrupted with hyper-chaos system. The many parameters are inserted in four-step Runge-Kutta method in which chaos sequence of hyper--chaos system is gotten, to expand the space of parameter. Simulation exporimental result show that the random behavior of gray value distribution of the encrypted image is better and the method can defends attacks.%为有效保护数字图像的安全,提出一种基于小波展开函数与超混沌系统的数字图像加密算法.利用小波展开函数对网像进行置乱,通过超混沌系统扰乱原图像与加密图像之间的关系.在求解超混沌系统混沌序列的四阶Runge-Kutta公式中,插入多个参数以扩大参数空间.模拟实验结果表明,加密后图像灰度值分布伪随机性较好.
Directory of Open Access Journals (Sweden)
C. D. Jan
2012-10-01
Full Text Available The equation of one-dimensional gradually-varied flow (GVF in sustaining and non-sustaining open channels is normalized using the critical depth, h_{c}, and then analytically solved by the direct integration method with the use of the Gaussian hypergeometric function (GHF. The GHF-based solution so obtained from the h_{c}-based dimensionless GVF equation is more useful and versatile than its counterpart from the GVF equation normalized by the normal depth, h_{n}, because the GHF-based solutions of the h_{c}-based dimensionless GVF equation for the mild (M and adverse (A profiles can asymptotically reduce to the h_{c}-based dimensionless horizontal (H profiles as h_{c}/h_{n} → 0. An in-depth analysis of the h_{c}-based dimensionless profiles expressed in terms of the GHF for GVF in sustaining and adverse wide channels has been conducted to discuss the effects of h_{c}/h_{n} and the hydraulic exponent N on the profiles This paper has laid the foundation to compute at one sweep the h_{c}-based dimensionless GVF profiles in a series of sustaining and adverse channels, which have horizontal slopes sandwiched in between them, by using the GHF-based solutions.
Energy Technology Data Exchange (ETDEWEB)
Nguyen Bich Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Dist., Hanoi (Viet Nam); Nguyen Van Hop [Hanoi National University of Education, Hanoi (Viet Nam)], E-mail: bichha@iop.vast.ac.vn
2009-09-01
The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.
Sidorov, A
2014-01-01
We discuss the application of an analytic approach called the analytic perturbation theory (APT) to the QCD analysis of DIS data. In particular, the results of the QCD analysis of a set of `fake' data on the polarized nonsinglet Delta{q3} and the nonsinglet fragmentation function D^{pi+}_{u_v} by using the Q^2-evolution within the APT are considered. The `fake' data are constructed based on parametrization of the polarized PDF and nonsinglet combination of the pion fragmentation functions. We confirm that APT can be successfully applied to QCD analysis of Delta{q_3}(x,Q^2) and D^{pi+}_{u_v}(z,Q^2) and that the inequality Lambda_{APT} > Lambda_{PT} obtained previously for the xF3(x) structure function takes place.
Energy Technology Data Exchange (ETDEWEB)
D' Ammando, Giuliano, E-mail: g.dammando@chimica.uniba.it; Capitelli, Mario, E-mail: mario.capitelli@ba.imip.cnr.it [Dipartimento di Chimica, Universitá di Bari, Via Orabona 4, 70125 Bari (Italy); CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Esposito, Fabrizio, E-mail: fabrizio.esposito@ba.imip.cnr.it; Laricchiuta, Annarita, E-mail: annarita.laricchiuta@ba.imip.cnr.it; Pietanza, Lucia D., E-mail: daniela.pietanza@ba.imip.cnr.it; Colonna, Gianpiero, E-mail: gianpiero.colonna@ba.imip.cnr.it [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy)
2014-09-15
A collisional-radiative model for the H{sub 2}/He plasma, coupled to a Boltzmann solver for the free electron kinetics is used to investigate the non-equilibrium conditions created in the expansion of an high-temperature plasma flow through a converging-diverging nozzle, starting from the steady state composition at T{sub 0}=10 000 K and p{sub 0}=1 atm in the reservoir. It is shown that the plasma optical thickness plays a major role on the evolution of macroscopic quantities and internal distributions along the nozzle axis. Structured electron energy distribution functions, characterized by long plateaux and humps, are created due to superelastic collisions of cold electrons and electronically excited atomic hydrogen. The magnitudes of the plateaux are orders of magnitude higher in an optically thick plasma compared with a thin plasma, while the electron-electron collisions play a role in smoothing the peaks created by superelastic collisions between cold electrons and H(n>2)
Energy Technology Data Exchange (ETDEWEB)
Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogota 11001000 (Colombia); Garzon, R. [Engineering project, Universidad Distrital Francisco Jose de Caldas, Carrera 7 No. 40-53, Bogota 11001000 (Colombia); Moreno, L.C. [Department of Chemistry, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogota 11001000 (Colombia)
2012-10-01
We carried out a comparative study of the thermal dilatation coefficient of molybdenum trioxide with and without Nd{sup 3+} doping. The doped samples were obtained from a solid state reaction of MoO{sub 3} and Nd{sub 2}O{sub 3} in concentrations from 0.2 to 20.0 at%. The prepared samples were analyzed as a function of the temperature through X-Ray diffraction (XRD), the chemical composition of the resultant material was studied using Energy Dispersive X-ray Spectroscopy (EDS). The results of the XRD show that the MoO{sub 3} doped with Nd in concentrations of 0.2 and 1.0% atomic grows iso-structurally with {alpha}-MoO{sub 3}. Moreover, MoO{sub 3} doped with Nd{sup 3+} in concentrations of 5.0, 10.0 and 20.0% atomic exhibits the monoclinic phase Mo{sub 9}O{sub 26}. Finally, we determined that the values of the thermal expansion coefficient of MoO{sub 3}, doped and un-doped, differ by less than 3%.
Energy Technology Data Exchange (ETDEWEB)
Calleja, Mark [Cambridge eScience Centre, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Goodwin, Andrew L; Dove, Martin T [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom)], E-mail: mtd10@cam.ac.uk
2008-06-25
DFT calculations have been used to provide insights into the origin of the colossal positive and negative thermal expansion in Ag{sub 3}[Co(CN){sub 6}]. The results confirm that the positive expansion within the trigonal basal plane and the negative expansion in the orthogonal direction are coupled due to the existence of a network defined by nearly rigid bonds within the chains of Co-C-N-Ag-N-C-Co linkages. The origin of the colossal values of the coefficients of thermal expansion arise from an extremely shallow energy surface that allows a flexing of the structure with small energy cost. The thermal expansion can be achieved with a modest value of the overall Grueneisen parameter. The energy surface is so shallow that we need to incorporate a small empirical dispersive interaction to give ground-state lattice parameters that match experimental values at low temperature. We compare the results with DFT calculations on two isostructural systems: H{sub 3}[Co(CN){sub 6}], which is known to have much smaller values of the coefficients of thermal expansion, and Au{sub 3}[Co(CN){sub 6}], which has not yet been synthesized but which is predicted by our calculations to be another candidate material for showing colossal positive and negative thermal expansion.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Thermal Expansion of Polyurethane Foam
Lerch, Bradley A.; Sullivan, Roy M.
2006-01-01
expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.
Rogers, Priscilla S.; Rymer, Jone
1995-01-01
Analyzes the Analytical Writing Assessment's (AWA) contribution as a performance assessment. Critiques its potential usefulness as a diagnostic tool for management education. Concludes that the AWA does not meet the expectations of GMAT-user schools who endorsed the test as a diagnostic instrument for identifying student deficiencies. States that…
Hippen, Keli L; Harker-Murray, Paul; Porter, Stephen B; Merkel, Sarah C; Londer, Aryel; Taylor, Dawn K; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N; Suhoski, Megan M; Miller, Jeffrey S; Wagner, John E; June, Carl H; Riley, James L; Blazar, Bruce R
2008-10-01
Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)-coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor beta (TGF-beta) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL.
Lin, Lin
2012-01-01
We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham...
An Expansion of the Free Energy of Anharmonic Oscillator Based on the Variational Result
Lu, W F; Bak, J; Kim, C K; Nahm, K; Lu, Wen-Fa; You, Sang Koo; Bak, Jino; Kim, Chul Koo; Nahm, Kyun
2002-01-01
Based on the variational result, we performed a Taylor series expansion of the free energy of an anharmonic oscillator within the functional integral formalism. The variationally extremized condition makes Cactus Feynman diagrams disappear from any higher-order diagrams, and accordingly Feynman diagrams are simplified. We obtained the analytical expression of the free energy up to the fourth order, and compared our results with exact, accurate and variational results.
2014-01-01
One of the well-known problems in the curves and surfaces reconstruction theory regarding global analytic object description, besides the description of its curvature changes, inflexions and non-bijective parts, is the existence of oscillations near point discontinuities in the middle of the range and at the boundaries of the description. In the ship geometric modelling, ship hull form is usually described globally using parametric methods based on B-spline and NURB-spline, for they have ge...
一类解析函数的联合留数插值%SIMULTANEOUS RESIDUE INTERPOLATION FOR A CLASS OF ANALYTIC FUNCTIONS
Institute of Scientific and Technical Information of China (English)
吴化璋
2004-01-01
The necessary and sufficient conditions are given for the simultaneous two-sided residue interpolation problem with nodes in the open upper half-plane for the matrix-valued analytic functions. A linear fractional transformation of the set of all solutions to the question is presented in terms of the original data. The method is based on characterizing least common minimal multiples and the reduction of the solution of the problem to the construction of a rational matrix function which serves as the coefficient, matrix in the linear fractional transformation.
Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...
GAUSSIAN WHITE NOISE CALCULUS OF GENERALIZED EXPANSION
Institute of Scientific and Technical Information of China (English)
陈泽乾
2002-01-01
A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being introduced here, which provides the integral kernel operator decomposition of the second quantization of Koopman operators for chaotic dynamical systems, in terms of annihilation operators (e)t and its dual, creation operators (e)*t.
Hydration and Thermal Expansion in Anatase Nanoparticles.
Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran
2016-08-01
A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.
Hydration and Thermal Expansion in Anatase Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China
2016-06-06
A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.
DEFF Research Database (Denmark)
Berdowski, T.; Walther, Jens Honore; Ferreira, Célia Maria Dias
2016-01-01
In the current paper, a method for deriving the analytical expressions for the velocity and vortex stretching terms as a function of the spherical multipole expansion approximation of the vector potential is presented. These terms are essential in the context of 3D Lagrangian vortex particle...
Institute of Scientific and Technical Information of China (English)
Wang Jian-Kun; Wu Zhen-Sen
2008-01-01
This paper calculates the equilibrium structure and the potential energy functions of the ground state (X2∑+) and the low lying excited electronic state (A2∏) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klein-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional Schrodinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.
Institute of Scientific and Technical Information of China (English)
Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lùe; Yang Xiang-Dong
2006-01-01
The reasonable dissociation limit of the second excited singlet state B1П of 7LiH molecule is obtained. The obtained over the internuclear distance ranging from about 0.10 nm to 0.54 nm, and has a least-square fit to the analytic compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition.comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more theories.
Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)
1995-01-01
Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold
Directory of Open Access Journals (Sweden)
Sangeetha V M
Full Text Available BACKGROUND: Cord blood (CB is a promising source for hematopoietic stem cell transplantations. The limitation of cell dose associated with this source has prompted the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs. However, the expansion procedure is known to exhaust the stem cell pool causing cellular defects that promote apoptosis and disrupt homing to the bone marrow. The role of apoptotic machinery in the regulation of stem cell compartment has been speculated in mouse hematopoietic and embryonic systems. We have consistently observed an increase in apoptosis in the cord blood derived CD34(+ cells cultured with cytokines compared to their freshly isolated counterpart. The present study was undertaken to assess whether pharmacological inhibition of apoptosis could improve the outcome of expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB CD34(+ cells were expanded with cytokines in the presence or absence of cell permeable inhibitors of caspases and calpains; zVADfmk and zLLYfmk respectively. A novel role of apoptotic protease inhibitors was observed in increasing the CD34(+ cell content of the graft during ex vivo expansion. This was further reflected in improved in vitro functional aspects of the HSPCs; a higher clonogenicity and long term culture initiating potential. These cells sustained superior long term engraftment and an efficient regeneration of major lympho-myeloid lineages in the bone marrow of NOD/SCID mouse compared to the cells expanded with growth factors alone. CONCLUSION/SIGNIFICANCE: Our data show that, use of either zVADfmk or zLLYfmk in the culture medium improves expansion of CD34(+ cells. The strategy protects stem cell pool and committed progenitors, and improves their in vitro functionality and in vivo engraftment. This observation may complement the existing protocols used in the manipulation of hematopoietic cells for therapeutic purposes. These findings may have an impact in the CB transplant
Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N
2014-01-01
This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion.
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Collisional and collisionless expansion of Yukawa balls.
Piel, Alexander; Goree, John A
2013-12-01
The expansion of Yukawa balls is studied by means of molecular dynamics simulations of collisionless and collisional situations. High computation speed was achieved by using the parallel computing power of graphics processing units. When the radius of the Yukawa ball is large compared to the shielding length, the expansion process starts with the blow-off of the outermost layer. A rarefactive wave subsequently propagates radially inward at the speed of longitudinal phonons. This mechanism is fundamentally different from Coulomb explosions, which employ a self-similar expansion of the entire system. In the collisionless limit, the outer layers carry away most of the available energy. The simulations are compared with analytical estimates. In the collisional case, the expansion process can be described by a nonlinear diffusion equation that is a special case of the porous medium equation.
Analytical potential energy function for the ground state (～X1A1) of hydrogen isotopic D2O molecule
Institute of Scientific and Technical Information of China (English)
RUAN Wen; LUO WenLang; ZHANG Li; ZHU ZhengHe
2009-01-01
The present work is to construct the potential energy function of Isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer ap-proximation, in which the nuclear motions (translational, rotational and vibration motions) are not in-cluded, therefore, its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics (AMRS), the reasonable dissociation limits of D2O(～X1A1) are determined, its equilibrium geometry and dissociation energy are calculated by den-sity-functional theory (DFT) B3lyp, and then, using the many-body expansion method the potential en-ergy function of D2O (～X1A1) Is obtained for the first time. The potential contours are drawn, in which It is found that the reactive channel D + OD→D2O has no threshold energy, so it is a free radical reaction. But the reactive channel O + DD→D2P has a saddle point. The study of collision for D2O (～X1A1) is under way.
Analytical potential energy function for the ground state（1A1） of hydrogen isotopic D2O molecule
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.
ON CONVERGENCE OF WAVELET PACKET EXPANSIONS
Institute of Scientific and Technical Information of China (English)
Morten Nielsen
2002-01-01
It is well known that the-Walsh-Fourier expansion of a function from the block space ([0, 1 ) ), 1 ＜q≤∞, converges pointwise a.e. We prove that the same result is true for the expansion of a function from in certain periodixed smooth periodic non-stationary wavelet packets bases based on the Haar filters. We also consider wavelet packets based on the Shannon filters and show that the expansion of Lp-functions, 1＜p＜∞, converges in norm and pointwise almost everywhere.
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Directory of Open Access Journals (Sweden)
Jonathan Wirsich
2016-01-01
In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Hu, Huayu
2015-01-01
Nonperturbative calculation of QED processes participated by a strong electromagnetic field, especially provided by strong laser facilities at present and in the near future, generally resorts to the Furry picture with the usage of analytical solutions of the particle dynamical equation, such as the Klein-Gordon equation and Dirac equation. However only for limited field configurations such as a plane-wave field could the equations be solved analytically. Studies have shown significant interests in QED processes in a strong field composed of two counter-propagating laser waves, but the exact solutions in such a field is out of reach. In this paper, inspired by the observation of the structure of the solutions in a plane-wave field, we develop a new method and obtain the analytical solution for the Klein-Gordon equation and equivalently the action function of the solution for the Dirac equation in this field, under a largest dynamical parameter condition that there exists an inertial frame in which the particl...
Padhy, B
2016-01-01
The simple method outlined in our earlier paper [B.Padhy, Orissa Journal of Physics, vol.19, No.1, p.1, February 2012] has been utilized here for analytic evaluation of three different five-electron atomic integrals with integrands involving products of s Slater-type orbitals and exponentially correlated functions of the form $r_{ij} exp(-\\lambda_{ij} r_{ij})$. Only products of those $r_{ij}$'s which do not form a closed loop by themselves, are considered.
Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...
On an analytic estimate in the theory of the Riemann zeta function and a theorem of Báez-Duarte.
Burnol, Jean-François
2003-01-01
On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a "causality" statement.
Institute of Scientific and Technical Information of China (English)
陈彬强; 张周锁; 訾艳阳; 何正嘉
2014-01-01
As the celebrated “mathematical scope”, the multi-resolution analyzing capacity of wavelet transform (WT) plays an important role in condition monitoring and fault diagnosis of mechanical equipment. However, it has proven that the effectiveness of WT is hampered by several negative factors, such as shift-sensitiveness, significant energy leakage, and the fixed dyadic“frequency-sale” paving. Especially, the dyadic “frequency-sale” paving creates inevitable deficiency in identifying mechanical signatures located in transition areas of adjacent wavelet scales. A novel “time-sale” analysis methodology, named as derived ensemble analytic framelet (DEAF), based on overcomplete wavelet tight frame, is proposed. The DEAF is developed based on the existing dual tree complex wavelet transform (DTCWT). The DEAF starts from a selected DTCWT basis, and combines it with a hybrid augmented tree-structured filter-bank, which results in quasi analytic wavelet packet decomposition (QAWPD). With the results of QAWPT, an ensemble wavelet packet generating strategy is applied such that an unprecedented implicit wavelet packet tight frame (IWPTF) containing pseudo dyadic wavelet packets is obtained. With the combination of QAWPD and IWPTF, the proposed DEAF can be derived which possesses the“frequency-sale”paving characterized by continued time-frequency refinement of analysis centers. The proposed technique is applied to the mechanical signature analysis of an engineering application to validate its superiority compared with the existing methods.%小波变换被称为“数学显微镜”，它对机械信号的多尺度分析在机械设备状态监测和故障诊断领域发挥着重要的作用。然而传统二进小波变换在工程应用中存在一些显著的不足，如平移敏感性、小波尺度能量泄漏、固定的二进“频率-尺度”划分网格等。尤其是后者使得经典小波变换对处于二进网格过渡带的特征分析中产
Institute of Scientific and Technical Information of China (English)
H.Samareh Salavati Pour; F.Berto; Y.Alizadeh
2013-01-01
The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper.The results show that when the notch apex is close to the middle layer,the Charpy impact energy reaches its maximum value.This is due to the increment of the absorbed energy by plastic deformation ahead of the notch tip.On the other hand,when the notch tip is far from the middle layer,the Charpy impact energy strongly decreases.Another fundamental motivation of the present work is that for crack arrester configuration,no accurate mathematical or analytical modelling is available up to now.By considering the relationship between the Charpy impact energy and the plastic volume size,a new theoretical model has been developed to link the Charpy impact energy with the distance from the notch apex to the middle phase.This model is a simplified one and the effect of different shapes of the layers and the effect of microstructure on the mechanical properties and plastic region size will be considered in further investigation.The results of the new developed closed form expression show a sound agreement with some recent experimental results taken from the literature.
某些积分算子解析函数的性质%Some properties for some integral operators on analytic functions
Institute of Scientific and Technical Information of China (English)
李小飞; 严证
2013-01-01
设 A 表示单位圆盘 U ＝｛z ：｜z ｜＜1，z ∈ C｝内的单叶解析函数族，定义 A 的子族 MD g （α，β）＝f （z）∈ A ：Re z（ f* g）′（z）（ f* g）（z）＜β z（ f* g）′（z）（ f* g）（z）-1＋α，g（z）∈ A ，这里α＞1，β≤0，介绍3类积分算子函数 Fn （z）， Gn （z），In （z），利用解不等式的技巧和解析函数理论，对它们的性质进行探究。%Let A be the class of functions which were univalent and analytic in the open unit disk U={z :|z| 1 ,β≤ 0 , and introduced three integral operators Fn (z) ,Gn (z) ,In (z) .Some properties involving these operators were determined by using solutions of inequalities techniques and theories of analytic functions .
某类积分算子解析函数的性质%Some Properties for Certain Integral Operator on Analytic Functions
Institute of Scientific and Technical Information of China (English)
李小飞; 严证
2013-01-01
A is denoted the class of functions which is univalent and analytic in the open unit disc U={z:z 1,β≤0 is introduced.One integral operator In(z) and its special types Ikn(z), Gn(z), Fn(z) are also introduced.Some properties involving these operators are determined by using solutions of inequalities techniques and theories of analytic functions .The sharp results generalize some known re-sults.%设A是单位圆盘U＝｛z： z ＜1，z∈C｝内的单叶解析函数族．给出A的子族．MDg （α，β）＝｛f（ z）∈A：Re｛z（f*g）′（z）（f*g）（z）｝＜βz（f*g）′（z）（f*g）（z）-1＋α，g（z）∈A｝，这里α＞1，β≤0，介绍了一类积分算子函数In（z）及其特殊类型的积分算子函数Ikn（z），Gn（z），Fn（z），利用解不等式的技巧和解析函数理论，研究得到了一些它们的性质，推广了一些已有的结论．
Double asymptotic expansion of three-center electronic repulsion integrals
Alvarez-Ibarra, A.; Köster, A. M.
2013-07-01
A double asymptotic expansion for the evaluation of three-center electron repulsion integrals (ERIs) in the long-range limit is presented. For the definition of this limit, a natural division of space based on the atomic coordinates and basis function exponents in utilized. The resulting analytical expression for the calculation of three-center ERIs in the long-range limit are implemented in the density functional theory program deMon2k. Validation and benchmark calculations of n-alkanes, hydrogen saturated graphene sheets and hydrogen saturated diamond blocks are discussed. It is shown that for a sufficient large number of long-range ERIs, the linear scaling regime is reached.
Air expansion in the water rocket
Romanelli, Alejandro; Madina, Federico González
2012-01-01
We study the thermodynamics of the water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation and the energy taken from the environment. We set up a simple experimental device with a stationary bottle and verified that the gas expansion in the bottle is well approximated by a polytropic process $PV^\\beta$= constant, where the parameter $\\beta$ depends on the initial conditions. We find an analytical expression for $\\beta $ that only depends on the thermodynamic initial conditions and is in good agreement with the experimental results.
Fuel Thermal Expansion (FTHEXP). [BWR; PWR
Energy Technology Data Exchange (ETDEWEB)
Reymann, G. A.
1978-07-01
A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO/sub 2/ and PuO/sub 2/ in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO/sub 2/, and the fraction of fuel which is molten.
Energy Technology Data Exchange (ETDEWEB)
2006-06-01
In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.
Analytic solution of an oscillatory migratory alpha^2 stellar dynamo
Brandenburg, Axel
2016-01-01
Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for uniform helical turbulence or constant alpha effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant alpha. We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant alpha, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two ends. We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory dynamos are possible for dynamos with...
Spain, Barry; Ulam, S; Stark, M
1960-01-01
Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi
Rapport, Mark D; Orban, Sarah A; Kofler, Michael J; Friedman, Lauren M
2013-12-01
Children with ADHD are characterized frequently as possessing underdeveloped executive functions and sustained attentional abilities, and recent commercial claims suggest that computer-based cognitive training can remediate these impairments and provide significant and lasting improvement in their attention, impulse control, social functioning, academic performance, and complex reasoning skills. The present review critically evaluates these claims through meta-analysis of 25 studies of facilitative intervention training (i.e., cognitive training) for children with ADHD. Random effects models corrected for publication bias and sampling error revealed that studies training short-term memory alone resulted in moderate magnitude improvements in short-term memory (d=0.63), whereas training attention did not significantly improve attention and training mixed executive functions did not significantly improve the targeted executive functions (both nonsignificant: 95% confidence intervals include 0.0). Far transfer effects of cognitive training on academic functioning, blinded ratings of behavior (both nonsignificant), and cognitive tests (d=0.14) were nonsignificant or negligible. Unblinded raters (d=0.48) reported significantly larger benefits relative to blinded raters and objective tests (both pexecutive functions that are (a) most impaired in ADHD, and (b) functionally related to the behavioral and academic outcomes these training programs are intended to ameliorate. Collectively, meta-analytic results indicate that claims regarding the academic, behavioral, and cognitive benefits associated with extant cognitive training programs are unsupported in ADHD. The methodological limitations of the current evidence base, however, leave open the possibility that cognitive training techniques designed to improve empirically documented executive function deficits may benefit children with ADHD.
Croce, Robert A., Jr.
Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled
DEFF Research Database (Denmark)
Seif El-Nasr, Magy; Drachen, Anders; Canossa, Alessandro
2013-01-01
Game Analytics has gained a tremendous amount of attention in game development and game research in recent years. The widespread adoption of data-driven business intelligence practices at operational, tactical and strategic levels in the game industry, combined with the integration of quantitative...
The Thermal Expansion Of Feldspars
Hovis, G. L.; Medford, A.; Conlon, M.
2009-12-01
Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper studies the problem of a functionally graded piezoelectric circular plate subjected to a uniform electric potential difference between the upper and lower surfaces. By assuming the generalized displacements in appropriate forms,five differential equations governing the generalized displacement functions are derived from the equilibrium equations. These displacement functions are then obtained in an explicit form,which still involve four undetermined integral constants,through a step-by-step integration which properly incorporates the boundary conditions at the upper and lower surfaces. The boundary conditions at the cylindrical surface are then used to determine the integral constants. Hence,three-dimen sional analytical solutions for electrically loaded functionally graded piezoelectric circular plates with free or simply-supported edge are completely determined. These solutions can account for an arbitrary material variation along the thickness,and thus can be readily degenerated into those for a homogenous plate. A numerical example is finally given to show the validity of the analysis,and the effect of material inhomogeneity on the elastic and electric fields is discussed.
Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane; Zibetti, Stefano
2017-02-01
In this paper, we investigate the implications of the integrated galaxy-wide stellar initial mass function (IGIMF) approach in the framework of the semi-analytical model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [α/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of α-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high redshift, leading to stronger α-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation time-scales for more massive galaxies. We argue that in the IGIMF scenario the [α/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early-type galaxies.
Fontanot, Fabio; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stephane; Zibetti, Stefano
2016-01-01
In this work, we investigate the implications of the Integrated Galaxy-wide stellar Initial Mass Function (IGIMF) approach in the framework of the semi-analytic model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [$\\alpha$/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of $\\alpha$-enhancement with stellar mass. This is mainly due to the fact that massive galaxies are characterized by larger SFRs at high-redshift, leading to stronger $\\alpha$-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation timescales for more massive galaxies. We argue that in the IGIMF scenario the [$\\alpha$/Fe] ra...
Analytical solutions to a compressible boundary layer problem with heat transfer
Institute of Scientific and Technical Information of China (English)
Liancun Zheng; Xinxin Zhang; Jicheng He
2004-01-01
The problem of momentum and heat transfer in a compressible boundary layer behind a thin expansion wave was solved by the application of the similarity transformation and the shooting technique. Utilizing the analytical expression of a two-point boundary value problem for momentum transfer, the energy boundary layer solution was represented as a function of the dimensionless velocity, and as the parameters of the Prandtl number, the velocity ratio, and the temperature ratio.
Exact Analytical Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length
Institute of Scientific and Technical Information of China (English)
CHEN Yong; LI Biao; ZHENG Yu
2007-01-01
In the paper, the generalized Riccati equation rational expansion method is presented. Making use of the method and symbolic computation, we present three families of exact analytical solutions of Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Then the dynamics of two anlytical solutions are demonstrated by computer simulations under some selectable parameters including the Feshbach-managed nonlinear coefficient and the hyperbolic secant function coefficient.
Approximate expressions for the period of a simple pendulum using a Taylor series expansion
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Arribas, Enrique, E-mail: a.belendez@ua.es [Departamento de Fisica Aplicada, Escuela Superior de IngenierIa Informatica, Universidad de Castilla-La Mancha, Avda de Espana, s/n, E-02071 Albacete (Spain)
2011-09-15
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.
Behavior of the x-ray spectrum of multiply charged ions during forced plasma expansion
Energy Technology Data Exchange (ETDEWEB)
Zhidkov, A.G.; Marchenko, V.S.
1982-07-01
The behavior of the x-ray emission spectrum of a dense plasma during forced expansion is studied. The optical transparency of the plasma varies during the expansion. The plasma emission spectrum integrated over the expansion time is calculated from the analytic solutions of the equations. The intensity of the line emission is calculated in the average-ion approximation.
Energy Technology Data Exchange (ETDEWEB)
Barrera, G D [Departamento de QuImica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9000 Comodoro Rivadavia (Argentina); Bruno, J A O [Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de QuImica Inorganica, AnalItica y QuImica FIsica, Pabellon 2, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Barron, T H K [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Allan, N L [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)
2005-02-02
There has been substantial renewed interest in negative thermal expansion following the discovery that cubic ZrW{sub 2}O{sub 8} contracts over a temperature range in excess of 1000 K. Substances of many different kinds show negative thermal expansion, especially at low temperatures. In this article we review the underlying thermodynamics, emphasizing the roles of thermal stress and elasticity. We also discuss vibrational and non-vibrational mechanisms operating on the atomic scale that are responsible for negative expansion, both isotropic and anisotropic, in a wide range of materials. (topical review)
Kaon Thresholds and Two-Flavor Chiral Expansions for Hyperons
Energy Technology Data Exchange (ETDEWEB)
Fu-Jiun Jiang, Brian C. Tiburzi, Andre Walker-Loud
2011-01-01
Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking effects, we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half hyperons.
Expansion techniques for collisionless stellar dynamical simulations
Energy Technology Data Exchange (ETDEWEB)
Meiron, Yohai [Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing 100871 (China); Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Spurzem, Rainer, E-mail: ymeiron@pku.edu.cn [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China)
2014-09-10
We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ∼0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.
CONCEPT OF TISSUE EXPANSION IN RECONSTRUCTIVE SURGERY
Directory of Open Access Journals (Sweden)
Sheeja Rajan
2015-01-01
Full Text Available BACKGROUND: Tissue expansion is a unique reconstructive option in the armamentarium of a reconstructive surgeon whereby skin and soft tissues of our body can be stretched to large dimensions for wound coverage. The basis for such stretch ability lies in the inherent viscoelastic properties of skin. AIMS: This paper explores the prospects of using tissue expanders to reconstruct defects arising due to a kaleidoscope of pathological conditions including burns scars, post traumatic scars, congenital anomalies like hairy nevus, involutional scars in haemangioma as well as in post mastectomy breast reconstruction . MATERIALS AND METHODS: Our experience with tissue expansion in 14 patients over 24 months is presented. Tissue expanders made of silicone in sizes from 100 - 250ml, of round, rectangular or croissant (crescent shapes have been used. Areas expanded include scalp, forehead, neck, abdomen and forearm. Multiple expanders have been used when possible. Average expansion time was 8 - 12 weeks and the expanded tissue was transferred as advancement flaps. RESULTS AND CONCLUSIONS: Tissue expansion was successfully completed in 13 patients. Expansion had to be aborted in 1 paediatric patient undergoing neck expansion due to infection. Implant failure occurred in 1 patient during serial expansion. Nevertheless, in our experience tissue expan sion is an invaluable reconstructive tool to give excellent donor tissue with colour and texture match in countless situations demanding aesthetic and functional reconstruction. KEYWORDS: Burns scars, Reconstruction, Tissue expansion .
Rendell, Alistair P.; Lee, Timothy J.
1991-01-01
The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.
Some convolution properties for a class of P- Valent analytic functions%一类P-叶解析函数的若干卷积性质
Institute of Scientific and Technical Information of China (English)
包革军; 宋立新
2002-01-01
给出了单位圆盘U={z:|z|＜1}上的P叶解析函数类P(p,α)(P∈N={1,2,…},α＜p)的若干解析性质.此外,对于f∈P(p,α),证明了积分算子Jp,c(f)∈(p,β),这里β=(2α-p)-(p-α) (c+p,c+p+1;-1)是严格的.%The authors obtain some convolution properties for the class P(p, α)(p∈N={1, 2,…},α＜p)ofP-valent analytic functions in the unit disc U={z:|z|＜1}. In addition, for f∈P(p, α), they prove theintergral operator Jp. c(f)∈(p, β), where value β=(2α-p)-(p-α) (c+p, c+p; -1)is sharp.
Security of Semi-Device-Independent Random Number Expansion Protocols
Li, Dan-Dan; Wen, Qiao-Yan; Wang, Yu-Kun; Zhou, Yu-Qian; Gao, Fei
2015-01-01
Semi-device-independent random number expansion (SDI-RNE) protocols require some truly random numbers to generate fresh ones, with making no assumptions on the internal working of quantum devices except for the dimension of the Hilbert space. The generated randomness is certified by non-classical correlation in the prepare-and-measure test. Until now, the analytical relations between the amount of the generated randomness and the degree of non-classical correlation, which are crucial for evaluating the security of SDI-RNE protocols, are not clear under both the ideal condition and the practical one. In the paper, first, we give the analytical relation between the above two factors under the ideal condition. As well, we derive the analytical relation under the practical conditions, where devices’ behavior is not independent and identical in each round and there exists deviation in estimating the non-classical behavior of devices. Furthermore, we choose a different randomness extractor (i.e., two-universal random function) and give the security proof. PMID:26503335
Conservation laws and a new expansion method for sixth order Boussinesq equation
Yokuş, Asıf; Kaya, Doǧan
2015-09-01
In this study, we analyze the conservation laws of a sixth order Boussinesq equation by using variational derivative. We get sixth order Boussinesq equation's traveling wave solutions with (1/G) -expansion method which we constitute newly by being inspired with (G/G) -expansion method which is suggested in [1]. We investigate conservation laws of the analytical solutions which we obtained by the new constructed method. The analytical solution's conductions which we get according to new expansion method are given graphically.
DEFF Research Database (Denmark)
include: re-identification, consumer behavior analysis, utilizing pupillary response for task difficulty measurement, logo detection, saliency prediction, classification of facial expressions, face recognition, face verification, age estimation, super-resolution, pose estimation, and pain recognition......This book collects the papers presented at two workshops during the 23rd International Conference on Pattern Recognition (ICPR): the Third Workshop on Video Analytics for Audience Measurement (VAAM) and the Second International Workshop on Face and Facial Expression Recognition (FFER) from Real...
Fakhruddin, Hasan
1993-01-01
Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)
Fields with Analytic Structure
Cluckers, Raf
2009-01-01
We present a unifying theory of fields with certain classes of analytic functions, called fields with analytic structure. Both real closed fields and Henselian valued fields are considered. For real closed fields with analytic structure, o-minimality is shown. For Henselian valued fields, both the model theory and the analytic theory are developed. We give a list of examples that comprises, to our knowledge, all principal, previously studied, analytic structures on Henselian valued fields, as well as new ones. The b-minimality is shown, as well as other properties useful for motivic integration on valued fields. The paper is reminiscent of [Denef, van den Dries, "p-adic and real subanalytic sets" Ann. of Math. (2) 128 (1988) 79--138], of [Cohen, Paul J. "Decision procedures for real and p-adic fields" Comm. Pure Appl. Math. 22 (1969) 131--151, and of [Fresnel, van der Put, "Rigid analytic geometry and its applications" Progress in Mathematics, 218 Birkhauser (2004)], and unifies work by van den Dries, Haskell...
Analyticity and the Holographic S-Matrix
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC
2012-04-03
We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.
Accurate Analytic Potential Energy Function and Spectroscopic Study for G1 ∏g State of Dimer 7Li2
Institute of Scientific and Technical Information of China (English)
SHI De-Heng; MA Heng; SUN Jin-Feng; ZHU Zun-Lue
2007-01-01
The reasonable dissociation limit for the G1∏g state of dimer 7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311++G, 6-311++G(2df, 2pd), 6-311++G(2df, p), cc-PVTZ, 6-311++G(3df, 3pd), CEP-121G, 6-311++G(2df, pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df, 2p),6-311++G(2df), 6-311++G(df, pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclusion shows that the basis set 6-311++G(2df, p) is a most suitable one for the G1∏g state. At this basis set, the calculated spectroscopic constants Te, De, Eo, Re, ωe, ωeXe, αe, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm-1, 0.320 15 nm,227.96 cm-1, 1.6928 cm-1, 0.004 436 cm-1, and 0.4689 cm-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.
A two-dimensional analytical model for short channel junctionless double-gate MOSFETs
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-05-01
A physics-based analytical model of electrostatic potential for short-channel junctionless double-gate MOSFETs (JLDGMTs) operated in the subthreshold regime is proposed, in which the full two-dimensional (2-D) Poisson's equation is solved in channel region by a method of series expansion similar to Green's function. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this expression, analytical models of threshold voltage, subthreshold swing, and subthreshold drain current for JLDGMTs were derived. Subthreshold behavior was studied in detail by changing different device parameters and bias conditions, including doping concentration, channel thickness, gate length, gate oxide thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the 2-D simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLDGMTs and to optimize their device performance.
Matsumoto, Kohji
2002-01-01
The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory